元素与集合之间的基本关系#(优选.)

合集下载

集合之间的基本关系 -回复

集合之间的基本关系 -回复

集合之间的基本关系 -回复
1. 包含关系:集合A包含集合B,表示B中的元素都属于A,用符号表示为B ⊆ A。

2. 相等关系:集合A与集合B相等,表示A和B拥有完全相同的元素,用符号表示为
A = B。

3. 真包含关系:集合A真包含集合B,表示A包含B且A与B不相等,用符号表示为
B ⊂ A。

4. 交集关系:集合A与集合B的交集,表示A和B中共有的元素的集合,用符号表示为A ∩ B。

5. 并集关系:集合A与集合B的并集,表示A和B所有元素的集合,用符号表示为A ∪ B。

6. 差集关系:集合A与集合B的差集,表示A中除去与B共有的元素剩下的元素的集合,用符号表示为A - B。

7. 对称差集关系:集合A与集合B的对称差集,表示A和B中除去共有的元素,剩下的元素的集合,用符号表示为A △ B。

8. 互斥关系:集合A与集合B互斥,表示A和B没有共有的元素,用符号表示为A ∩
B = ∅。

9. 子集关系:集合A是集合B的子集,表示A中的所有元素都属于B,用符号表示为
A ⊆ B。

10. 空集关系:空集是任何集合的子集,用符号表示为∅⊆ A。

集合的基本概念元素集合之间的关系

集合的基本概念元素集合之间的关系

集合的基本概念元素集合之间的关系第⼀章集合第⼀节集合的概念⼀、要点透析(⼀)集合的有关概念:由⼀些数、⼀些点、⼀些图形、⼀些整式、⼀些物体、⼀些⼈组成的。

我们说,每⼀组对象的全体形成⼀个集合,或者说,某些指定的对象集在⼀起就成为⼀个集合,也简称集。

集合中的每个对象叫做这个集合的元素。

1、集合的概念(1)元素:某些特定的研究对象叫做元素(2)集合:⼀些元素集在⼀起就形成⼀个集合(简称集)2、元素对于集合的⾪属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a A∈(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作a A3、集合中元素的特性(1)确定性:按照明确的判断标准给定⼀个元素或者在这个集合⾥,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)⽆序性:集合中的元素没有⼀定的顺序(通常⽤正常的顺序写出)例1.下列各组对象能确定⼀个集合吗?(1)所有很⼤的实数()(2)好⼼的⼈()(3)1,2,2,3,4,5.()4、(1)集合通常⽤⼤写的拉丁字母表⽰,如A 、B 、C 、P 、Q ……元素通常⽤⼩写的拉丁字母表⽰,如a 、b 、c 、p 、q ……(2)“∈”的开⼝⽅向,不能把a A ∈颠倒过来写5、常⽤数集及记法(1)⾮负整数集(⾃然数集):全体⾮负整数的集合,记作N ,{}0,1,2,N = (2)正整数集:⾮负整数集内排除0的集,记作*N 或N +,{}*1,2,3,N = (3)整数集:全体整数的集合,记作Z ,{}012Z =±± ,,,(4)有理数集:全体有理数的集合,记作Q ,{}Q =整数与分数(5)实数集:全体实数的集合,记作R ,{}R =数轴上所有点所对应的数(6)空集:不含任何元素的集合,记作?注:(1)⾃然数集与⾮负整数集是相同的,也就是说,⾃然数集包括数0(2)⾮负整数集内排除0的集,记作*N 或N +,Q 、Z 、R 等其它数集内排除0的集,也是这样表⽰,例如,整数集内排除0的集,表⽰成*Z例2.⽤适当的符号(∈?,)填空:(1)3_____N;(2)0_____{Φ};(3)32____Z,0.5Q Q ,;2(⼆)集合的表⽰⽅法1、列举法:把集合中的元素⼀⼀列举出来,写在⼤括号内表⽰集合例如,由⽅程210x -=的所有解组成的集合,可以表⽰为{1,1}-注:(1)有些集合亦可如下表⽰:从51到100的所有整数组成的集合:{51,52,53,,100} ;所有正奇数组成的集合:{1,3,5,7,}(2)a 与{}a 不同:a 表⽰⼀个元素,{}a 表⽰⼀个集合,该集合只有⼀个元素例3、设a,b 是⾮零实数,那么ba +可能取的值组成集合的元素是:练习、由实数x,-x,|x |,332,x x -所组成的集合,最多含()(A )2个元素(B )3个元素(C )4个元素(D )5个元素2、描述法:⽤确定的条件表⽰某些对象是否属于这个集合,并把这个条件写在⼤括号内表⽰集合的⽅法格式:{|()}x A P x ∈含义:在集合A 中满⾜条件()P x 的x 的集合例如,不等式32x ->的解集可以表⽰为:{|32}x R x ∈->或{|32}x x ->所有直⾓三⾓形的集合可以表⽰为:{|}x x 是直⾓三⾓形例4、已知集合{}R a x ax x A ∈=+-=,023|2;(1)若A 是空集,求a 的取值范围;(2)若A 中只有⼀个元素,求a 的值,并把这个元素写出来;(3)若A 中⾄多有⼀个元素,求a 的取值范围3、⽂⽒图:⽤⼀条封闭的曲线的内部来表⽰⼀个集合的⽅法4、何时⽤列举法?何时⽤描述法?(1)有些集合的公共属性不明显,难以概括,不便⽤描述法表⽰,只能⽤列举法如:集合2322{,32,5,}x x y x x y +-+(2)有些集合的元素不能⽆遗漏地⼀⼀列举出来,或者不便于、不需要⼀⼀列举出来,常⽤描述法如:集合2{(,)|1}x y y x =+;集合{1000}以内的质数思考:集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同⼀个集合吗?(三)有限集与⽆限集有限集:含有有限个元素的集合⽆限集:含有⽆限个元素的集合空集:不含任何元素的集合,记作?,如:2{|10}x R x ∈+=⼆、题型解析(⼀)集合的基本概念1以下元素的全体不能够构成集合的是()A.中国古代四⼤发明B.地球上的⼩河流C.⽅程210x -=的实数解D.周长为10cm 的三⾓形2⽅程组23211x y x y -=??+=?的解集是()A.{5,1}B.{1,5}C.{(5,1)}D.{(1,5)}3给出下列关系:①12R ∈;Q ;③3N +∈;④0Z ∈,其中正确的个数是()A.1B.2C.3D.44下列各组中的两个集合M 和N ,表⽰同⼀集合的是()A.{}M π=,{3.14159}N =B.{2,3}M =,{(2,3)}N =C.{|11,}M x x x N =-<≤∈,{1}N =D.{}M π=,{,1,|N π=5已知实数2a =,集合{|13}B x x =-<<,则a 与B 的关系是6⽤适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有:17A ;5-A ;17B 7已知x R ∈,则集合2{3,,2}x x x -中元素x 所应满⾜的条件为(⼆)集合的表⽰⽅法1⽤列举法表⽰下列集合①{|15}x N x ∈是的约数②{(,)|{1,2},{1,2}}x y x y ∈∈③2(,)24x y x y x y ??+=-=?????④{|(1),}nx x n N =-∈⑤{(,)|3216,,}x y x y x N y N +=∈∈⑥{(,)|,4}x y x y 分别是的正整数约数2⽤描述法表⽰下列集合①{1,4,7,10,13}②{2,4,6,8,10}-----③{1,5,25,125,625}④12340,,,,,251017?±±±±(三)集合的分类1关于x 的⽅程0ax b +=,当a ,b 满⾜条件_____时,解集是有限集;当a ,b 满⾜条件_____时,解集是⽆限集2下列四个集合中,是空集的是()A.}33|{=+x x B.},,|),{(22R y x x y y x ∈-=C.}0|{2≤x x D.},01|{2R x x x x ∈=+-三、课下训练1、有下列说法:(1)0与{0}表⽰同⼀个集合;(2)由1,2,3组成的集合可表⽰为{1,2,3}或{3,2,1};(3)⽅程2(1)(2)0x x --=的所有解的集合可表⽰为{1,1,2};(4)集合{|45}x x <<是有限集,其中正确的说法是()A.只有(1)和(4)B.只有(2)和(3)C.只有(2)D.以上四种说法都不对2、试选择适当的⽅法表⽰下列集合:(1)⼆次函数223y x x =-+的函数值组成的集合;(2)函数232y x =-的⾃变量的值组成的集合3、已知集合4{|}3A x N Z x =∈∈-,试⽤列举法表⽰集合4、给出下列集合:①{(,)|1,1,2,3}x y x y x y ≠≠≠≠-;②12(,)13x x x y y y ??≠≠≠≠-??????且③12(,)13x x x y y y ??≠≠≠≠-??????或;④{}2222(,)[(1)(1)][(2)(3)]0x y x y x y -+-?-++≠其中不能表⽰“在直⾓坐标系xOy 平⾯内,除去点(1,1),(2,3)-之外的所有点的集合”的序号有5、已知集合2{|12x a A a x +==-有唯⼀实施解},试⽤列举法表⽰集合A。

高中数学_集合间的基本关系教学设计学情分析教材分析课后反思

高中数学_集合间的基本关系教学设计学情分析教材分析课后反思

学情分析学生在初中阶段的学习中,已经有了对集合的初步认知,在本节的学习中学生可能会对集合的基本关系会有所混淆,通过不断的练习巩固来达到标准要求。

高中学生虽有好奇,好表现的因素,厌烦空洞的说教所以一定要用生动活泼的方式讲解知识学生对于新的知识的接受能力参差不齐,要采用分类教学的方法,各个辅导,重点内容,多练,多复习,巩固所学知识。

整个教学效果还是很乐观,学生反映迅速。

教学反思集合间的基本关系是在前面学习了集合的概念、表示方法及集合与元素的关系后来研究集合之间的一种关系,它为后面学好集合的运算起着非常重要的作用。

这一节课,首先复习结合的含义与表示再利用类比的思想引入集合之间有何关系,通过例子说明集合有包含相等等关系,引入本节课的内容。

讲解子集、相等、真子集、空集概念时,让学生认真读概念,理解概念中的关键字。

通过反例深刻理解概念中关键字并记住。

同时,对概念的三种语言进行点明,概念用文字语言,符号语言及图形语言有机结合,逐步使学生由文字语言向符号语言、图形语言过渡。

上课时还注意将抽象概念与实例相结合,鼓励同学们积极发言,举例子来理解概念,尤其是空集的例子。

学生大多举的是方程无解的例子。

有的认为{0}是空集,组织学生讨论,让学生自己辩论后认为它不是空集,加深学生的理解。

最后,我与学生共同将子集、相等、真子集等的性质进行了总结,还通过一一列举得出例子的推广,n个元素组成的集合有个子集,个真子集,个非空子集等。

通过本节课教学,有以下想法:我们要重视学生学习兴趣的引导,要在课堂上给学生更多的时间考虑问题,充分发挥学生的主动积极性。

本节内容是选自新人教 A 版高中数学必修 1 第 1 章第 1 节第 2 部分的内容。

在此之前,学生已经接触过集合的一些基本概念,本小节内容是在学习了集合的概念以及集合的表示方法、元素与集合的从属关系的基础上,进一步学习集合与集合之间的关系,同时也是下一节学习集合之间的运算的基础,因此本小节起着承上启下的重要作用。

