初中七年级数学下学期期中考复习
吉林省长春市东北师范大学附属中学2023-2024学年七年级下学期期中数学试题(解析版)
2023-2024学年东北师大附中初中部初一年级数学学科试卷第二学期期中考试考试时长:120分钟试卷分值:120分一、选择题(共8小题,每题3分,共24分)1. 如图,下列四种通信标志中,其图案是轴对称图形的是( )A. B. C. D.【答案】C【解析】【分析】本题主要考查了轴对称图形的识别,根据轴对称图形的定义进行逐一判断即可:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.【详解】解:A 、不是轴对称图形,故此选项不符合题意;B 、不是轴对称图形,故此选项不符合题意;C 、是轴对称图形,故此选项符合题意;D 、不是轴对称图形,故此选项不符合题意;故选:C .2. 已知,下列不等式成立的是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了不等式的基本性质,易错在不等式的基本性质3,不等式两边同时乘以或除以同一个负数,不等号的方向改变.不等式性质:基本性质1.不等式两边同时加上或减去同一个整式,不等号的方向不变.基本性质2.不等式两边同时乘以或除以同一个正数,不等号的方向不变.基本性质3.不等式两边同时乘以或除以同一个负数,不等号的方向改变.根据性质逐一分析即可.【详解】解:A .∵,∴,故不符合题意;B . ∵,∴,a b >a b->-22a b -<-22a b <0a b -<a b >a b -<-a b >a b -<-∴,故符合题意;C .∵,∴,故不符合题意;D . ∵,∴,故不符合题意.故选:B .3. 一副三角板,按如图所示叠放在一起,则图中的度数为( )A. B. C. D. 【答案】C【解析】【分析】本题考查了与三角板有关的运算以及三角形内角和性质,先得出,再运用三角形内角和进行列式,计算即可作答.【详解】解:如图所示:由题意得出,∴,∵,∴,故选:C .4. 下列多边形材料中,不能单独用来铺满地面的是( )A. 三角形B. 四边形C. 正五边形D. 正六边形【答案】C【解析】【分析】一个多边形的镶嵌应该符合其内角度数可以整除360°【详解】A 、三角形内角和为180°,能整除360°,能密铺,故此选项不合题意;22a b -<-a b >22a b >a b >0a b ->α∠60︒65︒75︒85︒115ABD ABC ∠=∠-∠=︒6045ABD ABC ∠=︒∠=︒,1604515ABD ABC ∠=∠-∠=︒-︒=︒90D Ð=°180901575α∠=︒-︒-︒=︒B 、四边形内角和为360°,能整除360°,能密铺,故此选项不合题意;C 、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺,故此选项合题意;D 、正六边形每个内角为180°﹣360°÷6=120°,能整除360°,能密铺,故此选项不合题意;故选C .【点睛】本题主要考查图形的镶嵌问题,重点是掌握多边形镶嵌的原理.5. 已知是关于x ,y 的方程,x +ky =3的一个解,则k 的值为( )A. -1B. 1C. 2D. 3【答案】B【解析】【分析】把x 与y 的值代入方程计算即可求出k 的值.【详解】解:∵是关于x 、y 的方程x +ky =3的一个解,∴把代入到原方程,得1+2k =3,解得k =1,故选:B .【点睛】本题主要考查了二元一次方程的解的定义,解一元一次方程,熟知方程的解是使方程两边相等的未知数的值是解题的关键.6. 一个三角形两边的长分别是3和5,则这个三角形第三边的长可能是( )A. 1B. C. 2 D. 4【答案】D【解析】【分析】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.先根据三角形的三边关系求出x 的取值范围,再求出符合条件的x 的值即可.【详解】解:设三角形第三边的长为x ,则,即,只有选项D 符合题意.故选D .7. 不等式的解集在数轴上表示正确的是( )12x y =⎧⎨=⎩12x y =⎧⎨=⎩12x y =⎧⎨=⎩1.55353x -<<+28x <<53x -≥A.B.C.D.【答案】A【解析】【分析】本题考查的是解一元一次不等式,利用数轴表示不等式的解集.先求出不等式的解集,再在数轴上表示出来不等式的解集即可,注意大于小于用空心,大于等于小于等于用实心,大于大于等于开口向右,小于小于等于开口向左.【详解】解:,,数轴上表示:,故选:A .8. 某学校为学生配备物理电学实验器材,一个电表包内装有1个电压表和2个电流表.某生产线共60名工人,每名工人每天可生产14个电压表或20个电流表.若分配名工人生产电压表,名工人生产电流表,恰好使每天生产的电压、电流表配成套,则可列出方程组( )A. B. C. D. 【答案】D【解析】【分析】本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是得到电压表数量和电流表数量的等量关系.【详解】解:若分配名工人生产电压表,名工人生产电流表,由题意,得.故选:D .二、填空题(共6小题,每小题3分,共18分)9. 已知二元一次方程,用含x 的代数式表示y ,则______.为53x -≥∴2x ≤x y 6022014x y y x+=⎧⎨⨯=⎩6014202x y x y +=⎧⎪⎨=⎪⎩601420x y x y +=⎧⎨=⎩6021420x y x y+=⎧⎨⨯=⎩x y 6021420x y y y +=⎧⎨⨯=⎩327x y +=y =【答案】【解析】【分析】本题考查了解二元一次方程,根据,将x 看成已知数,进行移项,再系数化1,即可作答.【详解】解:∵∴故答案为:10. 在通过桥洞时,往往会看到如图所示标志:这是限制车高的标志,表示车辆高度不能超过,通过桥洞的车高应满足的不等式为_____________.【答案】##【解析】【分析】根据不等式的定义列不等式即可.【详解】解:∵车辆高度不能超过,∴.故答案为.【点睛】本题主要考查列不等式,掌握不等式的定义是解答本题的关键.11. 不等式组的最小整数解为_________.【答案】【解析】【分析】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集,根据“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【详解】解:解不等式组得:,∴最小整数解为,故答案为:.的7322x -327x y +=327x y +=273y x=-7322y x =-7322x -5m m x 5x ≤5x≥5m 5x ≤5x ≤10{212x x -<-≥210{212x x -<-≥32x ≥2212. 如图,正五边形ABCDE 和正六边形EFGHMN 的边CD 、FG 在直线l 上,正五边形在正六边形左侧,两个正多边形均在l 的同侧,则的大小是___度.【答案】48【解析】【分析】利用正多边形的内角和,求出其中一个角的度数,进一步求出三角形DEF 的两个内角,最后由三角形内角和定理来求解.【详解】解:正五边形内角和为且在直线上,,正六边形内角和为且在直线上,,在中,,,,,故答案是:.【点睛】本题考查了正多边形的内角、三角形的内角和定理,解题的关键是:掌握正多边形内角和的求法.13. 我国传统数学名著九章算术记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两问牛、羊各一直金几何?”译文问题:“假设有头牛、只羊,值两银子;头牛、只羊,值两银子,问一头牛、一只羊一共值多少两银子?”则头牛、只羊一共值 ______ 两银子.【答案】【解析】【分析】设每头牛值两银子,每只羊值两银子,根据“头牛、只羊,值两银子;头牛、只羊,值两银子”,可得出关于,的二元一次方程组,利用,即可求出结论.DEF ∠ 540︒CD l 5401085EDC ︒∴∠==︒ 720︒FG l 7201206EFG ︒∴∠==︒EDF 180DEF EDF EFD ∠=︒-∠-∠18010872EDF ∠=︒-︒=︒ 18012060EFD ∠=︒-︒=︒48DEF ∴∠=︒48《》.52192516115x y 52192516x y ()7+÷①②【详解】解:设每头牛值两银子,每只羊值两银子,根据题意得:,得:,∴头牛、只羊一共值两银子,故答案为:.【点睛】本题考查了二元一次方程组的应用以及数学文化,找准等量关系,正确列出二元一次方程组是解题的关键.14. 为了更好的开展大课间活动,某班级计划购买跳绳和呼啦圈两种体育用品,已知一个跳绳8元,一个呼啦圈12元.准备用120元钱全部用于购买这两种体育用品(两种都要买且钱全部用完),则该班级的购买方案有______种.【答案】4【解析】【分析】设购买个跳绳,个呼啦圈,利用总价单价数量,即可得出关于,的二元一次方程,结合,均为正整数,即可得出购买方案的数量.本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.【详解】解:设购买个跳绳,个呼啦圈,依题意得:,.,均为正整数,为3的倍数,或或或,该班级共有4种购买方案.故答案为:4.三、解答题(共10小题,共78分)15. 解方程组:(1)x y 52192516x y x y +=⎧⎨+=⎩①②()7+÷①②5x y +=1155x y =⨯x y x y x y 812120x y +=2103y x ∴=-x y x ∴∴38x y =⎧⎨=⎩66x y =⎧⎨=⎩94x y =⎧⎨=⎩122x y =⎧⎨=⎩∴23328y x x y =-⎧⎨+=⎩(2)【答案】(1) (2)【解析】【分析】本题主要考查了解二元一次方程组:(1)利用代入消元法解方程组即可;(2)利用加减消元法解方程组即可.【小问1详解】解:把①代入②得:,解得,把代入①得,∴方程组的解为;小问2详解】解:得:,解得,把代入①得:,解得,∴方程组解为.16. 解下列不等式(组):(1);(2)【的28452x y x y +=⎧⎨-=⎩21x y =⎧⎨=⎩32x y =⎧⎨=⎩23328y x x y =-⎧⎨+=⎩①②()32238x x +-=2x =2x =2231y =⨯-=21x y =⎧⎨=⎩28452x y x y +=⎧⎨-=⎩①②2⨯-①②714y =2y =2y =228x +=3x =32x y =⎧⎨=⎩()32723x +≥()313122x x x x ⎧->⎪⎨--≥⎪⎩【答案】(1) (2)无解【解析】【分析】本题考查了解一元一次不等式以及解一元一次不等式组,正确掌握相关性质内容是解题的关键.(1)先去括号,再移项合并同类项,系数化1,即可作答.(2)分别算出每个不等式组的解集,再取公共部分的解集,即可作答.【小问1详解】解:,,,;【小问2详解】解:,由,得,解得,由,得,解得,此时不等式组无解.17. 如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为顶点的,线段在网格线上.(1)画出边上的高线;(2)画出边上的中线;(3)在线段上任取一点P ,则的面积是______.【答案】(1)见详解 (2)见详解(3)513x ≥()32723x +≥62123x +≥62x ≥13x ≥()313122x x x x ⎧->⎪⎨--≥⎪⎩()31x x ->33x x ->32x >3122x x --≥243x x -≥-1x ≤ABC MN AB CD BC AE MN ABP【解析】【分析】本题考查了三角形的高,中线的定义,运用网格求面积,正确掌握相关性质内容是解题的关键.(1)过点C 作垂直于的延长线,交点为点,即可作答.(2)根据网格特征以及中线定义,进行作图即可;(3)根据平行线之间的距离处处相等的性质,得出与的距离为5,再结合三角形面积公式进行计算,即可作答.【小问1详解】解:边上的高线如图所示:【小问2详解】解: 边上的中线如图所示:【小问3详解】解:如图所示:∴的面积.CD BA D MN AB AB CD BC AE ABP 12552=⨯⨯=18. 如图,在中,是的角平分线,,,求的度数.【答案】【解析】【分析】根据三角形外角的性质,角平分线的定义以及三角形的内角和定理即可得到结论.此题主要考查了三角形外角的性质,角平分线的定义,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.【详解】解:∵.∴,∵是角平分线,∴,在中,.19.若一个多边形的内角和的比它的外角和多,那么这个多边形的边数是多少?【答案】12【解析】【分析】设这个多边形的边数是n ,根据题意,列方程求解即可.【详解】解:设这个多边形的边数是n ,由题意得:,解得:,答:这个多边形的边数是12.【点睛】本题考查了多边形的内角和和外角和定理,熟练掌握两个定理是解题的关键.20. 在长方形中,放入5个形状大小相同的小长方形(空白部分),其中,,求图中阴影部分图形的面积.ABC AN ABC 50B ∠=︒80ANC ∠=︒C ∠70︒5080ANC B BAN B ANC ∠=∠+∠∠=︒∠=︒,,805030BAN ANC B ∠∠∠=-=︒-︒=︒AN BAC ∠223060BAC BAN ∠=∠=⨯︒=︒ABC 180180506070C B BAC ∠=︒-∠-∠=︒-︒-︒=︒1490︒1(2)180360904n -⨯︒=︒+︒1(2)180360904n -⨯︒=︒+︒12n =ABCD 8cm AB =12cm BC =【答案】【解析】【分析】设小长方形的长为,宽为,根据图形中大长方形的长和宽列二元一次方程组,求出和的值,即可解决问题.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设小长方形的长为,宽为,根据题意,得:,解得:,每个小长方形的面积为,阴影部分的面积.21. 阅读下列材料:小明同学在学习二元一次方程组时遇到了这样一个问题:解方程组.小明发现,如果用代入消元法或加减消元法求解,运算量比较大,容易出错.如果把方程组中的看成一个整体,把看成一个整体,通过换元,可以解决问题.以下是他的解题过程:令,.原方程组化为,解得,把代入,,得,解得,236cm xcm ycm x y xcm ycm 3128x y x y +=⎧⎨+=⎩62x y =⎧⎨=⎩∴()22612cm ⨯=∴()281251236cm =⨯-⨯=23237432323832x y x yx y x y +-⎧+=⎪⎪⎨+-⎪+=⎪⎩()23x y +()23x y -23m x y =+23n x y =-743832m nm n ⎧+=⎪⎪⎨⎪+=⎪⎩6024m n =⎧⎨=-⎩6024m n =⎧⎨=-⎩23m x y =+23n x y =-23602324x y x y +=⎧⎨-=-⎩914x y =⎧⎨=⎩原方程组的解为.(1)学以致用:运用上述方法解方程组:(2)拓展提升:已知关于x ,y 的方程组的解为,请直接写出关于m 、n 的方程组的解是______.【答案】(1) (2)【解析】【分析】本题主要考查了换元法解二元一次方程组:(1)结合题意,利用整体代入法求解,令,得,解得即即可求解;(2)结合题意,利用整体代入法求解,令,,则可化为,且解为则有,求解即可.【小问1详解】解:令,,原方程组化为,解得,∴914x y =⎧⎨=⎩()()()()213211224x y x y ⎧++-=⎪⎨+--=⎪⎩111222a xb yc a x b y c +=⎧⎨+=⎩34x y =⎧⎨=⎩()()1112222323a m b n c a m b n c ⎧+-=⎪⎨+-=⎪⎩11x y =⎧⎨=⎩143m n =⎧⎪⎨=-⎪⎩1m x =+2n y =-23124m n m n +=⎧⎨-=⎩21m n =⎧⎨=-⎩1221x y +=⎧⎨-=-⎩2x m =+3y n =-()()1212222323a m b n c a m b n c ⎧+-=⎪⎨+-=⎪⎩121222a x b y c a x b y c +=⎧⎨+=⎩34x y =⎧⎨=⎩2334m n +=⎧⎨-=⎩1m x =+2n y =-23124m n m n +=⎧⎨-=⎩21m n =⎧⎨=-⎩,解得:,∴原方程组的解为 ;【小问2详解】解:在中,令,,则可化为,∵方程组解为,∴,,故答案为:.22. “粮食生产根本在耕地、出路在科技”.为提高农田耕种效率,今年开春某农村合作社计划投入资金购进甲、乙两种农耕设备,已知购进2台甲种农耕设备和1台乙种农耕设备共需4.2万元;购进1台甲种农耕设备和3台乙种农耕设备共需5.1万元.(1)求甲种农耕设备和乙种农耕设备单价各是多少万元;(2)若该合作社决定购买甲、乙两种农耕设备共7台,且购进甲、乙两种农耕设备总资金不超过10万元,求最多可以购进甲种农耕设备多少台.【答案】(1)1台甲种农耕设备需1.5万元,1台乙种农耕设备需1.2万元; (2)5台【解析】【分析】(1)设购进1台甲种农耕设备需万元,1台乙种农耕设备需万元,根据“购进2台甲种农耕设1221x y +=⎧∴⎨-=-⎩11x y =⎧⎨=⎩11x y =⎧⎨=⎩()()1212222323a m b n c a m b n c ⎧+-=⎪⎨+-=⎪⎩2x m =+3y n =-()()1212222323a m b n c a m b n c ⎧+-=⎪⎨+-=⎪⎩121222a x b y c a x b y c +=⎧⎨+=⎩121222a x b y c a x b y c +=⎧⎨+=⎩34x y =⎧⎨=⎩2334m n +=⎧⎨-=⎩143m n =⎧⎪∴⎨=-⎪⎩143m n =⎧⎪⎨=-⎪⎩x y备和1台乙种农耕设备共需4.2万元;购进1台甲种农耕设备和3台乙种农耕设备共需5.1万元”,可得出关于,的二元一次方程组,解之即可得出结论;(2)设购进甲种农耕设备台,则购进乙种农耕设备台,利用总价单价数量,结合总价不超过10万元,可得出关于的一元一次不等式,解之可得出的取值范围,再取其中的最大整数值,即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.【小问1详解】解:设购进1台甲种农耕设备需万元,1台乙种农耕设备需万元,根据题意得:,解得:.答:购进1台甲种农耕设备需1.5万元,1台乙种农耕设备需1.2万元;【小问2详解】解:设购进甲种农耕设备台,则购进乙种农耕设备台,根据题意得:,解得:,又为正整数,的最大值为5.答:最多可以购进甲种农耕设备5台.23. 【探究】如图①,在中,点D 是延长线上一点,的平分线与的平分线相交于点P .则有,请补全下面证明过程:证明:平分,平分,,______(______).______(三角形的一个外角等于与它不相邻的两个内角的和),.x y m ()7m -=⨯m m x y 2 4.23 5.1x y x y +=⎧⎨+=⎩1.51.2x y =⎧⎨=⎩m ()7m -()1.5 1.2710m m +-≤153m ≤m m ∴ABC BC ABC ∠BP ACD ∠CP 12P A ∠=∠BP ABC ∠CP ACD ∠2ABC PBC ∴∠=∠2ACD ∠=∠ACD A ∠=∠+∠ 22PCD A PBC ∴∠=∠+∠(三角形的一个外角等于与它不相邻的两个内角的和),.【应用】如图②,在四边形中,设,,若,四边形的内角与外角的角平分线相交于点P .为了探究的度数与和的关系,小明同学想到将这个问题转化图①的模型,因此,延长了边与交于点A .如图③,若,,则,因此.【拓展】如图④,在四边形中,设,,若,四边形的内角与外角的角平分线所在的直线相交于点P ,请直接写出______.(用含有和的代数式表示)【答案】探究:;角平分线的定义;;;应用:;;拓展:【解析】【分析】本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义:探究:根据三角形外角的性质和角平分线的定义结合已给推理过程求解即可;应用:先利用平角的定义和三角形内角和定理求出的度数,再有探究的结论即可得到答案;拓展:延长交的延长线于A ,则由三角形内角和定理可得;再由题意可得分别平分,则.【详解】解:探究:证明:平分,平分,,(角平分线的定义).(三角形的一个外角等于与它不相邻的两个内角的和),._____PCD PBC ∠=∠+∠ 12P A ∴∠=∠MNCB M α∠=N β∠=180αβ+>︒MBC ∠NCD ∠BP CP ,P ∠αβBM CN 106BMN∠=︒124MNC ∠=︒______A ∠=︒______P ∠=︒MNCB M α∠=N β∠=180αβ+<︒MBC ∠NCD ∠P ∠=αβPCD PBC P 50︒25︒121902αβ︒--A ∠MB NC 180A αβ=︒--∠PB PC ,ABH ACB ∠,∠11190222P A αβ==︒--∠BP ABC ∠CP ACD ∠2ABC PBC ∴∠=∠2ACD PCD ∠=∠ACD A ABC ∠=∠+∠Q 22PCD A PBC ∴∠=∠+∠(三角形的一个外角等于与它不相邻的两个内角的和),,故答案为:;角平分线的定义;;;应用:延长了边与交于点A .如图③,∵,,∴,∴,∴,故答案:;.拓展:如图,延长交的延长线于A ,∵,,∴;∵四边形的内角与外角的角平分线所在的直线相交于点P ,∴分别平分,∴,故答案为:.24. 如图①,点O 为数轴原点,,正方形的边长为6,点P 从点O 出发,沿射线方向运动,速度为每秒2个单位长度,设运动时间为t 秒,请回答下列问题.为PCD P PBC ∠=∠+∠ 12P A ∴∠=∠PCD PBC P BM CN 106BMN∠=︒124MNC ∠=︒1807418056AMN BMN ANM MNC =︒-=︒=︒-=︒∠∠,∠∠18050A AMN ANM =︒--=︒∠∠∠1252P A ∠=∠=︒50︒25︒MB NC M α∠=N β∠=180180A M N αβ=︒--=︒--∠∠∠MBC ∠NCD ∠PB PC ,ABH ACB ∠,∠11190222P A αβ==︒--∠121902αβ︒--3OA =ABCD OA(1)点A 表示的数为______,点D 表示的数为______.(2)的面积为6时,求t 的值.(3)如图②,当点P 运动至D 点时,立即以原速返回,到O 点后停止.在点P 运动过程中,作线段,点E 在数轴上点P 右侧,以为边向上作正方形,当与面积和为16时,直接写出t 的值.【答案】(1)3,9(2)t的值为秒或秒 (3)或或或.【解析】【分析】(1)根据线段的长和正方形的边长可以求解.(2)根据点的运动速度与运动时间得出运动路程,对应数数轴得出结论.(3)根据点运动确定正方形的位置再去讨论与面积和为16时的值.本题考查了数轴与动点的结合,表示出点的运动距离是本题的解题关键.【小问1详解】解: ,且为数轴原点,在的右侧,表示的数为3,正方形的边长为6,,表示的数为9.故答案是3,9;【小问2详解】解:∵的面积为6,∴,解得,点从点开始运动且速度为每秒2个单位长度,,APC △3PE =PE PEFG DPF ABG 12521318t =23631614918OA P P DPF ABG t P 3OA = O O A ∴ 639OD ∴=+=D ∴APC △116622APC S AP CD AP =⨯=⨯⨯=△2AP =P O 2OP t ∴=∵,∴当点在之间时,则,解得,∴当点在的延长线上时,则,解得,∴的面积为6时,t 的值为秒或秒;【小问3详解】解:①当P 点在A 点左侧时,,由题意得:连接,如图所示:∵,∴,∵速度为每秒2个单位长度,设运动时间为t 秒,∴,∴,∴,,∵与面积和为16,∴,解得,当P 点在A 点右侧时,连接,如图所示:3OA =P AO 3322AP OP t =-=-=12t =P OA 3232AP OP t =-=-=52t =APC △12522OP t =BG AG PF FD ,,,36OA AD ==,9OD =902t ≤≤32PA OA OP t =-=-()11279233222DPF S PD EF t t =⨯⨯=-⨯=- ()116329622ABGS AB AP t t =⨯⨯=⨯⨯-=- DPF ABG 27396162DPF ABG S S t t +=-+-= 1318t =BG AG PF FD ,,,同理得,,∵与面积和为16,∴,解得,②点从向运动时,则,连接,如图所示:∴此时,,∵与面积和为16,∴,()11279233222DPF S PD EF t t =⨯⨯=-⨯=- ()116236922ABGS AB AP t t =⨯⨯=⨯⨯-=- DPF ABG 27369162DPF ABG S S t t +=-+-= 236t =P D O 9999222t <≤+=BG AG PF FD ,,,9926222PD t AP AD PD t ⎛⎫⎛⎫=⨯-=-=-- ⎪ ⎪⎝⎭⎝⎭,119272332222DPF S PD EF t t ⎛⎫=⨯⨯=⨯-⨯=- ⎪⎝⎭ 119662456222ABG S AB AP t t ⎡⎤⎛⎫=⨯⨯=⨯⨯--=- ⎪⎢⎥⎝⎭⎣⎦ DPF ABG 273456162DPF ABG S S t t +=-+-=解得,当P 点在A 点左侧时,由题意得:连接,如图所示:∴,此时,,∵与面积和为16,∴,解得,综上:或或或.316t =BG AG PF FD ,,,92292962152PD t t AP PD AD t t ⎛⎫=⨯-=-=-=--=- ⎪⎝⎭,119272332222DPF S PD EF t t ⎛⎫=⨯⨯=⨯-⨯=- ⎪⎝⎭ ()11621564522ABG S AB AP t t =⨯⨯=⨯⨯-=- DPF ABG 273645162DPF ABG S S t t +=-+-= 14918t =1318t =23631614918。
2021-2022学年七年级数学下学期期中期末必考题精准练苏科版试卷+答案
