实验3伏安法测线性电阻和二极管的特性曲线
线性与非线性电阻的伏安特性曲线
线性电阻和非线性电阻的伏安特性曲线一、实验原理当一个元件两端加上电压,元件内有电流通过时,电压与电流之比称为该元件的电阻。
若一个元件两端的电压与通过它的电流成比例,则伏安特性曲线为一条直线,该类元件称为线性元件。
若元件两端的电压与通过它的电流不成比例,则伏安特性曲线不再是直线,而是一条曲线,这类元件称为非线性元件。
一般金属导体的电阻是线性电阻,它与外加电压的大小和方向无关,其伏安特性是一条直线(见图1)。
从图上看出,直线通过一、三象限。
它表明,当调换电阻两端电压的极性时,电流也换向,而电阻始终为一定值,等于直线斜率的倒数VR。
I常用的晶体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。
下面对它的结构和电学性能作一简单介绍。
图1线性电阻的伏安特性图2晶体二极管的p-n结和表示符号晶体二级管又叫半导体二极管。
半导体的导电性能介于导体和绝缘体之间。
如果在纯净的半导体中适当地掺入极微量的杂质,则半导体的导电能力就会有上百万倍的增加。
加到半导体中的杂质可分成两种类型:一种杂质加到半导体中去后,在半导体中会产生许多带负电的电子,这种半导体叫电子型半导体 (也叫n型半导体);另一种杂质加到半导体中会产生许多缺少电子的空穴(空位),这种半导体叫空穴型半导体 (也叫p型半导体)。
晶体二极管是由两种具有不同导电性能的n型半导体和p型半导体结合形成的p-n结构成的。
它有正、负两个电极,正极由p型半导体引出,负极由n型半导体引出,如图2(a)所示。
p-n结具有单向导电的特性,常用图2(b)所示的符号表示。
关于p-n结的形成和导电性能可作如下解释。
图3 p-n结的形成和单向导电特性如图3(a)所示,由于p区中空穴的浓度比n区大,空穴便由p区向n区扩散;同样,由于n区的电子浓度比p区大,电子便由p区扩散。
随着扩散的进行,p区空穴减少,出现了一层带负电的粒子区(以Ө表示);n区的电子减少,出现了一层带正电的粒子区(以⊕表示)。
电学元件的伏安特性测量实验报告
电学元件的伏安特性测量实验报告电学元件的伏安特性测量实验报告引言:电学元件的伏安特性是电子工程领域中一个重要的实验内容。
通过测量电流与电压之间的关系,可以了解元件的性能和特点。
本实验报告将介绍伏安特性测量实验的目的、原理、实验过程和结果分析。
一、实验目的本实验的主要目的是通过测量电阻、二极管和电容的伏安特性曲线,掌握这些电学元件的基本特性,并加深对电路中电流和电压之间关系的理解。
二、实验原理1. 电阻的伏安特性测量电阻是一个线性元件,其伏安特性曲线为一条直线,斜率为电阻值。
实验中,通过改变电阻上的电压,测量通过电阻的电流,然后根据欧姆定律计算电阻值。
2. 二极管的伏安特性测量二极管是一个非线性元件,其伏安特性曲线为一条指数曲线。
实验中,通过改变二极管的电压,测量通过二极管的电流。
由于二极管的正向电压与正向电流之间存在指数关系,因此需要在实验中选择适当的电压范围,以保证测量数据的准确性。
3. 电容的伏安特性测量电容是一个存储电荷的元件,其伏安特性曲线为一条斜率逐渐变小的曲线。
实验中,通过改变电容器两端的电压,测量电容器充电和放电的电流。
根据电容器的充放电过程,可以得到电容器的伏安特性曲线。
三、实验过程1. 电阻的伏安特性测量a. 搭建电路:将电阻与电压源和电流表连接,保证电路的稳定性。
b. 调节电压源的电压,并记录电流表的读数。
c. 重复步骤b,改变电压源的电压,测量不同电压下的电流值。
d. 根据欧姆定律,计算电阻的值。
2. 二极管的伏安特性测量a. 搭建电路:将二极管与电压源和电流表连接,保证电路的稳定性。
b. 调节电压源的电压,并记录电流表的读数。
c. 重复步骤b,改变电压源的电压,测量不同电压下的电流值。
d. 根据测量数据,绘制二极管的伏安特性曲线。
3. 电容的伏安特性测量a. 搭建电路:将电容器与电压源和电流表连接,保证电路的稳定性。
b. 调节电压源的电压,并记录电流表的读数。
c. 重复步骤b,改变电压源的电压,测量不同电压下的电流值。
实验 电阻伏安特性及电源外特性的测量
(8) 稳压电源串联电阻构成的电压源, 它的输出电压与输出 电流之间有什么关系?能否写出其伏安特性公式?