高中数学人教版(新教材)必修1学案1:1.2 集合间的基本关系

高中数学人教版(新教材)必修1学案1:1.2 集合间的基本关系

1.2 集合间的基本关系学习目标1.了解集合之间包含与相等的含义,能识别给定集合的子集;2.理解子集、真子集的概念;3.能使用Venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用,体会数形结合的思想.重点难点重点:集合间的包含与相等关系,子集与其子集的概念;难点:属于关系与包含关系的区别.知识梳理1.集合与集合的关系(1)一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集.记作:()A B B A ⊆⊇或读作:A 包含于B (或B 包含A ).图示:(2)如果两个集合所含的元素完全相同(A B B A ⊆⊆且),那么我们称这两个集合相等.记作:A =B读作:A 等于B. 图示:2. 真子集 若集合A B ⊆,存在元素A x B x ∉∈且,则称集合A 是集合B 的真子集.记作:A B (或B A )读作:A 真包含于B (或B 真包含A )3.空集不含有任何元素的集合称为空集,记作:∅.规定:空集是任何集合的子集.学习目标探究一子集1.观察以下几组集合,并指出它们元素间的关系:①A ={1,2,3},B ={1,2,3,4,5};②A 为立德中学高一(2)班全体女生组成的集合, B 为这个班全体学生组成的集合; ③A ={x |x >2},B ={x |x >1}.2.子集定义:一般地,对于两个集合A 、B ,如果集合A 中都是集合B 中的元素,我们就说这两个 集合有包含关系,称集合A 为集合B 的.记作:(A B B A ⊆⊇或)读作:(或“”)符号语言:任意有则.3.韦恩图(Venn 图):用一条封闭曲线(圆、椭圆、长方形等)的内部来代表集合叫集合的韦恩图表示.牛刀小试1:图中A 是否为集合B 的子集?牛刀小试2:判断集合A 是否为集合B 的子集,若是则在()打√,若不是则在()打×:①A ={1,3,5}, B ={1,2,3,4,5,6} ( )②A ={1,3,5}, B ={1,3,6,9} ( )③A ={0}, B={x | x 2+2=0} ( )④A ={a,b,c,d }, B ={d,b,c,a } ( )探究二集合相等BB A,A1.观察下列两个集合,并指出它们元素间的关系(1)A ={x |x 是两条边相等的三角形},B ={x |x 是等腰三角形};2.定义:如果集合A 的都是集合B 的元素,同时集合B 都是集合A 的元素,我们就说集合A 等于集合B ,记作.牛刀小试3:()(){}{}12012A x x x B A B =++==--,,.集合与什么关系?探究三真子集1.观察以下几组集合,并指出它们元素间的关系:(1)A ={1,3,5}, B ={1,2,3,4,5,6};(2)A ={四边形}, B ={多边形}.2.定义:如果集合A ⊆B ,但存在元素,且,称集合A 是集合B 的真子集.记作:(或)读作:“A 真含于B ”(或B 真包含A ).探究四空集1.我们把的集合叫做空集,记为φ,并规定:空集是任何集合的子集.空集是任何非空集合的真子集.即φB ,(B φ≠) 例如:方程x 2+1=0没有实数根,所以方程 x 2+1=0的实数根组成的集合为φ.问题:你还能举几个空集的例子吗?2.深化概念:(1)包含关系{}a A ⊆与属于关系a A ∈有什么区别?(2)集合A B 与集合A B ⊆有什么区别?(3)0,{0}与 Φ三者之间有什么关系?3.结论:由上述集合之间的基本关系,可以得到下列结论:(1)任何一个集合是它本身的子集,即.(2)对于集合A 、B 、C ,若,,A B B C ⊆⊆则(类比b a ≤,c b ≤则c a ≤). 例1.写出集合{a ,b }的所有子集,并指出哪些是它的真子集.例2.判断下列各题中集合A 是否为集合B 的子集,并说明理由.(1)A ={1,2,3},B ={x |x 是8的约数};(2)A ={x |x 是长方形},B ={x |x 是两条对角线相等的平行四边形}达标检测1.集合A ={-1,0,1},A 的子集中含有元素0的子集共有( )A .2个B .4个C .6个D .8个2.已知集合M={x|-3<x<2,x∈Z},则下列集合是集合M的子集的为( ) A.P={-3,0,1}B.Q={-1,0,1,2}C.R={y|-π<y<-1,y∈Z}D.S={x||x|≤,x∈N}3.①0∈{0},②∅{0},③{0,1}⊆{(0,1)},④{(a,b)}={(b,a)}.上面关系中正确的个数为( )A.1 B.2C.3 D.44.设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是( )A.{a|a≤2}B.{a|a≤1}C.{a|a≥1}D.{a|a≥2}5.已知集合A={(x,y)|x+y=2,x,y∈N},试写出A的所有子集.——★ 参*考*答*案★——学习过程:探究一1.集合A的元素都属于集合B2.任何一个元素子集集合A含于集合B集合B包含集合Ax∈A,x∈BA⊆B牛刀小试1 集合A不是集合B的子集牛刀小试2 ①√ ②×③×④√探究二集合相等1.(1)中集合A中的元素和集合B中的元素相同.2.任何一个元素任何一个元素A=B牛刀小试3 A=B探究三真子集1.集合A中元素都是集合B的元素,但集合B有的元素不属于集合A.2.x∈Bx AA BB A探究四空集1.不含任何元素2.(1)前者为集合之间关系,后者为元素与集合之间的关系.(2) A = B或A B(3){0}与Φ :{0}是含有一个元素0的集合,Φ是不含任何元素的集合.如Φ{0}不能写成Φ ={0},Φ ∈{0}3.(1)(2)例1.解:集合{a,b}的子集:,{a},{b} ,{a, b}.集合{a,b}真子集:,{a},{b}.例2.解:(1)因为3不是8的约数,所以集合A不是集合B的子集.三、达标检测1.『解析』根据题意,在集合A的子集中,含有元素0的子集有{0}、{0,1}、{0,-1}、{-1,0,1}四个,故选B.『答案』B2.『解析』集合M={-2,-1,0,1},集合R={-3,-2},集合S={0,1},不难发现集合P 中的元素-3∉M,集合Q中的元素2∉M,集合R中的元素-3∉M,而集合S={0,1}中的任意一个元素都在集合M中,所以S⊆M.故选D.『答案』D3.『解析』①正确,0是集合{0}的元素;②正确,∅是任何非空集合的真子集;③错误,集合{0,1}含两个元素0,1,而{(0,1)}含一个元素点(0,1),所以这两个集合没关系;④错误,集合{(a,b)}含一个元素点(a,b),集合{(b,a)}含一个元素点(b,a),这两个元素不同,所以集合不相等.故选B.『答案』B4.『解析』由A={x|1<x<2},B={x|x<a},A⊆B,则{a|a≥2}.『答案』D5.『解』因为A={(x,y)|x+y=2,x,y∈N},所以A={(0,2),(1,1),(2,0)}.所以A的子集有:∅,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)},{(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.。

集合间的基本关系及运算

集合间的基本关系及运算

1.2集合间的基本关系及运算【知识要点】1、子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆B或B⊇A.2、集合相等:如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A等于集合B,记作A=B。

3、真子集:如果A⊆B,且A≠B,那么集合A称为集合B的真子集,A⊂≠B.4、设A⊆S,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记作C AS5、元素与集合、集合与集合之间的关系6、有限集合的子集个数(1)n个元素的集合有n2个子集(2)n个元素的集合有n2-1个真子集(3)n个元素的集合有n2-1个非空子集(4)n个元素的集合有n2-2个非空真子集7、交集:由属于集合A且属于集合B的所有元素组成的集合叫A与B的交集,记作A⋂B。

8、并集:由所有属于集合A或属于B的元素构成的集合称为A与B的并集,记A⋃B。

9、集合的运算性质及运用【知识应用】1.理解方法:看到一个集合A里的所有元素都包含在另一个集合里B,那么A就是B的子集,也就是说集合A中的任何一个元素都是集合B中的元素,即由任意x∈A能推出x∈B。

【J】例1.指出下列各组中集合A与集合B之间的关系(1)A={-1,1},B=Z(2)A={1,3,5,15},B={x|x是15的正约数}【L】例2.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,求实数m取值范围。

【C】例3.已知集合A⊆{0,1,2,3},至少有一个奇数,这样的集合A的子集有几个,请一一写出。

2.解题方法:证明2个集合相等的方法:(1)若A、B两个集合是元素较少的有限集,可用列举法将元素一一列举出来,比较之或者看集合中的代表元素是否一致且代表元素满足的条件是否一致,若均一致,则两集合相等。

(2)利用集合相等的定义证明A⊆B,且B⊆A,则A=B.【J】例1.下列各组中的两个集合相等的有()(1)P={x|x=2n,n∈Z},Q={x|x=2(n-1),n∈Z}(2)P={x|x=2n-1,n∈N+},Q={x|x=2n+1,n∈N+}(3)P={x|2x -x=0},Q={x|x=1(1)2n +-,n ∈Z}【L 】例2.已知集合A={x|x=12k π+4π,k ∈Z},B={x|x=14k π+2π,k ∈Z},判断集合A 与集合B 是否相等。

高中数学《集合间的基本关系》--教学设计

高中数学《集合间的基本关系》--教学设计

1.2 集合间的基本关系教材分析:本节内容来自人教版高中数学必修一第一章第一节集合第二课时的内容。

集合论是现代数学的一个重要基础,是一个具有独特地位的数学分支。

高中数学课程是将集合作为一种语言来学习,在这里它是作为刻画函数概念的基础知识和必备工具。

本小节内容是在学习了集合的含义、集合的表示方法以及元素与集合的属于关系的基础上,进一步学习集合与集合之间的关系,同时也是下一节学习集合间的基本运算的基础,因此本小节起着承上启下的关键作用.通过本节内容的学习,可以进一步帮助学生利用集合语言进行交流的能力,帮助学生养成自主学习、合作交流、归纳总结的学习习惯,培养学生从具体到抽象、从一般到特殊的数学思维能力,通过Venn图理解抽象概念,培养学生数形结合思想。

教学目标:A.了解集合之间包含与相等的含义,能识别给定集合的子集;B.理解子集、真子集的概念;C.能使用venn图表达集合间的关系,体会直观图示对理解抽象概念的作用,体会数形结合的思想。

核心素养:1.数学抽象:集合间的关系的含义;2.逻辑推理:由集合的元素的关系推导集合之间的关系;3.数学运算:由集合与集合之间的关系求值;4.直观想象:体会直观图示对理解抽象概念的作用,体会数形结合的思想。

教学重难点:1.教学重点:集合间的包含与相等关系,子集与其子集的概念;2.教学难点:属于关系与包含关系的区别.教学过程:牛刀小试1:下图中,集合A 是否为集合B 的子集?牛刀小试2判断集合A 是否为集合B 的子集,若是则在( )打√,若不是则在( )打×:①A={1,3,5}, B={1,2,3,4,5,6} ( √ ) ②A={1,3,5}, B={1,3,6,9} ( × ) ③A={0}, B={x | x 2+2=0} ( × ) ④A={a,b,c,d}, B={d,b,c,a} ( √ )思考2:与实数中的结论 “若a ≥b,且b ≥a,则a=b ”。

集合的基本概念元素集合之间的关系

集合的基本概念元素集合之间的关系

第一章集合第一节集合的概念一、要点透析(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。

我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。

集合中的每个对象叫做这个集合的元素。

1、集合的概念(1)元素:某些特定的研究对象叫做元素(2)集合:一些元素集在一起就形成一个集合(简称集)2、元素对于集合的隶属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a A∈(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作a A∉3、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)例1.下列各组对象能确定一个集合吗?(1)所有很大的实数()(2)好心的人()(3)1,2,2,3,4,5.()4、(1)集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……(2)“∈”的开口方向,不能把a A ∈颠倒过来写5、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合,记作N ,{}0,1,2,N = (2)正整数集:非负整数集内排除0的集,记作*N 或N +,{}*1,2,3,N = (3)整数集:全体整数的集合,记作Z ,{}012Z =±± ,,,(4)有理数集:全体有理数的集合,记作Q ,{}Q =整数与分数(5)实数集:全体实数的集合,记作R ,{}R =数轴上所有点所对应的数(6)空集:不含任何元素的集合,记作∅注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集,记作*N 或N +,Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成*Z例2.用适当的符号(∈∉,)填空:(1)3_____N;(2)0_____{Φ};(3)32____Z,0.5Q Q ,;2(二)集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程210x -=的所有解组成的集合,可以表示为{1,1}-注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,,100} ;所有正奇数组成的集合:{1,3,5,7,}(2)a 与{}a 不同:a 表示一个元素,{}a 表示一个集合,该集合只有一个元素例3、设a,b 是非零实数,那么ba +可能取的值组成集合的元素是:练习、由实数x,-x,|x |,332,x x -所组成的集合,最多含()(A )2个元素(B )3个元素(C )4个元素(D )5个元素2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:{|()}x A P x ∈含义:在集合A 中满足条件()P x 的x 的集合例如,不等式32x ->的解集可以表示为:{|32}x R x ∈->或{|32}x x ->所有直角三角形的集合可以表示为:{|}x x 是直角三角形例4、已知集合{}R a x ax x A ∈=+-=,023|2;(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并把这个元素写出来;(3)若A 中至多有一个元素,求a 的取值范围3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法4、何时用列举法?何时用描述法?(1)有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法如:集合2322{,32,5,}x x y x x y +-+(2)有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法如:集合2{(,)|1}x y y x =+;集合{1000}以内的质数思考:集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗?(三)有限集与无限集有限集:含有有限个元素的集合无限集:含有无限个元素的集合空集:不含任何元素的集合,记作∅,如:2{|10}x R x ∈+=二、题型解析(一)集合的基本概念1以下元素的全体不能够构成集合的是()A.中国古代四大发明B.地球上的小河流C.方程210x -=的实数解D.周长为10cm 的三角形2方程组23211x y x y -=⎧⎨+=⎩的解集是()A.{5,1}B.{1,5}C.{(5,1)}D.{(1,5)}3给出下列关系:①12R ∈;Q ;③3N +∈;④0Z ∈,其中正确的个数是()A.1B.2C.3D.44下列各组中的两个集合M 和N ,表示同一集合的是()A.{}M π=,{3.14159}N =B.{2,3}M =,{(2,3)}N =C.{|11,}M x x x N =-<≤∈,{1}N =D.{}M π=,{,1,|N π=5已知实数2a =,集合{|13}B x x =-<<,则a 与B 的关系是6用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有:17A ;5-A ;17B 7已知x R ∈,则集合2{3,,2}x x x -中元素x 所应满足的条件为(二)集合的表示方法1用列举法表示下列集合①{|15}x N x ∈是的约数②{(,)|{1,2},{1,2}}x y x y ∈∈③2(,)24x y x y x y ⎧⎫+=⎧⎪⎪⎨⎨⎬-=⎩⎪⎪⎩⎭④{|(1),}nx x n N =-∈⑤{(,)|3216,,}x y x y x N y N +=∈∈⑥{(,)|,4}x y x y 分别是的正整数约数2用描述法表示下列集合①{1,4,7,10,13}②{2,4,6,8,10}-----③{1,5,25,125,625}④12340,,,,,251017⎧⎫±±±±⎨⎬⎩⎭(三)集合的分类1关于x 的方程0ax b +=,当a ,b 满足条件_____时,解集是有限集;当a ,b 满足条件_____时,解集是无限集2下列四个集合中,是空集的是()A.}33|{=+x x B.},,|),{(22R y x x y y x ∈-=C.}0|{2≤x x D.},01|{2R x x x x ∈=+-三、课下训练1、有下列说法:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程2(1)(2)0x x --=的所有解的集合可表示为{1,1,2};(4)集合{|45}x x <<是有限集,其中正确的说法是()A.只有(1)和(4)B.只有(2)和(3)C.只有(2)D.以上四种说法都不对2、试选择适当的方法表示下列集合:(1)二次函数223y x x =-+的函数值组成的集合;(2)函数232y x =-的自变量的值组成的集合3、已知集合4{|}3A x N Z x =∈∈-,试用列举法表示集合4、给出下列集合:①{(,)|1,1,2,3}x y x y x y ≠≠≠≠-;②12(,)13x x x y y y ⎧⎫≠≠⎧⎧⎪⎪⎨⎨⎨⎬≠≠-⎩⎩⎪⎪⎩⎭且③12(,)13x x x y y y ⎧⎫≠≠⎧⎧⎪⎪⎨⎨⎨⎬≠≠-⎩⎩⎪⎪⎩⎭或;④{}2222(,)[(1)(1)][(2)(3)]0x y x y x y -+-⋅-++≠其中不能表示“在直角坐标系xOy 平面内,除去点(1,1),(2,3)-之外的所有点的集合”的序号有5、已知集合2{|12x a A a x +==-有唯一实施解},试用列举法表示集合A。