七年级下学期期中模拟卷一一.选择题(共10小题,满分20分,每小题2分)1.(2分)将下列图案通过平移后可以得到的图案是()A.B.C.D.2.(2分)下列计算正确的是()A.3x2+2x2=5x4B.3x7÷x5=3x2C.x3•x2=x6D.(x2)3=x53.(2分)下列长度的三条线段能组成三角形的是()A.3,4,7B.3,4,8C.3,3,5D.3,3,74.(2分)如图,在△ABC中,点D,E,F分别在边BC,AB,AC上,下列能判定DE∥AC的条件是()A.∠1=∠3B.∠3=∠C C.∠2=∠4D.∠1+∠2=180°5.(2分)下列从左到右的运算是因式分解的是()A.4a2﹣4a+1=4a(a﹣1)+1B.(x﹣y)(x+y)=x2﹣y2C.x2+y2=(x+y)2﹣2xy D.(xy)2﹣1=(xy+1)(xy﹣1)6.(2分)下列各式中能用平方差公式计算的是()A.(2x+5)(﹣2x﹣5)B.(m﹣1)(1﹣m)C.(﹣a+b)(a﹣b)D.(﹣x﹣y)(x﹣y)7.(2分)正五边形的内角和是()A.360°B.540°C.720°D.900°8.(2分)下列各式是完全平方式的是()A.a2+4B.x2+2xy﹣y2C.a2﹣ab+b2D.4x2﹣4xy+y29.(2分)如图,在△ABC中,∠ABC和∠ACB的平分线交于点O.若∠BOC=130°,则∠A的度数为()A.100°B.90°C.80°D.70°10.(2分)在如图所示的方格纸中,每个方格都是边长为1的正方形,点A,B是方格纸中的两个格点,在这个5×5的方格纸中,找出点C使△ABC的面积为1个平方单位,则满足条件的格点C的个数是有()A.3个B.4个C.5个D.6个二.填空题(共8小题,满分16分,每小题2分)11.(2分)已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为 千克.12.(2分)(13)−2=.13.(2分)分解因式:m 3﹣n 3=.14.(2分)把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,点D ,C 分别折叠到点M ,N 的位置上,∠EFG =54°,则∠1=度.15.(2分)已知m ﹣n =2,则5m ÷5n =.16.(2分)已知等腰三角形的腰长为5cm ,底边上的中线长为4cm ,则它的周长为cm .17.(2分)任意五边形的内角和与外角和的差为度.18.(2分)如图,在△ABC 中,AD 、CD 是△ABC 的角平分线且相交于点D ,∠B =80°,则∠ADC =.三.解答题(共8小题,满分64分)19.(12分)计算:(1)(2﹣3)0﹣(12)﹣2.(2)x 3•x 5﹣(2x 4)2+x 10÷x 2. (3)(x ﹣2)(x 2+2x +4).(4)4a (a ﹣3b )﹣(3b ﹣2a )(2a +3b ).20.(8分)分解因式:(1)8a 3b 2+12ab 3c ;(2)x 4﹣y 4.21.(6分)先化简,再求值:2(x +1)2﹣3(x ﹣3)(3+x )+(x +5)(x ﹣2),其中x =−32.22.(6分)在图中,利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A 'B 'C ;(2)图中AC 与A 'C ′的关系怎样?(3)记网格的边长为1,则△A 'B ′C ′的面积为多少?23.(8分)如图,一条直线分别与直线BE 、直线CE 、直线BF 、直线CF 相交于A ,G ,H ,D ,且∠1=∠2,∠B =∠C .求证:(1)BF ∥EC ;(2)∠A =∠D .24.(7分)如图,图①所示是一个长为2m ,宽为2n 的长方形,用剪刀均分成四个小长方形,然后按图②的方式拼成一个大正方形.(1)图②中的大正方形的边长等于,图②中的小正方形的边长等于;(2)图②中的大正方形的面积等于,图②中的小正方形的面积等于;图①中每个小长方形的面积是;(3)观察图②,你能写出(m +n )2,(m ﹣n )2,mn 这三个代数式间的等量关系吗?.25.(8分)对于任意实数来说,都有“a2≥0”,这个结论在数学里非常有用,有时我们需要利用配方法将代数式配方成完全平方式.例如:x2+4x+5=x2+4x+4+1=(x+2)2+1.∵(x+2)2≥0,∴(x+2)2+1≥1,即x2+4x+5≥1.(1)填空.∵x2﹣4x+6=(x)2+,∴当x=时,代数式x2﹣4x+6有最(填“大”或“小”)值,这个最值为;(2)若代数式x2+(m+2)x+4m﹣7有最小值为0,求m的值.26.(9分)如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM交CD于点M,AB ∥CD,且∠FEM=∠FME.(1)当∠AEF=70°时,∠FME=°;(2)判断EM是否平分∠AEF,并说明理由;(3)如图2,点G是射线FD上一动点(不与点F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EGF=α.探究当点G在运动过程中,∠MHN﹣∠FEH和α之间有怎样的数量关系?请写出你的猜想,并加以证明.七年级下学期期中模拟卷一一.选择题(共10小题,满分20分,每小题2分)1.(2分)将下列图案通过平移后可以得到的图案是()A.B.C.D.【分析】根据图形平移、旋转、轴对称的性质对各选项记性逐一分析即可.【解答】解:A、通过平移得到,故本选项正确;B、通过旋转得到,故本选项错误;C、通过旋转得到,故本选项错误;D、通过轴对称得到,故本选项错误.故选:A.【点评】本题考查的是利用平移设计图案,熟知图形平移、旋转、轴对称的性质是解答此题的关键.2.(2分)下列计算正确的是()A.3x2+2x2=5x4B.3x7÷x5=3x2C.x3•x2=x6D.(x2)3=x5【分析】利用合并同类项运算法则判断A,利用单项式除以单项式的运算法则判断B,利用同底数幂的乘法运算法则判断C,利用幂的乘方运算法则判断D.【解答】解:A、原式=5x2,故此选项不符合题意;B、原式=3x2,故此选项符合题意;C、原式=x5,故此选项不符合题意;D、原式=x6,故此选项不符合题意;故选:B.【点评】本题考查整式的混合运算,掌握同底数幂的乘法(底数不变,指数相加),同底数幂的除法(底数不变,指数相减),幂的乘方(a m)n=a mn运算法则是解题关键.3.(2分)下列长度的三条线段能组成三角形的是()A.3,4,7B.3,4,8C.3,3,5D.3,3,7【分析】根据三角形的三边关系进行分析判断,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【解答】解:根据三角形任意两边的和大于第三边,得A、3+4=7,不能组成三角形;B、3+4<8,不能组成三角形;C、3+3>5,能够组成三角形;D、3+3<7,不能组成三角形.故选:C.【点评】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.4.(2分)如图,在△ABC中,点D,E,F分别在边BC,AB,AC上,下列能判定DE∥AC的条件是()A.∠1=∠3B.∠3=∠C C.∠2=∠4D.∠1+∠2=180°【分析】直接利用平行线的判定方法分别分析得出答案.【解答】解:A、当∠1=∠3时,EF∥BC,不符合题意;B、当∠3=∠C时,DE∥AC,符合题意;C、当∠2=∠4时,无法得到DE∥AC,不符合题意;D、当∠1+∠2=180°时,EF∥BC,不符合题意.故选:B.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.5.(2分)下列从左到右的运算是因式分解的是()A.4a2﹣4a+1=4a(a﹣1)+1B.(x﹣y)(x+y)=x2﹣y2C.x2+y2=(x+y)2﹣2xy D.(xy)2﹣1=(xy+1)(xy﹣1)【分析】根据因式分解的定义逐个判断即可.【解答】解:A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.【点评】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.6.(2分)下列各式中能用平方差公式计算的是()A.(2x+5)(﹣2x﹣5)B.(m﹣1)(1﹣m)C.(﹣a+b)(a﹣b)D.(﹣x﹣y)(x﹣y)【分析】根据平方差公式的特点逐个判断即可.【解答】解:A、不能用平方差公式,故本选项不符合题意;B、不能用平方差公式,故本选项不符合题意;C、不能用平方差公式,故本选项不符合题意;D、能用平方差公式,故本选项符合题意;故选:D.【点评】本题考查了平方差公式,能熟记公式的特点是解此题的关键,注意:(a+b)(a﹣b)=a2﹣b2.7.(2分)正五边形的内角和是()A.360°B.540°C.720°D.900°【分析】根据多边形内角和为(n﹣2)×180°,然后将n=5代入计算即可.【解答】解:正五边形的内角和是:(5﹣2)×180°=3×180°=540°,故选:B.【点评】本题考查多边形内角和,解答本题的关键是明确多边形内角和为(n﹣2)×180°.8.(2分)下列各式是完全平方式的是()A.a2+4B.x2+2xy﹣y2C.a2﹣ab+b2D.4x2﹣4xy+y2【分析】根据完全平方公式,对各选项分析判断后利用排除法求解.公式:(a+b)2=a2+2ab+b2;(a ﹣b)2=a2﹣2ab+b2.【解答】解:A、a2+4是二项式,不符合完全平方式,故本选项错误;B、两平方项符号相反,故本选项错误;C、乘积项不是平方项两数的二倍,故本选项错误;D、∵(2x﹣y)2=4x2﹣4xy+y2,∴是完全平方式.故选:D.【点评】本题主要考查完全平方式,熟练掌握平方式的结构特点是求解本题的关键.9.(2分)如图,在△ABC中,∠ABC和∠ACB的平分线交于点O.若∠BOC=130°,则∠A的度数为()A.100°B.90°C.80°D.70°【分析】在△BOC中,根据三角形的内角和定理,即可求得∠OBC与∠OCB的和,再根据角平分线的定义和三角形的内角和定理即可求解.【解答】解:在△OBC中,∠OBC+∠OCB=180﹣∠BOC=180﹣130=50°,又∵∠ABC、∠ACB的平分线交于点O.∴∠ABC+∠ACB=2∠OBC+2∠OCB=2(∠OBC+∠OCB)=100°∴∠A=180﹣(∠ABC+∠ACB)=180﹣100=80°故选:C.【点评】本题主要考查了角平分线的定义与三角形内角和定理的综合应用.10.(2分)在如图所示的方格纸中,每个方格都是边长为1的正方形,点A,B是方格纸中的两个格点,在这个5×5的方格纸中,找出点C使△ABC的面积为1个平方单位,则满足条件的格点C的个数是有()A.3个B.4个C.5个D.6个【分析】由三角形面积关系作出平行线即可求解.【解答】解:在线段AB的两侧,距离点A为1的格点分别作AB的平行线,与网格的格点所有交点就是满足条件的C点,如图所示:共有6个,故选:D.【点评】本题考查了三角形面积,正确画出图形是解题的关键.二.填空题(共8小题,满分16分,每小题2分)11.(2分)已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为 2.1×10﹣5千克.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 021=2.1×10﹣5.故答案为:2.1×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(2分)(13)−2=9.【分析】根据负整数指数幂的运算法则进行计算即可.【解答】解:原式=1 (13)2=1×9=9.故答案为:9.【点评】本题考查的是负整数指数幂,即负整数指数幂等于相应的正整数指数幂的倒数.13.(2分)分解因式:m3﹣n3=(m﹣n)(m2+mn+n2).【分析】根据立方差公式分解即可.立方差公式:m3﹣n3=(m﹣n)(m2+mn+n2).【解答】解:m3﹣n3=(m﹣n)(m2+mn+n2).【点评】本题考查了公式法分解因式,可以直接考虑运用立方差公式分解.14.(2分)把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,点D,C分别折叠到点M,N 的位置上,∠EFG=54°,则∠1=72度.【分析】利用平角的定义先求出∠EFC,再利用平行线的性质求出∠FED,最后利用折叠的性质和平角的定义求出∠1的度数.【解答】解:∵∠EFG+∠EFC=180°,∠EFG=54°,∴∠EFC=126°.∵四边形ABCD是长方形,∴DE∥CF.∴∠EFC+∠FED=180°.∴∠FED=54°.∵四边形EFNM是由四边形EFCD折叠而成,∴∠DEF=∠MEF=54°.∵∠1+∠DEF+∠MEF=180°,∴∠1=72°.故答案为:72.【点评】本题考查了平行线的性质,弄清线段的和差关系、掌握平角的定义及“两直线平行,同旁内角互补”是解决本题的关键.15.(2分)已知m﹣n=2,则5m÷5n=25.【分析】利用同底数幂的除法运算法则进行计算,然后代入求值.【解答】解:原式=5m﹣n,∵m﹣n=2,∴原式=52=25,故答案为:25.【点评】本题考查同底数幂的除法,掌握同底数幂的除法(底数不变,指数相减)运算法则是解题关键.16.(2分)已知等腰三角形的腰长为5cm,底边上的中线长为4cm,则它的周长为16cm.【分析】首先根据等腰三角形的三线合一的性质求得底边的一半,然后求得周长即可.【解答】解:∵等腰三角形的腰长为5cm,底边上的中线长为4cm,∴底边的一半=√52−42=3cm,∴底边长为6cm,∴周长=5+5+6=16cm ,故答案为:16.【点评】本题考查了等腰三角形的性质及勾股定理的应用,解题的关键是首先求得底边的一半长,难度不大.17.(2分)任意五边形的内角和与外角和的差为 180 度.【分析】利用多边形的内角和公式求出五边形的内角和,再结合其外角和为360度,即可解决问题.【解答】解:任意五边形的内角和是180×(5﹣2)=540度;任意五边形的外角和都是360度;所以任意五边形的内角和与外角和的差为540﹣360=180度.故答案为:180.【点评】考查了多边形内角与外角,本题利用多边形的内角和公式及多边形的外角和即可解决问题.18.(2分)如图,在△ABC 中,AD 、CD 是△ABC 的角平分线且相交于点D ,∠B =80°,则∠ADC = 130° .【分析】利用角平分线的性质及三角形内角和定理解答即可.【解答】解:∵AD 、CD 是△ABC 的角平分线,∴∠CAD =12∠CAB ,∠ACD =12∠ACB ,∴∠ADC =180°﹣(∠CAD +∠ACD )=180°−12(∠CAB +ACB )=180°−12(180°﹣∠B )=90°+12∠B=90°+12×80°=130°,故答案为:130°.【点评】本题主要考查了角平分线的性质及三角形内角和定理;找准角的关系是解答本题的关键.三.解答题(共8小题,满分64分)19.(12分)计算:(1)(2﹣3)0﹣(12)﹣2. (2)x 3•x 5﹣(2x 4)2+x 10÷x 2.(3)(x ﹣2)(x 2+2x +4).(4)4a (a ﹣3b )﹣(3b ﹣2a )(2a +3b ).【分析】(1)先计算零指数幂和负整数指数幂,再计算减法即可;(2)先计算同底数幂的乘除法和单项式的乘方,再计算加减即可;(3)根据多项式乘多项式法则展开,再计算加减即可;(4)利用单项式乘多项式法则和平方差公式计算,再去括号、合并即可.【解答】解:(1)原式=1﹣4=﹣3;(2)原式=x8﹣4x8+x8=﹣2x8;(3)原式=x3+2x2+4x﹣2x2﹣4x﹣8=x3﹣8;(4)原式=4a2﹣12ab﹣(9b2﹣4a2)=4a2﹣12ab﹣9b2+4a2=8a2﹣12ab﹣9b2.【点评】本题主要考查整式的混合运算,解题的关键是掌握整式的混合运算顺序及相关运算法则、平方差公式.20.(8分)分解因式:(1)8a3b2+12ab3c;(2)x4﹣y4.【分析】(1)提公因式4ab2可分解因式;(2)两次利用平方差公式分解因式即可求解.【解答】解:(1)原式=4ab2(2a2+3bc);(2)原式=(x2+y2)(x2﹣y2)=(x2+y2)(x+y)(x﹣y).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解因式,分解因式要彻底是解题关键.21.(6分)先化简,再求值:2(x+1)2﹣3(x﹣3)(3+x)+(x+5)(x﹣2),其中x=−3 2.【分析】原式利用单项式乘以多项式,平方差公式以及完全平方公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=2(x2+2x+1)﹣3(x2﹣9)+x2﹣2x+5x﹣10=2x2+4x+2﹣3x2+27+x2﹣2x+5x﹣10=7x+19,当x=−32时,原式=7×(−32)+19=−212+382=172.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.(6分)在图中,利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A'B'C;(2)图中AC与A'C′的关系怎样?(3)记网格的边长为1,则△A'B′C′的面积为多少?【分析】(1)连接BB′,过A、C分别做BB′的平行线,并且在平行线上截取AA′=CC′=BB′,顺次连接平移后各点,得到的三角形即为平移后的三角形;(2)根据平移的性质解答即可.(3)根据三角形面积公式即可求出△A′B′C′的面积.【解答】解:(1)如图所示:(2)AC=A'C′,AC∥A'C′;(3)△A'B′C′的面积=4×4×12=8.【点评】本题主要考查了根据平移变换作图,以及三角形的中线,高的一些基本画图方法.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.23.(8分)如图,一条直线分别与直线BE、直线CE、直线BF、直线CF相交于A,G,H,D,且∠1=∠2,∠B=∠C.求证:(1)BF∥EC;(2)∠A=∠D.【分析】(1)由∠1=∠2直接可得结论;(2)根据BF∥EC,∠B=∠C,可得∠B=∠BFD,从而AB∥CD,即得∠A=∠D.【解答】证明:(1)∵∠1=∠2(已知),∴BF∥EC(同位角相等,两直线平行);(2)∵BF∥EC(已证),∴∠C=∠BFD(两直线平行,同位角相等),∵∠B=∠C(已知),∴∠B=∠BFD(等量代换),∴AB∥CD(内错角相等,两直线平行),∴∠A=∠D(两直线平行,内错角相等).【点评】本题考查平行线的性质与判定,解题的关键是掌握平行线性质与判定定理.24.(7分)如图,图①所示是一个长为2m,宽为2n的长方形,用剪刀均分成四个小长方形,然后按图②的方式拼成一个大正方形.(1)图②中的大正方形的边长等于m+n,图②中的小正方形的边长等于m﹣n;(2)图②中的大正方形的面积等于(m+n)2,图②中的小正方形的面积等于(m﹣n)2;图①中每个小长方形的面积是mn;(3)观察图②,你能写出(m+n)2,(m﹣n)2,mn这三个代数式间的等量关系吗?(m+n)2﹣(m ﹣n)2=4mn.【分析】(1)依据小长方形的边长,即可得到大正方形的边长以及小正方形的边长;(2)依据正方形的边长即可得到正方形的面积,依据小长方形的边长,即可得到小长方形的面积;(3)依据大正方形的面积减去小正方形的面积等于四个小长方形的面积之和,即可得到三个代数式间的等量关系.【解答】解:(1)图②中的大正方形的边长等于m+n,图②中的小正方形的边长等于m﹣n;故答案为:m+n,m﹣n;(2)图②中的大正方形的面积等于(m+n)2,图②中的小正方形的面积等于(m﹣n)2;图①中每个小长方形的面积是mn;故答案为:(m+n)2,(m﹣n)2,mn;(3)由图②可得,(m+n)2,(m﹣n)2,mn这三个代数式间的等量关系为:(m+n)2﹣(m﹣n)2=4mn.故答案为:(m+n)2﹣(m﹣n)2=4mn.【点评】本题考查了完全平方公式的几何背景,即运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.25.(8分)对于任意实数来说,都有“a2≥0”,这个结论在数学里非常有用,有时我们需要利用配方法将代数式配方成完全平方式.例如:x2+4x+5=x2+4x+4+1=(x+2)2+1.∵(x+2)2≥0,∴(x +2)2+1≥1,即x 2+4x +5≥1.(1)填空.∵x 2﹣4x +6=(x ﹣2 )2+ 2 ,∴当x = 2 时,代数式x 2﹣4x +6有最 小 (填“大”或“小”)值,这个最值为 2 ;(2)若代数式x 2+(m +2)x +4m ﹣7有最小值为0,求m 的值.【分析】(1)利用完全平方公式的结构特征判断,并利用非负数的性质求出最值即可;(2)原式配方变形后,根据最小值为0,求出m 的值即可.【解答】解:(1)∵x 2﹣4x +6=(x ﹣2)2+2,∴当x =2时,代数式x 2﹣4x +6有最小值,这个最值为2;故答案为:﹣2,2,2,小,2;(2)原式=x 2+(m +2)x +4m ﹣7=x 2+(m +2)x +(m+22)2+4m ﹣7﹣(m+22)2,=(x +m+22)2+4m ﹣7−m 2+4m+44=(x +m+22)2+−m 2+12m−324, ∵(x +m+22)2≥0,且原式的最小值为0, ∴−m 2+12m−324=0,即m 2﹣12m +32=0,分解因式得:(m ﹣4)(m ﹣8)=0,解得:m 1=4,m 2=8.【点评】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.26.(9分)如图1,已知两条直线AB ,CD 被直线EF 所截,分别交于点E ,点F ,EM 交CD 于点M ,AB ∥CD ,且∠FEM =∠FME .(1)当∠AEF =70°时,∠FME = 35 °;(2)判断EM 是否平分∠AEF ,并说明理由;(3)如图2,点G 是射线FD 上一动点(不与点F 重合),EH 平分∠FEG 交CD 于点H ,过点H 作HN ⊥EM 于点N ,设∠EGF =α.探究当点G 在运动过程中,∠MHN ﹣∠FEH 和α之间有怎样的数量关系?请写出你的猜想,并加以证明.【分析】(1)依据平行线的性质线,可得∠AEM =∠FME ,根据∠FEM =∠FME ,可得∠AEM =∠FEM ,进而得出∠FME 的度数;(2)由(1)得∠AEM =∠FEM ,根据角平分线的定义即可得出结论;(3)依据平行线的性质可得∠BEG=∠EGF=α,再根据EH平分∠FEG,EM平分∠AEF,即可得到∠MEH=12∠AEG=90°−12α,再根据HN⊥EM,即可得到Rt△EHN中,∠EHN=90°﹣∠MEH=12α,由∠BEH=∠EHF即可得出结论.【解答】解:(1)∵AB∥CD,∴∠AEM=∠FME,又∵∠FEM=∠FME,∴∠AEM=∠FEM,∵∠AEF=70°,∴∠FME=∠AEM=12∠AEF=35°;故答案为:35;(2)由(1)得∠AEM=∠FEM,∴EM平分∠AEF;(3)∠MHN﹣∠FEH=12α.证明:∵AB∥CD,∴∠BEG=∠EGF=α,∵EH平分∠FEG,∴∠FEH=∠HEG=12∠FEG,∴∠FEH+α=∠BEG+∠GEH=∠BEH,∵EM平分∠AEF,EH平分∠FEG,∴∠MEH=12∠AEG=12(180°﹣α)=90°−12,在Rt△EHN中,∠EHN=90°﹣∠MEH=90°﹣(90°−12α)=12α,∵AB∥CD,∴∠BEH=∠EHF,即α+∠GEH=∠EHN+∠NHM,∴α+∠FEH=12α+∠NHM,∴∠MHN﹣∠FEH=12α.【点评】本题主要考查了平行线的性质与判定,角平分线的定义的运用,解决问题的关键是掌握:两直线平行,内错角相等;两直线平行,同旁内角互补;利用角的和差关系进行推算.。
期中选择题必刷常考题七年级数学下学期期中期末满分必刷常考压轴题人教版
选择题必刷常考题【基础题必考】1.(2022•义乌市校级开学)把弯曲的公路改直,就能够缩短路程,这样设计的依据是()A.两点确定一条直线B.两点之间线段最短C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.连结直线外一点与直线上各点的所有连线中,垂线段最短【答案】B【解答】解:由线段的性质可知,把弯曲的公路改直,能够缩短车辆行驶的路程,这样做根据的道理是:两点之间线段最短,故选:B.2.(2021秋•临汾期末)九曲桥是我国经典建筑之一,它的修建增加了游人在桥上行走的路程,有利于游人更好地观赏风光,如图,某两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是()A.两点确定一条直线B.垂线段最短C.两点之间,线段最短D.过一点有且只有一条直线与已知直线垂直【答案】C【解答】解:某两地间修建曲桥与修建直的桥相比,增加了桥的长度,其中蕴含的数学道理是:两点之间,线段最短,故选:C.3.(2022春•源汇区校级月考)近段时间,以熊猫为原型的2022北京冬奥会吉祥物“冰墩墩”成了全网“顶流”.如图,通过平移如图吉祥物“冰墩墩”可以得到的图形是()A.B.C.D.【答案】B【解答】解:通过平移吉祥物“冰墩墩”可以得到的图形为.故选:B.4.(2022春•牡丹区月考)下面四个图形中,∠1与∠2是对顶角的图形是()A.B.C.D.【答案】C【解答】解:根据对顶角的定义可知:只有C选项中的是对顶角,其它都不是.故选:C.5.(2022春•虞城县月考)如图,在道路附近有一疫情重灾区,现需要紧挨道路选一点建临时防控指挥部,且使此重灾区到临时防控指挥部的距离最短,则此点是()A.A点B.B点C.C点D.D点【答案】A【解答】解:由题意可知,A点到此重灾区到临时防控指挥部的距离最短,故选:A.6.(2022春•虞城县月考)点A,B,C为直线l上三点,点P为直线外一点,若P A=4cm,PB=2cm,PC=3cm,那么点P到直线的距离可能是()A.5cm B.4cm C.3cm D.2cm【答案】D【解答】解:因为垂线段最短,所以点P到直线l的距离为不大于2cm.故选:D.7.(2021秋•鼓楼区校级期末)下列说法正确的是()A.不相交的两条直线叫做平行线B.同一平面内,过一点有且仅有一条直线与已知直线垂直C.平角是一条直线D.过同一平面内三点中任意两点,只能画出3条直线【答案】B【解答】解:A.应强调在同一平面内,错误;B.同一平面内,过一点有且仅有一条直线与已知直线垂直,正确;C.直线与角是不同的两个概念,错误;D.过同一平面内三点中任意两点,能画出3条直线或1条直线,故错误.故选:B.8.(2022春•鹿邑县月考)如图,两条直线相交于一点,如果∠1+∠3=60°,则∠2的度数是()A.150°B.120°C.60°D.30°【答案】A【解答】解:∵∠1+∠3=60°,∠1=∠3,∴∠1=∠3=30°,又∵∠2+∠3=180°,∴∠2=180°﹣30°=150°,故选:A.9.(2022春•崇川区校级月考)如图,在同一平面内,OA⊥l,OB⊥l,垂足为O,则OA与OB重合的理由是()A.两点确定一条直线B.垂线段最短C.同一平面内,过一点有且只有一条直线与已知直线垂直D.已知直线的垂线只有一条【答案】C【解答】解:在同一平面内,OA⊥l,OB⊥l,垂足为O,则OA与OB重合的理由是:同一平面内,过一点有且只有一条直线与已知直线垂直.故选:C10.(2022春•朔州月考)如图,已知直线EF,CD相交于点O,OA⊥OB,OC平分∠AOF,若∠AOE=40°,则∠BOD的度数为()A.10°B.20°C.25°D.30°【答案】B【解答】解:∵OA⊥OB,∴∠AOB=90°,又∵∠AOE=40°,∴∠AOF=180°﹣40°=140°,又∵OC平分∠AOF,∴∠AOC=×140°=70°,∴∠BOD=180°﹣90°﹣70°=20°.故选:B.11.(2020•运城模拟)如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【答案】C【解答】解:如图,棋子“炮”的坐标为(3,﹣2).故选:C.12.(2015•重庆)在平面直角坐标系中,若点P的坐标为(﹣3,2),则点P所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解答】解:∵点的横坐标﹣3<0,纵坐标2>0,∴这个点在第二象限.故选:B.13.(2015•宝应县校级模拟)点P(m+3,m﹣1)在x轴上,则点P的坐标为()A.(0,﹣2)B.(2,0)C.(4,0)D.(0,﹣4)【答案】C【解答】解:∵点P(m+3,m﹣1)在x轴上,∴m﹣1=0,解得m=1,∴m+3=1+3=4,∴点P的坐标为(4,0).故选:C.14.(2015•日照)4的算术平方根是()A.B.±2C.2D.±【答案】C【解答】解:4的算术平方根是2.故选:C.15.(2021•商河县校级模拟)若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣5【答案】B【解答】解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.16.