(9) 选取表3-19-6中的任一组实验结果,按式(3-19-2)计算出 Rs、Gs,并和实验参数进行比较。
附注一 二极管伏安特性曲线的研究
一、 实验目的
通过对二极管伏安特性的测试 , 掌握锗二极管和硅二极管
图 3 - 19 - 4 线性电阻元件的实验线路
(2)调节稳压电源输出电压旋钮,使电压Us分别为0V、
1V、2V、3V、4V、5V、6V、7V、8V、9V、10V,并测量对应的 电流值和负载R L两端电压U,数据记入表1。然后断开电源,稳 压电源输出电压旋钮置于零位。 表3 - 19 - 1 线性电阻元件实验数据表
管会被击穿。因此,在二极管使用时应竭力避免出现击穿现象。
二极管的击穿现象很容易造成二极管的永久性损坏。因此, 在 做二极管反向特性实验时,应串入限流电阻,以防因反向电流过大 而损坏二极管。
系数为4.8×10-3Ω /℃,为正温度系数。灯泡两端施加电压后 , 钨丝上就有电流流过,产生功耗, 灯丝温度上升, 致使灯泡电 阻增加。灯泡不加电时的电阻称为冷态电阻, 施加额定电压 时测得的电阻称为热态电阻。由于钨丝点亮时温度很高, 当超
过额定电压时 , 钨丝会烧断 , 所以使用时不能超过额定电压。
六、 分析和讨论 (1) 比较47Ω 电阻和白炽灯的伏安特性曲线, 可得出什么
结论?
(2) 试通过钨丝灯泡的伏安特性曲线解释为什么在开灯的
时候灯泡容易烧坏?
(3) 在电子振荡器电路中, 经常利用正温度系数的灯泡作 为振荡电路电压稳定的自动调节元件 , 参考图 3-19-10 所示电 路, 试通过钨丝灯的伏安特性说明该振荡电路稳幅原理。
电阻定律伏安特性曲线
电阻定律
1、内容:
同种材料的导体,其电阻R与它的长
度L成正比,与它的横截面积S成反比;
导体电阻与构成它的材料有关。
2、表达式:
R l
S
是比例常数,它与导体的材料有
关,是一个反映材料导电性能的物理 量,称为材料的电阻率。
电阻率()
1、反映材料导电性能的物理量 2、单位:欧姆·米 Ω·m 3、纯金属的电阻率小,合金的电阻率大 4、金属导体的电阻率随温度的升高而增大
锰铜合金和镍铜合金的电阻率随温度变化极小, 利用它们的这种性质,常用来制作标准电阻。
超导现象:有些物质当温度降低到绝对零度附近 时它们的电阻率会突然变为零。
半导体:导电性能介于导体和绝缘体之间,电阻 率随温度的升高而减小,导电性能由外界条件所控制, 如改变温度、光照、掺入微量杂质等。
1.下列关于电阻率的叙述,错误的是 [ ] A.当温度极低时,超导材料的电阻率会突然
减小到零
B.常用的导线是用电阻率较小的铝、铜材料 做成的
C.材料的电阻率取决于导体的电阻、横截面 积和长度
D.材料的电阻率随温度变化而变化
4.一根阻值为R的均匀电阻丝,长为L,横截面积 为S,设温度不变,在下列哪些情况下其电阻值 仍为R? [ ]
A.当L不变,S增大一倍时 B.当S不变,L增大一倍时
D.当L和横截面的半径都增大一倍时。
2.一粗细均匀的镍铬丝,截面直径为d,电阻为R。 把它拉制成直径为d/10的均匀细丝后,它的电阻 变为( )
A.R/1000 B.R/100 C.100R D.10000R
伏安特性曲线:导体的 I—U 图线
伏安特性曲线是研究导体电流和电 压关系的重要工具。
若导体的伏安特性曲线是过原点的直线, 则这种元件称为线性元件。
《线性和非线性电阻的伏安特性测量》实验报告,2023
《基础物理实验》实验报告实验:线性和非线性电阻的伏安特性的测量姓名:学号:班级:成绩:合作者:指导教师:日期:2022 年____月____日【注意事项】(在开始实验操作前请仔细阅读以下说明)1.测量时,可调稳压电源的输出电压由0 V缓慢逐渐增加,应时刻注意电压表和电流表的读数,切勿超过规定值。
2.稳压电源输出端切勿碰线短路。
3.测量中,随时注意电流表读数,及时更换电流表量程,勿使仪表超量程。
【预习题】1. 下图分别为纯电阻、白炽灯泡、普通二极管、稳压二极管的伏安特性曲线,请根据伏安特性曲线分析各种电阻有什么特点?答:纯电阻:纯电阻的伏安特性是一条直线,电压与电流成线性关系,电阻数值恒定,为线性电阻。
白炽灯泡:白炽灯泡的伏安特性是关于原点对称的曲线,其斜率由小变大,说明其电阻值由小变到大,白炽灯泡为非线性电阻。
普通二极管:二极管加反向电压时,流过二极管的电流很小,几乎为0,说明电阻非常大,趋于断路;当二极管加正向电压时,刚开始电流变化较小,但电压大于一定值时,电流会随电压的缓慢升高而急剧增大,说明电阻急剧变小,二极管为非线性电阻。
稳压二极管:稳压二极管的正向特性与普通二极管的正向特性相似。
加反向电压时,在某范围内的电压,电流较小;一旦超出一定电压,电流就会突然增加,而稳压二极管上的电压几乎恒定不变。
说明电阻刚开始非常大,随着电压增大,一旦达到一定值时,电阻急剧减小,稳压管为非线性电阻。
2. 电流表内接方式和电流表外接方式分别适用于什么情况?答:电流表内接方式适用于待测电阻值远大于电流表的内阻。
电流表外接方式适用于待测电阻值远小于伏特表的内阻。
【实验目的】1.学习由测量电压、电流求电阻值的方法(伏安法)。
2.通过对二极管伏安特性的测量,了解非线性电学元件的导电特性。
3.学习减少伏安法中系统误差的方法。
【实验仪器】【实验内容与步骤】1.测定线性电阻的伏安特性(1)确定采用外接(内接、外接)法测伏安特性,并按图接线。
测绘线形电阻和非线性电阻的伏安特性曲线
6. 实验过程中,电压表和电流表读数为零, 首先要考虑什么因素?