数学人教版高中一年级必修1 元素与集合、集合与集合的关系

数学人教版高中一年级必修1 元素与集合、集合与集合的关系

第一周 元素与集合、集合与集合的关系重点知识梳理1.集合元素的三个特性:确定性,互异性,无序性. ①确定性:集合中的元素必须是明确的,不能含糊不清;②互异性:一个集合中的元素是唯一的,不能有相同元素,相同元素只能出现一次; ③无序性:即一个集合中的元素出现没有顺序,只要两个集合的元素完全相同,这两个集合就是相同的.2.元素与集合的关系:集合的元素通常用小写的拉丁字母表示,元素与集合是从属关系,如a 是集合A 的元素,就说a 属于集合A ,记作a ∈A ,a 不属于集合A ,记作a ∉A . 3.集合间的基本关系(1)子集:如果集合A 的元素都是集合B 的元素,则称A 是B 的子集,记作A ⊆B . (2)真子集:如果A ⊆B 且A ≠B ,那就说集合A 是集合B 的真子集,记作A B .(3)相等:如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,即A =B . (4)常用结论①任何一个集合是它本身的子集,即A ⊆A ;②空集是任何集合的子集,空集是任何非空集合的真子集; ③如果A ⊆B ,B ⊆C ,那么A ⊆C ; ④如果A ⊆B ,同时B ⊆A ,那么A =B .典型例题剖析例1 已知集合A ={x |ax 2-2x -1=0,x ∈R },若集合A 中至多有一个元素,求实数a 的取值范围.【方法指导】集合A 中至多有一元素,即为对应方程至多只有一根,这样通过讨论方程根的情况来求a 的取值范围即可.【解析】(1)当a =0时,方程只有一个根-12,则a =0符合题意;(2)当a ≠0时,关于x 的方程ax 2-2x -1=0是一元二次方程,则该方程有两个相等的实数根或没有实数根,所以Δ=4+4a ≤0,解得a ≤-1,所以实数a 的取值范围是{a |a ≤-1}. 综上所述,实数a 的取值范围是{a |a =0或a ≤-1}. 【提示】以下解法是错误的:由于集合A 中至多有一个元素,则一元二次方程ax 2-2x -1=0有两个相等的实数根或没有实数根,所以Δ=4+4a ≤0,解得a ≤-1,所以实数a 的取值范围是{a |a ≤-1}.错误原因 方程ax 2-2x -1=0不一定是一元二次方程,若方程不是一元二次方程,则不能利用判别式Δ判断其实根的个数.淘出优秀的你2【小结】本题体现了转会与化归的思想,解答时将问题转化为关于x 的方程ax 2-2x -1=0的实数根的个数问题,这样就容易解决了.同时,要注意若方程的二次项系数含有字母,则需对其是否为零进行讨论.变式训练 已知集合A ={x ∈R |ax 2-3x +2=0}.(1)若A 是单元素集(只含有一个元素的集合),求a 的值及集合A ; (2)求集合P ={a ∈R |a 使得A 至少含有一个元素}. 【解析】(1)当a =0时,A ={23},符合题意;当a ≠0时,要使方程有两个相等的实根,则Δ=9-8a =0,即a =98,此时A ={43}.综上所述,当a =0时,A ={23};当a =98时,A ={43}.(2)由(1)知,当a =0时,A ={23}含有一个元素,符合题意.由a ≠0时,要使方程有实根,则Δ=9-8a ≥0,即a ≤98.综上所述,P ={a ∈R |a 使得A 至少含有一个元素}={a |a ≤98}.例2 已知-3∈A ,A 中含有的元素有a -3,2a -1,a 2+1,求a 的值. 【解析】由-3∈A 且a 2+1≥1,可知a -3=-3或2a -1=-3, 当a -3=-3时,a =0; 当2a -1=-3时,a =-1. 经检验,0与-1都符合要求. ∴a =0或a =-1.变式训练 已知互异的两数a ,b 满足ab ≠0,集合{a ,b }={a 2,b 2},则a +b 等于( ) A .2 B .1 C .0 D .-1 【答案】D【解析】由{a ,b }={a 2,b 2},则⎩⎪⎨⎪⎧a =a 2b =b 2① 或⎩⎪⎨⎪⎧a =b 2b =a 2,② 由①得⎩⎪⎨⎪⎧a =0或a =1b =0或b =1,∵ab ≠0,∴a ≠0且b ≠0,即a =1,b =1,此时集合{1,1}不满足条件. 由②两式相减得a 2-b 2=b -a ,∵两数a ,b 互异,∴b -a ≠0,即a +b =-1,故选D.例3 已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围. 【解析】A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}, 且B ⊆A .①若B =∅,则m +1>2m -1,解得m <2, 此时有B ⊆A ;②若B ≠∅,则m +1≤2m -1,即m ≥2, 由B ⊆A ,得⎩⎪⎨⎪⎧m ≥2m +1≥-22m -1≤5,解得2≤m ≤3. 由①②得m ≤3.∴实数m 的取值范围是{m |m ≤3}.【小结】对于这类含有字母参数的集合的包含关系,应注意空集是任何集合的子集,如本题中,应讨论集合B 为空集的情形.变式训练 已知集合P ={x |x 2+x -6=0},集合Q ={x |ax +1=0},且Q ⊆P ,求实数a 的取值构成的集合A .【解析】∵x 2+x -6=0, ∴(x +3)(x -2)=0, 即x =-3或x =2. ∴P ={-3,2}. 又∵Q ={x |ax +1=0}, 当a =0时,Q =∅,满足Q ⊆P ; 当a ≠0时,有-1a =-3或-1a =2,∴a =13或a =-12,故a =0或a =13或a =-12.∴A ={-12,0,13}.跟踪训练1.若集合A ={x ∈R |ax 2+ax +1=0}其中只有一个元素,则a 等于( ) A .4 B .2 C .0 D .0或42.集合⎩⎨⎧⎭⎬⎫x ∈N *|12x ∈Z 中含有的元素个数为( )淘出优秀的你4A .4B .6C .8D .123.若集合A ={x |ax 2+(a -6)x +2=0}是单元素集合,则实数a 等于( ) A .2或18 B .0或2 C .0或18D .0或2或184.已知集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,那么a 为( ) A .2 B .2或4 C .4 D .05.集合A 满足关系式(a ,b )⊆A ⊆{a ,b ,c ,d ,e },则集合A 的个数是( ) A .5 B .6 C .7 D .86.若非空数集A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22},则能使A ⊆B 成立的所有a 的集合是( ) A .{a |1≤a ≤9} B .{a |6≤a ≤9} C .{a |a ≤9}D .∅7.若集合A ={x |x 2-5x +6≤0},集合B ={x |ax -2=0,a ∈Z },且B ⊆A ,则实数a =________.8.若集合M ={}1,m 2,集合N ={2,4},M ∪N ={1,2,4},则实数m 的值的个数是________.9.如果有一集合含有三个元素1,x ,x 2-x ,则实数x 的取值范围是________________. 10.已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,则有序实数对(a ,b )的值为________. 11.设集合A ={3,3m 2},B ={3m,3},且A =B ,则实数m 的值是________.12.已知集合A ={x |2a -2<x ≤a +2},B ={x |-2≤x <3}且A ⊆B ,求实数a 的取值范围. 13.已知由实数构成的集合A 满足条件:若a ∈A ,则1+a1-a∈A (a ≠0且a ≠±1),则集合A 中至少有几个元素?证明你的结论.参考答案1.A 当a =0时,方程为1=0不成立,不满足条件;当a ≠0时,Δ=a 2-4a =0,解得a =4. 故选A.2.B 由题意,集合⎩⎨⎧⎭⎬⎫x ∈N *|12x ∈Z 中的元素满足x 是正整数,且12x 是整数,由此列出下表根据表格,可得符合条件的x 共有6个,即集合⎩⎨⎭⎬x ∈N *|12x ∈Z 中有6个元素,故选B.3.D a =0时,-6x +2=0,x =13,只有一个解,集合A ={13},满足题意.a ≠0时,方程ax 2+(a -6)x +2=0有两个相等实根. 判别式Δ=0, Δ=(a -6)2-8a =0, a 2-20a +36=0, 解得a =2或a =18, ∴实数a 为0或2或18. 故选D.4.B 集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A , a =2∈A,6-a =4∈A ,∴a =2, 或者a =4∈A,6-a =2∈A ,∴a =4, 综上所述,a =2,4. 故选B.5.D 由题意知集合A 中的元素a ,b 必取,另外可从c ,d ,e 中取,满足题意的集合A 的个数等于集合{c ,d ,e }的子集个数,因为{c ,d ,e }的子集个数为23=8,则集合A 的个数是8. 故选D. 6.B 7.0或1 8.49.x ≠0,1,2,1±52解析 由集合元素的互异性可得x ≠1,x 2-x ≠1,x 2-x ≠x ,解得x ≠0,1,2,1±52.淘出优秀的你610.(0,1)或(14,12)解析 ∵M ={2,a ,b },N ={2a,2,b 2},且M =N ,∴⎩⎪⎨⎪⎧ a =2a b =b 2或⎩⎪⎨⎪⎧a =b 2b =2a , 即⎩⎪⎨⎪⎧ a =0b =1或⎩⎪⎨⎪⎧a =0b =0或⎩⎨⎧a =14b =12,当a =0,b =0时,集合M ={2,0,0}不成立, ∴有序实数对(a ,b )的值为(0,1)或(14,12)故答案为(0,1)或(14,12).11.0解析 依题意,3m =3m 2,所以m =0或m =1.当m =1时,违反元素互异性(舍去). 12.解析 由已知A ⊆B 可得, (1)当A =∅时,有2a -2≥a +2⇒a ≥4. (2)当A ≠∅时,由A ⊆B 得⎩⎪⎨⎪⎧2a -2<a +2,2a -2≥-2,a +2<3⇒⎩⎪⎨⎪⎧a <4,a ≥0,⇒0≤a <1a <1. 综合(1)(2),实数a 的取值范围是{a |a ≥4或0≤a <1}. 13.解析 ∵a ∈A ,则1+a1-a ∈A ,∴1+1+a 1-a 1-1+a1-a =-1a ∈A ,进而有1+⎝⎛⎭⎫-1a 1-⎝⎛⎭⎫-1a =a -1a +1∈A ,∴又有1+a -1a +11-a -1a +1=a ∈A .∵a ∈R ,∴a ≠-1a.假设a =1+a1-a ,则a 2=-1,矛盾,∴a ≠1+a 1-a.类似方法可得a 、1+a 1-a 、-1a 和a -1a +1四个数互不相等,故集合A 中至少有四个元素.。