(2015•枣庄)实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c 【答案】D【解答】解:∵由图可知,a<b<0<c,∴A、ac<bc,故A选项错误;B、∵a<b,∴a﹣b<0,∴|a﹣b|=b﹣a,故B选项错误;C、∵a<b<0,∴﹣a>﹣b,故C选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故D选项正确.故选:D.17.(2016•毕节市)估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【答案】B【解答】解:∵2=<=3,∴3<<4,故选:B.18.(2015•安顺)点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为()A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)D.(﹣1,0)【答案】A【解答】解:根据题意,得点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,所得点的横坐标是﹣2﹣1=﹣3,纵坐标是﹣3+3=0,即新点的坐标为(﹣3,0).故选:A.19.(2020•徐州模拟)在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解答】解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选:B.20.(2021•商河县校级模拟)若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y=()A.﹣1B.1C.5D.﹣5【答案】A【解答】解:由题意,得x=2,y=﹣3,x+y=2+(﹣3)=﹣1,故选:A.21.(2019•通辽)的平方根是()A.±4B.4C.±2D.+2【答案】C【解答】解:=4,±=±2,故选:C.22.(2016•毕节市)的算术平方根是()A.2B.±2C.D.【答案】C【解答】解:=2,2的算术平方根是.故选:C.23.(2021•玉州区二模)若0<a<1,则a,,a2从小到大排列正确的是()A.a2<a<B.a<<a2C.<a<a2D.a<a2<【答案】A【解答】解:∵0<a<1,∴设a=,=2,a2=,∵<<2,∴a2<a<.故选:A.24.(2021秋•卫辉市期末)如图,AB∥ED,∠B=115°,∠D=120°,则∠BCD的度数为()A.125°B.135°C.115°D.105°【答案】A【解答】解:如图,过点C作CM∥AB,∵AB∥ED,∴CM∥AB∥ED,∴∠B+∠BCM=180°,∠D+∠DCM=180°,∵∠B=115°,∠D=120°,∴∠BCM=65°,∠DCM=60°,∴∠BCD=∠BCM+∠DCM=125°,故选:A.25.(2022春•定海区校级月考)在下面四个数中,是无理数的是()A.3.1415B.C.D.【答案】B【解答】解:A.3.1415是有限小数,属于有理数,故本选项不合题意;B.是无理数,故本选项符合题意;C.是分数,属于有理数,故本选项不合题意;D.,是整数,属于有理数,故本选项不合题意.故选:B.26.(2022春•孝义市月考)一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上行驶,那么两次拐弯的方向可能是()A.第一次右转40°,第二次右转50°B.第一次右转40°,第二次左转50°C.第一次右转40°,第二次左转140°D.第一次右转40°,第二次左转40°【答案】D【解答】解:如图,两次拐弯后,仍在原来的方向上平行行驶,即转弯前与转弯后的道路是平行的,因而右转的角与左转的角应相等,理由是两直线平行,同位角相等.故选:D.27.(2022•淮北模拟)如图,有一个角为30°的直角三角板放置在一个长方形直尺上,若∠1=18°,则∠2的度数为()A.162°B.142°C.138°D.135°【答案】C【解答】解:如图,由题意得:∠E=90°,∠A=30°,DF∥BC,∴∠EDF=∠ECB,∵∠ECB是△ABC的外角,∴∠ECB=∠A+∠1=48°,∴∠EDF=48°,∵∠2是△DEF的外角,∴∠2=∠E+∠EDF=138°.故选:C.28.(2022春•鹿邑县月考)下列语句中是真命题的是()A.对顶角相等吗?B.内错角相等C.直角都是90°D.等角的补角互余【答案】C【解答】解:A、对顶角相等吗?不是命题,不符合题意;B、两直线平行,内错角相等,故本选项说法是假命题,不符合题意;C、直角都是90°,是真命题,本选项符合题意;D、等角的补角相等,故本选项说法是假命题,不符合题意;故选:C.29.(2021秋•开福区校级期末)如图,△ABC沿BC方向平移到△DEF的位置,若BE=3cm,则平移的距离为()A.1cm B.2cm C.3cm D.4cm【答案】C【解答】解:△ABC沿BC方向平移到△DEF的位置,若BE=3cm,则平移的距离为3cm,故选:C.30.(2021秋•浚县期末)如图,下列不能判定DE∥BC的条件是()A.∠B=∠ADE B.∠2=∠4C.∠1=∠3D.∠ACB+∠DEC=180°【答案】C【解答】解:A、∠B=∠ADE,能判定DE∥BC,不符合题意;B、∠2=∠4,能判定DE∥BC,不符合题意;C、∠1=∠3,能判定DF∥EC,符合题意;D、∠ACB+∠DEC=180°,能判定DE∥BC,不符合题意.故选:C.31.(2022春•江油市月考)如图,要使AD∥BC,则需要添加的条件是()A.∠A=∠CBE B.∠A=∠C C.∠C=∠CBE D.∠A+∠D=180°【答案】A【解答】解:A、∵∠A=∠CBE,∴AD∥BF,符合题意;B、由∠A=∠C无法得到AD,不符合题意;C、由∠C=∠CBE,只能得到AB∥CD,无法得到AD∥BF,不符合题意;D、由∠A+∠D=180°,只能得到AB∥CD,无法得到AD∥BF,不符合题意;故选:A.32.(2021秋•泌阳县期末)如图,直线a、b都与直线c相交,有下列条件:①∠1=∠2;②∠4=∠5;③∠8=∠1;④∠6+∠7=180°.其中,能够判断a∥b的是()A.①②③④B.①③C.②③④D.①②【答案】A【解答】解:①∵∠1=∠2,∴a∥b,故本小题正确;②∵4=∠5,∴a∥b,故本小题正确;③∵∠8=∠1,∠8=∠2,∴∠1=∠2,∴a∥b,故本小题正确;④∵∠6+∠7=180°,∠6+∠2=180°,∴∠7=∠2,∴a∥b,故本小题正确.故选:A.33.(2021春•老河口市期末)点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,则点P的坐标为()A.(3,3)B.(3,﹣3)C.(6,﹣6)D.(3,3)或(6,﹣6)【答案】D【解答】解:∵点P的坐标为(2﹣a,3a+6),且到两坐标轴的距离相等,∴|2﹣a|=|3a+6|,∴2﹣a=±(3a+6)解得a=﹣1或a=﹣4,即点P的坐标为(3,3)或(6,﹣6).故选:D.34.(2020秋•三明期末)在平面直角坐标系中,点M在第四象限,到x轴,y轴的距离分别为6,4,则点M的坐标为()A.(4,﹣6)B.(﹣4,6)C.(﹣6,4)D.(﹣6,﹣4)【答案】A【解答】解:因为点M在第四象限,所以其横、纵坐标分别为正数、负数,又因为点M到x轴的距离为6,到y轴的距离为4,所以点M的坐标为(4,﹣6).故选:A35.(2021•柳南区校级模拟)如果≈1.333,≈2.872,那么约等于()A.28.72B.0.2872C.13.33D.0.1333【答案】C【解答】解:∵≈1.333,∴=≈1.333×10=13.33.故选:C.36.(2021秋•覃塘区期末)如图,已知直线AB与CD相交于点O,OE平分∠AOD,∠EOF =90°.对于下列结论:①∠BOC=2∠AOE;②OF平分∠BOD;③∠AOE是∠BOF的余角;④∠AOE是∠COE的补角.其中正确结论的个数是()A.1B.2C.3D.4【答案】D【解答】解:∵直线AB与CD相交于点O,∴∠AOD=∠BOC,∵OE平分∠AOD,∴∠AOD=2∠AOE=2∠DOE,∴∠BOC=2∠AOE,故①正确;∵∠EOF=90°,∴∠EOD+∠DOF=90°,∠AOE+∠BOF=90°,即∠AOE是∠BOF的余角,故③正确;∴∠FOD=∠BOF,∴OF平分∠BOD,故②∵∠AOE=∠DOE,∠DOE+∠COE=180°,∴∠COE+∠AOE=180°,即∠AOE是∠COE的补角,故④正确,故选:D.。
(必考题)初中数学七年级下期中经典复习题(含答案解析)
一、选择题1.如图,已知∠1=∠2,其中能判定AB ∥CD 的是( )A .B .C .D .2.如图,将△ABC 沿BC 方向平移3cm 得到△DEF,若△ABC 的周长为20cm ,则四边形ABFD 的周长为( )A .20cmB .22cmC .24cmD .26cm 3.如图,将△ABC 沿直线AB 向右平移后到达△BDE 的位置,若∠CAB=50º,∠ABC=100º,则∠CBE 的度数为( )A .45°B .30°C .20°D .15° 4.点A 在x 轴的下方,y 轴的右侧,到x 轴的距离是3,到y 轴的距离是2,则点A 的坐标是( ) A .()23-, B .()23, C .()32,- D .()32--,5.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=( )A .100°B .130°C .150°D .80°6.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( )A .3B .5C .7D .97.设42-的整数部分为a ,小整数部分为b ,则1a b -的值为( ) A .2- B .2 C .212+ D .212- 8.如图,点E 在AB 的延长线上,则下列条件中,不能判定AD BC ∥的是( )A .180D DCB ∠+∠=︒B .13∠=∠C .24∠∠=D .CBE DAE ∠=∠ 9.若a <b <0,则在ab <1、1a >b 1、ab >0、b a >1、-a >-b 中正确的有( ) A .2个B .3个C .4个D .5个 10.下列现象中是平移的是( )A .将一张纸对折B .电梯的上下移动C .摩天轮的运动D .翻开书的封面 11.在平面直角坐标系中,将点(0,1)A 做如下的连续平移,第1次向右平移得到点1(1,1)A , 第2次向下平移得到点()21,1A -,第3次向右平移得到点()341A -,第4次向下平移得到点()44,5?·····A -按此规律平移下去,则15A 的点坐标是( )A .()64,55-B .()65,53-C .()66,56-D .()67,58- 12.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的度数是( )A .第一次右拐50°,第二次左拐130°B .第一次左拐50°,第二次右拐50°C .第一次左拐50°,第二次左拐130°D .第一次右拐50°,第二次右拐50° 13.过一点画已知直线的垂线,可画垂线的条数是( )A .0B .1C .2D .无数 14.甲、乙、丙、丁一起研究一道数学题,如图,已知 EF ⊥AB ,CD ⊥AB ,甲说:“如果还知道∠CDG=∠BFE ,则能得到∠AGD=∠ACB .”乙说:“如果还知道∠AGD=∠ACB ,则能得到∠CDG=∠BFE .”丙说:“∠AGD 一定大于∠BFE .”丁说:“如果连接 GF ,则 GF ∥AB .”他们四人中,正确的是( )A .0 个B .1 个C .2 个D .3 个 15.若x y <,则下列不等式中成立的是( ) A .11x y ->-B .22x y -<-C .22x y < D .3232x y -<- 二、填空题16.m 的3倍与n 的差小于10,用不等式表示为______________.17.在平面直角坐标系内,点P (m-3,m-5)在第四象限中,则m 的取值范围是_____18.11133+=112344+=113455+=,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.19.已知:m 、n 为两个连续的整数,且m 11<n mn _____.2046________.21.根据不等式的基本性质,可将“mx <2”化为“x >2m”,则m 的取值范围是_____. 229________.23.知a ,b 为两个连续的整数,且5a b <<,则ba =______.24.将命题“对顶角相等”用“如果……那么……”的形式可以改写为______.25.对非负实数x “四舍五入”到个位的值记为x ,即当n 为非负整数时,若1122n x n -≤<+,则x n =,如0.460=,3.674=,给出下列关于x 的结论: ①1.4931=; ②22x x =; ③若1142x -=,则实数x 的取值范围是911x ≤<; ④当0x ≥,m 为非负整数时,有20182018m x m x +=+; ⑤x y x y +=+;其中,正确的结论有_________(填写所有正确的序号).三、解答题26.某校学生会向全校1900名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(1)求本次接受随机抽样调查的学生人数及图①中m 的值;(2)本次调查获取的样本数据的平均数是 ,众数是 ,中位数是 ; (3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.27.列一元一次不等式(组)解决问题:永安六中学生会准备组织七年级和八年级共60名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶,为了保证所收集的塑料瓶总数不少于1000个,至少需要多少名八年级学生参加活动?28.已知方程组71ax by x y +=⎧⎨-=⎩和53ax by x y -=⎧⎨+=⎩的解相同,求a 和b 的值. 29.求不等式()()922312m m ---≥-的所有正整数解. 30.先填空,再完成证明,证明:平行于同一条直线的两条直线平行,已知:如图,直线a 、b 、c 中,求证:_______________.证明:【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.D2.D3.B4.A5.A6.B7.D8.C9.B10.B11.A12.B13.B14.C15.C二、填空题16.3m-n<10【解析】【分析】根据题意利用不等符号进行连接即可得出答案【详解】解:由题意可得:3m-n<10故答案为:3m-n<10【点睛】本题考查不等式的书写17.3<m<5【解析】【分析】根据点所处的位置可以判定其横纵坐标的正负进而能得到关于m的一元一次不等式组求解即可【详解】解:∵点P(m﹣3m﹣5)在第四象限∴解得:3<m<5故答案为3<m<5【点睛】本18.【解析】【分析】观察分析可得则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式找出题中的规律是解19.【解析】【分析】利用无理数的估算先取出mn的值然后代入计算即可得到答案【详解】解:∵∴∵mn为两个连续的整数∴∴;故答案为:【点睛】本题考查了无理数的估算解题的关键是熟练掌握无理数的估算正确得到mn20.6【解析】【分析】求出在哪两个整数之间从而判断的整数部分【详解】∵又∵36<46<49∴6<<7∴的整数部分为6故答案为:6【点睛】本题考查无理数的估算正确掌握整数的平方数是解题的关键21.m<0【解析】因为mx<2化为x>根据不等式的基本性质3得:m<0故答案为:m<022.【解析】【分析】根据算术平方根的性质求出=3再求出3的算术平方根即可【详解】解:∵=33的算术平方根是∴的算术平方根是故答案为:【点睛】本题考查算术平方根的概念和求法正数的算术平方根是正数0的算术平23.6【解析】【分析】直接利用的取值范围得出ab的值即可得出答案【详解】∵ab为两个连续的整数且∴a=2b=3∴3×2=6故答案为:6【点睛】此题考查估算无理数的大小正确得出ab的值是解题关键24.如果两个角是对顶角那么这两个角相等【解析】【分析】命题中的条件是两个角相等放在如果的后面结论是这两个角的补角相等应放在那么的后面【详解】题设为:对顶角结论为:相等故写成如果…那么…的形式是:如果两个25.①③④【解析】【分析】对于①可直接判断②⑤可用举反例法判断③④我们可以根据题意所述利用不等式判断【详解】∵1-<1493<1+∴故①正确当x=03时=12=0故②错误;∵∴4-≤x-1<4+解得:9三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】由∠1=∠2结合“内错角(同位角)相等,两直线平行”得出两平行的直线,由此即可得出结论.【详解】A、∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行);B、∵∠1=∠2,∠1、∠2不是同位角和内错角,∴不能得出两直线平行;C、∠1=∠2,∠1、∠2不是同位角和内错角,∴不能得出两直线平行;D、∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行).故选D.【点睛】本题考查了平行线的判定,解题的关键是根据相等的角得出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等(或互补)的角,找出平行的直线是关键.2.D解析:D【解析】平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD=BE=3,DF=AC,DE=AB,EF=BC,所以:四边形ABFD的周长为:AB+BF+FD+DA=AB+BE+EF+DF+AD=AB+BC+CA+2AD=20+2×3=26.故选D.点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.3.B解析:B【解析】【分析】根据平移的性质得出AC∥BE,以及∠CAB=∠EBD=50°,∠ABC=100º,进而求出∠CBE 的度数.【详解】解:∵将△ABC沿直线AB向右平移后到达△BDE的位置,∴AC∥BE,∴∠CAB=∠EBD=50°(两直线平行,同位角相等),∵∠ABC=100°,∴∠CBE的度数为:180°-50°-100°=30°.故选B.【点睛】此题主要考查了平移的性质以及直线平行的性质,得出∠CAB=∠EBD=50°是解决问题的关键.4.A解析:A【解析】【分析】根据点A在x轴的下方,y轴的右侧,可知点A在第四象限,根据到x轴的距离是3,到y 轴的距离是2,可确定出点A的横坐标为2,纵坐标为-3,据此即可得.【详解】∵点A在x轴的下方,y轴的右侧,∴点A的横坐标为正,纵坐标为负,∵到x轴的距离是3,到y轴的距离是2,∴点A的横坐标为2,纵坐标为-3,故选A.【点睛】本题考查了点的坐标,熟知点到x轴的距离是点的纵坐标的绝对值,到y轴的距离是横坐标的绝对值是解题的关键.5.A解析:A【解析】1=1303=502=23=100∠︒∴∠︒∴∠∠︒ .故选A.6.B解析:B【解析】【分析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.7.D解析:D【解析】【分析】【详解】解:∵1<2<4,∴12<2,∴﹣2<2-<﹣1,∴2<423,∴a=2,b=42222=22-∴1222 22122ab+-===-故选D.【点睛】本题考查估算无理数的大小.8.C解析:C【解析】【分析】根据平行线的判定方法一一判断即可:A.同旁内角互补,两直线平行;B、C内错角相等,两直线平行;D.同位角相等,两直线平行,再根据结果是否能判断//AD BC,即可得到答案.【详解】解:A.180D DCB ∠+∠=︒,∴//AD BC ,此项正确,不合题意; B. 13∠=∠,∴//AD BC ,此项正确,不合题意;C. ∵∠2=∠4,∴CD ∥AB ,∴不能判定//AD BC ,此项错误,符合题意; D. CBE DAE ∠=∠,∴//AD BC ,此项正确,不合题意.故选:C .【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.9.B解析:B【解析】【分析】根据不等式的性质即可求出答案.【详解】解:①∵a <b <0,∴ab 不一定小于1,故①错误;②∵a <b <0, ∴1a >b1,故②正确; ③∵a <b <0,ab >0,故③正确;④∵a <b <0,b a<1,故④错误; ⑤∵a <b <0,-a >-b ,故⑤正确,故选B.【点睛】此题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.10.B解析:B【解析】【分析】根据平移的概念,依次判断即可得到答案;【详解】解:根据平移的概念:把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,判断:A 、将一张纸对折,不符合平移定义,故本选项错误;B 、电梯的上下移动,符合平移的定义,故本选项正确;C 、摩天轮的运动,不符合平移定义,故本选项错误;D 、翻开的封面,不符合平移的定义,故本选项错误.故选B .【点睛】本题考查平移的概念,在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.11.A解析:A【解析】【分析】根据题中条件可得到奇数次时,平移的方向和单位长度;偶数次时,平移的方向和单位长度的规律,按照该规律即可得解.【详解】解:由题意得第1次向右平移1个单位长度,第2次向下平移2个单位长度,第3次向右平移3个单位长度,第4次向下平移4个单位长度,……根据规律得第n 次移动的规律是:当n 为奇数时,向右平移n 个单位长度,当n 为偶数时,向下平移n 个单位长度,∴15A 的横坐标为0+1+3+5+7+9+11+13+15=64纵坐标为1-(2+4+6+8+10+12+14)=-55∴15A ()64,55-故选A .【点睛】本题考查了坐标与图形变化——平移. 解题的关键是分析出题目的规律,找出题目中点的坐标的规律.12.B解析:B【解析】【分析】根据两条直线平行的性质:两条直线平行,同位角相等.再根据题意得:两次拐的方向不相同,但角度相等.【详解】解:如图,第一次拐的角是∠1,第二次拐的角是∠2,由于平行前进,可以得到∠1=∠2.因此,第一次与第二次拐的方向不相同,角度要相同,故只有B选项符合,故选B.【点睛】此题主要考查了平行线的性质,注意要想两次拐弯后,仍在原来的方向上平行前进,则拐的方向应相反,角度应相等.13.B解析:B【解析】【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答.【详解】在平面内,过一点有且只有一条直线与已知直线垂直,故选:B【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.14.C解析:C【解析】【分析】根据EF⊥AB,CD⊥AB,可得EF//CD,①根据∠CDG=∠BFE结合两直线平行,同位角相等可得∠CDG=∠BCD,由此可得DG//BC,再根据两直线平行,同位角相等可得甲的结论;②根据∠AGD=∠ACB可得DG//BC,再根据平行线的性质定理可得乙的结论;③根据已知条件无法判断丙的说法是否正确;④根据已知条件无法判断丁的说法是否正确.【详解】解:∵CD⊥AB,FE⊥AB,∴CD∥EF,∴∠BFE=∠BCD,①∵∠CDG=∠BFE,∴∠CDG=∠BCD,∴DG∥BC,∴∠AGD=∠ACB,∴甲正确;②∵∠AGD=∠ACB ,∴DG ∥BC ,∴∠CDG=∠BCD ,∴∠CDG=∠BFE ,∴乙正确;③DG 不一定平行于BC ,所以∠AGD 不一定大于∠BFE ;④如果连接GF ,则只有GF ⊥EF 时丁的结论才成立;∴丙错误,丁错误;故选:C .【点睛】本题考查平行线的性质和判定.熟记定理,并能正确识图,依据定理完成角度之间的转换是解决此题的关键.15.C解析:C【解析】【分析】各项利用不等式的基本性质判断即可得到结果.【详解】由x <y ,可得:x-1<y-1,-2x >-2y ,3232x y -->,22x y <, 故选:C .【点睛】此题考查不等式的性质,熟练掌握不等式的性质是解题的关键.二、填空题16.3m -n <10【解析】【分析】根据题意利用不等符号进行连接即可得出答案【详解】解:由题意可得:3m -n <10故答案为:3m -n <10【点睛】本题考查不等式的书写 解析:3m -n <10.【解析】【分析】根据题意利用不等符号进行连接即可得出答案.【详解】解:由题意可得:3m -n <10故答案为:3m -n <10.【点睛】本题考查不等式的书写. 17.3<m <5【解析】【分析】根据点所处的位置可以判定其横纵坐标的正负进而能得到关于m 的一元一次不等式组求解即可【详解】解:∵点P (m ﹣3m ﹣5)在第四象限∴解得:3<m<5故答案为3<m<5【点睛】本解析:3<m<5【解析】【分析】根据点所处的位置可以判定其横纵坐标的正负,进而能得到关于m的一元一次不等式组,求解即可.【详解】解:∵点P(m﹣3,m﹣5)在第四象限,∴3050 mm->⎧⎨-<⎩解得:3<m<5.故答案为3<m<5.【点睛】本题考查了点的坐标及一元一次不等式组的解法,解题的关键是根据点所处的位置得到有关m的一元一次不等式组.18.【解析】【分析】观察分析可得则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式找出题中的规律是解(1)n n=+≥【解析】【分析】=(2=+(3=+n(n≥1)的等式表示出来是(1)n n=+≥【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是(1)n n=+≥(1)n n=+≥【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.19.【解析】【分析】利用无理数的估算先取出mn 的值然后代入计算即可得到答案【详解】解:∵∴∵mn 为两个连续的整数∴∴;故答案为:【点睛】本题考查了无理数的估算解题的关键是熟练掌握无理数的估算正确得到mn解析:【解析】【分析】利用无理数的估算,先取出m 、n 的值,然后代入计算,即可得到答案.【详解】<<,∴34<<,∵m 、n 为两个连续的整数,∴3m =,4n =,===;故答案为:【点睛】本题考查了无理数的估算,解题的关键是熟练掌握无理数的估算,正确得到m 、n 的值. 20.6【解析】【分析】求出在哪两个整数之间从而判断的整数部分【详解】∵又∵36<46<49∴6<<7∴的整数部分为6故答案为:6【点睛】本题考查无理数的估算正确掌握整数的平方数是解题的关键解析:6【解析】【分析】的整数部分.【详解】∵246=,2636=,2749=又∵36<46<49∴6<76故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解题的关键.21.m <0【解析】因为mx <2化为x >根据不等式的基本性质3得:m <0故答案为:m <0解析:m <0【解析】因为mx<2化为x>2m,根据不等式的基本性质3得:m<0,故答案为:m<0.22.【解析】【分析】根据算术平方根的性质求出=3再求出3的算术平方根即可【详解】解:∵=33的算术平方根是∴的算术平方根是故答案为:【点睛】本题考查算术平方根的概念和求法正数的算术平方根是正数0的算术平【解析】【分析】,再求出3的算术平方根即可.【详解】,3,.