奥数六年级第二讲 简便运算(一)
六年级奥数专题-简便运算
六年级奥数专题-简便运算简便运算(一)专题简析:根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易。
例题1。
计算4.75-9.63+(8.25-1.37)原式=4.75+8.25-9.63-1.37 =13-(9.63+1.37) =13-11 =2 练习1计算下面各题。
1. 6.73-2817 +(3.27-1 917 ) 2. 759 -(3.8+1 59 )-1153. 14.15-(778 -61720 )-2.125 4. 13713 -(414 +3713 )-0.75例题2。
计算33338712 ×79+790×6666114原式=333387.5×79+790×66661.25=(33338.75+66661.25)×790 =100000×790 =79000000练习2计算下面各题:1. 3.5×114 +125%+112 ÷452. 975×0.25+934 ×76-9.753. 925 ×425+4.25÷160 4. 0.9999×0.7+0.1111×2.7例题3。
计算:36×1.09+1.2×67.3原式=1.2×30×1.09+1.2×67.3 =1.2×(32.7+67.3) =1.2×100 =120疯狂操练 3 计算:1. 45×2.08+1.5×37.6 2. 52×11.1+2.6×7783. 48×1.08+1.2×56.84. 72×2.09-1.8×73.6例题4。
计算:335 ×2525 +37.9×625原式=335 ×2525 +(25.4+12.5)×6.4=335 ×2525 +25.4×6.4+12.5×6.4=(3.6+6.4)×25.4+12.5×8×0.8=254+80 =334 练习4计算下面各题:1. 6.8×16.8+19.3×3.22. 139×137138 +137×11383. 4.4×57.8+45.3×5.6例题5。
六年级上册奥数第二课:分数的简便运算
3.53.5×35.3+53.5×43.2+78.5×46.54. ×39+ ×27
※5. + + + +
补充课题:
加法原理与乘法原理
例题
例1从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中火车有4班,汽车有3班,轮船有2班。问:一天中乘坐这些交通工具从甲地到乙地,共有多少种不同走法?
例5有10块糖,每天至少吃一块,吃完为止。问:共有多少种不同的吃法?
随堂练习:
1.“IMO”是国际数学奥林匹克的缩写,把这3个字母写成三种不同颜色。现在有五种不同颜色的笔,按上述要求能写出多少种不同颜色搭配的“IMO”?
2.将10颗相同的珠子分成三份,共有多少种不同的分法?
3.用五种颜色给右图的五个区域染色,每个区域染一种颜色,相邻的区域染不同的颜色。问:共有多少种不同
例2马戏团的小丑有红、黄、蓝三顶帽子和黑、白两双鞋,他每次出场演出都要戴一顶帽子、穿一双鞋。问:小丑的帽子和鞋共有几种不同搭配?
例3如下图,A,B,C,D,E五个区域分别用红、黄、蓝、白、黑五种颜色中的某一种染色,要使相邻的区域染不同的颜色,共有多少种不同的染色方法?
例4用五种颜色给右图的五个区域染色,每个区域染一种颜色,相邻的区域染不同的颜色。问:共有多少种不同的染色方法?
第二课:分数的简便运算
课题二
分数的简便运算
例题
例1计算:10 × + × 例2计算:333387 ×79+790×6661
例3计算:81.5×15.8+81.5×51.8+67.6×18.5例4计算:
例5有一串数1、4、9、16、25、36……,它们是按一定规律排列的,那么其中第2000个数与2001个数相差多少?
六年级数学奥数培训教程(一)
目录1.简易方程……………………………………………012.简便计算(一)……………………………………043.简便计算(二)……………………………………074.列方程解应用题(一)……………………………105.列方程解应用题(二)……………………………136.分数应用题(一)…………………………………167.分数应用题(二)…………………………………198.分数与比的应用……………………………………229.工程问题……………………………………………2510.行程问题(一)…………………………………2811.行程问题(二)…………………………………3112.行程问题(三)……………………………………3413.假设法解题…………………………………………3714.组合图形的面积……………………………………4015.百分数应用题………………………………………4316.精选题讲练一………………………………………4617.精选题讲练二………………………………………49第一讲 简易方程知识要点:1、含有未知数的等式叫方程。
2、求方程中未知数的值的过程叫解方程。
解方程时,我们只要能很好地运用等式的性质,就可以正确解答出方程。
例题精讲:【例1】解方程:1821χ-9χ=3 11+219χ=87【例2】解方程:7χ-5=3χ+20 120-8χ=15χ+30【例3】解方程:3×(χ-1)=χ+3 1500χ=1200×(6-χ)【例4】解方程: 1223--x x =31 χ-21-x =2-32+x在线练习 A 级:1、解方程:221χ-511χ=18 3.2χ+4.8χ+2112=21462、解方程:94.5-2χ=621χ+54.5 219χ-15=421χ+403、解方程:0.9(χ-3)-0.8χ=2 43×(84-χ)=21χ+184、解方程: 133214--x x =21 2χ+31-x =1-52-xB 级:1、解方程:2×(2x-100)=2χ-400 (χ-3x -8)×31=94χ-4.5同步提高练习一、解下列方程。