7. 第二个小实验中,电流表没读数,电压表 有读数,什么器件出现问题?
8. 两个小实验中都用到了一个分压电阻,实 验前应该把此电阻提供给电路的电压将到 最小还是最大?
9. 如何利用开关?10Biblioteka 电压表没读数,电流表有读数,为何?
测二极管正向伏安特性曲线(内接)
2、电阻的伏安特性曲线:电流与电压成正比。 伏安特性曲线是一直线。
线形电阻的伏安特性曲线
3、晶体二极管的伏安特性曲线:通过器件的 电流与电压不成正比。伏安特性曲线是非 线性的。
二极管的伏安特性曲线
实验内容
1、测绘金属膜电阻的伏安特性曲线: 电源电压取3.5V,电阻为200欧姆,电
测绘线形电阻和非线性电 阻的伏安特性曲线
实验原理 实验内容 注意事项 讨论思考
实验原理
1、两种基本电路:电压表外接和电压表内接。
外接法中,电流 测量准确,但电压不 是器件两侧的电压。 包含电流表两端的电 压。所以测得的电阻 偏大。这种方法适合 测电阻伏安特性曲线 (外接) 测大电阻。
内接法中,电压表测出的是器件两端的 电压,而电流表测出的电流不是被测器件的 电流,这里包含流过电压表的电流。所以测 量的电阻偏小。这种方法适合测小电阻。
压表内阻为3000欧姆,电流表内阻为6欧姆。 故应该选择电压表外接电路。
2、测绘二极管的正向伏安特性曲线
利用电压表内接法测量二极管的伏安 特性曲线。注意,测量非线性电学器件 时,曲线弯曲的地方,电压间隔应该适 当减小。
注意事项
1. 毫安表的正负极不能接错。 2. 流经毫安表的电流不能超过所选量程。 3. 测晶体二极管正向伏安特性时,毫安表读
实验3-1 伏安法测晶体二极管特性.
实验3-1 伏安法测晶体二极管特性给一个元件通以直流电,用电压表测出元件两端的电压,用电流表测出通过元器件的电流。
通常以电压为横坐标、电流为纵坐标,画出该元件电流和电压的关系曲线,称为该元件的伏安特性曲线。
这种研究元件特性的方法称为伏安法。
伏安特性曲线为直线的元件称为线性元件,如电阻;伏安特性曲线为非直线的元件称为非线性元件,如二极管、三极管等。
伏安法的主要用途是测量研究线性和非线性元件的电特性。
非线性电阻总是与一定的物理过程相联系,如发热、发光和能级跃迁等,江崎玲、於奈等人因研究与隧道二极管负电阻有关的现象而获得1973年的诺贝尔物理学奖。
【实验目的】1.具体了解和分析二极管的伏安特性曲线。
2.学会分析伏安法的电表接入误差,正确选择电路使其误差最小。
3.学会电表、电阻器、电源等基本仪器的使用。
【仪器用具】安培计、伏特计、变阻器、转盘电阻箱、甲电池、待测二极管、导线、双刀双掷倒向开关、单刀开关【实验原理】半导体二极管的核心是一个PN结,这个PN结处在一小片半导体材料的P区与N区之间(如图3-1-1),它由这片材料中的P型半导体区域和N型半导体区域相连所构成。
连接P 型区域的引出线称为P极,连接N型区域的引出线称为N极。
当电压加在PN结上时,若电压的正端接在P极上,电压的负端接在N极上(如图3-1-2),称这种连接为“正向连接”;反之,档PN结的两极反向连接到电压上时为“反向连接”。
正向连接时,二极管很容易导图3-1-1 图3-1-2通,反向连接时,二极管很难导通。
我们称二极管的这种特性为单向导电性。
实验工作中往往利用二极管的单向导电性进行整流、检波、作电子开关等。
二极管电流随外加电压变化的关系曲线称为伏安特性曲线。
二极管的伏安特性曲线如图3-1-3和图3-1-4所示。
这两个图说明了二极管的单向导电性。
由图可见,在正向区域,锗管和硅管的起始导通电压不同,电流上升的曲线斜率也不同。
图3-1-3 图3-1-4利用绘制出的二极管的伏安特性曲线,可以计算出二极管的直流电阻及表征其它特性的某些参数。
伏安法测电阻
伏安法测电阻实验报告一、实验目的:1.学会设计用伏安法测电阻的实验电路。
2.掌握各种电阻原件伏安特性曲线的测量方法。
3.学会用作图法处理实验数据。
二、实验原理:1.线性元件和非线性原件当一电阻元件两端加上不同的直流电压U时,元件内则有相应的电流I流过,以电流I为纵坐标,电压U为横坐标,做出I−U关系曲线,这便是该电阻元件的伏安特性曲线。
通常情况下,导电金属丝,碳膜电阻,金属膜电阻等,其伏安特性曲线是一条过原点的直线,如图(1)所示。
这类元件称为线性元件,其阻值是一个不随I,U变化的常量。
对于像晶体二极管,热敏电阻等元件,他们的伏安特性曲线不是一条直线,这类元件称为非线性元件,其阻值不是一个常量。
图(1)2.测量电路的选取利用伏安法测电阻常采用如下图所示的两种类型测量电路。
由图可以得出,测量电路的选取在于电源的选取,变阻器R的选取和电表的选取以及连接方式等几方面。
(1)电源的选取实验时常用的直流电源有三种:直流稳压电源,直流稳流电源和固定电压源(如干电池等)。
实验时电源的选取应使所选电源的额定电压和额定电流同负载的额定电压和额定电流相同或稍大较为理想,余量过大浪费电能,会使调节变粗,若使用不慎也易损坏电表。
(2)变阻器的选取与连接方式变阻器的用途是控制电路中的电压和电流,使其达到某一指定的数值,或使其在一定范围内连续变化。