【点睛】本题考查算术平方根的概念和求法,正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.23.6【解析】【分析】直接利用的取值范围得出ab的值即可得出答案【详解】∵ab为两个连续的整数且∴a=2b=3∴3×2=6故答案为:6【点睛】此题考查估算无理数的大小正确得出ab的值是解题关键解析:6【解析】【分析】a,b的值,即可得出答案.【详解】∵a,b为两个连续的整数,且a b<<,∴a=2,b=3,∴ba=3×2=6.故答案为:6.【点睛】此题考查估算无理数的大小,正确得出a,b的值是解题关键.24.如果两个角是对顶角那么这两个角相等【解析】【分析】命题中的条件是两个角相等放在如果的后面结论是这两个角的补角相等应放在那么的后面【详解】题设为:对顶角结论为:相等故写成如果…那么…的形式是:如果两个解析:如果两个角是对顶角,那么这两个角相等【解析】【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【详解】题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么这两个角相等;【点睛】此题考查命题与定理,“如果”后面是命题的条件,“那么”后面是条件的结论,解题的关键是找到相应的条件和结论,比较简单.25.①③④【解析】【分析】对于①可直接判断②⑤可用举反例法判断③④我们可以根据题意所述利用不等式判断【详解】∵1-<1493<1+∴故①正确当x=03时=12=0故②错误;∵∴4-≤x -1<4+解得:9解析:①③④【解析】【分析】对于①可直接判断,②、⑤可用举反例法判断,③、④我们可以根据题意所述利用不等式判断.【详解】∵1-12<1.493<1+12, ∴1.4931=,故①正确,当x=0.3时,2x =1,2x =0,故②错误; ∵1142x -=, ∴4-12≤12x-1<4+12, 解得:9≤x <11,故③正确,∵当m 为非负整数时,不影响“四舍五入”, ∴2018m x +=m+2018x ,故④正确,当x=1.4,y=1.3时,1.3 1.4+=3,1.3 1.4+=2,故⑤错误,综上所述:正确的结论为①③④,故答案为:①③④【点睛】本题考查了一元一次不等式组的应用和理解题意的能力,关键是看到所得值是个位数四舍五入后的值,问题可得解.三、解答题26.(1)50、32;(2)16,10,15;(3)608人.【解析】【分析】(1)由5元的人数及其所占百分比可得总人数,用10元人数除以总人数可得m的值;(2)根据统计图可以分别得到本次调查获取的样本数据的平均数、众数和中位数;(3)根据统计图中的数据可以估计该校本次活动捐款金额为10元的学生人数.【详解】÷=人,解:(1)本次接受随机抽样调查的学生人数为48%5016⨯=,100%32%∴=,32m故答案为:50、32;⨯=,(2)15元的人数为5024%12本次调查获取的样本数据的平均数是:1(45161012151020830)16(元),50本次调查获取的样本数据的众数是:10元,本次调查获取的样本数据的中位数是:15元;⨯=人.(3)估计该校本次活动捐款金额为10元的学生人数为190032%608【点睛】本题考查条形统计图、扇形统计图、用样本估计总体、中位数、众数,解题的关键是明确题意,找出所求问题需要的条件.27.至少有20名八年级学生参加活动.【解析】【分析】设需要七x个年级学生参加活动,则参加活动的八年级学生为(60-x)个,由收集塑料瓶总数不少于1000个建立不等式求出其解即可.【详解】解:设至少有x名八年级学生参加活动,-名,依题意得:则参加活动的七年级学生有(60)x-+≥x x15(60)201000x≥解得:20答:至少有20名八年级学生参加活动.【点睛】此题考查列一元一次不等式解实际问题,一元一次不等式的解法的运用,解答时由收集塑料瓶总数不少于1000个建立不等式是解题关键.28.31a b =⎧⎨=⎩【解析】【分析】因为两个方程组有相同的解,故只要将两个方程组中不含有a ,b 的两个方程联立,组成新的方程组,求出x 和y 的值,再代入含有a ,b 的两个方程中,解关于a ,b 的方程组即可得出a ,b 的值.【详解】解:依题意得13x y x y -=⎧⎨+=⎩:,解得21x y =⎧⎨=⎩:, 将其分别代入7ax by +=和5ax by -=组成一个二元一次方程组2725a b a b +=⎧⎨-=⎩, 解得:31a b =⎧⎨=⎩. 【点睛】本题考查了方程组的解的定义,正确根据定义转化成解方程组的问题是关键,考查了学生对方程组有公共解定义的理解能力及应用能力,是一道好题.29.72m ≤,正整数解123m =、、 【解析】【分析】 去括号、移项、合并同类项、系数化成1即可求得不等式的解集,然后确定解集中的正整数解即可.【详解】解:去括号,得2m-4-3m+3 92≥-移项,得2m-3m ≥4-3-92, 合并同类项,得-m ≥-72, 系数化为1得72m ≤, 则不等式的正整数解为 1,2,3.【点睛】本题考查了一元一次不等式的解法,解不等式的依据是不等式的性质,要注意不等号方向的变化.30.见解析【解析】【分析】写出已知,求证,利用平行线的判定定理证明即可.【详解】已知:如图,直线a 、b 、c 中,//b a ,//c a .求证://b c .证明:作直线a 、b 、c 的截线DF ,交点分别为D 、E 、F ,∵//b a ,∴12∠=∠.又∵//c a ,∴13∠=∠.∴23∠∠=.∴//b c .【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.。
人教版数学七年级下学期《期中检测题》附答案
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共40分)1. 已知的值不大于3-,用不等式表示的范围是( )A. 3a >-B. 3a <-C. 3a ≥-D. 3a ≤- 2. 若代数式31x -的值为4-,则的值为( )A. 1B.C. 53-D. 353. 下列各组中,不是二元一次方程37x y +=的解的是( )A. 14x y =⎧⎨=⎩B. 07x y =⎧⎨=⎩C. 32x y =⎧⎨=-⎩D. 1.53.5x y =⎧⎨=⎩4. 若a b >,则下列不等式中错误的是( )A. 22a b +>+B.22a b > C. 22a b -<- D. 22a b > 5. 将方程3213123x x x -++=-去分母,正确的是( ) A. ()()18336221x x x +-=-+B. ()()3331221x x x +-=-+C. ()()93321x x x +-=-+D. ()()33121x x x +-=-+6. 某文具店开展促销活动,某种笔记本原价每本元,第一次每本按原价打“六折”,第二次每本再降1元,经两次降价后售价为8元,依题意,可列方程为( )A. 0.68x x -=B. 0.0618x -=C. 80.61x -=D. 0.618x -= 7. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A. x y 50{x y 180=-+=B. x y 50{x y 180=++=C. x y 50{x y 90=++= D. x y 50{x y 90=-+=8. 《九章算术》是中国传统数学重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为人,物价为钱,则下列方程组正确的是( )A. 8374x y y x -=⎧⎨-=⎩B. 8374y x y x -=⎧⎨-=⎩C. 8374y x x y -=⎧⎨-=⎩D. 8374x y x y -=⎧⎨-=⎩ 9. 若关于x ,y 的方程组2315x y m x y +=+⎧-=-⎨⎩的解满足x +y =-3,则m 的值为( ) A. 2- B. 2 C. D. 110. 已知关于,x y 的二元一次方程组43335x y m x y m +=-⎧⎨-=-⎩,则关于代数式x y -的值的说法正确的是( ). A. 随增大而增大 B. 随减小而减小C. 既可能随增大而增大,也可能随减小而减小D. 与的大小无关 二、填空题(共24分)11. 若2x =-是方程520x k +=解,则k =__________.12. 已知二元一次方程235x y +=,若用含的代数式表示,则y =_______.13. 已知关于的不等式()15m x ->的解集为51x m <-,则的取值范围是_________. 14. 已知320a b --=,那么261a b -+=_________.15. 方程组457x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是_____________.16. 若不等式组24x x m-≤⎧⎨<⎩无解,则的取值范围是____________. 三、解答题(共86分)17. 解方程:()()103421x x x --=+.18. 解不等式组:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩,并把它解集在数轴上表示出来.19. 在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18-,求,a b 的值. 20. 一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,求这个两位数.21. 已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,求a +b 的值. 22. 某商店需要购进甲、乙两种商品共1000件,其进价和售价如下表所示:(1)若商店计划销售完这批商品后能获利4200元,则甲、乙两种商品应分别购进多少件;(2)若该商店销售完这批商品后获利要多于5000元,则至少应购进乙种商品多少件?23. 在等式y =kx +b (k ,b 为常数)中,当x =2时,y =﹣5;当x =﹣1时,y =4.(1)求k 、b 的值;(2)若不等式5﹣2x >m +4x 的最大整数解是k ,求m 的取值范围.24. 一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由;(3)已知(),m n “相伴数对”,试说明91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对”. 25. 某体育彩票经销商计划用4500元从省体彩中心购进彩票20捆,已知体彩中心有、、三种不同价格的彩票,进价分别是彩票每捆150元,彩票每捆200元,彩票每捆250元.(1)若经销商同时购进两种不同型号的彩票20捆,刚好用去4500元,请你帮助设计进票方案;(2)若销售型彩票每捆获手续费20元,型彩票每捆获手续费30元,型彩票每捆获手续费50元.在问题(1)设计的购进两种彩票的方案中,为使销售完时获得的手续费最多,你选择哪种进票方案?(3)若经销商准备用4500元同时购进、、三种彩票20捆,请你帮助经销商设计进票方案.答案与解析一、选择题(共40分)1. 已知的值不大于3-,用不等式表示的范围是( )A. 3a >-B. 3a <-C. 3a ≥-D. 3a ≤- [答案]D[解析][分析]的值不大于3-就是的值小于或等于3-,据此解答即可.[详解]解:的值不大于3-,用不等式表示的范围是:3a ≤-.故选:D .[点睛]本题考查了列出问题中的不等式,解题的关键是正确理解题意、把“不大于”转化为“≤”. 2. 若代数式31x -的值为4-,则的值为( )A. 1B. C. 53- D. 35[答案]B[解析]分析]根据题意,列出关于x 的一元一次方程314x -=-,通过解该方程可以求得x 的值.[详解]解:由题意,得314x -=-,解得1x =-;故选B .[点睛]本题考查一元一次方程的解法及一元一次方程的解的定义.牢记解一元一次方程的步骤及一元一次方程的解的定义是解题的关键.3. 下列各组中,不是二元一次方程37x y +=的解的是( ) A. 14x y =⎧⎨=⎩ B. 07x y =⎧⎨=⎩ C. 32x y =⎧⎨=-⎩ D. 1.53.5x y =⎧⎨=⎩[答案]D[解析][分析]把各选项中的x 、y 的值逐一代入计算即得答案.[详解]解:A 、把14x y =⎧⎨=⎩代入原方程,得3147⨯+=,∴14x y =⎧⎨=⎩是方程37x y +=的解,本选项不符合题意; B 、把07x y =⎧⎨=⎩代入原方程,得3077⨯+=,∴07x y =⎧⎨=⎩是方程37x y +=的解,本选项不符合题意; C 、把32x y =⎧⎨=-⎩代入原方程,得3327⨯-=,∴32x y =⎧⎨=-⎩是方程37x y +=的解,本选项不符合题意; D 、把 1.53.5x y =⎧⎨=⎩代入原方程,得3 1.5 3.587⨯+=≠,∴ 1.53.5x y =⎧⎨=⎩不是方程37x y +=的解,本选项符合题意. 故选:D .[点睛]本题考查了二元一次方程的解的定义,属于基础题型,熟练掌握二元一次方程的解的概念是解题关键. 4. 若a b >,则下列不等式中错误的是( )A. 22a b +>+B. 22a b >C. 22a b -<-D. 22a b > [答案]D[解析][分析]根据不等式的性质逐项判断即可.[详解]解:A 、不等式a b >两边同时加上2,得22a b +>+,所以本选项变形正确,不符合题意; B 、在不等式a b >两边同时除以2,得22a b >,所以本选项变形正确,不符合题意; C 、在不等式a b >两边同时乘以﹣2,得22a b -<-,所以本选项变形正确,不符合题意;D 、由a b >不能得出22a b >,如1>﹣2,但()2212<-,所以本选项变形错误,符合题意.故选:D .[点睛]本题考查了不等式的性质,属于基础题型,熟练掌握不等式的性质是解题关键.5. 将方程3213123x x x -++=-去分母,正确的是( ) A. ()()18336221x x x +-=-+ B. ()()3331221x x x +-=-+C. ()()93321x x x +-=-+D. ()()33121x x x +-=-+ [答案]A[解析][分析]根据去分母的方法:原方程两边同时乘以6可得答案.[详解]解:原方程两边同时乘以6,得:()()18336221x x x +-=-+.故选:A .[点睛]本题考查了一元一次方程解法,属于基本题型,熟练掌握去分母的方法是解本题的关键.6. 某文具店开展促销活动,某种笔记本原价每本元,第一次每本按原价打“六折”,第二次每本再降1元,经两次降价后售价为8元,依题意,可列方程为( )A 0.68x x -=B. 0.0618x -=C. 80.61x -=D. 0.618x -=[答案]D[解析][分析]由题意可得第一次每本笔记本按原价打“六折”后售价为0.6x 元,第二次降价后的售价为()0.61x -元,进一步即可列出方程.[详解]解:根据题意可列方程为:0.618x -=.故选:D .[点睛]本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.7. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A. x y 50{x y 180=-+= B. x y 50{x y 180=++= C. x y 50{x y 90=++= D. x y 50{x y 90=-+= [答案]C[解析] [详解]根据平角和直角定义,得方程x+y=90;根据∠1比∠2的度数大50°,得方程x=y+50.可列方程组为5090x y x y =+⎧⎨+=⎩,故选C . 考点:1.由实际问题抽象出二元一次方程组;2.余角和补角.8. 《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为人,物价为钱,则下列方程组正确的是( )A. 8374x y y x -=⎧⎨-=⎩B. 8374y x y x -=⎧⎨-=⎩C. 8374y x x y -=⎧⎨-=⎩D. 8374x y x y -=⎧⎨-=⎩ [答案]A[解析][分析]设合伙人数为人,物价为钱,根据该物品价格不变,即可得出关于x 、y 的二元一次方程组,进而得到答案.[详解]解:设合伙人数为人,物价为钱,根据该物品价格不变,即可得出关于x 、y 的二元一次方程组为:8374x y y x -=⎧⎨-=⎩, 故选:A ;[点睛]本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.9. 若关于x ,y 的方程组2315x y m x y +=+⎧-=-⎨⎩的解满足x +y =-3,则m 的值为( ) A. 2-B. 2C.D. 1[答案]C[解析][分析]先把m 看作是常数,解关于x ,y 二元一次方程组,求得用m 表示的x ,y 的值后,再代入3x+2y=19,建立关于m 的方程,解出m 的数值. [详解]x 2y 3m 1x y 5+=+⎧-=-⎨⎩①②, ①-②得:y=m+2③,把③代入②得:x=m-3,∵x+y=-3,∴m-3+m+2=-3,∴m=-1.故选C .[点睛]本题实质是解二元一次方程组,先用m 表示出x ,y 的值后,再求解关于m 的方程,解方程组关键是消元.10. 已知关于,x y 的二元一次方程组43335x y m x y m +=-⎧⎨-=-⎩,则关于代数式x y -的值的说法正确的是( ). A. 随增大而增大B. 随减小而减小C. 既可能随增大而增大,也可能随减小而减小D. 与的大小无关[答案]D[解析][分析]方程组中的两个方程相加,再两边同时除以2即可进行判断. [详解]解:对方程组43335x y m x y m +=-⎧⎨-=-⎩①②,①+②,得()21x y -=-,即12x y -=-, ∴代数式x y -的值与的大小无关.故选:D .[点睛]本题考查了二元一次方程组的特殊解法,属于常考题型,灵活应用整体的思想方法是解题的关键.二、填空题(共24分)11. 若2x =-是方程520x k +=的解,则k =__________.[答案]5[解析][分析]将2x =-代入方程520x k +=即可求算.[详解]解:∵2x =-是方程520x k +=的解,2x =-代入方程:∴1020k -+=,解得:5k =故答案为:5[点睛]本题考查一元一次方程的解,掌握一元一次方程解的意义是解题关键.12. 已知二元一次方程235x y +=,若用含的代数式表示,则y =_______.[答案]523x - [解析][分析]移项,把x 看做已知数求出y 即可.[详解]解:二元一次方程235x y +=,移项得:352y x =-, 即:523x y, 故答案为:523x -; [点睛]此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .13. 已知关于的不等式()15m x ->的解集为51x m <-,则的取值范围是_________. [答案]1m <[解析][分析]根据不等式的性质可得10m -<,解不等式即得答案.[详解]解:由题意得:10m -<,解得:1m <.故答案为:1m <.[点睛]本题考查了不等式的性质和一元一次不等式的解法,属于基础题型,熟练掌握不等式的性质是解题的关键14. 已知320a b --=,那么261a b -+=_________.[答案]5[解析][分析]由已知可得32a b -=,然后将所求的代数式变形为()231a b -+后再整体代入求解即可.[详解]解:∵320a b --=,∴32a b -=,∴()2612312215a b a b -+=-+=⨯+=.故答案为:5.[点睛]本题考查了代数式求值,属于基本题型,熟练掌握整体代入的思想方法是解答的关键. 15. 方程组457x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是_____________.[答案]314x y z =⎧⎪=⎨⎪=⎩[解析][分析]根据解三元一次方程组的方法解答即可.[详解]解:对457x yy zx z+=⎧⎪+=⎨⎪+=⎩①②③,①+②+③,得()216x y z++=,即8x y z++=④,④-①,得z=4, ④-②,得x=3, ④-③,得y=1,∴方程组的解是:314xyz=⎧⎪=⎨⎪=⎩.故答案为:314 xyz=⎧⎪=⎨⎪=⎩.[点睛]本题考查了三元一次方程组的解法,属于基本题型,熟练掌握解三元一次方程组的方法是解答的关键.16. 若不等式组24xx m-≤⎧⎨<⎩无解,则的取值范围是____________.[答案]2m≤-[解析][分析]先求出不等式的解集,再根据无解得出m的取值范围.[详解]解:24xx m-≤⎧⎨<⎩①②由①得:2x≥-由②得:x m<∵不等式组无解,没有公共部分∴2m≤-故答案为:2m≤-[点睛]本题考查不等式组参数问题,掌握求解不等式组的方法是解题关键.三、解答题(共86分)17. 解方程:()()103421x x x --=+.[答案]2x =-[解析][分析]根据解一元一次方程的方法和步骤解答即可.[详解]解:去括号,得1031222x x x -+=+,移项,得1032212x x x --=-,合并同类项,得510x =-,系数化为1,得2x =-.[点睛]本题考查了一元一次方程的解法,属于基础题型,熟练掌握解一元一次方程的方法是解题的关键.18. 解不等式组:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩,并把它的解集在数轴上表示出来.[答案]0x <,图见解析[解析][分析]分别解出每一个不等式,再求出公共部分即可,然后在数轴上表示.[详解]解:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩①②由①得:3x ≤由②得:0x <∴不等式组的解集为:0x <该不等式组解集在数轴上表示如图:[点睛]本题考查一元一次不等式组,掌握一元一次不等式组的解法是解题关键.19. 在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18-,求,a b 的值.[答案]a=5,b=-2[分析]将3x =,2y =时,ax by +的值是11;当2x =-,4y =时,ax by +的值是18-分别代入得出关于a 、b 的二元一次方程组,解方程即可.[详解]解:∵在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18- ∴32112418a b a b +=⎧⎨-+=-⎩①②由②得:29a b =+ ③将③代入①得:()329211b b ++= 解得:2b =-将2b =-代入③解得:5a =∴a=5,b=-2[点睛]本题考查代数式,将已知条件代入建立关于a 、b 的二元一次方程组是解题关键.20. 一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,求这个两位数.[答案]这个两位数为45.[解析][分析]要求这个两位数,可以转化为求个位数字与十位数字分别是多少,若设原数的个位数字是x ,则十位数字是9﹣x ,则原数是10(9﹣x )+x ,新数是10x +(9﹣x ),然后根据等量关系:新数=原数+9即可列出方程,解方程即得结果.[详解]解:设原两位数的个位数字是x ,则十位数字是9﹣x .根据题意得:10x +(9-x )=10(9﹣x )+x +9解得:x =5,则9﹣x =4,答:这个两位数为45.[点睛]本题考查了一元一次方程的应用之数字问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.21. 已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,求a +b 的值. [答案]16[解析]根据题意列出x 和y 的方程组,然后进行求解,将解代入另外的两个方程求出a 和b 的值,进而即可求解.[详解]解方程组5325x y x y +=⎧⎨-=⎩,得12x y =⎧⎨=-⎩. 把12x y =⎧⎨=-⎩代入5451ax y x by +=⎧⎨+=⎩,得142a b =⎧⎨=⎩∴a+b=16.22. 某商店需要购进甲、乙两种商品共1000件,其进价和售价如下表所示:(1)若商店计划销售完这批商品后能获利4200元,则甲、乙两种商品应分别购进多少件;(2)若该商店销售完这批商品后获利要多于5000元,则至少应购进乙种商品多少件?[答案](1)购进甲种商品800件,购进乙种商品200件;(2)334;[解析][分析](1)设购进甲种商品x 件,购进乙种商品y 件,根据购进甲乙两种商品共1000件及销售完这批商品后能获利4200元,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进乙种商品a 件,则购进甲种商品(1000-a )件,根据总利润=单件利润×购进数量结合该商店销售完这批商品后获利要多于5000元,即可得出关于a 的一元一次不等式,解之取其中的最小的整数即可得出结论.[详解]解:(1)设购进甲种商品x 件,购进乙种商品y 件,根据题意得:()()1000181544354200x y x y +⎧⎨-+-⎩== , 解得:800200x y ⎧⎨⎩== , 则购进甲种商品800件,购进乙种商品200件,答:购进甲种商品800件,购进乙种商品200件;(2)设购进乙种商品a 件,则购进甲种商品(1000-a )件,根据题意得:(44-35)a+(18-15)(1000-a )>5000,解得:10003a > , ∵a 为整数,∴a 的最小值为334.答:至少应购进乙种商品334件.[点睛]本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,列出关于a 的一元一次不等式.23. 在等式y =kx +b (k ,b 为常数)中,当x =2时,y =﹣5;当x =﹣1时,y =4.(1)求k 、b 的值;(2)若不等式5﹣2x >m +4x 的最大整数解是k ,求m 的取值范围.[答案](1)31k b =-⎧⎨=⎩;(2)7≤m <13 [解析][分析](1)把25x y ⎧⎨⎩==﹣和14x y ⎧⎨⎩=﹣=代入y =kx +b ,可得254k b k b +=-⎧⎨-+=⎩,再解出关于k,b 的二元一次方程组即可解出k 、b 的值;(2)解不等式5﹣2x >m +4x 得x <56m -,再根据不等式最大整数解是k =-3,来得到m 的取值范围. [详解]解:(1)根据题意可得:254k b k b +=-⎧⎨-+=⎩解得:31k b =-⎧⎨=⎩; (2)解不等式5﹣2x >m +4x ,得:x <56m -, 因为该不等式的最大整数解是k ,即﹣3,所以﹣3<56m -≤﹣2, 解得:7≤m <13.[点睛]主要考查二元一次方程组的解与一元一次不等式的整数解.24. 一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(),a b .