集合的基本关系

集合的基本关系

集合是数学中一个重要的概念,它是一组具有某种关系的元素的集合。

集合中的元素可以是任何事物,如数字、字母、图形、函数、集合等。

集合的基本关系是指集合中元素之间的关系,它们可以是元素之间的交集、并集、差集等。

一、交集
集合的交集是指两个或多个集合中元素的重合部分,即两个或多个集合中共有的元素。

例如:集合A={1,2,3,4},集合B={2,3,4,5},则A与B的交集为{2,3,4}。

二、并集
集合的并集是指两个或多个集合中所有元素的集合,即两个或多个集合中元素的总和。

例如:集合A={1,2,3,4},集合B={2,3,4,5},则A与B的并集为{1,2,3,4,5}。

三、差集
集合的差集是指两个集合中不同的元素的集合,即两个集合中仅在一个集合中存在的元素。

例如:集合A={1,2,3,4},集合B={2,3,4,5},则A与B的差集为{1}。

四、相等
集合的相等是指两个集合中的元素完全相同,即两个集合中元素的数量和类型都相同。

例如:集合A={1,2,3,4},集合B={1,2,3,4},则A与B相等。

总之,集合的基本关系包括交集、并集、差集和相等,它们是数学中研究集合的基本概念,并且是其他更复杂的概念的基础。

集合间的基本关系

集合间的基本关系

集合间的基本关系
在集合理论中,有几种基本的关系可以定义在两个集合之间。

这些基本关系包括:
1.相等关系(Equality Relation):两个集合当且仅当它们包含
相同的元素时相等。

表示为A = B。

示例:A = {1, 2, 3},B = {3, 2, 1},因此A = B。

2.包含关系(Subset Relation):如果一个集合的所有元素都是
另一个集合的元素,则称前者是后者的子集。

表示为A ⊆B。

示例:A = {1, 2},B = {1, 2, 3},因此A ⊆ B。

3.真包含关系(Proper Subset Relation):如果一个集合是另一
个集合的子集,并且两个集合不相等,则前者是后者的真子集。

表示为A ⊂ B。

示例:A = {1, 2},B = {1, 2, 3},因此A ⊂B。

4.交集关系(Intersection Relation):两个集合的交集是包含它
们共同元素的集合。

表示为A ∩ B。

示例:A = {1, 2, 3},B = {3, 4, 5},则A ∩ B = {3}。

5.并集关系(Union Relation):两个集合的并集是包含它们所
有元素的集合。

表示为A ∪ B。

示例:A = {1, 2, 3},B = {3, 4, 5},则A ∪ B = {1, 2, 3, 4, 5}。

这些基本关系在集合论中起到了重要的作用,用于描述和操作不同集合之间的关系。

它们是集合论中的基本概念,为进一步探索更高级的集合运算和性质奠定了基础。

高中数学集合的基本关系

高中数学集合的基本关系

高中数学集合的基本关系
高中数学中,我们学习了集合的基本关系,它们是描述集合之间相互关系的重要工具。

以下是一些常见的基本关系:
1. 子集关系:如果一个集合A的所有元素都是另一个集合B的元素,则称A是B的子集,记作A⊆B。

如果A不等于B,则称A是B的真子集,记作A⊂B。

2. 空集关系:对于任意集合A来说,空集∅是任意集合的一个子集。

3. 相等关系:如果两个集合A和B的元素完全相同,即A⊆B且B⊆A,则称A和B相等,记作A=B。

4. 交集关系:对于给定的两个集合A和B,它们的交集是一个新的集合,包含同属于
A和B的所有元素,记作A∩B。

5. 并集关系:对于给定的两个集合A和B,它们的并集是一个新的集合,包含所有属于A或者属于B的元素,记作A∪B。

6. 互补关系:对于给定的两个集合A和B,如果A∩B=∅,即A和B没有共同元素,则称A和B互补。

这些基本关系在高中数学中经常用到,它们帮助我们描述和操作不同集合之间的关系。

注意,这些关系的具体性质和定理可以在相应的教科书和课堂讲义中找到。

高一数学复习知识点专题讲解与训练3---集合间的基本关系

高一数学复习知识点专题讲解与训练3---集合间的基本关系

高一数学复习知识点专题讲解与训练集合间的基本关系课标要点课标要点学考要求高考要求1.子集、真子集的概念b b2.空集的概念b b3.Venn图a a知识导图,学法指导,1.注意辨析两大关系:(1)元素与集合的关系;(2)集合与集合的关系.2.本节的学习重点是子集、真子集、空集的概念;难点是集合之间关系的应用.3.学习中要注意集合之间的关系的几种表述方法:自然语言、符号语言、图形语言.知识点一子集文字语言符号语言图形语言对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A 为集合B的子集对任意元素x∈A,必有x∈B,则A⊆B(或B⊇A),读作A包含于B或B包含A“A是B的子集”的含义是:集合A中的任何一个元素都是集合B的元素,即任意x∈A 都能推出x∈B.知识点二集合相等1.自然语言:如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A与集合B中的元素是一样的,因此,集合A与集合B相等.2.符号语言:若A⊆B,又B⊆A,则A=B.(1)若A⊆B,又B⊆A,则A=B;反之,如果A=B,则A⊆B,且B⊆A.(2)若两集合相等,则两集合所含元素完全相同,与元素排列顺序无关.知识点三空集不含任何元素的集合叫做空集,记为∅.规定:空集是任何集合的子集.知识点四真子集文字语言符号语言图形语言对于两个集合A,B,如果集合A是集合B的子集,且在集合B中存在一个元素不是集合A的元素,我们称集合A是集合B的真子集若集合A⊆B,但x∈B,且x∉A,则A B(或B A)(读作“A 真包含于B”或“B真包含A”)在真子集的定义中,A B首先要满足A⊆B,其次至少有一个x∈B,但x∉A.知识点五子集的性质1.任何一个集合都是它本身的子集,即A⊆A.2.对于集合A,B,C,(1)若A⊆B,B⊆C,则A⊆C;(2)若A B,B C,则A C.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)空集中只有元素0,而无其余元素.()(2)任何一个集合都有子集.()(3)若A=B,则A⊆B.()(4)空集是任何集合的真子集.()答案:(1)×(2)√(3)√(4)×2.集合{0,1}的子集有()A.1个B.2个C.3个D.4个解析:集合{0,1}的子集为∅,{0},{1},{0,1}.答案:D3.已知集合A={x|-1-x<0},则下列各式正确的是()A.0⊆A B.{0}∈A C.∅∈A D.{0}⊆A解析:集合A={x|-1-x<0}={x|x>-1},所以0∈A,{0}⊆A,D正确.答案:D4.能正确表示集合M={x|x∈R且0≤x≤1}和集合N={x∈R|x2=x}关系的Venn图是()解析:N={x∈R|x2=x}={0,1},M={x|x∈R且0≤x≤1},∴N M.答案:B类型一集合间关系的判断例1(1)下列各式中,正确的个数是()①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0}.A.1B.2C.3D.4(2)指出下列各组集合之间的关系:①A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};②A={x|x是等边三角形},B={x|x是等腰三角形};③M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.【解析】(1)对于①,是集合与集合的关系,应为{0}{0,1,2};对于②,实际为同一集合,任何一个集合是它本身的子集;对于③,空集是任何集合的子集;对于④,{0}是含有单元素0的集合,空集不含任何元素,并且空集是任何非空集合的真子集,所以∅{0};对于⑤,{0,1}是含有两个元素0与1的集合,而{(0,1)}是以有序数组(0,1)为元素的单元素集合,所以{0,1}与{(0,1)}不相等;对于⑥,0与{0}是“属于与否”的关系,所以0∈{0}.故②③是正确的,应选B.(2)①集合A的代表元素是数,集合B的代表元素是有序实数对,故A与B之间无包含关系.②等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B.③方法一两个集合都表示正奇数组成的集合,但由于n∈N*,因此集合M含有元素“1”,而集合N不含元素“1”,故N M.方法二由列举法知M={1,3,5,7,…},N={3,5,7,9,…},所以N M.【答案】(1)B(2)见解析根据元素与集合、集合与集合之间的关系直接判断①②③④⑥,对于⑤应先明确两个集合中的元素是点还是实数.方法归纳判断集合间关系的方法(1)用定义判断首先,判断一个集合A中的任意元素是否属于另一集合B,若是,则A⊆B,否则A不是B的子集;其次,判断另一个集合B中的任意元素是否属于第一个集合A,若是,则B⊆A,否则B 不是A的子集;若既有A⊆B,又有B⊆A,则A=B.(2)数形结合判断对于不等式表示的数集,可在数轴上标出集合的元素,直观地进行判断,但要注意端点值的取舍.跟踪训练1(1)若集合M={x|x2-1=0},T={-1,0,1},则M与T的关系是() A.M T B.M T C.M=T D.M⃘T(2)用Venn图表示下列集合之间的关系:A={x|x是平行四边形},B={x|x是菱形},C={x|x是矩形},D={x|x是正方形}.解析:(1)因为M={x|x2-1=0}={-1,1},又T={-1,0,1},所以M T.(2)根据几何图形的相关知识明确各元素所在集合之间的关系,再画Venn图.如图答案:(1)A(2)见解析学习完知识点后,我们可以得到B⊆A,C⊆A,D⊆A,D⊆B,D⊆C.类型二子集、真子集的个数问题例2(1)已知集合A={x∈R|x2-3x+2=0},B={x∈N|0<x<5},则满足条件A C B 的集合C的个数为()A.1B.2C.3D.4(2)已知集合A={x∈R|x2=a},使集合A的子集个数为2个的a的值为()A.-2 B.4 C.0 D.以上答案都不是【解析】(1)由x2-3x+2=0,得x=1或x=2,所以A={1,2}.由题意知B={1,2,3,4},所以满足条件的C可为{1,2,3},{1,2,4}.(2)由题意知,集合A中只有1个元素,必有x2=a只有一个解;若方程x2=a只有一个解,必有a=0.【答案】(1)B (2)C(1)先用列举法表示集合A,B,然后根据A C B确定集合C.(2)先确定关于x的方程x2=a解的个数,然后求a的值.方法归纳求集合子集、真子集个数的三个步骤跟踪训练2(1)已知集合M={x∈Z|1≤x≤m},若集合M有4个子集,则实数m=() A.1 B.2 C.3 D.4(2)若集合A{1,2,3},且A中至少含有一个奇数,则这样的集合有________个.解析:(1)根据题意,集合M有4个子集,则M中有2个元素,又由M={x∈Z|1≤x≤m},其元素为大于等于1而小于等于m的全部整数,则m=2.(2)若A中含有一个奇数,则A可能为{1},{3},{1,2},{3,2};若A中含有两个奇数,则A={1,3}.答案:(1)B(2)5由A中含有奇数的个数分类:A中含1个奇数,2个奇数.类型三根据集合的包含关系求参数例3已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.【解析】(1)当a=0时,①A =∅,满足A ⊆B .(2)当a >0时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a <x <2a. 又∵B ={x |-1<x <1},且A ⊆B ,∴⎩⎪⎨⎪⎧1a ≥-1,2a ≤1.②∴a ≥2. (3) 当a <0时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a <x <1a .③ ∵A ⊆B ,∴⎩⎪⎨⎪⎧2a ≥-1,1a ≤1.∴a ≤-2.综上所述,a 的取值范围是{a |a =0,或a ≥2,或a ≤-2}.①欲解不等式1<ax<2,需不等号两边同除以a ,而a 的正负不同时,不等号的方向不同,因此需对a 分a =0,a>0,a<0进行讨论.②A ⊆B 用数轴表示如图所示:由图易知,1a 和2a 需在-1与1之间.当1a =-1,或2a =1时,说明A 与B 的某一端点重合,并不是说其中的元素能够取到端点,如2a =1时,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x<1,x 取不到1.③a<0时,不等式两端除以a ,不等号的方向改变.方法归纳(1)分析集合关系时,首先要分析、简化每个集合.(2)此类问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误,一般含“=”用实心点表示,不含“=”用空心点表示.(3)此类问题还应注意“空集”这一“陷阱”,尤其是集合中含有字母参数时,初学者会想当然认为非空集合而丢解,因此分类讨论思想是必需的.跟踪训练3 设集合A ={x |x 2-8x +15=0},B ={x |ax -1=0}. (1)若a =15,试判定集合A 与B 的关系; (2)若B ⊆A ,求实数a 的取值集合.解析:(1)由x 2-8x +15=0得x =3或x =5,故A ={3,5},当a =15时,由ax -1=0得x =5.所以B ={5},所以BA .(2)当B =∅时,满足B ⊆A ,此时a =0;当B ≠∅,a ≠0时,集合B =⎩⎨⎧⎭⎬⎫1a ,由B ⊆A 得1a =3或1a =5,所以a =13或a =15.综上所述,实数a 的取值集合为⎩⎨⎧⎭⎬⎫0,13,15,(1)解方程x 2-8x +15=0,求出A ,当a =15时,求出B ,由此能判定集合A 与B 的关系.(2)分以下两种情况讨论,求实数a 的取值集合.①B =∅,此时a =0;②B ≠∅,此时a ≠0.[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.已知集合P ={x |x 2=1},Q ={x |ax =1},若Q ⊆P ,则a 的值是( )A .1B .-1C .1或-1D .0,1或-1解析:由题意,当Q 为空集时,a =0;当Q 不是空集时,由Q ⊆P ,a =1或a =-1. 答案:D2.已知集合M ={y |y =x 2-2x -1,x ∈R },集合N ={x |-2≤x ≤4},则集合M 与N 之间的关系是( )A .M >NB .MN C .N M D .M ⊆N解析:因为y =(x -1)2-2≥-2,所以M={y|y≥-2},所以N M.答案:C3.已知集合A={1,2,3},B={3,x2,2},若A=B,则x的值是()A.1 B.-1C.±1 D.0解析:由A=B得x2=1,所以x=±1,故选C.答案:C4.已知集合A={-1,0,1},则含有元素0的A的子集的个数为()A.2 B.4C.6 D.8解析:根据题意,含有元素0的A的子集为{0},{0,1},{0,-1},{-1,0,1},共4个.答案:B5.设A={x|2<x<3},B={x|x<m},若A⊆B,则m的取值范围是()A.m>3 B.m≥3C.m<3 D.m≤3解析:因为A={x|2<x<3},B={x|x<m},A⊆B,将集合A,B表示在数轴上,如图所示,所以m≥3.答案:B二、填空题(每小题5分,共15分)6.已知集合A ={x |x -3>0},B ={x |2x -5≥0},则这两个集合的关系是________.解析:A ={x |x -3>0}={x |x >3},B ={x |2x -5≥0}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≥52. 结合数轴知A B .答案:A B7.设集合A ={1,3,a },B ={1,a 2-a +1},且B ⊆A ,则a 的值为________.解析:∵A ={1,3,a },B ={1,a 2-a +1},且B ⊆A ,∴a 2-a +1∈A ,∴a 2-a +1=3或a 2-a +1=a .由a 2-a +1=3,得a =2或a =-1;由a 2-a +1=a ,得a =1.经检验,a =1时集合A ,B 不满足集合中元素的互异性,舍去.故a =-1或a =2.答案:-1或28.已知A ={x |-3<x <5},B ={x |x >a },A ⊆B ,则实数a 的取值范围是________. 解析:在数轴上画出集合A .又因为A ⊆B ,所以a <-3,当a =-3时也满足题意,所以a ≤-3.A.A⊆B B.B⊆CC.C⃘A D.B A解析:易知集合B,C是集合A的子集,且是真子集,而B,C之间没有关系,因此只有D选项正确,答案:D12.已知集合A={1,3,5},则集合A的所有子集的元素之和为________.解析:集合A的子集分别是:∅,{1},{3},{5},{1,3},{1,5},{3,5},{1,3,5}.注意到A中的每个元素出现在A的4个子集,即在其和中出现4次.故所求之和为(1+3+5)×4=36.答案:3613.已知集合A={1,3,x2},B={x+2,1}.是否存在实数x,使得B⊆A?若存在,求出集合A,B;若不存在,说明理由.解析:假设存在实数x,使B⊆A,则x+2=3或x+2=x2.(1)当x+2=3时,x=1,此时A={1,3,1},不满足集合元素的互异性.故x≠1.(2)当x+2=x2时,即x2-x-2=0,故x=-1或x=2.①当x=-1时,A={1,3,1},与集合元素的互异性矛盾,故x≠-1.②当x=2时,A={1,3,4},B={4,1},显然有B⊆A.综上所述,存在x=2,使A={1,3,4},B={4,1}满足B⊆A.14.已知集合A={x|-3≤x≤4},B={x|2m-1<x<m+1},且B⊆A.求实数m的取值范围.解析:∵B ⊆A ,(1)当B =∅时,m +1≤2m -1, 解得m ≥2.(2)当B ≠∅时,有⎩⎪⎨⎪⎧ -3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上得m ≥-1.即实数m 的取值范围为{m |m ≥-1}.。

