分式方程重点题型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式易考题型
※【典例剖析】
例1(分式概念)
(1) 当x 时,分式x -13无意义; (2)当x 时,分式3
92--x x 的值为零. 随堂练习1
1要使式子33-+x x ÷4
2-+x x 有意义,x 的取值应为 。 2、当x 时,分式33
+-x x 的值为0。
3、使分式1
122+-a a 有意义的a 的取值是( ) A 、a ≠1 B 、a ≠±1 C 、a ≠-1 D 、a 为任意实数
4、当x = -3时,下列分式中有意义的是( )
A 、33-+x x
B 、3
3+-x x C 、)2)(3()2)(3(--++x x x x D 、)2)(3()2)(3(-++-x x x x 5、判断下列各分式中x 取什么值时,分式的值为0?x 取什么值时,分式无意义
⑴)1)(3(2x x x --+; ⑵2522+-x x ; ⑶2
231--+x x .
例2(分式的约分) 已知311=-y x ,求y
xy x y xy x ---+55的值.
随堂练习2
1、下列变形不正确的是( ) A.2222+-=---a a a a B.11112--=+x x x (x ≠1) C.1212+++x x x =2
1 D.2126336-+=-+y x y x 2、若2x =-y ,则分式
22y x xy -的值为________. 3、化简求值:
(1)222222484y x y xy x -+- 其中x =2,y =3. (2)已知y
x =2,求222263y xy x y xy x +++-的值.
例3(分式的乘除法)使分式22222)
(y x ay ax y a x a y x ++⋅--的值等于5的a 的值是( ) A.5 B.-5 C.51 D.-5
1 随堂练习3
计算:(1)(xy -x 2
)÷xy y x - (2)24244422223-+-÷+-+-x x x x x x x x
例4(分式加减法)
例4-1化简求值:当x =
21时,求1
121122-+-++-x x x x x 的值.
例4-2
62)1(33)1)(1()1(3)1)(1(313)1)(1(313132--=+--=-++--+-=---+-=----x x x x x x x x x x x x x x x x (1)上述计算过程中,从哪一步开始出现错误:
(2)从B 到C 是否正确; 。若不正确,错误的原因是
(3)请你正确解答。
随堂练习4
1、分式xy 2,y x +3,y
x -4的最简公分母是________. 2、计算:222321xyz
z xy yz x +-=_____________. 3计算:)11(1x
x x x -+-=_____________. 例5 (分式的混合运算)
化简求值:(2+1111+--a a )÷(a -2
1a a -),其中a=2
随堂练习5
化简:(x +1-13-x )÷2
22-+x x
例6(解分式方程) (1)x x x --=+-34231 (2)2
123442+-=-++-x x x x x
随堂练习6
解分式方程:1、132+=x x 2、 54145=----x
x x
例7(分式方程的增根)
如果关于x 的方程x
x x a --=+-42114有增根,则a 的值为________. 随堂练习7
1关于x 的方程4
332=-+x a ax 的根为x =1,则a 应取值( ) A.1 B.3 C.-1 D.-3
2.方程1+1
)1(2
-+x x =0有增根,则增根是( ) A.1 B.-1 C.±1 D.0
3. 下列方程中,增根为x =-1的方程是( ) A. 110x += B. 211x += C. 112x x += D. 21232x x x x
+-=+ 例8(分式方程的应用)
例8-1 沿河两地相距s 千米,船在静水中的速度为a 千米/时,水流速度为b 千米/时,此船一次往返所需时间为( ) A.b a s +2小时 B.b a s -2小时 C.(b s a s +)小时 D.(b
a s
b a s -++)小时 例8-2 赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( )
A.21
140140-+x x =14 B.21280280++x x =14 C.21140140++x x =14 D.21
1010++x x =1 ※【精题精炼】
一、填空题 1、当x 时,分式1
223+-x x 有意义;当x 时,分式x x --112的值等于零. 2、分式ab c 32、bc a 3、ac
b 25的最简公分母是 ;化简:242--x x = . 3、若分式2
31-+x x 的值为负数,则x 的取值范围是 . 4、已知2009=x 、2010=y ,则()⎪⎪⎭
⎫ ⎝⎛-+⋅+4422y x y x y x = . 5、如果2=b a ,则2222b
a b ab a ++-= . 6、分式方程3
13-=+-x m x x 有增根,则x = . 7、已知3
1)3)(1(5-++=-++x B x A x x x ,整式A 、B 的值分别为 . 8、(思维突破题)若31=+x x ,则221x
x += . 二、选择题
9、下列各式:()x
x x x y x x x 2
225 ,1,2 ,34 ,151+---π其中是分式有( ) A 、2个 B 、3个 C 、4个 D 、5个
10、下列约分正确的是( )
A 、326x x x =
B 、0=++y x y x
C 、x xy x y x 12=++
D 、2
14222=y x xy 11、(易错题)下列各分式中,最简分式是( )
A 、()()y x y x +-8534
B 、222
2xy y x y x ++ C 、y x x y +-22 D 、()
222y x y x +- 12、(更易错题)下列分式中,计算正确的是( )
A 、32)(3)(2+=+++a c b a c b
B 、b a b
a b a +=++122 C 、1)()(22-=+-b a b a D 、x y y x xy y x -=---1222 13、若把分式xy
y x 2+中的x 和y 都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、不变 C 、缩小3倍 D 、缩小6倍
14、下列各式中,从左到右的变形正确的是( )
A 、y x y x y x y x ---=--+-
B 、y x y x y x y x +-=--+-
C 、y x y x y x y x -+=--+-
D 、y
x y x y x y x +--=--+- 15、若0≠-=y x xy ,则分式=-x
y 11( ) A 、2 B 、x y - C 、1 D 、-1
16、(讨论分析题)若x 满足1=x
x ,则x 应为( )