(1)若()1,b 为“相伴数对”,试求的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由;(3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对”. [答案](1)94b =-;(2)92,2⎛⎫- ⎪⎝⎭(答案不唯一);(3)见解析 [解析][分析] (1)根据“相伴数对”的定义,将()1,b 代入2323a b a b ++=+,从而求算答案; (2)先根据“相伴数对”的定义算出a 、b 之间的关系为:94a b =-,满足条件即可;(3)将将,a m b n == 代入2323a b a b ++=+得出49m n ,再将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到491,94n n -+-⎛⎫ ⎪⎝⎭,分别去计算等式左右两边,看是否恒等即可. [详解]解:(1)∵()1,b 为“相伴数对”,将()1,b 代入2323a b a b ++=+得: 112323b b ++=+ ,去分母得:()151061b b +=+ 解得:94b =- (2)2323a b a b ++=+化简得:94a b =- 只要满足这个等量关系即可,例如:92,2⎛⎫-⎪⎝⎭(答案不唯一) (3)∵(),m n 是“相伴数对” 将,a m b n == 代入2323a b a b ++=+: ∴2323m n m n ++=+ ,化简得:49m n 将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到:491,94n n -+-⎛⎫ ⎪⎝⎭ 将:491,94a n b n =-+=- 代入2323a b a b ++=+左边=49149 942336n n n-+--+=右边=49149 942336n n n-++--=+∴左边=右边∴当(),m n是“相伴数对”时,91,4m n⎛⎫⎪⎝+⎭-也是“相伴数对”[点睛]本题考查定义新运算,正确理解定义是解题关键.25. 某体育彩票经销商计划用4500元从省体彩中心购进彩票20捆,已知体彩中心有、、三种不同价格的彩票,进价分别是彩票每捆150元,彩票每捆200元,彩票每捆250元.(1)若经销商同时购进两种不同型号的彩票20捆,刚好用去4500元,请你帮助设计进票方案;(2)若销售型彩票每捆获手续费20元,型彩票每捆获手续费30元,型彩票每捆获手续费50元.在问题(1)设计的购进两种彩票的方案中,为使销售完时获得的手续费最多,你选择哪种进票方案?(3)若经销商准备用4500元同时购进、、三种彩票20捆,请你帮助经销商设计进票方案.[答案](1)购进A种彩票5捆,C种彩票15捆或B种彩票与C种彩票各10捆;(2)A种彩票5捆,C种彩票15捆;(3)方案1:A种1捆,B种8捆,C种11捆;方案2:A种2捆,B种6捆,C种12捆;方案3:A种3捆,B 种4捆,C种13捆;方案4:A种4捆,B种2捆,C种14捆.[解析][分析](1)因为彩票有A,B,C三种不同型号,而经销商同时只购进两种,所以要将A,B,C两两组合,分三种情况:A,B;A,C;B,C,每种情况都可以根据下面两个相等关系列出方程,两种不同型号的彩票捆数之和=20,购买两种不同型号的彩票钱数之和=4500,然后根据实际含义即可确定他们的解;(2)根据上一问分别求出每一种情况的手续费,然后进行比较即可得出结果;(3)有两个等量关系:A彩票扎数+B彩票扎数+C彩票扎数=20,购买A彩票钱数+购买B彩票钱数+购买C 彩票钱数=4500;可设三个未知数,然后用含有同一个未知数的代数式去表示另外的两个未知数,再根据三个未知数都是正整数,并结合实际意义即可求出结果.[详解]解:(1)若设购进A种彩票x捆,B种彩票y捆,根据题意得:201502004500x yx y+=⎧⎨+=⎩,解得:1030xy=-⎧⎨=⎩,∵x<0,∴此种情况不合题意;若设购进A种彩票x捆,C种彩票y捆,根据题意得:201502504500x yx y+=⎧⎨+=⎩,解得:515xy=⎧⎨=⎩,若设购进B种彩票x捆,C种彩票y捆,根据题意得:202002504500x yx y+=⎧⎨+=⎩,解得:1010xy=⎧⎨=⎩,综上所述,若经销商同时购进两种不同型号的彩票,共有两种方案:即购进A种彩票5捆,C种彩票15捆或B 种彩票与C种彩票各10捆;(2)若购进A种彩票5捆,C种彩票15捆,销售完后可获手续费为:20×5+50×15=850(元);若购进B种彩票与C种彩票各10捆,销售完后可获手续费为:30×10+50×10=800(元);∴为使销售完后获得手续费最多,应选择的方案为:A种彩票5捆,C种彩票15捆;(3)设购进A种彩票m捆,B种彩票n捆,C种彩票h捆.由题意得:201502002504500m n hm n h++=⎧⎨++=⎩,解得:10210h mn m=+=-+⎧⎨⎩,∵m、n都是正整数,∴1≤m<5,∴m=1,2,3,4,所以共有4种进票方案,具体如下:方案1:A种1捆,B种8捆,C种11捆;方案2:A种2捆,B种6捆,C种12捆;方案3:A种3捆,B种4捆,C种13捆;方案4:A种4捆,B种2捆,C种14捆.[点睛]此题考查了二元一次方程组的应用,属于常考题型,正确理解题意、分三种情况求解是解第(1)小题的关键,用含有同一个未知数的代数式去表示另外的两个未知数并结合未知数的实际意义是解第(3)小题的关键.。
实数必刷常考题七年级数学下学期期中期末满分必刷常考压轴题人教版
专题02 实数必刷常考题选择题必练1.4的平方根是( )A.±2B.2C.﹣2D.162.能与数轴上的点一一对应的是( )A.整数B.有理数C.无理数D.实数3.下列各组数中,互为相反数的一组是( )A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与24.如图,在数轴上表示实数的点可能是( )A.点P B.点Q C.点M D.点N5.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有( )A.1个B.2个C.3个D.4个6.设n为正整数,且n<<n+1,则n的值为( )A.5B.6C.7D.87.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④是17的平方根.其中正确的有( )A.0个B.1个C.2个D.3个8.已知|a|=5,=7,且|a+b|=a+b,则a﹣b的值为( )A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12 9.估算﹣2的值( )A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间10.若a2=4,b2=9,且ab<0,则a﹣b的值为( )A.﹣2B.±5C.5D.﹣511.若0<a<1,则a,,a2从小到大排列正确的是( )A.a2<a<B.a<<a2C.<a<a2D.a<a2<12.已知一个表面积为12dm2的正方体,则这个正方体的棱长为( )A.1dm B.dm C.dm D.3dm 13.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是( )A.a+b>0B.ab>0C.a﹣b>0D.|a|﹣|b|>0填空题必练14.16的平方根是.15.的平方根是.16.的算术平方根是.17.化简:||= .18.比较大小:.(填“>”、“=”、“<”).19.比较大小:(填“>”“<”“=”).20.若实数a、b满足|a+2|,则= .21.已知一个正数的平方根是3x﹣2和5x+6,则这个数是 .23.若|a﹣2|++(c﹣4)2=0,则a﹣b+c= .24.若的整数部分是a,小数部分是b,则a﹣b= .解答题必练25.计算:|﹣3|﹣×+(﹣2)2.26.计算:﹣12+(﹣2)3×﹣×(﹣)27.计算.28.求下列各式中x的值:①(x﹣2)2=25;②﹣8(1﹣x)3=27.29.解方程:(1)3(x﹣2)2=27 (2)2(x﹣1)3+16=0.30.已知2a+1的平方根是±3,5a+2b﹣2的算术平方根是4,求3a﹣4b的平方根.31.已知5a+2的立方根是3,3a+b﹣1的算术平方根是4,c是的整数部分.(1)求a,b,c的值;(2)求3a﹣b+c的平方根.32.已知4a+7的立方根是3,2a+2b+2的算术平方根是4.(1)求a,b的值;(2)求6a+3b的平方根.33.已知一个正数的两个平方根是m+3和2m﹣15.(1)求这个正数是多少?(2)的平方根又是多少?34.如图1,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.(3)把正方形ABCD放到数轴上,如图2,使得A与﹣1重合,那么D在数轴上表示的数为 .专题02 实数必刷常考题选择题必练1.4的平方根是( )A.±2B.2C.﹣2D.16【答案】A【解答】解:∵(±2 )2=4,∴4的平方根是±2.故选:A.2.能与数轴上的点一一对应的是( )A.整数B.有理数C.无理数D.实数【答案】D【解答】解:根据实数与数轴上的点是一一对应关系.故选:D.3.下列各组数中,互为相反数的一组是( )A.﹣2与B.﹣2与C.﹣2与﹣D.|﹣2|与2【答案】A【解答】解:A、=2,﹣2与2互为相反数,故选项正确;B、=﹣2,﹣2与﹣2不互为相反数,故选项错误;C、﹣2与不互为相反数,故选项错误;D、|﹣2|=2,2与2不互为相反数,故选项错误.故选:A.4.如图,在数轴上表示实数的点可能是( )A.点P B.点Q C.点M D.点N【答案】C【解答】解:∵9<15<16,∴3<<4,∴对应的点是M.故选:C.5.下列各数中,3.14159,,0.131131113…(相邻两个3之间1的个数逐次加1个),﹣π,,,无理数的个数有( )A.1个B.2个C.3个D.4个【答案】B【解答】解:由定义可知无理数有:0.131131113…,﹣π,共两个.故选:B.6.设n为正整数,且n<<n+1,则n的值为( )A.5B.6C.7D.8【答案】D【解答】解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选:D.7.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④是17的平方根.其中正确的有( )A.0个B.1个C.2个D.3个【答案】B【解答】解:①实数和数轴上的点一一对应,故①说法错误;②不带根号的数不一定是有理数,如π,故②说法错误;③负数有立方根,故③说法错误;④∵17的平方根±,∴是17的一个平方根.故④说法正确.故选:B.8.已知|a|=5,=7,且|a+b|=a+b,则a﹣b的值为( )A.2或12B.2或﹣12C.﹣2或12D.﹣2或﹣12【答案】D【解答】解:∵|a|=5,∴a=±5,∵=7,∴b=±7,∵|a+b|=a+b,∴a+b>0,所以当a=5时,b=7时,a﹣b=5﹣7=﹣2,当a=﹣5时,b=7时,a﹣b=﹣5﹣7=﹣12,所以a﹣b的值为﹣2或﹣12.故选:D.9.估算﹣2的值( )A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【答案】C【解答】解:∵5<<6,∴3<﹣2<4.故选:C.10.若a2=4,b2=9,且ab<0,则a﹣b的值为( )A.﹣2B.±5C.5D.﹣5【答案】B【解答】解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.11.若0<a<1,则a,,a2从小到大排列正确的是( )A.a2<a<B.a<<a2C.<a<a2D.a<a2<【答案】A【解答】解:∵0<a<1,∴设a=,=2,a2=,∵<<2,∴a2<a<.故选:A.12.已知一个表面积为12dm2的正方体,则这个正方体的棱长为( )A.1dm B.dm C.dm D.3dm【答案】B【解答】解:因为正方体的表面积公式:s=6a2,可得:6a2=12,解得:a=.故选:B13.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是( )A.a+b>0B.ab>0C.a﹣b>0D.|a|﹣|b|>0【答案】C【解答】解:A、∵b<﹣1<0<a<1,∴|b|>|a|,∴a+b<0,故选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,故选项B错误;C、∵b<﹣1<0<a<1,∴a﹣b>0,故选项C正确;D、∵b<﹣1<0<a<1,∴|a|﹣|b|<0,故选项D错误.故选:C.填空题必练14.16的平方根是.【答案】±4【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.15.的平方根是.【答案】±2【解答】解:∵=4∴的平方根是±2.故答案为:±216.的算术平方根是.【答案】2【解答】解:∵=4,∴的算术平方根是=2.故答案为:2.17.化简:||= .【答案】【解答】解:∵<0∴||=2﹣.故答案为:2﹣.18.比较大小:.(填“>”、“=”、“<”).【答案】<【解答】解:∵=∴∴故答案为:<.19.比较大小:(填“>”“<”“=”).【答案】>【解答】解:∵﹣1>1,∴>.故填空结果为:>.20.若实数a、b满足|a+2|,则= .【答案】1【解答】解:根据题意得:,解得:,则原式==1.故答案是:1.21.已知一个正数的平方根是3x﹣2和5x+6,则这个数是 .【答案】【解答】解:根据题意可知:3x﹣2+5x+6=0,解得x=﹣,所以3x﹣2=﹣,5x+6=,∴()2=故答案为:.23.若|a﹣2|++(c﹣4)2=0,则a﹣b+c= .【答案】3【解答】解:∵|a﹣2|++(c﹣4)2=0,∴a﹣2=0,b﹣3=0,c﹣4=0,∴a=2,b=3,c=4.∴a﹣b+c=2﹣3+4=3.故答案为:324.若的整数部分是a,小数部分是b,则a﹣b= .【答案】1【解答】解:因为,所以a=1,b=.故===1.故答案为:1.解答题必练25.计算:|﹣3|﹣×+(﹣2)2.【答案】2【解答】解:原式=3﹣4+×(﹣2)+4=3﹣4﹣1+4=2.26.计算:﹣12+(﹣2)3×﹣×(﹣)【答案】-3【解答】解:原式=﹣1﹣8×+3×(﹣)=﹣1﹣1﹣1=﹣3.27.计算.【答案】-5【解答】解:原式=﹣1+﹣5=1﹣1﹣5=﹣5.28.求下列各式中x的值:①(x﹣2)2=25;②﹣8(1﹣x)3=27.【答案】①x1=7,x2=﹣3②x=【解答】解:①x﹣2=±5∴x﹣2=5或x﹣2=﹣5∴x1=7,x2=﹣3;②(1﹣x)3=﹣∴1﹣x=﹣∴x=.29.解方程:(1)3(x﹣2)2=27 (2)2(x﹣1)3+16=0.【答案】(1)x=5或﹣1 (2)x=﹣1.【解答】解:(1)3(x﹣2)2=27,∴(x﹣2)2=9,∴x﹣2=±3,∴x=5或﹣1.(2)2(x﹣1)3+16=0.2(x﹣1)3=﹣16,(x﹣1)3=﹣8,x﹣1=﹣2,∴x=﹣1.30.已知2a+1的平方根是±3,5a+2b﹣2的算术平方根是4,求3a﹣4b的平方根.【答案】±4【解答】解:∵2a+1的平方根是±3,∴2a+1=9,解得a=4,∵5a+2b﹣2的算术平方根是4,∴5a+2b﹣2=16,解得b=﹣1,∴3a﹣4b=3×4﹣4×(﹣1)=12+4=16,∴3a﹣4b的平方根是±4.31.已知5a+2的立方根是3,3a+b﹣1的算术平方根是4,c是的整数部分.(1)求a,b,c的值;(2)求3a﹣b+c的平方根.【答案】(1)a=5,b=2,c=3.(2)±4【解答】解:(1)∵5a+2的立方根是3,3a+b﹣1的算术平方根是4,∴5a+2=27,3a+b﹣1=16,∴a=5,b=2,∵c是的整数部分,∴c=3.(2)将a=5,b=2,c=3代入得:3a﹣b+c=16,∴3a﹣b+c的平方根是±4.32.已知4a+7的立方根是3,2a+2b+2的算术平方根是4.(1)求a,b的值;(2)求6a+3b的平方根.【答案】(1)a=5,b=2;(2)±6【解答】解:(1)∵4a+7的立方根是3,2a+2b+2的算术平方根是4,∴4a+7=27,2a+2b+2=16,∴a=5,b=2;(2)由(1)知a=5,b=2,∴6a+3b=6×5+3×2=36,∴6a+3b的平方根为±6.33.已知一个正数的两个平方根是m+3和2m﹣15.(1)求这个正数是多少?(2)的平方根又是多少?【答案】(1)49 (2)±.【解答】解:(1)∵m+3和2m﹣15是同一个正数的平方根,则这两个数互为相反数.即:(m+3)+(2m﹣15)=0解得m=4.则这个正数是(m+3)2=49.(2)=3,则它的平方根是±.34.如图1,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.(3)把正方形ABCD放到数轴上,如图2,使得A与﹣1重合,那么D在数轴上表示的数为 .【答案】(1)4 (2)阴影部分的面积是8,边长是2.(3)﹣1﹣2.【解答】解:(1).答:这个魔方的棱长为4.(2)∵魔方的棱长为4,∴小立方体的棱长为2,∴阴影部分面积为:×2×2×4=8,边长为:=2.答:阴影部分的面积是8,边长是2.(3)D在数轴上表示的数为﹣1﹣2.故答案为:﹣1﹣2.。
【解析版】初中数学七年级下期中经典复习题(课后培优)
一、选择题1.解方程组229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩得x 等于( )A .18B .11C .10D .92.汽车的“燃油效率”是指汽车每消耗1升汽油最多可行驶的公里数,如图描述了A 、B 两辆汽车在不同速度下的燃油效率情况.根据图中信息,下面4个推断中,合理的是( )①消耗1升汽油,A 车最多可行驶5千米;②B 车以40千米/小时的速度行驶1小时,最多消耗4升汽油;③对于A 车而言,行驶速度越快越省油;④某城市机动车最高限速80千米/小时,相同条件下,在该市驾驶B 车比驾驶A 车更省油.A .①④B .②③C .②④D .①③④ 3.如图所示,已知直线BF 、CD 相交于点O ,D 40∠=︒,下面判定两条直线平行正确的是( )A .当C 40∠=︒时,AB//CDB .当A 40∠=︒时,BC//DEC .当E 120∠=︒时,CD//EFD .当BOC 140∠=︒时,BF//DE4.如图,点E 在AB 的延长线上,则下列条件中,不能判定AD BC ∥的是( )A .180D DCB ∠+∠=︒B .13∠=∠C .24∠∠=D .CBE DAE ∠=∠5.下列生活中的运动,属于平移的是( )A .电梯的升降B .夏天电风扇中运动的扇叶C .汽车挡风玻璃上运动的刮雨器D .跳绳时摇动的绳子6.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A .B .C .D .7.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=-B .5{1+52x y x y =+=C .5{2-5x y x y =+=D .-5{2+5x y x y ==8.在平面直角坐标系中,将点(0,1)A 做如下的连续平移,第1次向右平移得到点1(1,1)A , 第2次向下平移得到点()21,1A -,第3次向右平移得到点()341A -,第4次向下平移得到点()44,5?·····A -按此规律平移下去,则15A 的点坐标是( )A .()64,55-B .()65,53-C .()66,56-D .()67,58-9.把一张50元的人民币换成10元或5元的人民币,共有( )A .4种换法B .5种换法C .6种换法D .7种换法10.如图所示,在ABC 中,点D 、E 、F 分别是AB ,BC ,AC 上,且EF ∥AB ,要使DF ∥BC ,还需添加条件是( )A .∠1=∠2B .∠1=∠3C .∠3=∠4D .∠2=∠411.如图,AB ∥CD ,∠1=45°,∠3=80°,则∠2的度数为( )A .30°B .35°C .40°D .45° 12.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50° 13.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135°14.下列各组数中互为相反数的是( )A .3和2(3)-B .﹣|﹣2|和﹣(﹣2)C .﹣38和38-D .﹣2和1215.比较552、443、334的大小( )A .554433234<<B .334455432<<C .553344243<<D .443355342<< 二、填空题16.如图,已知AM//CN ,点B 为平面内一点,AB ⊥BC 于B ,过点B 作BD ⊥AM 于点D ,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180︒,∠BFC =3∠DBE ,则∠EBC 的度数为______.17.3a ++(b-2)2=0,则a b =______.18.不等式3342x x ->-的最大整数解是__________.19.若x +1是125的立方根,则x 的平方根是_________.20.若一个正数x 的平方根是2a +1和4a -13,则a =____,x =____.21.已知M 是满足不等式36a -<<的所有整数的和,N 是满足不等式x ≤3722-的最大整数,则M +N 的平方根为________.22.若规定[]a 表示不超过a 的最大整数,例[]4.34=,[]2.13-=-,若[]M a a =-,则M 的取值范围________23.9的算术平方根是________.24.将命题“对顶角相等”用“如果……那么……”的形式可以改写为______.25.有50个数据,共分成6组,第1~4组的频数分别为10,8,7,11.第5组的频率是0.16,则第6组的频数是__________. 三、解答题26.解不等式(组):(1)解不等式5132x x -+>-,并把它的解集表示在数轴上; (2)解不等式组:253(2)1210.35x x x +≥+⎧⎪-⎨+>⎪⎩, 27.如图,AD//BC ,∠A=∠C .求证:AB//DC .28.已知方程组71ax by x y +=⎧⎨-=⎩和53ax by x y -=⎧⎨+=⎩的解相同,求a 和b 的值. 29.“保护环境,人人有责”,为了更好的治理好金水河,郑州市污水处理厂决定购买A 、B 两型号污水处理设备共10台,其信息如下表:单价(万元/台) 每台处理污水量(吨/月)A 型 12 220B 型 10200 (1)设购买A 设备x 台,所需资金共为W 万元,每月处理污水总量为y 吨,试写出W 与x ,y 与x 之间的函数关系式;(2)经预算,市污水处理厂购买设备的资金不超过106万元,月处理污水量不低于2040吨,请你列举出所有购买方案,并指出哪种方案更省钱,需要多少资金?30.观察下列关于自然数的等式:① 223415-⨯=;② 225429-⨯=;③ 2274313-⨯=;…根据上述规律解决下列问题:(1)请仿照①、②、③,直接写出第4个等式: ;(2)请写出你猜想的第n 个等式(用含n 的式子表示),并证明该等式成立.【参考答案】2016-2017年度第*次考试试卷参考答案 **科目模拟测试一、选择题1.C2.C3.D4.C5.A6.A7.A8.A9.C10.B11.B12.C13.D14.B15.C二、填空题16.105°【解析】【分析】先过点作根据同角的余角相等得出根据角平分线的定义得出再设根据可得根据可得最后解方程组即可得到进而得出【详解】解:如图过点作即又平分平分设则中由可得①由可得②由①②联立方程组解17.9【解析】【分析】根据非负数的性质列式求出ab的值然后代入代数式进行计算即可得解【详解】解:根据题意得a+3=0b-2=0解得a=-3b=2所以ab=(-3)2=9故答案为:9【点睛】本题考查了非负18.0【解析】【分析】据解不等式的一般步骤:移项合并系数化为1解答【详解】解:移项得:-3x-4x>-2-3合并同类项得:-7x>-5化系数为1得:故不等式的最大整数解是0【点睛】考查了一元一次不等式的19.±2【解析】【分析】先根据立方根得出x的值然后求平方根【详解】∵x+1是125的立方根∴x+1=解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根注意一个正数的平方根有2个算20.25【解析】【分析】【详解】∵正数m的平方根是2a+1和4a−13∴2a+1+4a−13=0解得a=2∴2a+1=2×2+1=5∴m=5²=25故答案为22521.±2【解析】【分析】首先估计出a的值进而得出M的值再得出N的值再利用平方根的定义得出答案【详解】解:∵M是满足不等式-的所有整数a的和∴M=-1+0+1+2=2∵N是满足不等式x≤的最大整数∴N=222.【解析】【分析】根据题意列出不等式组解不等式组即可【详解】解:由题意可知∴∴即故答案为:【点睛】本题考查了解一元一次不等式组根据题意得出不等式组是解题的关键23.【解析】【分析】根据算术平方根的性质求出=3再求出3的算术平方根即可【详解】解:∵=33的算术平方根是∴的算术平方根是故答案为:【点睛】本题考查算术平方根的概念和求法正数的算术平方根是正数0的算术平24.如果两个角是对顶角那么这两个角相等【解析】【分析】命题中的条件是两个角相等放在如果的后面结论是这两个角的补角相等应放在那么的后面【详解】题设为:对顶角结论为:相等故写成如果…那么…的形式是:如果两个25.【解析】【分析】首先根据频率=频数÷数据总数求得第5组的频数然后根据6个组的频数和等于数据总数即可求得第6组的频数【详解】解:∵有50个数据共分成6组第5组的频率是016∴第5组的频数为50×016三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析 【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】利用加减消元法解方程组即可.【详解】229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩①②③,①+②+③得:3x+3y+3z=90.∴x+y+z=30 ④②-①得:y+z-2x=0 ⑤④-⑤得:3x=30∴x=10故答案选:C.【点睛】本题考查的是三元一次方程组的解法,掌握加减消元法是解题的关键.2.C解析:C【解析】【分析】折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.【详解】解:①由图象可知,当A车速度超过40km时,燃油效率大于5km/L,所以当速度超过40km时,消耗1升汽油,A车行驶距离大于5千米,故此项错误;②B车以40千米/小时的速度行驶1小时,路程为40km,40km÷10km/L=4L,最多消耗4升汽油,此项正确;③对于A车而言,行驶速度在0﹣80km/h时,越快越省油,故此项错误;④某城市机动车最高限速80千米/小时,相同条件下,在该市驾驶B车比驾驶A车燃油效率更高,所以更省油,故此项正确.故②④合理,故选:C.【点睛】本题考查了折线统计图,熟练读懂折线统计图是解题思的关键.3.D解析:D【解析】【分析】选项A中,∠C和∠D是直线AC、DE被DC所截形成的内错角,内错角相等,判定两直线平行;选项B中,不符合三线八角,构不成平行;选项C中,∠E和∠D是直线DC、EF被DE所截形成的同旁内角,因为同旁内角不互补,所以两直线不平行;选项D中,∠BOC的对顶角和∠D是直线BF、DE被DC所截形成的同旁内角,同旁内角互补,判定两直线平行.【详解】解:A、错误,因为∠C=∠D,所以AC∥DE;B、错误,不符合三线八角构不成平行;C、错误,因为∠C+∠D≠180°,所以CD不平行于EF;D、正确,因为∠DOF=∠BOC=140°,所以∠DOF+∠D=180°,所以BF∥DE.故选:D.