为此,实验中常用变阻器组成分压电路和限流电路,如上图所示。
分压电路是通过变阻器R的滑动端的移动来改变R X两端的电压;限流电路是通过改变变阻器R的阻值来改变电路中电流的。
实验中如能选用合适的直流稳压电源或是稳流电源,一般可不采用变阻器控制电路。
如选用固定电压电源,则需用变阻器来调节R X两端的电压和通过它的电流。
变阻器的连接方式按如下考虑:如所选电源的额定电流大于负载R X的两倍以上,宜选用分压电路。
该电路调节的范围宽且可以调为零值。
实验中希望改变R时,负载R X两端的电压变化要尽量均匀,否则调节困难,给实验带来不便。
伏安特性曲线的测量实验报告
竭诚为您提供优质文档/双击可除伏安特性曲线的测量实验报告篇一:电路元件伏安特性的测量(实验报告答案)实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。
二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。
任何一个二端电阻元件的特性可用该元件上的端电压u与通过该元件的电流I之间的函数关系式I=f(u)来表示,即用I-u平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。
根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。
线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。
该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压u和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。
常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。
在图1-1中,u>0的部分为正向特性,u<0的部分为反向特性。
(a)线性电阻(b)白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压u作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f(u),根据伏安特性曲线便可计算出电阻元件的阻值。
三、实验设备与器件1.直流稳压电源1台2.直流电压表1块3.直流电流表1块4.万用表1块5.白炽灯泡1只6.二极管1只7.稳压二极管1只8.电阻元件2只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。
调节直流稳压电源的输出电压u,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。
2将图1-2中的1kΩ线性电阻R换成一只12V,0.1A的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。
电路实验报告_3
实验一电路元件伏安特性的测试一、实验目的1.学会识别常用电路元件的方法2.掌握线性电阻、非线性电阻元件伏安特性的测试方法3.熟悉实验台上直流电工仪表和设备的使用方法二、原理说明电路元件的特性一般可用该元件上的端电压U 与通过该元件的电流I之间的函数关系I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。
电阻元件是电路中最常见的元件,有线性电阻和非线性电阻之分。
实际电路中很少是仅由电源和线性电阻构成的“电平移动”电路,而非线性器件却常常有着广泛的使用,例如非线性元件二极管具有单向导电性,可以把交流信号变换成直流量,在电路中起着整流作用。
万用表的欧姆档只能在某一特定的U和I下测出对应的电阻值,因而不能测出非线性电阻的伏安特性。
一般是用含源电路“在线”状态下测量元件的端电压和对应的电流值,进而由公式R=U/I求测电阻值。
1.线性电阻器的伏安特性符合欧姆定律U=RI,其阻值不随电压或电流值的变化而变化,伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示,该直线的斜率等于该电阻器的电阻值。
图1-1 元件的伏安特性2.白炽灯可以视为一种电阻元件,其灯丝电阻随着温度的升高而增大。
一般灯泡的“冷电阻”与“热电阻”的阻值可以相差几倍至十几倍。
通过白炽灯的电流越大,其温度越高,阻值也越大,即对一组变化的电压值和对应的电流值,所得U/I不是一个常数,所以它的伏安特性是非线性的,如图1-1(b)所示。
3.半导体二极管也是一种非线性电阻元件,其伏安特性如图1-1(c)所示。
二极管的电阻值随电压或电流的大小、方向的改变而改变。
它的正向压降很小(一般锗管约为0.2~0.3V,硅管约为0.5~0.7V),正向电流随正向压降的升高而急剧上升,而反向电压从零一直增加到十几至几十伏时,其反向电流增加很小,粗略地可视为零。