元素与集合之间的基本关系

元素与集合之间的基本关系

第一课 元素与集合之间的关系一、考点1、集合、元素某些指定的对象集在一起就成为一个集合(经常使用大写字母暗示),其中每一个对象叫做元素(经常使用小写字母暗示)。

元素三要素:确定性、互异性、无序性。

2、集合与元素之间的关系(1)如果a 是集合A 的元素,就说a 属于A ,记做a ∈A 。

(2)如果a 不是集合A 的元素,就说a 不属于A ,记做a ∉A 。

3、集合的暗示法:列举法、描述法。

4、集合的分类:空集、有限集、无限集5、经常使用数集实数集:R有理数集:Q整数集:Z自然数集:N正整数集:*N 或+N6、集合与集合之间的关系7、集合之间的运算 二、典型例题1、已知集合A={x||x|≤2,x ∈R},B={x|x ≤4,x ∈Z},则A B=()A 、(0,2)B 、[0,2]C 、{0,2}D 、{0,1,2}2、设P ={1,2,3,4},Q ={4,5,6,7,8},定义P*Q ={(a ,b)|a ∈P ,b ∈Q ,a ≠b},则P*Q 中元素的个数为( )A .4B .5C .19D .203、已知集合A={(x ,y )|x ,y 为实数,且1y x 22=+},B={(x ,y )|x ,y 为实数,且y=x},则A B 的元素个数为()A 、0B 、1C 、2D 、34、设集合{}R A ∈<=x 1a -x x ,,{}R B ∈>=x 2b -x x ,,若B A ⊆,则实数a ,b必满足( )A 、3b a ≤+B 、3b a ≥+C 、3b -a ≤D 、3b -a ≥5、已知集合{}32x R x <+∈=A ,集合()(){}02-x m -x x <∈=R B ,且()n 1-,=B A ,则=m __________,=n __________。

6、已知集合{}2x x -3x-100A =≤,{|121}B x m x m =+-≤≤,且A B A ⋃=,求实数m 的取值范围.三、课堂作业1、用列举法暗示下列集合:(1)、},,20,20|),{(Z y x y x y x ∈<≤<≤(2)、_;__________},,,|{},2,1,0{=≠∈+===b a M b a b a x x P M 2、已知集合A={1、2、3、4、5},B={(x,y )|x ∈A ,y ∈A ,x-y ∈A},则B 中所含元素的个数为( )。

集合的基本关系及运算

集合的基本关系及运算

第一章
集合与常用逻辑用语
(1)(2010·江西省信丰中学高三第三次月考)设集合I={a1, a2,a3,a4},则满足M⊆I,且M∩{a1,a2,a3}={a1,a2}的集 合M的补集C1M是 ( D.{a3} >0},则A∩B=________. )
A.{a3,a4}和{a3}
C.{a3,a4} B={x|
第一章
集合与常用逻辑用语
【分析】 由条件B⊆A时要注意B是否为空集,利用数轴 标出集合A. 【解析】 A={x|x2-3x-10≤0}={x|-2≤x≤5} (1)若B=∅,则2m-1<m+1 ∴m<2 若B≠∅,且B⊆A,则
第一章
集合与常用逻辑用语
设A={x|x2-8x+15=0},B={x|ax-1=0}.若B⊆A, 求由实数a的所有可能的值组成的集合,并写出它的所有非 空真子集. 【解析】 A={x|x2-8x+15=0}={3,5} (1)当a=0时,B=∅,∴B⊆A,
符号
N
N*或N+
Z
Q
R
C
(4)集合的表示法:列举法 、描述法 、韦恩图法 .
第一章
集合与常用逻辑用语
2.集合间的基本关系
文字语言 关系 B A⊆B 或 B⊇A
子集
集合A中任意一个元素都是集合B中的元素
真子集
A中任意一个元素均为B中的元素,且B中至 少有一个元素不是A中的元素 空集是任何集合的 子集 ,是 非空集合 任何 的真子集
第一章
集合与常用逻辑用语
第一章
集合与常用逻辑用语
1.理解两个集合的并集与交集的含义,会求两个简单 集合的并集与交集; 2.理解在给定集合中一个子集的补集的含义,会求给 定子集的补集; 3.能使用韦恩(Venn)图表达集合的关系及运算; 4.集合的运算在解题时要注意Venn图及补集思想的应 用; 5.集合中的常用运算性质

集合概念、表示方法、分类以及集合之间的关系

集合概念、表示方法、分类以及集合之间的关系

集合概念、表示方法、分类以及集合之间的关系一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。

通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。

元素与集合的关系有“属于∈”及“不属于∉两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。

非负整数集(或自然数集),记作N;;N内排除0的集.正整数集,记作N*或N+整数集,记作Z;有理数集,记作Q;实数集,记作R;⑴确定性:⑵互异性:⑶无序性:1:判断以下元素的全体是否组成集合,并说明理由:⑴某班个子较高的同学⑵长寿的人⑷倒数等于它本身的数⑸某校2011级新生;⑹血压很高的人;⑺著名的数学家;⑻平面直角坐标系内所有第三象限的点7.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉”)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。

例如,我们A 表示“1~20以内的所有质数”组成的集合,则有3∈A ,4∉A ,等等。

练:A={2,4,8,16},则4A ,8 A ,32 A.巩固练习分析:练1.已知集合P 的元素为21,,3m m m --, 若2∈P 且-1∉P ,求实数m 的值。

练2下面有四个命题:①若-a ∉Ν,则a ∈Ν ②若a ∈Ν,b ∈Ν,则a +b 的最小值是2③集合N 中最小元素是1 ④ x 2+4=4x 的解集可表示为{2,2}其中正确命题的个数是( )3求集合{2a ,a 2+a }中元素应满足的条件?4若t 1t 1+-∈{t},求t 的值.⒈列举法:把集合中的元素一一列举出来, 并用花括号“{}”括起来表示2.用列举法表示下列集合:(1) 小于5的正奇数组成的集合;(2) 能被3整除而且大于4小于15的自然数组成的集合;⒉描述法:用集合所含元素的共同特征表示集合的方法,称为描述法。