【点睛】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.4.C解析:C【解析】【分析】根据平行线的判定方法一一判断即可:A.同旁内角互补,两直线平行;B 、C 内错角相等,两直线平行;D.同位角相等,两直线平行,再根据结果是否能判断//AD BC ,即可得到答案.【详解】解:A.180D DCB ∠+∠=︒,∴//AD BC ,此项正确,不合题意; B. 13∠=∠,∴//AD BC ,此项正确,不合题意;C. ∵∠2=∠4,∴CD ∥AB ,∴不能判定//AD BC ,此项错误,符合题意; D. CBE DAE ∠=∠,∴//AD BC ,此项正确,不合题意.故选:C .【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.5.A解析:A【解析】【分析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动; 旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.然后根据平移与旋转定义判断即可.【详解】电梯的升降的运动属于平移,运动的刮雨器、摇动的绳子和吊扇在空中运动属于旋转; 故选A .【点睛】此题考查了平移与旋转的意义及在实际当中的运用,关键是根据平移的定义解答.6.A解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键. 7.A解析:A【解析】【分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组.【详解】设索长为x 尺,竿子长为y 尺, 根据题意得:5152x y x y =+⎧⎪⎨=-⎪⎩. 故选A .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.8.A解析:A【解析】【分析】根据题中条件可得到奇数次时,平移的方向和单位长度;偶数次时,平移的方向和单位长度的规律,按照该规律即可得解.【详解】解:由题意得第1次向右平移1个单位长度,第2次向下平移2个单位长度,第3次向右平移3个单位长度,第4次向下平移4个单位长度,……根据规律得第n 次移动的规律是:当n 为奇数时,向右平移n 个单位长度,当n 为偶数时,向下平移n 个单位长度,∴15A 的横坐标为0+1+3+5+7+9+11+13+15=64纵坐标为1-(2+4+6+8+10+12+14)=-55∴15A ()64,55-故选A .【点睛】本题考查了坐标与图形变化——平移. 解题的关键是分析出题目的规律,找出题目中点的坐标的规律.9.C解析:C【解析】【分析】用二元一次方程组解决问题的关键是找到2个合适的等量关系.由于10元和5元的数量都是未知量,可设出10元和5元的数量.本题中等量关系为:10元的总面值+5元的总面值=50元.【详解】设10元的数量为x ,5元的数量为y .则1055000x y x y ⎧⎨≥≥⎩+=,, 解得010x y ⎧⎨⎩==,18x y ⎧⎨⎩==,26x y ⎧⎨⎩==,34x y ⎧⎨⎩==,42x y ⎧⎨⎩==,50x y ⎧⎨⎩==. 所以共有6种换法.故选C .【点睛】本题考查的知识点是二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.10.B解析:B【解析】【分析】根据平行线的性质,两直线平行同位角相等,得出∠1=∠2,再利用要使DF ∥BC ,找出符合要求的答案即可.【详解】解:∵EF ∥AB ,∴∠1=∠2(两直线平行,同位角相等),要使DF ∥BC ,只要∠3=∠2就行,∵∠1=∠2,∴还需要添加条件∠1=∠3即可得到∠3=∠2(等量替换),【点睛】此题主要考查了平行线的性质与判定、等量替换原则,根据已知找出符合要求的答案,是比较典型的开放题型.11.B解析:B【解析】分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故选B.点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.12.C解析:C【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.13.D【解析】【分析】【详解】如图所示,过E 作EG ∥AB .∵AB ∥CD ,∴EG ∥CD ,∴∠ABE +∠BEG =180°,∠CDE +∠DEG =180°,∴∠ABE +∠BED +∠CDE =360°.又∵DE ⊥BE ,BF ,DF 分别为∠ABE ,∠CDE 的角平分线,∴∠FBE +∠FDE =12(∠ABE +∠CDE )=12(360°﹣90°)=135°, ∴∠BFD =360°﹣∠FBE ﹣∠FDE ﹣∠BED =360°﹣135°﹣90°=135°.故选D .【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.14.B解析:B【解析】【分析】根据相反数的定义,找到只有符号不同的两个数即可.【详解】解:A 2(3)-3,32(3)-B 、﹣|2|=﹣222,﹣|2|2)两数互为相反数,故本选项正确;C 38238-23838-D 、﹣2和12两数不互为相反数,故本选项错误. 故选:B .【点睛】考查了相反数的定义:要知道,只有符号不同的两个数互为相反数.15.C解析:C【解析】根据幂的乘方,底数不变指数相乘都转换成指数是11的幂,再根据底数的大小进行判断即可【详解】解:255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,∵32<64<81,∴255<433<344.故选:C .【点睛】本题考查了幂的乘方的性质,解题的关键在于都转化成以11为指数的幂的形式.二、填空题16.105°【解析】【分析】先过点作根据同角的余角相等得出根据角平分线的定义得出再设根据可得根据可得最后解方程组即可得到进而得出【详解】解:如图过点作即又平分平分设则中由可得①由可得②由①②联立方程组解解析:105°【解析】【分析】先过点B 作//BG DM ,根据同角的余角相等,得出ABD CBG ∠=∠,根据角平分线的定义,得出ABF GBF ∠=∠,再设DBE α∠=,ABF β∠=,根据180CBF BFC BCF ∠+∠+∠=︒,可得(2)3(3)180αβααβ++++=︒,根据AB BC ⊥,可得290ββα++=︒,最后解方程组即可得到15ABE ∠=︒,进而得出1590105EBC ABE ABC ∠=∠+∠=︒+︒=︒.【详解】解:如图,过点B 作//BG DM ,BD AM ⊥,DB BG ∴⊥,即90ABD ABG ∠+∠=︒,又AB BC ⊥,90CBG ABG ∴∠+∠=︒,ABD CBG ∴∠=∠,BF 平分DBC ∠,BE 平分ABD ∠,DBF CBF ∴∠=∠,DBE ABE ∠=∠,ABF GBF ∴∠=∠,设DBE α∠=,ABF β∠=,则ABE α∠=,2ABD CBG α∠==∠,GBF AFB β∠==∠,33BFC DBE α∠=∠=,3AFC αβ∴∠=+,180AFC NCF ∠+∠=︒,180FCB NCF ∠+∠=︒,3FCB AFC αβ∴∠=∠=+,BCF ∆中,由180CBF BFC BCF ∠+∠+∠=︒,可得(2)3(3)180αβααβ++++=︒,①由AB BC ⊥,可得290ββα++=︒,②由①②联立方程组,解得15α=︒,15ABE ∴∠=︒,1590105EBC ABE ABC ∴∠=∠+∠=︒+︒=︒.故答案为:105°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.17.9【解析】【分析】根据非负数的性质列式求出ab 的值然后代入代数式进行计算即可得解【详解】解:根据题意得a+3=0b-2=0解得a=-3b=2所以ab=(-3)2=9故答案为:9【点睛】本题考查了非负解析:9【解析】【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得,a+3=0,b-2=0,解得a=-3,b=2,所以,a b =(-3)2=9.故答案为:9.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.0【解析】【分析】据解不等式的一般步骤:移项合并系数化为1解答【详解】解:移项得:-3x-4x>-2-3合并同类项得:-7x>-5化系数为1得:故不等式的最大整数解是0【点睛】考查了一元一次不等式的解析:0【解析】【分析】据解不等式的一般步骤:移项,合并,系数化为1解答.【详解】解:移项得:-3x-4x>-2-3.合并同类项得:-7x>-5.化系数为1得:57x .故不等式的最大整数解是0.【点睛】考查了一元一次不等式的整数解,解答此题要先求出不等式的解集,再确定最大整数解.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.19.±2【解析】【分析】先根据立方根得出x的值然后求平方根【详解】∵x+1是125的立方根∴x+1=解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根注意一个正数的平方根有2个算解析:±2【解析】【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.20.25【解析】【分析】【详解】∵正数m的平方根是2a+1和4a−13∴2a+1+4a−13=0解得a=2∴2a+1=2×2+1=5∴m=5²=25故答案为225解析:25【解析】【分析】【详解】∵正数m的平方根是2a+1和4a−13,∴2a+1+4a−13=0,解得a =2,∴2a +1=2×2+1=5, ∴m =5²=25. 故答案为2, 25.21.±2【解析】【分析】首先估计出a 的值进而得出M 的值再得出N 的值再利用平方根的定义得出答案【详解】解:∵M 是满足不等式-的所有整数a 的和∴M =-1+0+1+2=2∵N 是满足不等式x≤的最大整数∴N =2解析:±2【解析】【分析】首先估计出a 的值,进而得出M 的值,再得出N 的值,再利用平方根的定义得出答案.【详解】解:∵M a <<a 的和, ∴M =-1+0+1+2=2,∵N 是满足不等式x ∴N =2,∴M +N 2.故答案为:±2.【点睛】此题主要考查了估计无理数的大小,得出M ,N 的值是解题关键. 22.【解析】【分析】根据题意列出不等式组解不等式组即可【详解】解:由题意可知∴∴即故答案为:【点睛】本题考查了解一元一次不等式组根据题意得出不等式组是解题的关键解析:01M ≤<【解析】【分析】根据题意列出不等式组,解不等式组即可.【详解】解:由题意可知[]1a a a -<≤ ∴[]1a a a -≤-<-∴[]01a a ≤-<,即01M ≤< 故答案为:01M ≤<.【点睛】本题考查了解一元一次不等式组,根据题意得出不等式组是解题的关键.23.【解析】【分析】根据算术平方根的性质求出=3再求出3的算术平方根即可【详解】解:∵=33的算术平方根是∴的算术平方根是故答案为:【点睛】本题考查算术平方根的概念和求法正数的算术平方根是正数0的算术平【解析】【分析】,再求出3的算术平方根即可.【详解】,3,.【点睛】本题考查算术平方根的概念和求法,正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.24.如果两个角是对顶角那么这两个角相等【解析】【分析】命题中的条件是两个角相等放在如果的后面结论是这两个角的补角相等应放在那么的后面【详解】题设为:对顶角结论为:相等故写成如果…那么…的形式是:如果两个解析:如果两个角是对顶角,那么这两个角相等【解析】【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【详解】题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么这两个角相等;【点睛】此题考查命题与定理,“如果”后面是命题的条件,“那么”后面是条件的结论,解题的关键是找到相应的条件和结论,比较简单.25.【解析】【分析】首先根据频率=频数÷数据总数求得第5组的频数然后根据6个组的频数和等于数据总数即可求得第6组的频数【详解】解:∵有50个数据共分成6组第5组的频率是016∴第5组的频数为50×016解析:【解析】【分析】首先根据频率=频数÷数据总数求得第5组的频数,然后根据6个组的频数和等于数据总数即可求得第6组的频数.【详解】解:∵有50个数据,共分成6组,第5组的频率是0.16,∴第5组的频数为50×0.16=8;又∵第1~4组的频数分别为10,8,7,11,∴第6组的频数为50﹣(10+8+7+11+8)=6.故答案为6.【点睛】本题考查频数与频率.三、解答题26.(1)3x <,数轴见解析;(2)1x ≤-【解析】【分析】(1)先去分母再移项,再合并同类项,最后系数化为一即可得到答案;(2)对不等式组的第一个不等式先去括号再移项求解即可得到答案,对第二个不等式先去分母再求解即可得到,最后取两个不等式的公共部分解即可得到答案;【详解】解:(1)5132x x -+>- 去分母,得5226x x -+>-移项,得2652x x ->-+-合并同类项,得3x ->-.两边都除以-1,得3x <.这个不等式的解集在数轴上的表示如图所示:(2)解:253(2)121035x x x +≥+⎧⎪-⎨+>⎪⎩ 化解为:23655(12)30x x x -≥-⎧⎨-+>⎩, 即:145x x ≤⎧⎪⎨<⎪⎩在同一数轴上表示不等式组的两个不等式的解集,如图.所以,原不等式组的解集是1x ≤-;【点睛】本题主要考查了解不等式与解不等式组,熟记解不等式的步骤与解不等式组的步骤是解题的关键,解不等式组的时候注意的最后的结果取公共部分.27.证明见解析.【解析】【分析】根据AD ∥BC 得到∠C=∠CDE ,再根据∠A=∠C ,利用等量替换得到∠A=∠CDE 即可判定;【详解】证明:∵AD ∥BC(已知),∴∠C=∠CDE(两直线平行,内错角相等),∵∠A=∠C(已知),∴∠A=∠CDE(等量代换),∴AB ∥CD(同位角相等,两直线平行);【点睛】本题主要考查了平行四边形的性质和判定,掌握直线平行内错角相等的性质和同位角相等两直线平行的判定法则是解题的关键.28.31a b =⎧⎨=⎩【解析】【分析】因为两个方程组有相同的解,故只要将两个方程组中不含有a ,b 的两个方程联立,组成新的方程组,求出x 和y 的值,再代入含有a ,b 的两个方程中,解关于a ,b 的方程组即可得出a ,b 的值.【详解】解:依题意得13x y x y -=⎧⎨+=⎩:,解得21x y =⎧⎨=⎩:, 将其分别代入7ax by +=和5ax by -=组成一个二元一次方程组2725a b a b +=⎧⎨-=⎩, 解得:31a b =⎧⎨=⎩. 【点睛】本题考查了方程组的解的定义,正确根据定义转化成解方程组的问题是关键,考查了学生对方程组有公共解定义的理解能力及应用能力,是一道好题.29.(1)2100W x =+;202000y x =+ (2)见解析【解析】【分析】(1)根据所需资金共为W 万元=购买A 型设备x 台的资金+购买B 型设备(10-x)台的资金,可列出W 与x 的关系式;根据每月处理污水总量为=每月A 型设备处理污水量+每月B 型设备处理污水量可列出y 与x 的关系式;(2)根据购买设备的资金不超过106万元,月处理污水量不低于2040吨,列不等式组,求出方程组的整数解,分别计算各方案的资金,比较即可得答案.【详解】(1)购买A 型设备x 台,所需资金共为W 万元,每月处理污水总量为y 吨, 则W 与x 的函数关系式:()1210102100W x x x =+-=+;y 与x 的函数关系式:()22020010202000y x x x =+-=+.(2)由(1)可知:21001062020002040x x +≤⎧⎨+≥⎩, 解得:32x x ≤⎧⎨≥⎩, ∵x 为整数,∴2x =或3,当2x =时,104w =(万元);当3x =时,106w =(万元).∴购买方案有2种:方案一:A 型设备2台,B 型设备8台;方案二:A 型设备2台,B 型设备8台;购买A 型设备2台,B 型设备8台最省钱,需要104万元.【点睛】本题考查一次函数的应用及一元一次不等式组的应用,正确得出等量关系和不等关系是解题关键.30.(1)2294417-⨯=;(2)22(21)441n n n +-=+;证明见解析.【解析】【分析】(1)由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可;(2)根据前面的式子得出一般性的式子,然后根据多项式的乘法计算法则进行证明.【详解】解:(1)故答案为:2294417-⨯=;(2)猜想第n 个等式为:()2221441n n n +-=+,证明如下:∵左式=22441441n n n n ++-=+,右式=41n =+,∴左式=右式,∴该等式成立.【点睛】本题主要考查的就是规律的发现与证明,属于中等难度题型.解答这个问题的时候,关键就是找出各数之间存在的联系,然后得出答案.。
七年级第二学期数学期中考试知识点总结
七年级第二学期数学期中考试知识点总结七年级第二学期数学期中考试知识点总结总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,它可以使我们更有效率,因此十分有必须要写一份总结哦。
总结怎么写才是正确的呢?下面是小编为大家整理的七年级第二学期数学期中考试知识点总结,仅供参考,欢迎大家阅读。
七年级第二学期数学期中考试知识点总结1第一章实数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如7,32等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如(3)有特定结构的数,如0.1010010001等;(4)某些三角函数,如sin60o等考点二、实数的倒数、相反数和绝对值(3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=b,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根(310分)1、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a的平方根记做“。
a”π+8等;2、算术平方根正数a的正的平方根叫做a的算术平方根,记作“a”。
期中解答题压轴必刷常考题七年级数学下学期期中期末满分必刷常考压轴题人教版
解答题压轴必刷常考题【压轴题题必考】1.(安溪)如图,将一条数轴在原点O和点B处各折一下,AO∥BC,得到一条“折线数轴”.图中点A表示﹣20,点B表示20,点C表示36.动点M从点A出发,以2个单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点N从点C出发,以1个单位/秒的速度沿着“折线数轴”的负方向运动,从点B运动到点O期间的速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.(1)填空:点A和点C在数轴上相距56个单位长度;(2)当t为何值时,点M与点N相遇?(3)当t为何值时,M、O两点在数轴上相距的长度与N、B两点在数轴上相距的长度相等.【答案】(1)56 (2)t=(3)t的值为4或13或22或34【解答】解:(1)∵点A表示﹣20,点C表示36,∴点A和点C在数轴上相距36﹣(﹣20)=56(个单位长度),故答案为:56;(2)由题意知,N从C到B需16s,M从A到O需10s,∴M、N在OB段相遇,根据题意得:20+(t﹣10)+16+2(t﹣16)=56,解得t=,答:t为时,点M与点N相遇;(3)分四种情况:①当点M在AO上,点N在CB上时,OM=20﹣2t,BN=16﹣t,∴20﹣2t=16﹣t,解得t=4,②当M在OB上,N在CB上时,OM=t﹣10,BN=16﹣t,∴t﹣10=16﹣t,解得t=13,③当M在OB上,N在OB上时,OM=t﹣10,BN=2(t﹣16),∴t﹣10=2(t﹣16),解得t=22,④当M在BC上,N在OA上时,20+2(t﹣30)=20+(t﹣26),解得t=34,综上所述,t的值为4或13或22或34时,M、O两点在数轴上相距的长度与N、B两点在数轴上相距的长度相等.2.(朝阳)将一副三角板中的两块直角三角尺的直角顶点C按如图1方式叠放在一起,其中∠A=60°,∠D=30°,∠E=∠B=45°.(1)若∠1=25°,则∠2的度数为;(2)直接写出∠1与∠3的数量关系:;(3)直接写出∠2与∠ACB的数量关系:;(4)如图2,当∠ACE<180°且点E在直线AC的上方时,将三角尺ACD固定不动,改变三角尺BCE的位置,但始终保持两个三角尺的顶点C重合,这两块三角尺是否存在一组边互相平行?请直接写出∠ACE角度所有可能的值.【答案】(1)65°(2)∠1=∠3;(3)∠2+∠ACB=180°(4)30°或45°或120°或135°或165°.【解答】解:(1)∵∠1=25°,∠ACD=90°,∴∠2=∠ACD﹣∠1=65°,故答案为:65°;(2)∵∠1+∠2=∠ACD=90°,∠2+∠3=∠BCE=90°,∴∠1+∠2=∠2+∠3,∴∠1=∠3,故答案为:∠1=∠3;(3)∵∠ACD=∠BCE=90°,∴∠ACB+∠2=∠1+∠2+∠3+∠2=∠ACD+∠BCE=180°,即∠2+∠ACB=180°,故答案为:∠2+∠ACB=180°;(4)存在,①当BC∥AD时,∵BC∥AD,∴∠BCD=∠D=30°,∴∠ACB=90°+30°=120°,∴∠ACE=∠ACB﹣∠BCE=120°﹣90°=30°;②当BE∥AC时,如图,∵BE∥AC,∴∠ACE=∠E=45°;③当AD∥CE时,如图,∵AD∥CE,∴∠DCE=∠D=30°,∴∠ACE=90°+30°=120°;④当BE∥CD时,如图,∵BE∥CD,∴∠DCE=∠E=45°,∴∠ACE=∠ACD+∠DCE=135°;⑤当BE∥AD时,如图,过点C作CF∥AD,∵BE∥AD,CF∥AD,∴BE∥AD∥CF,∴∠ECF=∠E=45°,∠DCF=∠D=30°,∴∠DCE=30°+45°=75°,∴∠ACE=90°+75°=165°.综上所述:当∠ACE=30°或45°或120°或135°或165°时,有一组边互相平行.故答案为:30°或45°或120°或135°或165°.3.(淇县)如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.解:猜想∠BPD+∠B+∠D=360°理由:过点P作EF∥AB,∴∠B+∠BPE=180°(两直线平行,同旁内角互补)∵AB∥CD,EF∥AB,∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)∴∠EPD+∠D=180°(两直线平行,同旁内角互补)∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.【答案】(1)∠BPD=∠B+∠D(2)∠BPD=∠B﹣∠D.【解答】解:(1)∠BPD=∠B+∠D.理由:如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠1+∠2=∠B+∠D;(2)如图(3):∠BPD=∠D﹣∠B.理由:∵AB∥CD,∴∠1=∠D,∵∠1=∠B+∠P,∴∠D=∠B+∠P,即∠BPD=∠D﹣∠B;如图(4):∠BPD=∠B﹣∠D.理由:∵AB∥CD,∴∠1=∠B,∵∠1=∠D+∠P,∴∠B=∠D+∠P,即∠BPD=∠B﹣∠D.4.(西乡塘)如图,已知DC∥FP,∠1=∠2,∠DEF=30°,∠AGF=70°,FH平分∠EFG.(1)求证:DC∥AB;(2)求∠PFH的度数.【答案】(1)略(2)∠PFH的度数为20°【解答】解:(1)∵DC∥FP,∴∠C=∠2,又∵∠1=∠2,∴∠C=∠1,∴DC∥AB;(2)∵DC∥FP,DC∥AB,∠DEF=30°,∴∠DEF=∠EFP=30°,AB∥FP,又∵∠AGF=70°,∴∠AGF=∠GFP=70°,∴∠GFE=∠GFP+∠EFP=70°+30°=100°,又∵FH平分∠EFG,∴∠GFH=∠GFE=50°,∴∠PFH=∠GFP﹣∠GFH=70°﹣50°=20°.答:∠PFH的度数为20°.5.(海勃湾)如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN 上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ 平分∠EPK,求∠HPQ的度数.【答案】(1)AB∥CD(2)PF∥GH(3)∠HPQ的度数为45°【解答】解:(1)AB∥CD,理由如下:∵∠1与∠2互补,∴∠1+∠2=180°,又∵∠1=∠AEF,∠2=∠,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)∵∠PHK=∠HPK,∴∠PKG=2∠HPK.又∵GH⊥EG,∴∠KPG=90°﹣∠PKG=90°﹣2∠HPK.∴∠EPK=180°﹣∠KPG=90°+2∠HPK.∵PQ平分∠EPK,∴.∴∠HPQ=∠QPK﹣∠HPK=45°.答:∠HPQ的度数为45°.6.(黔江)(1)如图1,已知AB∥CD,则∠AEC=∠BAE+∠DCE成立吗?请说明理由;(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,若∠F AD=60°,∠ABC=40°,求∠BED的度数;(3)如图3,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,若∠F AD=α,∠ABC=β,请你求出∠BED的度数(用含α,β的式子表示).【答案】(1)成立(2)∠BED=50°(3)【解答】解:(1)成立,理由:如图1中,作EF//AB,则有EF//CD,∴∠1=∠BAE,∠2=∠DCE∴∠AEC=∠1+∠2=∠BAE+∠DCE;(2)如图2,过点E作EH//AB,∵AB//CD,∠F AD=60°,∴∠F AD=∠ADC=60°,∵DE平分∠ADC,∠ADC=60°,∴,∵BE平分∠ABC,∠ABC=40°,∴,∵AB//CD,∴AB//CD//EH,∴∠ABE=∠BEH=20°,∠CDE=∠DEH=30°,∴∠BED=∠BEH+∠DEH=50°.(3)如图3,过点E作EG//AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=β,∠ADC=∠F AD=α,∴,,∵AB//CD,∴AB//CD//EG,∴,,∴.7.(拱墅)小明同学在完成七年级下册数学第1章的线上学习后,遇到了一些问题,请你帮他解决一下.(1)如图1,已知AB∥CD,则∠AEC=∠BAE+∠DCE成立吗?请说明理由.(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,若∠F AD=50°,∠ABC=40°,求∠BED的度数.【答案】(1)∠AEC=∠BAE+∠DCE.(2)∠BED=45°【解答】解:(1)∠AEC=∠BAE+∠DCE成立,理由:过点E作EF∥AB,如图,∵EF∥AB,∴∠A=∠AEF.∵EF∥AB,AB∥CD,∴FE∥CD.∴∠C=∠CEF.∵∠AEC=∠AEF+∠CEF,∴∠AEC=∠BAE+∠DCE.