发光二极管正向电压在0.5~2.5V 之间时,正向电流有很大变化。
可见二极管具有单向导电性,但反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。
二极管伏安特性试验
实验十二非线性元件伏安特性的测量和研究给一个元件通以直流电,用电压表测出元件两端的电压,用电流表测出通过元器件的电流。
通常以电压为横坐标、电流为纵坐标,画出该元件电流和电压的关系曲线,称为该元件的伏安特性曲线。
这种研究元件特性的方法称为伏安法。
伏安特性曲线为直线的元件称为线性元件,如电阻;伏安特性曲线为非直线的元件称为非线性元件,如二极管、三极管等。
伏安法的主要用途是测量研究线性和非线性元件的电特性。
非线性电阻总是与一定的物理过程相联系,如发热、发光和能级跃迁等,江崎玲、於奈等人因研究与隧道二极管负电阻有关的现象而获得1973年的诺贝尔物理学奖。
【实验目的】通过实验测量普通二极管、稳压二极管和发光二极管的伏安特性,掌握非线性元件伏安特性的测量方法、基本电路、误差计算,能够给出所测量元件的特性参数(如正向、反向导通电压,反向饱和电流。
击穿电压等)。
【实验仪器】非线性元件伏安特性实验仪,其控制面板如图1所示。
仪器由直流稳压电源、数字电压表、数字电流表、可变电阻器、普通二极管、稳压二极管、发光二极管、待测电阻等组成。
图1 非线性元件伏安特性实验仪控制面板仪器的使用及注意事项1、在实验过程中,通过调节分压调节以及分流调节旋钮来调节待测元件两端的电压。
2、面板的左部分电路为用来测试待测元件的正向特性;右部分电路用来测试待测元件的反向特性。
3、待测元件两端的电压由电压表给出,在测正向特性的时候,应该使用2V电压挡;在测量反向电压特性的时候,要使用20V 电压挡。
4、 在接线的过程中,注意不要将各个元件的正负向接反。
5、 由于本实验需要连接线较多,在实验中应注意正确连接线路,且在使用时不可用力过猛。
6、 在测量反向特性时,当反向电流开始增大时应注意缓慢调节电压。
如果观测到反向电流有突变趋势,应该立即减小电压。
图2 非线性元件伏安特性实验仪实物照片【实验原理】1、伏安特性根据欧姆定律,电阻R 、电压U 、电流I,有如下关系:R U I = (1)由电压表和电流表的示值U 和I 计算可得到待测元件Rx 的阻值。
电路元件伏安特性的测绘
实验二 电路元件伏安特性的测绘一、实验目的1. 学会识别常用电路元件的方法。
2. 掌握线性电阻、非线性电阻元件伏安特性的测绘。
3. 掌握实验台上直流电工仪表和设备的使用方法。
二、原理说明任何一个二端元件的特性可用该元件上的端电压U 与通过该元件的电流I 之间的函数关系I =f(U)来表示,即用I-U 平面上的一条曲线来表征,这条曲线称为该元件的伏安特性曲线。
1. 线性电阻器的伏安特性曲线是一条 通过坐标原点的直线,如图2-1中a 所示, 该直线的斜率等于该电阻器的电阻值。
2. 一般的白炽灯在工作时灯丝处于 高温状态, 其灯丝电阻随着温度的升高 而增大,通过白炽灯的电流越大,其温度 越高,阻值也越大,一般灯泡的“冷电阻” 与“热电阻”的阻值可相差几倍至十几倍, 所以它的伏安特性如图2-1中b 曲线所示。
3. 一般的半导体二极管是一个非线性电阻元件,其伏安特性如图2-1中 c 所示。
图2-1 正向压降很小(一般的锗管约为0.2~0.3V ,硅管约为0.5~0.7V ),正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十多至几十伏时,其反向电流增加很小,粗略地可视为零。
可见,二极管具有单向导电性,但反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。
4. 稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向特性较特别,如图2-1中d 所示。
在反向电压开始增加时,其反向电流几乎为零,但当电压增加到某一数值时(称为管子的稳压值,有各种不同稳压值的稳压管)电流将突然增加,以后它的端电压将基本维持恒定,当外加的反向电压继续升高时其端电压仅有少量增加。
注意:流过二极管或稳压二极管的电流不能超过管子的极限值,否则管子会被烧坏。
三、实验设备U(V)( )四、实验内容1. 测定线性电阻器的伏安特性按图4-2接线,调节稳压电源的输出电压U ,从0 伏开始缓慢地增加,一直到10V ,记下相应的电压表和电流表的读数U R 、I 。
伏安特性曲线
参考资料
金属导体的电阻(某些合金除外),是随温度的升高而增加的。设R0为某种导体在0℃时的电阻,R为温度t时的电阻,当在温度不太低时的不大温度范围内,它的电阻有下述线性关系
3.小灯泡可以短时间地在高于额定电压下使用,一般可以超过额定电压的10%-20%,所以加在灯泡两端的电压不能过高,以免烧毁灯泡。实验时,应使灯泡两端电压由低向高逐渐增大,决不要一开始就使小灯泡在高于额定电压下工作。因为灯丝电阻随温度的升高而加大,如果灯丝由低温状态,直接超过额定电压使用,会由于灯丝冷电阻过小,瞬间电流过大而烧坏灯泡。