新人教A版数学必修第一册第一章知识点总结与例题讲解

新人教A版数学必修第一册第一章知识点总结与例题讲解

集合的概念知识点总结与例题讲解一、本节知识要点(1)集合的含义与表示;(2)元素与集合之间的关系与表示;(3)集合元素的三个基本性质;(4)常用数集的表示;(5)集合的两种表示方法(列举法和描述法);(6)集合的分类.二、集合的含义与表示一般地,指定的某些对象的全体称为集合.集合中的每个对象叫做这个集合的元素.集合用大写字母来表示,集合的元素用小写字母来表示.三、元素与集合之间的关系与表示元素与集合之间是从属关系:若元素a在集合A中,就说元素a属于集合A,记作a∉.a∈;若元素a不在集合A中,则称元素a不属于集合A,记作A A要求会判断元素与集合之间的从属关系.四、集合元素的三个基本性质集合中的元素具有确定性、互异性和无序性.确定性给定一个集合,它的元素必须是确定的.也就是说,给定一个集合,任何一个元素属于或不属于这个集合,也就确定了.互异性给定一个集合,它的元素是互不相同的.即同一个集合中的元素不能重复出现.在用列举法表示集合时,相同的元素算作集合的一个元素.无序性集合中的元素是没有顺序的.如果构成两个集合的元素是相同的,那么就称这两个集合相等.五、常用数集的表示自然数集N; 正整数集N+或N*; 整数集Z; 有理数集Q; 实数集R. 六、集合的两种表示方法集合有两种常用表示方法,即列举法和描述法.此外还有韦恩图法(Venn图法).列举法把集合的元素一一列举出来,并用大括号“{}”括起来表示集合的方法叫做列举法.用列举法表示集合时要注意以下几点:(1)元素之间必须用逗号隔开;(2)元素不能重复(即集合的元素要满足互异性);(3)元素之间无先后顺序(集合的元素具有无序性);(4)表示有规律的无限集时,必须把元素间的规律表示清楚后才可以使用省略号,如﹛1 , 2 , 3 , … ﹜;(5)注意a 与{}a 的表示是有区别的:a 表示的是一个元素,{}a 表示的是只有一个元素a 的集合.二者具有从属关系,及a A ∈.列举法常用来表示有限集或有规律的无限集.描述法定义 用集合所含元素的共同特征表示集合的方法叫做描述法.记作(){}x P I x ∈,其中x 为集合的代表元素,I 表示元素x 的取值范围,()x P 表示集合的元素所具有的共同特征.第二定义 用确定的条件表示某些对象属于一个集合的方法,称为描述法.注意:“共同特征”或“确定的条件”可以说是方程,也可以是不等式(组)等.如集合{}0322=--=x x x A ,集合{}062<-=x x B .用描述法表示集合时要注意以下几点:(1)写清集合中的代表元素,如实数或有序实数对,从而正确表示数集和点集;(2)用简洁准确的语言表示集合中元素的共同特征;(3)不能出现未被说明的字母,如集合{}n x Z x 2=∈中的n 未被说明,应正确表示为{}Z n n x Z x ∈=∈,2或{}Z n n x x ∈=,2;(4)元素的取值范围,从上、下文来看,如果是明确的,可以省略.如集合{}02=+∈x x R x ,也可以写作{}02=+x x x .(5)出现多层描述时,应正确使用“或”、“且”、“非”等逻辑联结词;(6)所有描述的内容都要写在大括号内;(7)识别描述法表示的集合时,要看清代表元素,正确区分数集和点集.当集合所含元素较多或元素的共同特征不明显时,适合用描述法来表示集合.例1. 用两种方法表示二元一次方程组⎩⎨⎧=-=+152y x y x 的解. 注意:二元一次方程组的解是有序实数对,所以在表示二元一次方程组的解时,要表示为点集的形式.解:解二元一次方程组⎩⎨⎧=-=+152y x y x 得:⎩⎨⎧==12y x 用列举法表示为(){}1,2,用描述法表示为()⎭⎬⎫⎩⎨⎧⎩⎨⎧==12,y x y x . 提示:(){}1,2与(){}2,1表示的是两个不同的集合.例2. 指出集合{}12-=x y x 与集合(){}12,-=x y y x 的区别.注意:区分数集和点集的关键在于代表元素.用描述法表示集合时记作(){}x P I x ∈,其中x 表示的就是代表元素,它可以是一个数字(数集),也可以是有序实数对(点集).解:集合{}12-=x y x 表示的是一个数集,它表示函数解析式12-=x y 中自变量的取值范围,所以{}=-=12x y x R ;集合(){}12,-=x y y x 表示的是一个点集,它表示函数12-=x y 的图象上所有点的坐标.例3. 用合适的方法表示下列集合:(1)文房四宝;(2)2019年9月3日,新乡市平原示范区所辖乡镇;(3)平面直角坐标系中,第二象限的点构成的集合.注意:在用描述法表示集合时,元素之间必须用逗号隔开,不要用错标点符号.点集的代表元素为有序实数对.解:(1){}砚纸墨笔,,,;(2){}师寨镇桥北乡原武镇韩董庄乡祝楼乡,,,,;(3)(){}0,0,><y x y x 且.例4. 分别用列举法和描述法表示下列集合:(1)方程022=-x 的所有实数根组成的集合;(2)由大于10小于15的所有整数组成的集合.注意:在用列举法表示集合时,代表元素的取值范围,如果从上、下文来看是明确的,可以省略.解:(1)列举法:{}2,2-; 描述法:{}022=-∈x R x 或{}022=-x x .(2)列举法:﹛11 , 12 , 13 , 14﹜;描述法:{}1510<<∈x Z x .七、集合的分类集合按所含元素个数的多少可以分为有限集、无限集和空集含有有限个元素的集合叫做有限集.含无限个元素的集合叫做无限集. 不含任何元素的集合叫做空集,记作∅.如方程012=+x 的实数根组成的集合{}012=+∈x R x 就是一个空集,即{}∅==+∈012x R x .八、重要结论:判断形如02=++c bx ax 的方程的实数根的个数的方法是:(1)当0=a 时,方程可化为0=+c bx 的形式:①当0≠b 时,方程有唯一一个实数根bc x -=; ②当0,0==c b 时,方程有无数个实数根;③当0,0≠=c b 时,方程没有实数根;(2)当0≠a 时,原方程为关于x 的一元二次方程:①若042>-=∆ac b ,则方程有两个不相等的实数根;②若042=-=∆ac b ,则方程有两个相等的实数根(此种情况下表示方程的实数根组成的集合时,集合只有一个元素);③若042<-=∆ac b ,则方程没有实数根.提示:在讨论集合元素的个数时,一定要注意分类讨论.例5. 已知集合{}R a x ax R x A ∈=++∈=,0122.(1)若A 中只有一个元素,求a 的值;(2)若A 中至多有一个元素,求a 的取值范围.分析:先弄清楚集合A 的本质.集合A 是由方程0122=++x ax 的实数根组成的集合,该方程中含有参数a ,为含参方程.(1)集合A 中只有一个元素,指的是方程0122=++x ax 只有一个实数根,该方程可以是一次方程()0=a ,也可以是二次方程()0≠a ,注意分类讨论;(2)集合A 中至多有一个元素,指的是方程0122=++x ax 只有一个实数根或没有实数根.解:(1)当0=a 时,原方程可化为:012=+x ,解之得:21-=x ,集合⎭⎬⎫⎩⎨⎧-=21A ,符合题意;当0≠a 时,∵0122=++x ax 只有一个实数根∴044=-=∆a ,解之得:1=a综上,当0=a 或1=a 时, A 中只有一个元素;(2)当A 中只有一个元素时,由(1)可知:0=a 或1=a ;当A 中没有元素时,即方程0122=++x ax 没有实数根∴044<-=∆a ,解之得:1>a综上,当0=a 或a ≥1时,A 中至多有一个元素.例6. 实数集A 满足条件:A ∉1,若A a ∈,则A a ∈-11. (1)若A ∈2,求A ;(2)集合A 能否为单元素集合?若能,求出A ;若不能,请说明理由;(3)求证:A a∈-11. 分析:本题重点考查集合元素的三个基本性质:确定性、互异性和无序性. (1)解:∵A ∈2,12≠ ∴A ∈-=-1211∵11,1≠-∈-A ∴()A ∈=--21111 ∵121,21≠∈A ∴A ∈=-22111 ∴=A ﹛2 , 1- , 21﹜; (2)解:A 不能为单元素集合.理由如下:若A 为单元素集合,则有aa -=11,整理得:012=+-a a ∵()031412<-=⨯--=∆ ∴方程012=+-a a 没有实数根∴A 不能为单元素集合;(3)证明:若A a ∈,则A a ∈-11 ∴A aa a a ∈-=-=--1111111. 例7. 已知集合{}032=+-=a x x x A ,若A ∈4,求集合A .分析:由题意可知集合A 是由方程032=+-a x x 的实数根构成的,“A ∈4”指的是4=x 是方程032=+-a x x 的一个实数根.解:∵A ∈4∴4=x 是方程032=+-a x x 的一个实数根∴04342=+⨯-a解之得:4-=a∴原方程为:0432=--x x解之得:1,421-==x x∴集合{}4,1-=A .例8. 已知集合{}R x x ax x A ∈=--=,0432.(1)当A 中只有一个元素时,求a 的值,并求出此元素;(2)当A 中有两个元素时,求a 满足的条件;(3)当A 中至少有一个元素时,求a 满足的条件.分析:集合A 为含参方程0432=--x ax 的实数根构成的集合.因为方程所含参数为二次项系数,所以该方程可以是关于x 的一元一次方程,也可以是一元二次方程,所以在研究该方程的实数根时,要分为两种情况进行讨论.(1)当A 中只有一个元素时,说明方程0432=--x ax 只有一个实数根,此时0=a ;或该方程有两个相等的实数根,此时0≠a ;(2)当A 中有两个元素时,说明方程0432=--x ax 为一元二次方程,此时0≠a ,且方程有两个不相等的实数根;(3)当A 中至少有一个元素时,说明方程0432=--x ax 只有一个实数根或有两个不相等的实数根,为(1)问和(2)问结果的综合.解:(1)分为两种情况:①当0=a 时,原方程为:043=--x ,解之得:34-=x ∴⎭⎬⎫⎩⎨⎧-=34A ,符合题意; ②当0≠a 时,由题意可知方程0432=--x ax 有两个相等的实数根∴()()04432=-⨯--=∆a 解之得:169-=a ∴原方程为:0431692=---x x 解之得:3821-==x x ∴⎭⎬⎫⎩⎨⎧-=38A . 综上,当0=a 时,集合A 只有一个元素34-;当169-=a 时,集合A 只有一个元素38-; (2)∵A 中有两个元素 ∴方程0432=--x ax 为一元二次方程,且有两个不相等的实数根∴()()⎩⎨⎧>-⨯--=∆≠044302a a 解之得:169->a 且0≠a ;(3)∵A 中至少有一个元素∴A 中有一个元素或有两个元素当A 中有一个元素时,由(1)可知:0=a 或169-=a ; 当A 中有两个元素时,由(2)可知:169->a 且0≠a . 综上,a 满足的条件是a ≥169-. 重要结论: 判断形如02=++c bx ax 的方程的实数根的个数的方法是:(1)当0=a 时,方程可化为0=+c bx 的形式:①当0≠b 时,方程有唯一一个实数根bc x -=; ②当0,0==c b 时,方程有无数个实数根;③当0,0≠=c b 时,方程没有实数根;(2)当0≠a 时,原方程为关于x 的一元二次方程:①若042>-=∆ac b ,则方程有两个不相等的实数根;②若042=-=∆ac b ,则方程有两个相等的实数根(此种情况下表示方程的实数根组成的集合时,集合只有一个元素);③若042<-=∆ac b ,则方程没有实数根.例9. 已知{}x q px x x A =++=2,()(){}1112+=+-+-=x q x p x x B ,当{}2=A 时,求集合B .解:∵{}2=A∴方程x q px x =++2,即()012=+-+q x p x 有两个相等的实数根,且221==x x由根与系数的关系定理可得:()⎩⎨⎧==--441q p 解之得:⎩⎨⎧=-=43q p ∴()(){}()(){}1413111122+=+---=+=+-+-=x x x x x q x p x x B 整理得:{}0762=+-=x x x B解方程0762=+-x x 得:23,2321-=+=x x ∴集合{}23,23-+=B .例10. 设b ax x y +-=2,{}0=-=x y x A ,{}0=-=ax y x B ,若{}1,3-=A ,试用列举法表示集合B .分析:本题要先由根与系数的关系定理求出b a ,的值,然后把集合B 中的方程转化为关于x 的具体的一元二次方程,解方程即可求出集合B .解:∵b ax x y +-=2 ∴{}(){}0102=++-==-=b x a x x x y x A {}{}0202=+-==-=b ax x x ax y x B∵{}1,3-=A∴1,321=-=x x 是方程()012=++-b x a x 的两个实数根由根与系数的关系定理可得:⎩⎨⎧-=-=+321b a 解之得:⎩⎨⎧-=-=33b a ,∴{}{}0360222=-+==+-=x x x b ax x x B 解方程0362=-+x x 得:323,32321--=+-=x x ∴集合{}323,323--+-=B .例11. 已知集合()(){}012=-+--=a ax x a x x M 中各元素之和等于3,求实数a 的值,并用列举法表示集合M .分析:本题考查到集合元素的基本性质:互异性,注意分类讨论.解:∵()(){}012=-+--=a ax x a x x M∴()()()[]}{011=----=a x x a x x M∵1-≠a a ,且集合M 中各元素之和等于3∴当1=a 时,{}0,1=M ,301≠+,不符合题意;当11=-a ,即2=a 时,{}1,2=M ,312=+,符合题意;当1≠a 且2≠a 时,{}1,1,-=a a M ,由311=-++a a 得23=a ,此时⎭⎬⎫⎩⎨⎧=21,1,23M ,符合题意.综上,实数a 的值为2或23,集合{}1,2=M 或⎭⎬⎫⎩⎨⎧=21,1,23M . 提示:在用列举法表示有限集时,要注意集合元素的互异性. 题型二、集合元素的基本性质的应用集合的元素具有确定性、互异性和无序性,其中对互异性的考查最为常见. 例12. 已知集合{}10,4,22a a a A +-=,若A ∈-3,求实数a 的值. 分析:由元素与集合之间的关系可求出实数a 的值,但要注意所求a 的值要保证集合A 中的元素互不相同,即满足互异性,所以要对求得的a 的值进行检验. 解:当32-=-a 时,解之得:1-=a ,此时{}10,3,3--=A ,不满足元素的互异性,舍去; 当342-=+a a 时,解之得:11-=a (已舍去),32-=a当3-=a 时,{}10,3,5--=A ,符合题意.综上,实数a 的值为3-.例13. 由实数22,,,,x x x x x --所组成的集合中,含有元素的个数最多有【 】(A )2 (B )3 (C )4 (D )5 分析:本题主要考查集合元素的互异性.解:∵x x =2,x x -=-2∴①当0>x 时,x x x ==2,x x x -=-=-2∴所组成的集合中含有2个元素x x -,;②当0=x 时,所组成的集合中,只有一个元素0;③当0<x 时,x x x -==2,x x x =-=-2∴所组成的集合中含有2个元素x x -,.综上,含有元素的个数最多有2个.选择【 A 】.题型三、元素与集合的关系元素与集合的关系是从属关系,只有元素属于集合和元素不属于集合两种关系. 判断一个元素是否属于集合的方法是:(1)弄清集合代表元素的含义以及集合所含元素的共同特征; (2)看元素是否满足集合元素的共同特征.例14. 已知集合A 满足条件:若A a ∈,则()111≠∈-+a A a a .若A ∈31,且集合A 中的元素不超过4个,求集合A 中的其它元素. 分析:根据“若A a ∈,则()111≠∈-+a A a a ”,将31=a 代入aa-+11即可求出集合A 的另一个元素,以此类推,可得集合A 中的其它三个元素.解:∵A ∈31∴A ∈=-+2311311 ∴A ∈-=-+32121 ∴A ∈-=+-213131 ∴A ∈=+-31211211 ……∴集合A 中的其它元素为2 , 3- , 21-. 例15. 已知集合⎭⎬⎫⎩⎨⎧∈+==Z k k x x M ,21,⎭⎬⎫⎩⎨⎧∈+==Z k k x x N ,12,若M x ∈0,则0x 与N 的关系是【 】(A )N x ∈0 (B )N x ∉0 (C )N x ∈0或N x ∉0 (D )不能确定解:∵⎭⎬⎫⎩⎨⎧∈+==⎭⎬⎫⎩⎨⎧∈+==Z k k x x Z k k x x M ,212,21∴集合M 为全体奇数的一半所组成的集合∵⎭⎬⎫⎩⎨⎧∈+==⎭⎬⎫⎩⎨⎧∈+==Z k k x x Z k k x x N ,22,12 ∴集合N 为全体整数的一半所组成的集合 ∴若M x ∈0,则必有N x ∈0.选择【 A 】.令解:⎭⎬⎫⎩⎨⎧∈+==⎭⎬⎫⎩⎨⎧∈+==Z k k x x Z k k x x N ,22,12 当()Z n n k ∈=2时,{}Z n n x x N ∈+==,1;当()Z n n k ∈-=12时,⎭⎬⎫⎩⎨⎧∈+==Z n n x x N ,21.∵M x ∈0 可设()Z k k x ∈+=2100 ∴N x ∈0.(由后面可知,集合M 与集合N 的关系为N M ⊆,所以若M x ∈0,则有N x ∈0) 例16. 已知集合{}N x x x A ∈≤-=,21,{}A x x y y B ∈+==,12,则集合B 中所有元素之和为_________.分析:先解绝对值不等式21≤-x ,再用列举法表示出集合A .下面给你补充简单绝对值不等式的解法.知识点 简单绝对值不等式的解法(1)x ≥a (a ≥0)型不等式的解法:x ≥a (a ≥0)x ⇔≥a 或x ≤a -. (2)x ≤a (a ≥0)型不等式的解法:x ≤a (a ≥0)a -⇔≤x ≤a . 根据上面补充的结论,若21≤-x ,则2-≤1-x ≤2,解之得:1-≤x ≤3. 解:∵{}{}{}3,2,1,0,31,21=∈≤≤-=∈≤-=N x x x N x x x A ∴{}{}10,5,2,1,12=∈+==A x x y y B ,集合B 中所有元素之和为18.BA (B )A集合间的基本关系知识点总结与例题讲解一、本节知识点(1)Venn 图,表示集合的图示法; (2)子集的含义及表示; (3)集合相等;(4)真子集的含义及表示; (5)空集的含义及其性质; (6)子集、真子集个数的确定. 知识点一 Venn 图在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn 图(韦恩图).