六年级奥数第02讲-整数及小数简便运算(教)
学科教师辅导讲义学员编号: 年 级:六年级 课 时 数:3 学员姓名:辅导科目:奥数学科教师:授课主题 第02讲-整数及小数简便运算授课类型 T 同步课堂P 实战演练S 归纳总结教学目标① 熟练掌握四则混合运算法则; ② 理解加法、乘法交换律和结合律; ③ 学会自己总结解题技巧。
授课日期及时段T (Textbook-Based )——同步课堂根据算式的结构和特征,灵活运用运算法则、定律、性质和某些公式,可以把比较复杂的四则混合运算化繁为简,化难为易。
四则混合运算法则:先算括号,再乘除后加减,同级间依次计算加法交换律:a b b a +=+ 加法结合律:)()(c b a c b a ++=++ 乘法交换律:ba ab = 乘法结合律:)()(bc a c ab =乘法分配律:bc ab c b a +=+)( 乘法结合律:)(c b a bc ab +=+ 除法分配律:c b c a c b a ÷+÷=÷+)( c b a c b c a ÷+=÷+÷)( ※没有)(c b a +÷=c a b a ÷+÷和c a b a ÷+÷=)(c b a +÷减法性质:从一个数里连续减去两个数,可以减去这两个数的和,也可以先减去第二个数,再减去第一个数。
b c a c b a c b a --=+-=--)(考点一:加法结合律)()(c b a c b a ++=++例1、计算4.75-9.63+(8.25-1.37)【解析】先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质:a -b -c = a -(b +c ),使运算过程知识梳理典例分析=2000×(2001-2000)+2001 =2000+2001 =4001P (Practice-Oriented)——实战演练➢ 课堂狙击1、计算7.48+3.17-(2.48-6.83) 【解析】原式=7.48+3.17-2.48+6.38 =7.48-2.48+(3.17+6.83) =5+10 =152、计算:(1) 45×2.08+1.5×37.6 (2) 52×11.1+2.6×778 【解析】(1)原式=1.5×30×2.08+1.5×37.6 =1.5×(30×2.08+37.6) =1.5×(62.4+37.6) =1.5×100 =150 (2)原式=2.6×20×11.1+2.6×778 =2.6×(20×11.1+778) =2.6×(222+778) =2.6×1000 =26003、计算下面各题:(1)6.8×16.8+19.3×3.2 (2)4.4×57.8+45.3×5.6【解析】(1) (2)实战演练原式=6.8×16.8+(16.8+2.5)×3.2 =6.8×16.8+16.8×3.2+2.5×3.2=16.8×(6.8+3.2)+2.5×4×0.8 =16.8×10+10×0.8 =168+8 =176原式=4.4×(45.3+12.5)+45.3×5.6 =4.4×45.3+4.4×12.5+45.3×5.6 =45.3×(4.4+5.6)+1.1×4×12.5 =45.3×10+1.1×50 =453+55 =508【解析】整体观察全式,可以发现题中的5个四位数均由数4,5,6,7,8组成,且5个数字在每个数位上各出现一次,于是有:原式=4×11111+5×11111+6×11111+7×11111+8×11111 =(4+5+6+7+8)×11111 =30×11111 =3333305、计算(1993×1994-1)/(1993+1992×1994)【解析】仔细观察分子、分母中各数的特点,就会发现分子中1993×1994可变形为1992+1)×1994=1992×1994+1994,同时发现1994-1 = 1993,这样就可以把原式转化成分子与分母相同,从而简化运算。
六年级奥数-简便计算
六年级奥数-简便计算 work Information Technology Company.2020YEAR简便计算——简便计算(一)【知识点拨】1.简便计算是一种特殊的计算,就是灵活、正确、合理地运用各种性质、定律,使复杂的计算变得简单,从而大幅度地提高计算速度与正确率。
2.运算定律和性质(1)加法交换律: a+b=b+a(2)加法结合律: (a+b)+c= a+(b+c)(3)乘法交换律: a×b=b×a(4)乘法结合律: (a×b)×c= a×(b×c)(5)乘法分配律: (a+b)×c=a×c+b×c(a-b)×c=a×c-b×c(a+b+c)×d=a×d+b×d+c×d(a+b-c)×d=a×d+b×d-c×d(6)减法性质: a-b-c= a-(b+c) a-(b+c)= a-b-c(7)除法性质: a÷b÷c= a÷(b×c) (b、c不能为0)(8)分数的性质:(9)添去括号法则:括号前是“+”,添、去括号不变号括号前是“-”,添、去括号要变号(10)数字前面符号搬家:在只有加减法运算中,可带数字前面符号搬家,如:a+b-c= a-c+b在只有乘、除法运算中,可带着数字前面符号搬家。
如:a×b÷c= a÷c×b(c 不为0)【典型例题】例1. 4.75-9.63+(8.25-1.37)【解析】先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质,使运算过程简便。