5.由P=IU计算小灯泡的电功率,将结果填入表中。以电功率P为纵坐标,电压U为横坐标,作出小灯泡电功率随电压变化的曲线。
6,分析以上曲线。
实验原理
由于小灯泡钨丝的电阻随温度而变化,因此可利用它的这种特性进行伏安特性研究。实验中小灯泡的电阻等于灯泡两端的电压与通过灯泡电流的比值。改变小灯泡两端的电压,测出相应的电流值,可以得到小灯泡的电阻、电功率与外加电压的关系。
R=R0+R0βt=R0(1+βt)
β为金属导体的电阻温度系数,其值决定于金属的种类。
灯泡能发光,是因为在灯丝两端加上了一定的电压,在灯丝中有电流通过,从而使灯丝温度升高而发光的缘故,所以灯丝的电阻与通过它的电流有关。通过导体的电流和导体两端的电压之间的关系可以用图线来表示,称为导体的伏安特性曲线.如果导体的温度不变、其电阻也不变,这条曲线就是直线。当导体被通过它的电流加热时,这条曲线将稍向下弯曲,说明当加大导体两端的电压时,由于其电阻增大,通过它的电流并不是呈线性增大,如图4.14-2所示。
直流电路元件伏安特性的测绘实验报告
一、实验目的与要求1、认识常用电路元件。
2、掌握万用表、电路原理实验箱的使用方法。
3、掌握线性电阻、非线性电阻元件伏安特性的测绘方法二、实验原理与仪器(一)实验原理1.任何一个二端元件的特性可用该元件上的端电压U与通过该元件的电流I 之间的函数关I=f(U)来表示,即用I-U平面上的一条曲线来表示,这条曲线称为该元件的伏安特性曲线。
图1.1线性电阻器的伏安特性曲线是一条通过坐标原点的直线,图1-1中a曲线所示,该直线的斜率的倒数等于该电阻器的电阻值。
2.用“伏安法”测量电阻根据欧姆定律可用“伏安法”测量电阻,即R=U/I。
但由于电压表和电流表内阻的存在,测量结果将存在误差。
用“伏安法”测量电阻有图A和图B两种接线方式,用图A测出的结果实际上是被测电阻R与电流表内阻R I之和,而用图B测出的却是被测电阻R与电压表内阻R V并联的结果。
当然,若R I<<R,或R V>>R则图2.2和图2.3有U/I≈R。
图2.2 图2.33.一般的半导体二极管是一个非线性电阻元件,其伏安特性如图1-1中b所示。
正向压降很小(一般的锗管约为0.2~0.3V,硅管约为0.5~0.7V),正向电流随正向压降的升高而急骤上升,而反向电压从零一直增加到十几伏至几十伏时,其反向电流增加很小,粗略地可视为零。
可见,二极管具有单向导电性,如果反向电压加得过高,超过管子的极限值,则会导致管子击穿损坏。
4.稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向特性特别,如图1-1中c所示。
在反向电压开始增加时,其反向电流几乎为零,但当反向电压增加到某一数值时(称为管子的稳压值,有各种不同稳压值的稳压管)电流将突然增加,以后它的端电压将维持恒定,不再随外加的反向电压升高而增大。
管子的稳压值稳定时,电流有一定的范围,电流超过此范围的极限值时稳压管会被反向击穿----电压骤降,这时须尽快去掉电源,管子短时击穿后可自行恢复。
电学元件伏安特性的测量实验报告
电学元件伏安特性的测量实验报告实验室时间:××年×月×日实验目的:1. 掌握熟悉U-I特性曲线的基本概念及特点;2. 初步掌握测量电阻、电容、二极管及晶体管的U-I特性曲线和参数。
实验设备:1. 电压表、电流表;2. 直流电源、电阻箱、电容箱、二极管、晶体管等元件;3. 连线板等。
实验原理:伏安特性曲线反映的是电阻、电容、电子器件(如二极管、晶体管)等物质导电性能及其应用特性。
为了研究伏安特性曲线,必须对不同种类的元器件作出不同的电路连接方式。
1. 测量电阻的U-I特性曲线电流强度与电阻的电压成正比,可用相对静态的实验来得到系数值,这种关系在电阻值较小,电流较大时不成立。
用伏安法进行测量,将待测电阻 R 内加上串联电压 E,从而测定系统的电压和电流,并绘制伏安特性曲线的直线部分。
电容 U-I 特性曲线可用图示所示的方法加以测定:取正放极连接正端,靠中间放置电阻进行电压分压使 Uc=0.2U0,按启动键开启,记录并得到测量数据。
二极管的两端电压与电流成非线性关系,需要一些复杂的电路,比如在电压加一定峰值后,不论将电压值加大或减小,二极管都仅仅流过一个定值电流的电路。
晶体管是有放大和开关作用的元件,晶体管有基极,发射极和集电极三个电极,电流和电压之间的关系比较复杂需要一些分流分压的技术方法。
实验过程:构成实验电路如图所示,电源的电压设为1V,通过VCM 将电源输出的电压分为 R1 和R2 上,记录输出的电压和流过的电流,根据实际得到伏安特性曲线如下:电阻值R(Ω) 测量电压 V(mV) 测量电流 I(mA)10 100 1020 200 1040 400 10电容的阻抗是由电容的电容值和信号频率决定的,用升压和降压并计算所用时间的方法来获得一定频率下的 U-I 特性曲线,取电容电压0.2U0,同时使电容电压保持稳定,记录输出电压和流过电容的电流,根据实际得到伏安特性曲线如下:二极管的 U-I 特性曲线是由电路配置和外加电压决定的,二极管整流电路的 U-I 特性曲线如下:取晶体管三极管为配置,设置主控电压 V0 = 0.6V,分别记录三个节点的电压和流过晶体管的电流,然后绘制输出的 U-I 特性曲线如下:实验总结:经过实验,我们熟悉了伏安特性曲线的基本概念及特点,初步掌握了测量电阻、电容、二极管及晶体管的 U-I 特性曲线和参数的方法。