这种表示集合的方法叫做图示法.关于Venn 图:(1)Venn 图的边界是封闭的曲线,它可以是椭圆、圆、矩形,也可以是其它的封闭曲线;(2)用Venn 图表示集合的优点是能直观地反映集合之间的关系,缺点是集合元素的共同特征不明显.知识点二 子集的含义及表示子集反映的是集合之间的包含关系.一般地,对于两个集合A , B ,如果集合A 中的任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记作B A ⊆(或A B ⊇),读作“A 含于B ”(或“B 包含A ”).对子集的理解:(1)B A ⊆的Venn 图表示:(2)B A ⊆的符号表述:对任意的A x ∈,都有B x ∈.(3)若集合A 中存在不属于集合B 的元素时,则集合A 不是集合B 的子集.子集的性质:(1)任何一个集合都是它本身的子集(包括后面的空集,即∅⊆∅); (2)传递性:若C B B A ⊆⊆,,则C A ⊆.子集的应用根据集合之间的关系可以确定参数的值或取值范围. 若B A ⊆,在未指明A 非空时,要分两种情况进行讨论: ①∅=A ; ②∅≠A .知识点三 集合相等如果集合A 是集合B 的子集(B A ⊆),且集合B 是集合A 的子集(A B ⊆),此时集合A 与集合B 的元素是一样的,集合A 与集合B 相等,叫做B A =. 上面也即互为子集的两个集合相等.集合B A =的符号表述:若B A ⊆,且A B ⊆,则B A =.如何证明两个集合相等对于两个集合A , B ,若要证明B A =,只需证明B A ⊆与A B ⊆均成立即可.如何判断两个集合相等(1)当两个集合为有限集时,若两个集合的元素个数相同,且都含有相同的元素,则这两个集合相等.(2)当两个集合为无限集时,若两个集合的代表元素满足的条件一致,则两个集合相等.注意:集合相等与集合的形式无关,形式不同的两个集合也可以相等.如{}{}2,130=<<∈x Z x .知识点四 真子集的含义及表示如果集合B A ⊆,但存在元素B x ∈,且A x ∉,我们称集合A 是集合B 的真子集,记作B A ≠⊂(或A B ≠⊃),读作“A 真含于B ”(或“B 真包含A ”).BA对真子集的理解:(1)B A ≠⊂的Venn 图表示:(2)B A ≠⊂的符号表述:若B A ⊆,且B A ≠,则B A ≠⊂.(3)若B A ≠⊂,则B 中至少存在一个A 中没有的元素. (4)规定∅是任何非空集合的真子集,即若∅≠A ,则A ≠⊂∅.子集与真子集的关系若B A ⊆,则B A =或B A ≠⊂.知识点五 空集的含义及其性质不含任何元素的集合叫做空集,记作∅.空集的性质:(1)空集是任何集合的子集(包括空集). (2)空集的只有一个子集,是空集,即它本身.(3)空集是任何非空集合的真子集,即若∅≠A ,则A ≠⊂∅.重要提醒:在由集合间的关系确定参数的值或参数的取值范围时,注意对空集的讨论.知识点六 子集、真子集个数的确定若集合A 含有n 个元素,则集合A : (1)含有n 2个子集; (2)含有12-n 个非空子集; (3)含有12-n 个真子集;(4)含有22-n 个非空真子集.知识点七 关于集合为空集的重要结论(1)若集合{}∅=≤≤=n x m x A ,则n m >; (2)若集合{}∅=<<=n x m x A ,则m ≥n ;(3)若集合{}∅=<≤=n x m x A 或{}∅=≤<=n x m x A ,则m ≥n .以上结论在解决由集合间的关系确定参数取值范围的问题时要会灵活运用,并注意分类讨论(如关于空集的讨论).二、例题讲解例1. 已知集合{}41>-<=x x x A 或,{}32+≤≤=a x a x B ,若A B ⊆,求实数a 的取值范围.分析:这是一道由集合间的关系确定参数的取值范围的问题,注意数形结合思想和分类讨论思想的应用.因为A B ⊆,集合B 中含有参数,所以分为两种情况:①∅=B ;②∅≠B .对于∅≠B 这种情况,要借助于数轴来完成对参数的约束,从而可以确定参数的取值范围.最后需要说明的是,参数的取值范围要表示成集合的形式. 解:∵A B ⊆,{}32+≤≤=a x a x B ,∴分为两种情况: ①当∅=B 时,32+>a a ,解之得:3>a ;②当∅≠B 时,则有:⎩⎨⎧-<++≤1332a a a 或⎩⎨⎧>+≤4232a a a ,解之得:4-<a 或a <2≤3.综上,实数a 的取值范围为{}24>-<a a a 或.例 2. 已知集合{}43≤≤-=x x A ,{}112+≤≤-=m x m x B ,若A B ⊆,求实数m 的取值范围.分析:需要知道的是由集合间的基本关系可以确定参数的取值范围. 本题在分类讨论时要用到下面的结论:关于集合为空集的重要结论(1)若集合{}∅=≤≤=n x m x A ,则n m >;(2)若集合{}∅=<<=n x m x A ,则m ≥n ;(3)若集合{}∅=<≤=n x m x A 或{}∅=≤<=n x m x A ,则m ≥n . 最后,实数m 的取值范围最好写成集合的形式. 解:∵A B ⊆,{}112+≤≤-=m x m x B ∴分为两种情况:①当∅=B 时,112+>-m m ,解之得:2>m ;②当∅≠B 时,则有:⎪⎩⎪⎨⎧≤+-≥-+≤-41312112m m m m ,解之得:1-≤m ≤2.综上,实数m 的取值范围为{}1-≥m m .例3. 设集合{}042=+=x x x A ,(){}011222=-+++=a x a x x B ,若A B ⊆,则实数a 的值取值范围为__________.分析:在进行分类讨论时要做到不重不漏,特别注意不能漏掉对∅=B 的讨论.解决本题还要明白以下两点:(1)空集是任何集合的子集;(2)空集是任何非空集合的真子集.解:{}{}4,0042-==+=x x x A∵A B ⊆,(){}011222=-+++=a x a x x B ∴分为两种情况:(1)当∅=B 时,方程()011222=-+++a x a x 没有实数根 ∴()[]()0141222<--+=∆a a ,解之得:1-<a ;(2)当∅≠B 时,则有{}0=B 或{}4-=B 或{}4,0-=B①当{}0=B 或{}4-=B 时,方程()011222=-+++a x a x 有两个相等的实数根 ∴()[]()0141222=--+=∆a a ,解之得:1-=a∴{}0=B 符合题意;②当{}4,0-=B 时,由根与系数的关系定理可得:()⎩⎨⎧=--=+-014122a a解之得:1=a .综上,实数a 的值取值范围为{}11-≤=a a a 或. 例4. 已知集合{}52≤≤-=x x A .(1)若A B ⊆,{}121-≤≤+=m x m x B ,求实数m 的取值范围; (2)若B A ⊆,{}126-≤≤-=m x m x B ,求实数m 的取值范围; (3)若B A =,{}126-≤≤-=m x m x B ,求实数m 的取值范围. 解:(1)∵A B ⊆,{}121-≤≤+=m x m x B ,∴分为两种情况: ①当∅=B 时,121->+m m ,解之得:2<m ; ②当∅≠B 时,则有:⎪⎩⎪⎨⎧≤--≥+-≤+51221121m m m m ,解之得:2≤m ≤3. 综上所述,实数m 的取值范围是{}3≤m m ; (2)∵B A ⊆,{}52≤≤-=x x A ,∴∅≠B则有:⎪⎩⎪⎨⎧≥--≤--<-51226126m m m m ,解之得:3≤m ≤4∴实数m 的取值范围是{}43≤≤m m ; (3)∵B A =∴⎩⎨⎧=--=-51226m m ,无解,即不存在实数m ,使得B A =.例 5. 已知集合{}R x x x A ∈>=,0,{}02=+-=p x x x B ,且A B ⊆,求实数p 的取值范围.分析:本题的解决要用到关于一元二次方程的结论.一元二次方程()002≠=++a c bx ax 有两个正根的条件是:⎪⎪⎪⎩⎪⎪⎪⎨⎧>=⋅>-=+≥∆0002121ac x x a b x x 一元二次方程()002≠=++a c bx ax 有两个负根的条件是:⎪⎪⎪⎩⎪⎪⎪⎨⎧>=⋅<-=+≥∆0002121ac x x a b x x解:∵A B ⊆,{}02=+-=p x x x B ,∴分为两种情况: ①当∅=B 时,()0412<--=∆p ,解之得:41>p ; ②当∅≠B 时,方程02=+-p x x 有两个正实数根,则有:()⎪⎩⎪⎨⎧>=>=+≥--=∆00104121212p x x x x p ,解之得:p <0≤41. 综上所述,实数p 的取值范围是{}0>p p .例6. 已知集合{}06242=++-=m mx x x A ,{}0<=x x B ,若B A ⊆,求实数m 的取值范围.解:∵B A ⊆,∴分为两种情况:①当∅=A 时,()()062442<+--=∆m m ,解之得:231<<-m ; ②当∅≠A 时,方程06242=++-m mx x 有两个负实数根,则有:()()⎪⎩⎪⎨⎧>+=<=+≥+--=∆062040624421212m x x m x x m m ,解之得:m <-3≤1-. 综上所述,实数m 的取值范围是⎭⎬⎫⎩⎨⎧<<-233m m .集合的基本运算知识点总结与例题讲解本节知识点: (1)并集. (2)交集. (3)全集与补集. (4)德·摩根定律. 知识点一 并集自然语言 一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A与集合B 的并集,记作B A ,读作“A 并B ”.符号语言 {}B x A x x B A ∈∈=或, .图形语言(用Venn 图表示并集) 图中阴影部分表示两个集合的并集.(1)A 与B 有公共元素,相互不包含 (2)A 与B 没有公共部分(3)B A ≠⊂ (4)A B ≠⊂(5)B A =对并集的理解A (B )BAABA B A B(1)求两个集合的并集是集合的一种运算,结果仍是一个集合,它是由属于集合A 或集合B 的元素组成的.(2)并集概念中的“或”指的是只要满足其中一个条件即可.符号语言“B x A x ∈∈或,”分为三种情况:①A x ∈,但B x ∉; ②A x ∉,但B x ∈; ③A x ∈,且B x ∈.(3)根据集合元素的互异性,在求两个集合的并集时,两个集合中的公共元素在并集中只能出现一次.并集的性质性质说明A B B A = 并集运算满足交换律 ()()C B A C B A =并集运算满足结合律A A =∅ 任何集合与空集的并集等于这个集合本身 A A A = 任何集合与其本身的并集等于这个集合本身若B B A = ,则B A ⊆并集运算与子集关系的转化()B A A ⊆,()B A B ⊆任何集合都是该集合与另一个集合的并集的子集求并集的方法(1)求两个有限集的并集 按照并集的定义进行计算,但要特别注意集合元素的互异性.(2)求两个无限集的并集 借助于数轴进行计算.注意两个集合的并集等于这两个集合在数轴上对应的图形所覆盖的全部范围.知识点二 交集自然语言 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为集合A与集合B 的交集,记作B A ,读作“A 交B ”.符号语言 {}B x A x x B A ∈∈=且, .图形语言(用Venn 图表示交集) 图中阴影部分表示两个集合的并集.如下页图所示.(1)A 与B 有部分公共元素 (2)A 与B 无公共元素,∅=B A(3)若A B ≠⊂,则B B A = (4)若B A ≠⊂,则A B A = (5)B A B A ==对交集的理解(1)求两个集合的交集是集合的一种运算,结果仍是一个集合,它是由属于集合A 且属于集合B 的所有元素组成的集合,及两个集合的公共元素所组成的集合. (2)交集概念中的“所有”二字不能省略,否则会漏掉一些元素,一定要将两个集合中的相同元素(公共元素)全部找出来.(3)当集合A 与集合B 没有公共元素时,不能说集合A 与集合B 没有交集,而是交集为空集,.交集的性质性质说明A B B A = 交集运算满足交换律 ∅=∅ A 任何集合与空集的交集都是空集 A A A =任何集合与其本身的交集等于这个集合本身()()C B A C B A = 交集运算满足结合律()()()C B C A C B A = 满足分配律()()()C B C A C B A =若A B A = ,则B A ⊆交集运算与子集关系的转化ABBAA (B )AA B BA B()()B B A A B A ⊆⊆ ,两个集合的交集是其中任何一个集合的子集求交集的方法(1)求两个有限集的交集 按照交集的定义进行计算,但要特别注意一定要找出两个集合中的所有公共元素.(2)求两个无限集的交集 借助于数轴进行计算.两个集合的交集等于这两个集合在数轴上对应的图形所覆盖的公共范围.知识点三 全集与补集全集 一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,记作U .补集 对于一个集合A ,由全集U 中不属于A 的所有元素组成的集合称为集合A相对于全集U 的补集,简称集合A 的补集,记作C U A ,即C U A {}A x U x x ∉∈=且,.用Venn 图表示为:对补集的理解(1)补集是相对于全集而言的,求一个集合的补集,结果因全集的不同而不同.所以求补集前,要先明确全集.(2)补集既是集合间的一种关系,同时也是集合之间的一种运算. (3)符号“C U A ”有三层意思: ① C U A {}A x U x x ∉∈=且,;② C U A 是U 的一个子集,及(C U A )U ⊆; ③ C U A 表示一个集合.UC U AAU1B A 补集的性质①(C U A )U A = ; ②(C U A )∅=A ; ③ C U (C U A )A =; ④ C U U ∅=; ⑤ C U U =∅.知识点四 德·摩根定律知识点五 重要结论如图所示,集合A , B 将全集U 分成了四部分,这四部分用集合表示如下: (1)①表示B A ;(2)②表示 A (C U B ); (3)③表示 B (C U A ); (4)④表示(C U A ) (C U B ).知识点六 集合中元素的个数若集合A 为有限集,则用card(A )表示集合A 中元素的个数. 如果集合A 中含有m 个元素,那么有card(A )m =. (1)一般地,对于任意两个有限集合A , B ,有 card ()=B A card(A )+card(B )-card ()B A . (2)一般地,对于任意三个有限集合A , B , C ,有card ()=C B A card(A )+card(B )+card(C )-card ()B A -card ()C A -card ()C B +card ()C B A .例题讲解题型一 并集运算一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与集合B 的并集,记作B A ,读作“A 并B ”.即{}B x A x x B A ∈∈=或, .求并集的方法(1)求两个有限集的并集 按照并集的定义进行计算,但要特别注意集合元素的互异性.(2)求两个无限集的并集 借助于数轴进行计算.注意两个集合的并集等于这两个集合在数轴上对应的图形所覆盖的全部范围.例1. 已知集合{}31≤≤∈=x N x A ,{}5,4,3,2=B ,则=B A 【 】 (A ){}2 (B ){}3,2(C ){}5,4,3,2 (D ){}5,4,3,2,1 分析:将一个用描述法表示的集合转化为用列举法表示时,一定要弄清代表元素的含义或特征.311求两个集合的并集运算时,可以按照并集的定义进行,也可以用Venn 图求解或借助于数轴求解.解:∵{}{}3,2,131=≤≤∈=x N x A∴=B A {}{}{}5,4,3,2,15,4,3,23,2,1= . 选择【 D 】.例2. 已知集合{}1≥=x x A ,{}0322<--=x x x B ,则=B A ____________. 分析:先解一元二次不等式0322<--x x ,求出集合B ,然后把集合A 、B 在数轴上画出来,它们对应图形所覆盖的全部范围即为B A . 解:∵{}{}310322<<-=<--=x x x x x B ∴=B A {}{}{}1311->=<<-≥x x x x x x .例3. 已知集合{}m A ,3,1=,{}m B ,1=,若A B A = ,则m 等于【 】 (A )0或3 (B )0或3 (C )1或3 (D )1或3分析:{}m B ,1=,由集合元素的互异性,得1≠m ,排除C 、D 选项. 因为A B A = ,根据并集的性质,所以A B ⊆,这样就将两个集合的并集运算转化为了这两个集合之间的关系,从而可以确定参数的值或取值范围. 解:∵A B A = ,∴3=m 或m m =当m m =时,解之得:0=m (1=m 不符合题意,舍去) 综上,3=m 或0=m .例 4. 已知集合{}012≤-=x x P ,{}a M =,若P M P = ,则实数a 的取值范围是__________.分析:∵P M P = ,∴P M ⊆. 解:{}{}11012≤≤-=≤-=x x x x P∵P M P = ,∴P M ⊆,∴P a ∈ ∴实数a 的取值范围是{}11≤≤-a a .例5. 已知集合{}x A ,3,2,1=,{}2,3x B =,且{}x B A ,3,2,1= ,求x 的值. 分析:由题意可知:A B A = ,所以A B ⊆,从而A x ∈2,且32≠x . 解:分为三种情况:①当12=x 时,解之得:1-=x (1=x 不符合题意,舍去); ②当22=x 时,解之得:2±=x ; ③当x x =2时,解之得:0=x . 综上所述,x 的值为0或2±或1-.注意:在求参数的值时,参数的值要满足集合元素的互异性.例6. 已知集合{}32>-=x x A ,{}a x x x B ->-=332,求B A . 分析:对于含参集合参与的集合运算,要注意分类讨论.解:{}{}532>=>-=x x x x A ,{}{}3332-<=->-=a x x a x x x B . 当3-a ≤5,即a ≤8时,{}53>-<=x a x x B A 或 ; 当53>-a 时,即8>a 时,=B A R .5a 35 a 3例7.(易错题)已知集合{}1,1-=A ,{}1==mx x B ,且A B A = ,求由m 的取值构成的集合.分析:因为A B A = ,所以A B ⊆.由于集合B 是一个含参集合,所以要对集合B 分∅=B 和∅≠B 两种情况进行讨论. 解:∵A B A = ,∴A B ⊆. 当0=m 时,∅=B ,满足A B ⊆;。