(2)过点E作EH∥AB,如图,由(1)的结论可得:∠BED=∠ABE+∠EDC,∵BE平分∠ABC,∠ABC=40°,∴∠ABE=∠ABC=20°.∵∠F AD=50°,AB∥CD,∴∠ADC=∠F AD=50°.∵DE平分∠ADC,∴∠EDC=∠ADC=25°.∴∠BED=20°+25°=45°.8.(宜兴)如图①,已知PQ∥MN,且∠BAM=2∠BAN.(1)填空:∠PBA=°;(2)如图(1)所示,射线AM绕点A开始顺时针旋转至AN便立即按原速度回转至AM 位置,射线BP绕点B开始顺时针旋转至BQ便立即按原速度回转至BP位置.若AM转动的速度是每秒2度,BP转动的速度是每秒1度,若射线BP先转动30秒,射线AM才开始转动,在射线BP到达BQ之前,射线AM转动几秒,两射线互相平行?(3)如图(2),若两射线分别绕点A,B顺时针方向同时转动,速度同题(2),在射线AM到达AN之前,若两射线交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.【答案】(1)120(2)AM转动30秒或110秒(3)∠BAC=2∠BCD【解答】解:(1)∵∠BAM=2∠BAN,∠BAM+∠BAN=180°,∴∠BAM=120°.∵PQ∥MN,∴∠PBA=∠BAM=120°.故答案为:120;(2)设射线AM转动t秒,两射线互相平行,当0<t<90时,如图,AM′和BP′为经过t秒后AM,BP旋转的位置,则∠MAM′=2t°,∠PBP′=(t+30)°,∵PQ∥MN,∴∠BM′A=∠MAM′=2t°,∵AM′∥BP′,∴∠AM′B=∠PBP′.∴2t=t+30.解得:t=30;当90<t<150时,如图,AM′和BP′为经过t秒后AM,BP旋转的位置,则∠MAM′=(360﹣2t)°,∠PBP′=(t+30)°,∵PQ∥MN,∴∠BM′A=∠MAM′=2t°,∵AM′∥BP′,∴∠AM′B=∠PBP′.∴360﹣2t=t+30.解得:t=110.综上所述,当射线AM转动30秒或110秒时,两射线互相平行.(3)∠BAC与∠BCD的数量关系不会发生变化,∠BAC=2∠BCD.理由:设射线AM,BP转动时间为m秒,∴∠BAC=(2m﹣120)°,∠ABC=(120﹣t)°,∴∠ACB=180°﹣(2m﹣120)°﹣(120﹣m)°=(180﹣m)°.∵∠ACD=120°,∴∠BCD=120°﹣(180﹣m)°=(m﹣60)°.∵2m﹣120=2(m﹣60),∴∠BAC=2∠BCD.∴∠BAC与∠BCD的数量关系不会发生变化,∠BAC=2∠BCD.9.(仁寿)如图①.已知AM∥CN,点B为平面内一点,AB⊥BC于点B,过点B作BD⊥AM于点D,设∠BCN=α.(1)若α=30°,求∠ABD的度数;(2)如图②,若点E、F在DM上,连接BE、BF、CF,使得BE平分∠ABD、BF平分∠DBC,求∠EBF的度数;(3)如图③,在(2)问的条件下,若CF平分∠BCH,且∠BFC=3∠BCN,求∠EBC 的度数.【答案】(1)30°(2)45°(3)97.5°.【解答】解:(1)延长DB,交NC于点H,如图,∵AM∥CN,BD⊥AM,∴DH⊥NC.∴∠BHC=90°.∵∠BCN=α=30°,∴∠HBC=90°﹣∠BCN=60°.∵AB⊥BC,∴∠ABC=90°.∴∠ABD=180°﹣∠ABC﹣∠HBC=30°;(2)延长DB,交NC于点H,如图,∵AM∥CN,BD⊥AM,∴DH⊥NC.∴∠BHC=90°.∵∠BCN=α,∴∠HBC=90°﹣α.∵AB⊥BC,∴∠ABC=90°.∴∠ABD=180°﹣∠ABC﹣∠HBC=α.∵BE平分∠ABD,∴∠DBE=∠ABE=α.∵∠HBC=90°﹣α,∴∠DBC=180°﹣∠HBC=90°+α.∵BF平分∠DBC,∴∠DBF=∠CBF=∠DBC=45°+α.∴∠EBF=∠DBF﹣∠DBE=45°+α﹣α=45°;(3)∵∠BCN=α,∴∠HCB=180°﹣∠BCN=180°﹣α.∵CF平分∠BCH,∴∠BCF=∠HCF=∠HCB=90°﹣α.∵AM∥CN,∴∠DFC=∠HCF=90°﹣α.∵∠BFC=3∠BCN,∴∠BFC=3α.∴∠DFB=∠DFC﹣∠BFC=90°﹣α.由(2)知:∠DBF=45°+α.∵BD⊥AM,∴∠D=90°.∴∠DBF+∠DFB=90°.∴45°+α+90°﹣α=90°.解得:α=15°.∴∠FBC=∠DBF=45°+α=52.5°.∴∠EBC=∠FBC+∠EBF=52.5°+45°=97.5°.10.(邵东)点A、B在数轴上分别表示实数a、b,A、B两点之间的距离记作AB.当A、B 两点中有一点为原点时,不妨设A点在原点.如图①所示,则AB=OB=|b|=|a﹣b|.当A、B两点都不在原点时:(1)如图②所示,点A、B都在原点的右边,不妨设点A在点B的左侧,则AB=OB﹣OA=|b|﹣|a|=b﹣a=|b﹣a|=|a﹣b|(2)如图③所示,点A、B都在原点的左边,不妨设点A在点B的右侧,则AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|(3)如图④所示,点A、B分别在原点的两边,不妨设点A在点O的右侧,则AB=OB+OA =|b|+|a|=a+(﹣b)=|a﹣b|回答下列问题:(1)综上所述,数轴上A、B两点之间的距离AB=.(2)数轴上表示2和﹣4A和B之间的距离AB=.(3)数轴上表示x和﹣2的两点A和B之间的距离AB=| ,如果AB=2,则x的值为.(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为.【答案】(1)AB=|a﹣b|(2)6 (3)0或﹣4 (4)5【解答】解:(1)综上所述,数轴上A、B两点之间的距离AB=|a﹣b|;(2)数轴上表示2和﹣4的两点A和B之间的距离AB=2﹣(﹣4)=2+4=6;(3)数轴上表示x和﹣2的两点A和B之间的距离AB=|x+2|,如果AB=2,则x的值为0或﹣4;(4)若代数式|x+2|+|x﹣3|有最小值,则最小值为5.故答案为:(1)|a﹣b|;(2)6;(3)|x+2|;0或﹣4;(4)511.(广安)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,例如:数轴上表示﹣1与﹣2的两点间的距离=|﹣1﹣(﹣2)|=﹣1+2=1;而|x+2|=|x﹣(﹣2)|,所以|x+2|表示x与﹣2两点间的距离.利用数形结合思想回答下列问题:(1)数轴上表示﹣2和5两点之间的距离.(2)若数轴上表示点x的数满足|x﹣1|=3,那么x=.(3)若数轴上表示点x的数满足﹣4<x<2,则|x﹣2|+|x+4|=.【答案】(1)76(2)﹣2或4(3)6【解答】解:(1)根据题意知数轴上表示﹣2和5两点之间的距离为5﹣(﹣2)=7,故答案为:7;(2)∵|x﹣1|=3,即在数轴上到表示1和x的点的距离为3,∴x=﹣2或x=4,故答案为:﹣2或4;(3)∵|x﹣2|+|x+4|表示在数轴上表示x的点到﹣4和2的点的距离之和,且x位于﹣4到2之间,∴|x﹣2|+|x+4|=2﹣x+x+4=6,故答案为:6.12.(兴宁)如图,在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是3个单位长度,长方形ABCD的长AD是6个单位长度,长方形EFGH的长EH是10个单位长度,点E在数轴上表示的数是5.且E、D两点之间的距离为14.(1)填空:点H在数轴上表示的数是,点A在数轴上表示的数是.(2)若线段AD的中点为M,线段EH上一点N,EN=EH,M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,设运动时间为x秒,原点为O.当OM=2ON时,求x的值.(3)若长方形ABCD以每秒2个单位的速度向右匀速运动,长方形EFGH固定不动,设长方形ABCD运动的时间为t(t>0)秒,两个长方形重叠部分的面积为S,当S=12时,求此时t的值.【答案】(1)15;﹣15(2)或.(3)t的值为9或13.【解答】解:(1)由题意可得,点H在数轴上表示的数为:5+10=15;点A在数轴上表示的数为:5﹣14﹣6=﹣15.故答案为:15;﹣15.(2)∵点M是线段AD的中点,∴点M表示的数为5﹣14﹣=﹣12,又∵EN=EH,∴点N在数轴上表示的数为:5+(15﹣5)=,由题意可得,x秒时,点M在数轴上表示的数为:﹣12+4x,点N在数轴上表示的数为:﹣3x,∴OM=|4x﹣12|,ON=|3x﹣|,∵OM=2ON,∴|4x﹣12|=2|3x﹣|∴4x﹣12=2(3x﹣)或4x﹣12=﹣2(3x﹣),解得x=或x=.故答案为:或.(3)当CD与EF重合时,所用时间为=7秒,由题意得:AD与EH重合的部分为=4,如图1所示,设长方形ABCD从EF运动到AD与EH重叠部分为4时,所用的时间为t1秒,∴t1==2,∴第一次重叠面积为12时,时间t为2+7=9(秒);当AD与EH重叠部分为4时,如图2所示,设长方形ABCD从EF运动到AD与EH重叠部分为4时,所用的时间为t2秒,∴t2==6,∴第二次重叠面积S=12时,时间t为6+7=13(秒);∴当长方形ABCD与长方形EFGH重叠部分的面积为12时,t的值为9或13.13.(宣化)如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示﹣,设点B所表示的数为m.(1)实数m的值是;(2)求|m+1|+|m﹣1|的值;(3)在数轴上还有C、D两点分别表示实数c和d,且有|2c+d|与互为相反数,求2c﹣3d的平方根.【答案】(1)2﹣(2)2 (3)±4.【解答】解:(1)m=﹣+2=2﹣;(2)∵m=2﹣,则m+1>0,m﹣1<0,∴|m+1|+|m﹣1|=m+1+1﹣m=2;答:|m+1|+|m﹣1|的值为2.(3)∵|2c+d|与互为相反数,∴|2c+d|+=0,∴|2c+d|=0,且=0,解得:c=﹣2,d=4,或c=2,d=﹣4,①当c=﹣2,d=4时,所以2c﹣3d=﹣16,无平方根.②当c=2,d=﹣4时,∴2c﹣3d=16,∴2c﹣3d的平方根为±4,答:2c﹣3d的平方根为±4.14.(锦江)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时,如图2,点A、B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;如图3,当点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;如图4,当点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(﹣b)=|a﹣b|.回答下列问题:(1)数轴上表示1和6的两点之间的距离是数轴上表示2和﹣3的两点之间的距离是.(2)数轴上若点A表示的数是x,点B表示的数是﹣4,则点A和B之间的距离是,若|AB|=3,那么x为.(3)当x是时,代数式|x+2|+|x﹣1|=7.(4)若点A表示的数﹣1,点B与点A的距离是10,且点B在点A的右侧,动点P、Q 同时从A、B出发沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒个单位长度,求运动几秒后,B、P、Q三点中,有一点恰好是另两点所连线段的中点?(请写出必要的求解过程).【答案】(1)5,5(2)﹣1或﹣7 (3)﹣4或3 (4)运动或或5秒【解答】解:(1)数轴上表示1和6的两点之间的距离是|6﹣1|=5,数轴上表示2和﹣3的两点之间的距离是|2﹣(﹣3)|=5.(2)数轴上若点A表示的数是x,点B表示的数是﹣4,则点A和B之间的距离是|x+4|,若|AB|=3,则|x+4|=3,解得x=﹣1或﹣7.(3)当x>1时,|x+2|+|x﹣1|=x+2+x﹣1=7,2x=6,x=3,当x<﹣2时,|x+2|+|x﹣1|=﹣x﹣2+1﹣x=7,﹣2x=8,x=﹣4,当﹣2≤x≤1时,|x+2|+|x﹣1|=x+2+1﹣x=3≠7,∴当x=﹣4或3时,代数式|x+2|+|x﹣1|=7.(4)设运动t秒后,有一点恰好是另两点所连线段的中点,由题意,得①点B为线段PQ中点时,,解得,②点P为线段BQ中点时,,解得,③点Q为线段BP中点时,,解得t=5.答:运动或或5秒后,B、P、Q三点中,有一点恰好是另两点所连线段的中点.15.(宣化)阅读下面的文字,解答问题.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能完全地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分.请解答下列问题:(1)求出+2的整数部分和小数部分;(2)已知:10+=x+y,其中x是整数,且0<y<1,请你求出(x﹣y)的相反数.【答案】(1)3,﹣1 (2)﹣14【解答】解:(1)∵1<<2,∴3<+2<4,∴+2的整数部分是1+2=3,+2的小数部分是﹣1;(2)∵2<<3,∴12<10+<13,∴10+的整数部分是12,10+的小数部分是10+﹣12=﹣2,即x=12,y=﹣2,∴x﹣y=12﹣(﹣2)=12﹣+2=14﹣,则x﹣y的相反数是﹣14.16.(靖江)在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),则称点Q是点P的“a阶派生点”(其中a为常数,且a≠0).例如:点P(1,4)的“2阶派生点”为点Q(2×1+4,1+2×4),即点Q(6,9).(1)若点P的坐标为(﹣1,5),则它的“3阶派生点”的坐标为;(2)若点P的“5阶派生点”的坐标为(﹣9,3),求点P的坐标;(3)若点P(c+1,2c﹣1)先向左平移2个单位长度,再向上平移1个单位长度后得到了点P1.点P1的“﹣4阶派生点”P2位于坐标轴上,求点P2的坐标.【答案】(1)(2,14)(2)(﹣2,1);(3)(0,﹣15)或(,0).【解答】解:(1)3×(﹣1)+5=2;﹣1+3×5=14,∴点P的坐标为(﹣1,5),则它的“3级派生点”的坐标为(2,14).故答案为:(2,14);(2)设点P的坐标为(a,b),由题意可知,解得:,∴点P的坐标为(﹣2,1);(3)由题意,P1(c﹣1,2c),∴P1的“﹣4阶派生点“P2为:(﹣4(c﹣1)+2c,c﹣1﹣8c),即(﹣2c+4,﹣7c﹣1),∵P2在坐标轴上,∴﹣2c+4=0或﹣7c﹣1=0,∴c=2或c=﹣,∴P2(0,﹣15)或(,0).17.(黄山)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到x、y轴的距离中的最大值等于点Q到x、y轴的距离中的最大值,则称P,Q两点为“等距点”.下图中的P,Q两点即为“等距点”.(1)已知点A的坐标为(﹣3,1),①在点E(0,3),F(3,﹣3),G(2,﹣5)中,为点A的“等距点”的是;②若点B的坐标为B(m,m+6),且A,B两点为“等距点”,则点B的坐标为;(2)若T1(﹣1,﹣k﹣3),T2(4,4k﹣3)两点为“等距点”,求k的值.【答案】(1)①E、F;②(﹣3,3);(2)1或2【解答】解:(1)①∵点A(﹣3,1)到x、y轴的距离中最大值为3,∴与A点是“等距点”的点是E、F.②当点B坐标中到x、y轴距离其中至少有一个为3的点有(3,9)、(﹣3,3)、(﹣9,﹣3),这些点中与A符合“等距点”的是(﹣3,3).故答案为①E、F;②(﹣3,3);(2)T1(﹣1,﹣k﹣3),T2(4,4k﹣3)两点为“等距点”,①若|4k﹣3|≤4时,则4=﹣k﹣3或﹣4=﹣k﹣3解得k=﹣7(舍去)或k=1.②若|4k﹣3|>4时,则|4k﹣3|=|﹣k﹣3|解得k=2或k=0(舍去).根据“等距点”的定义知,k=1或k=2符合题意.即k的值是1或2.18.(延长)在平面直角坐标系中,O为坐标原点,过点A(8,6)分别作x轴、y轴的平行线,交y轴于点B,交x轴于点C,点P是从点B出发,沿B→A→C以2个单位长度/秒的速度向终点C运动的一个动点,运动时间为t(秒).(1)直接写出点B和点C的坐标B(,)、C(,);(2)当点P运动时,用含t的式子表示线段AP的长,并写出t的取值范围;(3)点D(2,0),连接PD、AD,在(2)条件下是否存在这样的t值,使S△APD=S,若存在,请求出t值,若不存在,请说明理由.四边形ABOC【答案】(1)0、6,8、0 (2)AP=8﹣2t(0≤t<4);AP=2t﹣8(4≤t≤7).(3)当t为3秒和5秒时S△APD=S四边形ABOC【解答】解:(1)B(0,6),C(8,0),故答案为:0、6,8、0;(2)当点P在线段BA上时,由A(8,6),B(0,6),C(8,0)可得:AB=8,AC=6∵AP=AB﹣BP,BP=2t,∴AP=8﹣2t(0≤t<4);当点P在线段AC上时,∵AP=点P走过的路程﹣AB=2t﹣8(4≤t≤7).(3)存在两个符合条件的t值,当点P在线段BA上时∵S△APD=AP•AC S四边形ABOC=AB•AC∴(8﹣2t)×6=×8×6,解得:t=3<4,当点P在线段AC上时,∵S△APD=AP•CD CD=8﹣2=6∴(2t﹣8)×6=×8×6,解得:t=5<7,综上所述:当t为3秒和5秒时S△APD=S四边形ABOC,19.(齐齐哈尔)如图①,在平面直角坐标系中,点A、B在x轴上,AB⊥BC,AO=OB=2,BC=3(1)写出点A、B、C的坐标.(2)如图②,过点B作BD∥AC交y轴于点D,求∠CAB+∠BDO的大小.(3)如图③,在图②中,作AE、DE分别平分∠CAB、∠ODB,求∠AED的度数.【答案】(1)A(﹣2,0),B(2,0),C(2,3);(2)90°(3)45°【解答】解:(1)依题意得:A(﹣2,0),B(2,0),C(2,3);(2)∵BD∥AC,∴∠ABD=∠BAC,∴CAB+∠BDO=∠ABD+∠BDO=90°;(3):∵BD∥AC,∴∠ABD=∠BAC,∵AE,DE分别平分∠CAB,∠ODB,∴∠CAE+∠BDE=(∠BAC+∠BDO)=(∠ABD+∠BDO)=×90°=45°,过点E作EF∥AC,则∠CAE=∠AEF,∠BDE=∠DEF,∴∠AED=∠AEF+∠DEF=∠CAE+∠BDE=45°.20.(随县)如图,在平面直角坐标系中,已知点A(0,2),B(4,0),C(4,3)三点.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,1),且四边形ABOP的面积是△ABC的面积的两倍;求满足条件的P点坐标.【答案】(1)6(2)P(﹣8,1)【解答】解:(1)∵B(4,0),C(4,3),∴BC=3,∴S△ABC=×3×4=6;(2)∵A(0,2)(4,0),∴OA=2,OB=4,∴S四边形ABOP=S△AOB+S△AOP=×4×2+×2(﹣m)=4﹣m,又∵S四边形ABOP=2S△ABC=12,∴4﹣m=12,解得:m=﹣8,∴P(﹣8,1).。
浙教版七年级下学期数学《期中考试题》含答案
浙教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题3分,共30分)1. 下列二次根式中的最简二次根式是( )A.√30B.√12C.√8D.√122. 一元二次方程x2−8x−1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x−4)2=17D.(x−4)2=153. 随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一.某中学九年级五班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是( )A.20、20B.30、20C.30、30D.20、304. 若代数式√x+1有意义,则实数x的取值范围是( )(x−3)2A.x≥−1B.x≥−1且x≠3C.x>−1D.x>−1且x≠35. 在△ABC中,AB=6,AC=8,则BC边上中线AD的取值范围为( )(提示:可以构造平行四边形)A.2<AD<14B.1<AD<7C.6<AD<8D.12<AD<166. 某经济技术开发区今年一月份工业产值达50亿元,且一月份、二月份、三月份的产值为175亿元,若设平均每月的增长率为x,根据题意可列方程( )A.50(1+x)2=175B.50+50(1+x)2=175C.50(1+x)+50(1+x)2=175D.50+50(1+x)+50(1+x)2=1757. 一个多边形截去一个角后,形成另一个多边形的内角和为720∘,那么原多边形的边数为()A.5B.5或6C.5或7D.5或6或78. 如果平行四边形ABCD被一条对角线分成两个等腰三角形,则称该平行四边形为“等腰平行四边形”,如果等腰平行四边形ABCD的一组邻边长分别为4和6,则它的面积是( )A.16√2或6√7B.8√5或6√7C.16√2D.8√59. 把代数式(a−1)√1中的a−1移到根号内,那么这个代数式等于( )1−aA.−√1−aB.√a−1C.√1−aD.−√a−110. 如下图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≅△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CEF;⑤S△ABE=S△CDE.其中正确的是()A.①②③B.①②④C.①②⑤D.①③④二、填空题(每小题3分,共24分)11. 标本−1,−2,0,1,2,方差是________.12. 若x=−2是关于x的方程x2−2ax+8=0的一个根,则a=________.=0有两个实数根,则k的取值范围是________.13. 方程(k−1)x2−√1−kx+1414. 在平面直角坐标系中,已知平行四边形的三个顶点坐标分别是O(0, 0),A(−3, 0),B(0, 2),则平行四边形第四个顶点C的坐标________.15. 在证明命题“一个三角形中至少有一个内角不大于60∘”成立时,我们利用反证法,先假设________,则可推出三个内角之和大于180∘,这与三角形内角和定理相矛盾.16. 如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m 2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为________m .17. 如图所示,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90∘,若AB =5,BC =8,则EF 的长为________.18. 任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[√3]=1,现对72进行如下操作:72→第一次 [√72]=8→第二次 [√8]=2→第三次 [√2]=1,这样对72只需进行3次操作即可变为1,类似地,对81只需进行________次操作后即可变为1;(2)只需进行3次操作后变为2的所有正整数中,最大的是________.三、解答题(共6小题,共46分)19. 计算:(1)(−√5)2−√16+√(−2)2; (2)(√18−√3)×√12.20. 用适当方法解下列方程:(1)14(x +1)2=25; (2)x 2+2x −1=0.21. 关于x 的一元二次方程(a +c)x 2+2bx +(a −c)=0,其中a,b,c 分别为△ABC 三边的长.(1)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(2)如果△ABC 是等边三角形,试求这个一元二次方程的根.22. 如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF // CE.23. 为了解甲、乙两名运动员的体能训练情况,对他们进行了跟踪测试,并把连续十周的测试成绩绘制成如图所示的折线统计图.教练组规定:体能体能测试成绩70分以上(包括70分)为合适.(1)请根据图中所提供的信息填写下表:(2)请从下面两个不同的角度对运动员体能测试结果进行判断:①依据平均数与成绩合格的次数比较甲和乙,谁的体能测试成绩较好?②依据平均数与中位数比较甲和乙,谁的体能测试成绩较好?(3)依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好.平均数中位数体能测试成绩合格次数甲________ 65________24. 某租赁公司拥有汽车100辆.据统计,当每辆车的月租金为3000元时,可全部租出.每辆车的月租金每增加50元时,未租出的车将会增加1辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的租金定为多少元时,租赁公司的月收益(租金收入扣除维护费)可达到306600元?答案与解析二、选择题(每题3分,共30分)1. 下列二次根式中的最简二次根式是( )A.√30B.√12C.√8D.√12[答案]A[解析]判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.2. 一元二次方程x2−8x−1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x−4)2=17D.(x−4)2=15[答案]C[解析]常数项移到方程的右边,再在两边配上一次项系数一半的平方,写成完全平方式即可得.3. 随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一.某中学九年级五班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是( )A.20、20B.30、20C.30、30D.20、30[答案]C[解析]根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数.4. 若代数式√x+1有意义,则实数x的取值范围是( )(x−3)2A.x≥−1B.x≥−1且x≠3C.x>−1D.x>−1且x≠3[答案]B[解析]根据被开方数大于等于0,分母不等于0列式计算即可得解.5. 在△ABC中,AB=6,AC=8,则BC边上中线AD的取值范围为( )(提示:可以构造平行四边形)A.2<AD<14B.1<AD<7C.6<AD<8D.12<AD<16[答案]B[解析]作辅助线(延长AD至点E,使AD=ED)构建平行四边形6. 某经济技术开发区今年一月份工业产值达50亿元,且一月份、二月份、三月份的产值为175亿元,若设平均每月的增长率为x,根据题意可列方程( )A.50(1+x)2=175B.50+50(1+x)2=175C.50(1+x)+50(1+x)2=175D.50+50(1+x)+50(1+x)2=175[答案]D[解析]增长率问题,一般用增长后的量=增长前的量×(1+增长率),本题可先用x表示出二月份的产值,再根据题意表示出三月份的产值,然后将三个月的产值相加,即可列出方程.7. 一个多边形截去一个角后,形成另一个多边形的内角和为720∘,那么原多边形的边数为()A.5B.5或6C.5或7D.5或6或7[答案]D[解析]首先求得内角和为720∘的多边形的边数,即可确定原多边形的边数.8. 如果平行四边形ABCD被一条对角线分成两个等腰三角形,则称该平行四边形为“等腰平行四边形”,如果等腰平行四边形ABCD的一组邻边长分别为4和6,则它的面积是( )A.16√2或6√7B.8√5或6√7C.16√2D.8√5[答案]A[解析]分AC=AB=4和AC=BC=6两种情况求得△ABC的面积后即可求得平行四边形ABCD的面积.