用伏安法测定二极管的特性曲线
1§4.4 用伏安法测定二极管的特性曲线目的1.掌握分压器和限流器的使用方法; 2.用伏安法研究非线性元件的特性; 3.学会设计电路并能正确选择测量仪器. 设计要求1.写出设计公式及实验仪器; 2.画出测量线路3.测量二极管的正向伏安特性曲线;4.用线性回归的方法求二极管电流的经验公式)1(-=d aV e D e I I ; 5.掌握内接法和外接法的适用条件.设计提示电流表内接法和外接法适用条件假设待测电阻两端的电压为V ,流过它的电流为I ,并且都已经测量到了,则其电阻值R x 可由下式计算若使用的电流表的内阻R A 很小,而电压表的内阻R V 非常大,则上式计算的结果是正确的,否则必须考虑R A 或R V 对测量结果的影响.图4.4-1为测量未知电阻R x 的电路.当开关K 接“1”时,电流表和R x 都接在电压表的测试端之内,称为电流表的内接法.因此,有关系式)(X A R R I V +=成立,或写成如果用IV表示待测电阻值,则产生的系统误差为由于电压表的读数大于电阻两端的电压值而产生正的系统误差,由(4.4-1)式计算出来的阻值比实际的R X 大.若R A 值已值,就可以计算E 1的大小.当开关K 和“2”接通时,电流表接在电压表的测试端之外,称为电流表的外接法,因此有关系式)14.4(-=IV R xR AR X图4.4-1A X R IVR -=)24.4(1-=-=XAX XR RR R I VE )1(VX X X V R R R V R V R V I +=+=2或写成)1(VX X R R I V R +=.如果用I V作为待测电阻值,则产生的系统误差为由于通过电流表的电流比通过R X 的电流大而产生负的系统误差.所以,测量值比实际电阻值小,若R V 值已知,则可以计算E 2的大小.对于给定的未知电阻,到底是采用内接法还是外接法,这要取决于测量精确度的要求和E 1、E 2的大小.如果E 1和E 2都比较小,但1E >2E ,则可采取外接法,反之采用内接法. 将(4.4-2)和(4.4-3)式比较可的出内接法与是外接法的使用条件.当1E <2E 时,采用内接法,即可化成02>--V A X A X R R R R R ,解关于R X 的一元二次不等式可以得到内接法的使用条件,即如果电压表的内阻远大于电流表的内阻(即R V >>R A ),则(4.4-4)式表明,待测电阻值大于电流表内阻与电压表内阻的几何中项时,采用内接法所产生的系统误差较小,若R X 与V A R R 接近时,两种方法都可以,否则采用外接法.思考题1.怎样用伏安法测定电流表或电压表的内阻?)34.4(112-+-=-=XVXXR R R R I VE XV XAR R R R +≤11)4(212V A A A X R R R R R ++>)44.4()2(21-=+>V A V A A X R R R R R R。
伏安特性实验报告
伏安特性实验报告篇一:电路元件伏安特性的测量(实验报告答案)实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法; 3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。
二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。
任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。
根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。
线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。
该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。
常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。
在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。
(a)线性电阻 (b)白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压U作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f(U),根据伏安特性曲线便可计算出电阻元件的阻值。