高中数学必修一《集合间的基本关系》优秀教学设计

高中数学必修一《集合间的基本关系》优秀教学设计

高中数学必修一《集合间的基本关系》优秀教学设计1.1.2 集合间的基本关系教学设计一、教学目标1.知识与技能1) 了解集合之间包含与相等的含义,能够识别给定集合的子集。

2) 理解子集和真子集的概念。

3) 能够使用Venn图表达集合间的关系,体会直观图示对理解抽象概念的作用。

2.过程与方法让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义。

3.情感、态度与价值观1) 树立数形结合的思想。

2) 体会类比对发现新结论的作用。

二、教学重点与难点重点:集合间的包含与相等关系,子集与其子集的概念。

难点:关系与包含关系的区别。

三、学法让学生通过观察、类比、思考、交流、讨论,发现集合间的基本关系。

四、教学过程一)复回顾:1.元素与集合之间的关系。

2.集合的三性:确定性、互异性、无序性。

3.集合的常用表示方法:列举法、描述法。

4.常见的数集表示。

二)创设情景,新课引入:问题1:实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?让学生自由发言,教师不要急于做出判断,而是继续引导学生;欲知谁正确,让我们一起来观察、研探。

三)师生互动,新课讲解:问题1:观察下面几个例子,你能发现两个集合间有什么关系了吗?1) A={1,2,3}。

B={1,2,3,4,5};2) 设A为我班第一组男生的全体组成的集合,B为我班班第一组的全体组成的集合;3) 设C={x|x是两条边相等的三角形},D={x|x是等腰三角形};4) E={2,4,6},F={6,4,2}。

组织学生充分讨论、交流,使学生发现两个集合所含元素范围存在各种关系,从而类比得出两个集合之间的关系:归纳:①一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为B的子集。

记作:A⊆B(或B⊇A)读作:A包含于B(或B包含A)。

②如果两个集合所含的元素完全相同,那么我们称这两个集合相等。

集合的元素概念

集合的元素概念

集合的元素概念
集合是数学中的一个基本概念,用来表示一组具有共同特征的对象或元素。

集合中的元素可以是任何事物,包括数字、字母、符号、其他集合等。

集合的元素之间没有顺序关系,即元素之间是无序的。

集合的表示通常使用大写字母表示,例如A、B、C等。

如果一个元素属于某个集合,则用小写字母表示,例如a、b、c等。

如果一个元素不属于某个集合,则用小写字母的补集符号表示,例如a'、b'、c'等。

集合的元素可以是有限的,也可以是无限的。

例如,自然数的集合可以表示为N={1, 2, 3, ...},其中省略号表示集合中的其他自然数。

集合的元素也可以是不同类型的对象,例如一个集合可以包含数字、字母和符号等。

集合的元素可以重复,但是在数学中,通常不考虑重复的元素。

一个集合中的元素如果没有重复,则称为互异的。

如果一个集合中的元素都属于另一个集合,则称为子集。

例如,集合A={1, 2, 3}是集合B={1, 2, 3, 4, 5}的子集。

集合的元素概念在数学中有广泛的应用,例如在集合论、概率论、数理逻辑等领域中。

通过对集合的运算和关系,可以研究和描述各种数学问题和现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一课 元素与集合之间的关系
一、考点
1、集合、元素
某些指定的对象集在一起就成为一个集合(常用大写字母表示),其中每一个对象叫做元素(常用小写字母表示)。

元素三要素:确定性、互异性、无序性。

2、集合与元素之间的关系
(1)如果a 是集合A 的元素,就说a 属于A ,记做a ∈A 。

(2)如果a 不是集合A 的元素,就说a 不属于A ,记做a ∉A 。

3、集合的表示法:列举法、描述法。

4、集合的分类:空集、有限集、无限集
5、常用数集
实数集:R
有理数集:Q
整数集:Z
自然数集:N
正整数集:*
N 或+N
6、集合与集合之间的关系
7、集合之间的运算 二、典型例题
1、已知集合A={x||x|≤2,x ∈R},B={x|x ≤4,x ∈Z},则A I B=()
A 、(0,2)
B 、[0,2]
C 、{0,2}
D 、{0,1,2}
2、设P ={1,2,3,4},Q ={4,5,6,7,8},定义P*Q ={(a ,b)|a ∈P ,b ∈Q ,a ≠b},则P*Q 中元素的个数为( )
A .4
B .5
C .19
D .20
3、已知集合A={(x ,y )|x ,y 为实数,且1y x 22=+},B={(x ,y )|x ,y 为实数,且y=x},则A I B 的元素个数为()
A 、0
B 、1
C 、2
D 、3
4、设集合{}R A ∈<=x 1a -x x ,,{}R B ∈>=x 2b -x x ,,若B A ⊆,则实数a ,b 必满足( )
A 、3b a ≤+
B 、3b a ≥+
C 、3b -a ≤
D 、3b -a ≥
5、已知集合{}32x R x <+∈=A ,集合()(){}02-x m -x x <∈=R B ,且()n 1-,=B A I ,则=m __________,=n __________。

6、已知集合{}
2x x -3x-100A =≤,{|121}B x m x m =+-≤≤,且A B A ⋃=,求实数m 的取值范围.
三、课堂作业
1、用列举法表示下列集合:
(1)、},,20,20|),{(Z y x y x y x ∈<≤<≤
(2)、
_;__________},,,|{},
2,1,0{=≠∈+===b a M b a b a x x P M 2、已知集合A={1、2、3、4、5},B={(x,y )|x ∈A ,y ∈A ,x-y ∈A},则B 中所含元素的个数为( )。

A 、3
B 、6
C 、8
D 、10
3、设U=R ,M={x|2x -x ≤0},函数1
1)(-=x x f 的定义域为D ,则)(D C M U I =( ) A 、[0,1) B 、(0,1) C 、[0,1] D 、{1}
4、下列关系式中,正确的序号是__________.
①a ∈{a ,b} ②0∈ø ③{x|x 2≤0}=ø ④{x|x 2
+2x +5=0}=ø 5、已知集合R U =,⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧=+=142y 2x x A ,{}A x B ∈+==,1x y y ,则)()(B C A C U U I =________
6、求集合{}05x x >+与集合{}
R ∈<x 05-x x ,有公共元素的a 的取值范围。

7、由实数x ,-x ,x 2,-3x 3所组成的集合里面元素最多有________个.
8、某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已经参加数学、物理、化学课外探究小组的人数分别是26、15、13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有______人。

四、课后作业
1、方程组⎩⎪⎨⎪⎧ x +y =1x -y =9的解集是( )
A .(-5,4)
B .(5,-4)
C .{(-5,4)}
D .{(5,-4)}
2、下列命题正确的有( )
(1)很小的实数可以构成集合;
(2)集合{y|y =x 2-1}与集合{(x ,y)|y =x 2-1}是同一个集合;
(3)1,32,64,|-12
|,0.5这些数组成的集合有5个元素; (4)集合{(x ,y)|xy ≤0,x ,y ∈R}是指第二和第四象限内的点集.
A .0个
B .1个
C .2个
D .3个
3、下列集合中,不同于另外三个集合的是( )
A .{0}
B .{y|y 2=0}
C .{x|x =0}
D .{x =0}
4、设集合M ={x ∈R|x ≤33},a =26,则( )
A .a ∉M
B .a ∈M
C .{a}∈M
D .{a|a =26}∈M
5、集合{(x ,y)|y =2x -1}表示( )
A .方程y =2x -1
B .点(x ,y)
C .平面直角坐标系中的所有点组成的集合
D .函数y =2x -1图象上的所有点组成的集合
6、若}01{}032{2=-==--=ax x N x x x M ,则2
2-31________B 7、若R ∈x ,则{}
x 2-x x 32,,中的x 应满足什么条件?
8、已知集合A ={x |126-x
∈N ,x ∈N },试用列举法表示集合A ..
9、设}01{}032{2=-==--=ax x N x x x M ,若M N M =U ,求所有满足条件的a 的集合。

10、已知集合A ={x|-3≤x ≤4},B ={x|2m -1≤x ≤m +1},且B ⊆A.求实数m 的取值范围.
最新文件 仅供参考 已改成word 文本 。

方便更改。

相关文档
最新文档