所以:原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2例2.399998+39998+3998+398【解析】先凑成整数再减去相差的数,凑整调整后一定要与原数保持相等,所以:原式=(400000-2)+(40000-2)+(4000-2)+(400-2)=444400-8=444392【练一练】1、6.73-2+(3.27-1)2、 99【典型例题】例3. 2.5【解析】熟记25并且在做简便计算时要灵活运用小数的性质,所以:原式=2.5=10=100例4. 98【解析】利用乘法分配率,先凑成整数再加上相差的数,把101拆成100加1,凑整调整后一定要与原数保持相等,所以:原式=98×(100+1)=98×100+98×1=9800+98=9898例5.【解析】上题是分数与整数相乘,仔细观察数字间特点,(1)中的与1只相差,如果把写成(1-)的形式与37相乘,再运用乘法的分配率就能简化运算了,所以:原式=(1- )=37-=37-=【练一练】3、(13×125)×(3×8)4、198×10015、【典型例题】例6.【解析】同例5一样,本题中的27可以写成(26+1)。
六年级奥数-简便计算
简便计算——简便计算(一)【知识点拨】1.简便计算是一种特殊的计算,就是灵活、正确、合理地运用各种性质、定律,使复杂的计算变得简单,从而大幅度地提高计算速度与正确率。
2.运算定律和性质(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c= a+(b+c)(3)乘法交换律:a×b=b×a(4)乘法结合律:(a×b)×c= a×(b×c)(5)乘法分配律:(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c(a+b+c)×d=a×d+b×d+c×d(a+b-c)×d=a×d+b×d-c×d(6)减法性质:a-b-c= a-(b+c) a-(b+c)= a-b-c (7)除法性质:a÷b÷c= a÷(b×c) (b、c不能为0)(8)分数的性质:(9)添去括号法则:括号前是“+”,添、去括号不变号括号前是“-”,添、去括号要变号(10)数字前面符号搬家:在只有加减法运算中,可带数字前面符号搬家,如:a+b-c= a-c+b在只有乘、除法运算中,可带着数字前面符号搬家。
如:a×b÷c= a÷c×b(c 不为0)【典型例题】例1. 4.75-9.63+(8.25-1.37)【解析】先去掉小括号,使4.75和8.25相加凑整,再运用减法的性质,使运算过程简便。
所以:原式=4.75+8.25-9.63-1.37=13-(9.63+1.37)=13-11=2例2.399998+39998+3998+398【解析】先凑成整数再减去相差的数,凑整调整后一定要与原数保持相等,所以:原式=(400000-2)+(40000-2)+(4000-2)+(400-2)=444400-8=444392【练一练】1、6.73-2+(3.27-1)2、99【典型例题】例3. 2.5【解析】熟记25并且在做简便计算时要灵活运用小数的性质,所以:原式=2.5=10=100例4. 98【解析】利用乘法分配率,先凑成整数再加上相差的数,把101拆成100加1,凑整调整后一定要与原数保持相等,所以:原式=98×(100+1)=98×100+98×1=9800+98=9898例5.【解析】上题是分数与整数相乘,仔细观察数字间特点,(1)中的与1只相差,如果把写成(1-)的形式与37相乘,再运用乘法的分配率就能简化运算了,所以:原式=(1- )=37-=37-=【练一练】3、(13×125)×(3×8)4、198×10015、【典型例题】例6.【解析】同例5一样,本题中的27可以写成(26+1)。
完整word版小学六年级奥数简便运算含答案,文档
=简便运算〔一〕一、知识要点根据算式的结构和数的特征 .灵活运用运算法那么、定律、性质和某些公式.可以把一些较复杂的四那么混合运算化繁为简.化难为易。
二、精讲精练【例题1】计算4.75-9.63+〔〕【思路导航】先去掉小括号.使和相加凑整.再运用减法的性质:a-b-c=a-〔b+c〕.使运算过程简便。
所以原式=--=13-〔〕=13-11=2练习1:计算下面各题。
1.-2又8/17+〔-1又9/17〕7又5/9-〔3.8+1又5/9〕-1又1/5-〔7又7/8-6又17/20〕-13又7/13-〔4又1/4+3又7/13〕-【例题2】计算333387又1/2×79+790×66661又1/4【思路导航】可把分数化成小数后.利用积的变化规律和乘法分配律使计算简便。
所以:原式=×79+790××790+790×=〔〕×790=100000×790=79000000练习2:计算下面各题:×1又1/4+125%+1又1/2÷4/5975×0.25+9又3/4×76-9又2/5×÷1/60××【例题3】计算:36××【思路导航】此题外表看没有什么简便算法.仔细观察数的特征后可知:36×30。
这样一转化.就可以运用乘法分配律了。
所以. .原式=×30×××〔30××〕×〔〕×100=120练习3:计算:45××52××77848××72×-×【例题4】计算:3又3/5×25又2/5+×6又2/5【思路导航】虽然3又3/5与6又2/5的和为10.但是与它们相乘的另一个因数不同.因此.我们不难想到把分成和两局部。