三、实验设备与器件1.直流稳压电源 1 台2.直流电压表1 块3.直流电流表1 块4.万用表 1 块5.白炽灯泡 1 只6. 二极管1 只7.稳压二极管1 只 8.电阻元件 2 只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。
调节直流稳压电源的输出电压U,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。
2将图1-2中的1kΩ线性电阻R换成一只12V,0.1A的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。
《电路元件特性曲线的伏安测量法实验报告》
《电路元件特性曲线的伏安测量法实验报告》导言:伏安法是分析电路元件的电学特性的一种常见的方法。
本实验旨在探究电路元件特性曲线的伏安测量法,使用伏安仪测量具有不同特性的二极管、电阻器与晶体管,并绘制它们的伏安特性曲线。
通过实验分析,我们可以更深刻地认识电子元件的特性及其工作原理。
一、实验仪器及原理本次实验使用的主要器材与仪器为直流电源、万用表、伏安仪,实验元件为二极管、电阻器和晶体管。
二、实验步骤1. 安装电路:将电路元件按实验要求安装在实验板上,并接好电路,注意连接正确。
2. 开启电源:调整直流电源的输出电压,使二极管的正向电压逐渐增加,记录其电压和电流的变化情况,绘制出二极管的伏安特性曲线。
3. 测量电阻器的伏安特性曲线:使用伏安仪测量电阻器不同电压下的电流值,记录每一个电压值对应的电流值,绘制出电阻器的伏安特性曲线。
4. 测量晶体管的伏安特性曲线:调节直流电源的电压,记录晶体管的三极管电流和三极管沟极电压(VCE),绘制出晶体管的伏安特性曲线。
三、实验结果与分析1. 二极管的伏安特性曲线二极管具有单向导电性。
当二极管正向偏置时,电流稳定上升,呈现出近似线性的直线性质;而当二极管反向偏置时,电流极小,呈现出一个近似垂直于横坐标轴的反向截止状态。
实验测得的二极管特性曲线如下图所示:![image.png](attachment:image.png)2. 电阻器的伏安特性曲线电阻器为无源元件,其特性曲线表现为直线性质。
由于电阻器内部电阻稳定,当电压升高时,电流也呈线性升高的趋势。
实验测得的电阻器特性曲线如下图所示:3. 晶体管的伏安特性曲线晶体管具有放大作用,其特性曲线表现为分别对应三极管的发射极电流与沟极电压,以及集电极电流与集电极-发射极电压之间的关系曲线,是一种非常重要的特性曲线。
实验测得的晶体管特性曲线如下图所示:四、实验结论本次实验探究了电路元件特性曲线的伏安测量法,并使用伏安仪测量了二极管、电阻器和晶体管的特性曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
2、伏安法测电阻时电表引入的误差 、 内接法: 内接法:
U = IR + IRA = I ( R + RA ) 测量绝对误差是R A RA 相对误差是 R
U = IR + IR A = I ( R + R A )
4
外接法
1 1 I = I R + IV = U ( + ) R RV RV 电阻R X = R R + RV −R 相对误差: R + RV
6
2、测量二极管的伏安特性 、 按照如图所示连接 电路,注意电源电压、 毫安表量程和伏特表 量程的选取。 在电流突变的区域 多测量几组数据,
正向特性 V(U) I(mA)
mA K R E V
有兴趣的同学可测稳压管的反向电阻,电路自行设计。
7
实验注意事项
测量线性电阻时,要求数据点的选择要 尽量分布均匀。 线性电阻的结果表达式要求利用标准 偏差表述。二极管要求求出几个静态电阻 值。 测试二极管正向特性时,电流突变区域 多测量几组数据,但电流最大测试到 10mA就行。
1.
1
[实验原理 实验原理] 实验原理
用电表同时测出待测电阻上通过的电流I和电压 , 用电表同时测出待测电阻上通过的电流 和电压V, 和电压 然后根据欧姆定律算出电阻的方法,叫伏安法。 然后根据欧姆定律算出电阻的方法,叫伏安法。 1.线性电阻 线性电阻 元件特性 曲线: 曲线: 通过原点 的直线, 的直线,I 和U 是正 比例关系! 比例关系!
8
实验三 伏安法测线性电阻和二极管的特性曲线
[实验目的 实验目的]
正确掌握测量伏安特性的两种方法,直观了 解方法误差对测量结果的影响。 2. 加深对线性电阻元件、非线性元件伏安特性 的理解。 3. 了解减少伏安法中系统误差的方法 [实验仪器 实验仪器] 实验仪器 稳压电源、电压表、微安表、毫安表、碳膜 电阻、二极管、变阻器、电阻箱。
5
实验步骤和内容
1、测定线性电阻的伏安特性 、 RX(1800 , 0.25W),电压表量程为 0-3V 0-3V,其内阻为500 /V;电流表量程为0500 /V 010mA,相应内阻为,4.8 。请自行设计一 个合理的测量RX的电路(包括电源大小、电 表量程及变阻器控制电路的选择)用作图法 求电阻值,计算方法误差。 注意电压和电流的有效数字的记数方法。