[解答]解:如图:当AC=AB=4时,此时S△ABC=3√7,故等腰平行四边形的面积为2S△ABC=6√7;当AC=BC=6时,此时S△ABC=8√2,故等腰平行四边形的面积为2S△ABC=16√2.9. 把代数式(a−1)√1中的a−1移到根号内,那么这个代数式等于( )1−aA.−√1−aB.√a−1C.√1−aD.−√a−1[答案]A[解析] (a−1)√1(1−a)=−(1−a)√11−a=−√1−a.10. 如下图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≅△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CEF;⑤S△ABE=S△CDE.其中正确的是()A.①②③B.①②④C.①②⑤D.①③④[答案]B[解析]∵四边形ABCD是平行四边形,∴AD // BC,AD=BC.∴∠EAD=∠AEB.又∵AE平分∠BAD,∴∠BAE=∠DAE.∴∠BAE=∠BEA.∴AB=BE.∵AB=AE,∴△ABE是等边三角形;②正确.∴∠ABE=∠EAD=60∘.∵AB=AE,BC=AD,∴△ABC≅△EAD(SAS);①正确.∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC.又∵△AEC与△DEC同底等高,∴S△AEC=S△DEC.∴S△ABE=S△CEF;④正确,⑤错误.若AD与AF相等,即∠AFD=∠ADF=∠DEC,即EC=CD=BE即BC=2CD,题中未限定这一条件,∴③不一定正确.二、填空题(每小题3分,共24分)11. 标本−1,−2,0,1,2,方差是________.[答案]2[解析]先计算出平均数,再根据方差的公式计算.12. 若x=−2是关于x的方程x2−2ax+8=0的一个根,则a=________.[答案]−3[解析]把x=−2代入方程得出一个关于a的方程,求出方程的解即可.=0有两个实数根,则k的取值范围是________.13. 方程(k−1)x2−√1−kx+14[答案]k<1[解析]方程有两个不相等实数根,则根的判别式△≥0,建立关于k的不等式,求得k的取值范围,且二次项系数不为零和被开方数1−k≥0.14. 在平面直角坐标系中,已知平行四边形的三个顶点坐标分别是O(0, 0),A(−3, 0),B(0, 2),则平行四边形第四个顶点C的坐标________.[答案](3, 2)或(−3, 2)或(−3, −2)[解析]先由点的坐标求出求出线段OA,OB的长度,再分情况进行求解,即可解得C点的坐标为(3, 2)或(−3, 2)或(−3, −2).15. 在证明命题“一个三角形中至少有一个内角不大于60∘”成立时,我们利用反证法,先假设________,则可推出三个内角之和大于180∘,这与三角形内角和定理相矛盾.[答案]三角形的三个内角都大于60∘[解析]根据反证法的步骤,先假设结论不成立,即否定命题即可.16. 如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为________m .[答案]2 [解析]设人行通道的宽度为x 米,将两块矩形绿地合在一起长为(30−3x)m ,宽为(24−2x)m ,根据矩形绿地的面积为480m 2,即可列出关于x 的一元二次方程,解方程即可得出x 的值,经检验后得出x =20不符合题意,此题得解.17. 如图所示,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90∘,若AB =5,BC =8,则EF 的长为________.[答案]1.5[解析]利用直角三角形斜边上的中线等于斜边的一半,可求出DF 的长,再利用三角形的中位线平行于第三边,并且等于第三边的一半,可求出DE 的长,进而求出EF 的长18. 任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[√3]=1,现对72进行如下操作:72→第一次 [√72]=8→第二次 [√8]=2→第三次 [√2]=1,这样对72只需进行3次操作即可变为1,类似地,对81只需进行________次操作后即可变为1;(2)只需进行3次操作后变为2的所有正整数中,最大的是________.[答案]3,6560[解析](1)根据运算过程得出[√81]=9,[√9]=3,[√3]=1,即可得出答案.(2)最大的正整数是6560,根据操作过程分别求出6560和6561进行几次操作,即可得出答案.[解答]解:(1)∵ [√81]=9,[√9]=3,[√3]=1,∴ 对81只需进行3次操作后变为1,(2)最大的正整数是255,理由是:∵ [√6560]=80,[√80]=8,[√8]=2,∴ 对6560只需进行3次操作后变为2,∵ [√6561]=81,[√81]=9,[√9]=3,∴ 只需进行3次操作后变为2的所有正整数中,最大的是6560.三、解答题(共6小题,共46分)19. 计算:(1)(−√5)2−√16+√(−2)2;(2)(√18−√3)×√12.解:(1)原式=5−4+2=3;(3)原式=3√2×2√3−√3×2√3=6√6−6.20. 用适当方法解下列方程:(x+1)2=25;(2)x2+2x−1=0.(1)14解:(1)∵(x+1)2=100,∴x+1=10或x+1=−10,解得:x=9或x=−11;(2)∵x2+2x=1,∴x2+2x+1=1+1,即(x+1)2=2,则x+1=±√2,∴x=−1±√221. 关于x的一元二次方程(a+c)x2+2bx+(a−c)=0,其中a,b,c分别为△ABC三边的长.(1)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(2)如果△ABC是等边三角形,试求这个一元二次方程的根.解:(1)∵方程有两个相等的实数根,∴(2b)2−4(a+c)(a−c)=0,∴4b2−4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形.(2)∵当△ABC是等边三角形,∴a=b=c,∵(a+c)x2+2bx+(a−c)=0,∴2ax2+2ax=0,∴x1=0,x2=−1.22. 如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF // CE.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB // CD,∴∠5=∠3,∵∠1=∠2,∴∠AEB=∠4,在△ABE和△CDF中,{∠AEB=∠4∠3=∠5 AB=CD,∴△ABE≅△CDF(AAS),∴BE=DF;(2)由(1)得△ABE≅△CDF,∴AE=CF,∵∠1=∠2,∴AE // CF,∴四边形AECF是平行四边形,∴AF // CE.23. 为了解甲、乙两名运动员的体能训练情况,对他们进行了跟踪测试,并把连续十周的测试成绩绘制成如图所示的折线统计图.教练组规定:体能体能测试成绩70分以上(包括70分)为合适.(1)请根据图中所提供的信息填写下表:(2)请从下面两个不同的角度对运动员体能测试结果进行判断:①依据平均数与成绩合格的次数比较甲和乙,谁的体能测试成绩较好?②依据平均数与中位数比较甲和乙,谁的体能测试成绩较好?(3)依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好.解:(1)(2)①依据平均数与成绩合格的次数比较甲和乙,乙的体能测试成绩较好;②依据平均数与中位数比较甲和乙,甲的体能测试成绩较好.③从折线图上看,两名运动员体能测试成绩都呈上升趋势,但是,乙的增长速度比甲快,并且后一阶段乙的成绩合格次数比甲多,所以乙训练的效果较好.24. 某租赁公司拥有汽车100辆.据统计,当每辆车的月租金为3000元时,可全部租出.每辆车的月租金每增加50元时,未租出的车将会增加1辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的租金定为多少元时,租赁公司的月收益(租金收入扣除维护费)可达到306600元?解:(1)根据题意得:100−3600−300050=88(辆),则当每辆车的月租金定为3600元时,能租出88辆车;(2)设每辆车的月租金为(3000+x)元,根据题意得:(100−x 50)[(3000+x)−150]−x 50×50=306600,解得:x 1=900,x 2=1200,∴ 3000+900=3900(元),3000+1200=4200(元),则当每辆车的月租金为3900元或4200元时,月收益达到306600元.。
2023-2024学年全国初中七年级下数学人教版期中考试试卷(含答案解析)
20232024学年全国初中七年级下数学人教版期中考试试卷一、选择题(每题2分,共20分)1.下列各数中,是整数的是()A. 0.5B. 2C. 3/4D. 1.52.下列各数中,是负数的是()A. 0B. 3C. 2D. 1/23.下列各数中,是正数的是()A. 3B. 0C. 1/2D. 1.54.下列各数中,是正分数的是()A. 3/4B. 0C. 1/2D. 1.55.下列各数中,是负分数的是()A. 3/4B. 0C. 1/2D. 1.56.下列各数中,是正整数的是()A. 2B. 0C. 1/2D. 37.下列各数中,是负整数的是()A. 2B. 0C. 1/2D. 38.下列各数中,是正无理数的是()A. √2B. 0C. √3D. 1.59.下列各数中,是负无理数的是()A. √2B. 0C. √3D. 1.510.下列各数中,是分数的是()A. √2B. 0C. 3/4D. 1.5二、填空题(每题2分,共20分)1.若a是正数,b是负数,则a+b的值()2.若a是正数,b是负数,则ab的值()3.若a是正数,b是负数,则ab的值()4.若a是正数,b是负数,则a/b的值()5.若a是正数,b是负数,则a+b的绝对值()6.若a是正数,b是负数,则ab的绝对值()7.若a是正数,b是负数,则ab的绝对值()8.若a是正数,b是负数,则a/b的绝对值()9.若a是正数,b是负数,则a+b的平方()10.若a是正数,b是负数,则ab的平方()三、解答题(每题5分,共30分)1.解方程:3x5=2x+72.解方程:2x+3=5x43.解方程:4x3=2x+94.解方程:5x+4=3x85.解方程:6x5=4x+76.解方程:7x+6=5x9四、应用题(每题10分,共20分)1.某水果店有苹果和香蕉两种水果,苹果每斤5元,香蕉每斤3元。
小明想买3斤苹果和2斤香蕉,一共需要多少钱?2.某学校组织了一次运动会,参加跑步的学生有男生和女生两种,男生有20人,女生有15人。
北师大版数学七年级下期中考试复习题(三)
七年级数学(下)期中考试复习题(三)一.精心选一选(每小题只有一个正确答案,每题3分,共30分)1、在代数式x x 3252-,y x 22π,x 1,5-,a ,0中,单项式的个数是( )A 、1B 、2C 、3D 、42. 下列说法错误的是( )A. 内错角相等,两直线平行.B. 两直线平行,同旁内角互补.C. 同角的补角相等.D. 相等的角是对顶角.3.已知∠A 与∠B 互余,∠B 与∠C 互补,若∠A =50°,则∠C 的度数是( ) (A )40° (B )50° (C )130° (D )140°4、如图,当 时, a ∥b . ( )A.∠1 = ∠3B. ∠3 +∠4 = 1800C. ∠2 = ∠4D. ∠2 + ∠4 = 180°5、如图,∠2+∠3=180°,∠2=70°,∠4=80°,则∠1=((A )70° (B )110° (C )100° (D )80° 6、下列说法中,正确的是 ( )(A )近似数5.0与近似数5的精确度相同。
(B )近似数3.197精确到千分位,有四个有效数字。
(C )近似数5千和近似数5000精确度相同。
(D )近似数23.0与近似数23的有效数字都是2 ,3。
7、2008年五月奥运圣火在高度约为8848米的珠峰顶上传递,创造了世界之最。
这个高度的百万分之一相当于A.一间教室的高度 B.一块黑板的宽度C.一张讲桌的高度 D.一本数学课本的厚度 8、已知9242++kx x 是完全平方式,则k 的值为( ) (A )6 (B )6± (C )-6 (D )9± 9、长方形面积是3a 2-3ab+6a,一边长为3a ,则它的周长是( ) A 、2a-b+2 B 、8a-2b C 、8a-2b+4 D 、4a-b+210、如图所示,一只小鸟在地砖上自由觅食,它最终停在白色 方砖上的概率为 ( )A B C D 二、耐心填一填(每题3分,共24分)11. -232yx π的系数是__ ___,次数是__ ___。
七年级数学期中考的复习计划(通用10篇)
七年级数学期中考的复习计划(通用10篇)七年级数学期中考的复习计划 1一、复习的主要内容1、能正确地进行整式的运算.撑握运算的各种法则以及乘法公式。
2、能准确找出同位角.内错角以及同旁内角并撑握判断两直线平行的方法以及平行线的特征。
3、认识百万分之一.近似数与有效数字.认识统计表和条形统计图以及形象统计图,经历数据的收集和整理过程,会用统计图中的数据解决一些简单的问题。
4、了解必然事件和不可能事件发生的概率,体会概率的取值在0,1之间。
了解事件发生的等可能性,运用概率的语言说明游戏的公平性。
体会概率的意义,能对两类概率模型进行简单计算;能设计符合要求的简单概率模型。
5、掌握三角形分类.会画三角形的中线.角平分线以及高.认识全等三角形撑握判断三角形全等的方法以及利用全等知识解决实际问题。
6、认识常量与变量.了解自变量与因变量都是变量以及自变量与因变量之间的关系.7、能辩认从不同角度观察到的简单物体的形状;认识轴对称现象,并能在方格纸上画出简单图形的轴对称图形;认识镜面对称现象。
二、复习的主要目标1、引导学生主动整理知识,回顾自己的学习过程和收获,逐步养成回顾和反思的习惯。
2、通过总复习使学生在本学期学习到的知识系统化。
巩固所学的知识,对于缺漏的知识进行加强。
3、通过形式多样化的复习充分调动学生的学习积极性,让学生在生动有趣的复习活动中经历、体验、感受数学学习的乐趣。
4、有针对性的辅导,帮助学生树立数学学习信心,使每个学生都得到不同程度的进一步发展。
三、复习的具体设想1、首先组织学生回顾与反思自己的学习过程和收获。
可以让学生说一说在这一学期里都学了哪些内容,觉得哪些内容在生活中最有用,感觉学习比较困难的.是什么内容等等。
也可以引导学生设想自己的复习方法。
这样学生能了解到自己的学习情况,明确再努力的目标,教师更全面地了解了学生的学习情况,为有针对性地复习辅导指明方向。
2、与生活密切联系。
复习时同样要把数学知识与日常生活紧密联系。
期中模拟测试卷(二)七年级数学下学期期中期末满分必刷常考压轴题人教版
七年级下册期中模拟测试(二)数学学科(考试时间:120分钟满分:120分)注意:本试卷分试题卷和答题卡(卷)两部分,答案一律填写在答题卡(卷)上,在试题卷上作答无效.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.的算术平方根为()A.B.C.D.﹣【答案】C【解答】解:的算术平方根为.故选:C.2.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.【答案】D【解答】解:观察图形可知图案D通过平移后可以得到.故选:D.3.下列坐标中,是第二象限的坐标是()A.(1,﹣5)B.(﹣2,4)C.(﹣1,﹣5)D.(5,7)【答案】B【解答】解:A、(1,﹣5)在第四象限,故本选项不合题意;B、(﹣2,4)在第二象限,故本选项符合题意;C、(﹣1,﹣5)在第三象限,故本选项不合题意;D、(5,7)在第一象限,故本选项不合题意;故选:B.4.下列图形中,∠1与∠2是同位角的是()A.B.C.D.【答案】B【解答】解:A选项,∠1与∠2是对顶角,不是同位角,故该选项不符合题意;B选项,∠1与∠2是同位角,故该选项符合题意;C选项,∠1与∠2是内错角,不是同位角,故该选项不符合题意;D选项,∠1与∠2是同旁内角,不是同位角,故该选项不符合题意;故选:B.5.若点P在x轴的下方,y轴的左方,且到每条坐标轴的距离都是4,则点P的坐标为()A.(4,4)B.(﹣4,4)C.(﹣4,﹣4)D.(4,﹣4)【答案】C【解答】解:∵点P在x轴的下方y轴的左方,∴点P在第三象限,∵点P到每条坐标轴的距离都是4,∴点P的坐标为(﹣4,﹣4).故选:C.6.如图,把河AB中的水引到C,拟修水渠中最短的是()A.CM B.CN C.CP D.CQ【答案】C【解答】解:如图,CP⊥AB,垂足为P,在P处开水渠,则水渠最短.因为直线外一点与直线上各点连线的所有线段中,垂线段最短.故选:C.7.如图,下列条件:①∠1=∠3;②∠DAB=∠BCD;③∠ADC+∠BCD=180°;④∠2=∠4,其中能判定AB∥CD的有()A.1个B.2个C.4个D.3个【答案】A【解答】解:①由∠1=∠3可判定AD∥BC,不符合题意;②由∠DAB=∠BCD不能判定AB∥CD,不符合题意;③由∠ADC+∠BCD=180°可判定AD∥BC,不符合题意;④由∠2=∠4可判定AB∥CD,符合题意.故选:A.8.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是()A.点A B.点B C.点C D.点D【答案】B【解答】解:根据如图所建的坐标系,易知(10,20)表示的位置是点B,故选:B.9.下列说法中,正确的是()①两点之间的所有连线中,线段最短;②过一点有且只有一条直线与已知直线垂直;③平行于同一直线的两条直线互相平行;④直线外一点到这条直线的垂线段叫做点到直线的距离.A.①②B.①③C.①④D.②③【答案】B【解答】解:①两点之间的所有连线中,线段最短,说法正确;②在同一平面内,过一点有且只有一条直线与已知直线垂直,说法错误;③平行于同一直线的两条直线互相平行,说法正确;④直线外一点到这条直线的垂线段的长度叫做点到直线的距离,说法错误.故选:B.10.如图,将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠ABC+∠ACB=120°,则∠ABD+∠ACD的值为()A.60°B.50°C.40°D.30°【答案】D【解答】解:在△ABC中,∠ABC+∠ACB=120°,在△DBC中,∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=120°﹣90°=30°.故选:D.11.一次数学活动中,检验两条纸带①、②的边线是否平行,小明和小丽采用两种不同的方法:小明对纸带①沿AB折叠,量得∠1=∠2=50°;小丽对纸带②沿GH折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是()A.纸带①的边线平行,纸带②的边线不平行B.纸带①、②的边线都平行C.纸带①的边线不平行,纸带②的边线平行D.纸带①、②的边线都不平行【答案】C【解答】解:如图①所示:∵∠1=∠2=50°,∴∠3=∠2=50°,∴∠4=∠5=180°﹣50°﹣50°=80°,∴∠2≠∠4,∴纸带①的边线不平行;如图②所示:∵GD与GC重合,HF与HE重合,∴∠CGH=∠DGH=90°,∠EHG=∠FHG=90°,∴∠CGH+∠EHG=180°,∴纸带②的边线平行.故选:C.12.如图,点A(1,0)第一次跳动至点A1(﹣1,1),第二次跳动至点A2(2,1),第三次跳动至点A3(﹣2,2),第四次跳动至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是()A.(50,51)B.(51,50)C.(49,50)D.(50,49)【答案】B【解答】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第100次跳动至点的坐标是(51,50).故选:B二、填空题(本大题共6小题,每小题3分,共18分)13.5的平方根是.【答案】±【解答】解:∵(±)2=5,∴5的平方根是±.故答案为:±.14.如图,AB、CD相交于点O,OE是∠AOC的平分线,∠BOD=70°,∠EOF=65°,则∠AOF的度数为°.【答案】30【解答】解:∵∠BOD=70°,∴∠AOC=∠BOD=70°,∵OE是∠AOC的平分线,∴∠AOE=∠AOC=70°=35°,∵∠EOF=65°,∴∠AOF=65°﹣35°=30°,故答案为:30.15.已知≈4.496,≈14.22,则≈.【答案】44.96【解答】解:==10≈10×4.496=44.96,故答案为:44.96.16.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2=.【答案】45°【解答】解:如图,过点A作l∥m,则∠1=∠3.又∵m∥n,∴l∥n,∴∠4=∠2,∴∠1+∠2=∠3+∠4=45°.故答案是:45°.17.如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条”之”字路,余下部分绿化,道路的宽为2米,则绿化的面积为m2.【答案】540【解答】解:如图,把两条”之”字路平移到长方形地块ABCD的最上边和最左边,则余下部分EFGH是矩形.∵CF=32﹣2=30(米),CG=20﹣2=18(米),∴矩形EFCG的面积=30×18=540(平方米).答:绿化的面积为540m2.故答案为:540.18.在平面直角坐标系中,点P位于原点,第1秒钟向右移动1个单位,第2秒钟向上移动2个单位,第3秒钟向左移动3个单位,第4秒钟向下移动4个单位,第5秒钟向右移动5个单位,…依此类推,经过2021秒钟后,点P的坐标是.【答案】(1011,﹣1010)【解答】解:观察图形可知经过2017秒钟后,点P在第四象限的直线y=﹣x+1上,∵2021÷4=505余1,∴P2021的横坐标为1+2×505=1011,∴y=﹣1011+1=﹣1010,∴P(1011,﹣1010).故答案为(1011,﹣1010)三、解答题(本大题共8小题,共66分.解答题应写出文字说明,证明过程或演算步骤.)19.计算:+﹣(﹣1).【答案】1﹣【解答】解:+﹣(﹣1)=3﹣3﹣+1=1﹣20.已知正数m的两个不同平方根分别是2a﹣7和a+4,又b﹣7的立方根为﹣2.(1)求a和正数m及b的值;(2)求3a+2b的算术平方根.【答案】(1)a=1,m=25,b=﹣1 (2)1【解答】解:(1)∵正数m的两个不同平方根分别是2a﹣7和a+4,∴(2a﹣7)+(a+4)=0,∴a=1,2a﹣7=﹣5,∴m=25,∵b﹣7的立方根为﹣2,∴b﹣7=﹣8,∴b=﹣1,∴a=1,m=25,b=﹣1;(2)由(1)有a=1,b=﹣1,∴3a+2b=3×1+2×(﹣1)=1,∴3a+2b的算术平方根为1.21.补全下列题目的解题过程.如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,求证DF∥AC.证明:∵∠1=∠2(已知),且∠2=∠3,∠1=∠4(),∴∠3=∠4(等量代换),∴DB∥(),∴∠C=∠ABD(),∵∠C=∠D(已知),∴∠D=∠ABD(),∴DF∥AC().【答案】对顶角相等;CE;内错角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.【解答】证明:∵∠1=∠2(已知),且∠2=∠3,∠1=∠4(对顶角相等),∴∠3=∠4(等量代换),∴DB∥CE(内错角相等,两直线平行),∴∠C=∠ABD(两直线平行,同位角相等),∵∠C=∠D(已知),∴∠D=∠ABD(等量代换),∴DF∥A C(内错角相等,两直线平行),故答案为:对顶角相等;CE;内错角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.22.如图,在平面直角坐标系中,三角形ABC的顶点都在网格点上,其中点C的坐标为(1,2).(1)点A的坐标是点B的坐标是.(2)画出将三角形ABC先向左平移2个单位长度,再向上平移1个单位长度所得到的三角形A'B'C'.请写出三角形A'B'C'的三个顶点坐标;(3)求三角形ABC的面积.【答案】(1)(2,﹣1);(4,3)(2)略(3)5【解答】解:(1)A(2,﹣1),B(4,3);故答案为(2,﹣1);(4,3);(2)如图,三角形A'B'C'为所作;A′(0,0),B′(2,4),C′(﹣1,3);(3)三角形ABC的面积=3×4﹣×3×1﹣×3×1﹣×2×4=5.23.已知点P(2m﹣4,m+4),解答下列问题:(1)若点P在y轴上,则点P的坐标为;(2)若点P的纵坐标比横坐标大7,求出点P坐标;(3)若点P在过A(2,3)点且与x轴平行的直线上,则AP的长为多少?【答案】(1)(0,6)(2) (﹣2,5)(3)8【解答】解:(1)令2m﹣4=0,解得m=2,所以P点的坐标为(0,6),故答案为:(0,6);(2)令m+4﹣(2m﹣4)=7,解得m=1,所以P点的坐标为(﹣2,5);(3)∵点P在过A(2,3)点且与x轴平行的直线上,∴m+4=3,解得m=﹣1.∴P点的坐标为(﹣6,3),∴AP=2+6=8.24.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,例如:数轴上表示﹣1与﹣2的两点间的距离=|﹣1﹣(﹣2)|=﹣1+2=1;而|x+2|=|x﹣(﹣2)|,所以|x+2|表示x与﹣2两点间的距离.利用数形结合思想回答下列问题:(1)数轴上表示﹣2和5两点之间的距离.(2)若数轴上表示点x的数满足|x﹣1|=3,那么x=.(3)若数轴上表示点x的数满足﹣4<x<2,则|x﹣2|+|x+4|=.【答案】(1)76(2)﹣2或4(3)6【解答】解:(1)根据题意知数轴上表示﹣2和5两点之间的距离为5﹣(﹣2)=7,故答案为:7;(2)∵|x﹣1|=3,即在数轴上到表示1和x的点的距离为3,∴x=﹣2或x=4,故答案为:﹣2或4;(3)∵|x﹣2|+|x+4|表示在数轴上表示x的点到﹣4和2的点的距离之和,且x位于﹣4到2之间,∴|x﹣2|+|x+4|=2﹣x+x+4=6,故答案为:6.25如图①.已知AM∥CN,点B为平面内一点,AB⊥BC于点B,过点B作BD⊥AM于点D,设∠BCN=α.(1)若α=30°,求∠ABD的度数;(2)如图②,若点E、F在DM上,连接BE、BF、CF,使得BE平分∠ABD、BF平分∠DBC,求∠EBF的度数;(3)如图③,在(2)问的条件下,若CF平分∠BCH,且∠BFC=3∠BCN,求∠EBC 的度数.【答案】(1)30°(2)45°(3)97.5°.【解答】解:(1)延长DB,交NC于点H,如图,∵AM∥CN,BD⊥AM,∴DH⊥NC.∴∠BHC=90°.∵∠BCN=α=30°,∴∠HBC=90°﹣∠BCN=60°.∵AB⊥BC,∴∠ABC=90°.∴∠ABD=180°﹣∠ABC﹣∠HBC=30°;(2)延长DB,交NC于点H,如图,∵AM∥CN,BD⊥AM,∴DH⊥NC.∴∠BHC=90°.∵∠BCN=α,∴∠HBC=90°﹣α.∵AB⊥BC,∴∠ABC=90°.∴∠ABD=180°﹣∠ABC﹣∠HBC=α.∵BE平分∠ABD,∴∠DBE=∠ABE=α.∵∠HBC=90°﹣α,∴∠DBC=180°﹣∠HBC=90°+α.∵BF平分∠DBC,∴∠DBF=∠CBF=∠DBC=45°+α.∴∠EBF=∠DBF﹣∠DBE=45°+α﹣α=45°;(3)∵∠BCN=α,∴∠HCB=180°﹣∠BCN=180°﹣α.∵CF平分∠BCH,∴∠BCF=∠HCF=∠HCB=90°﹣α.∵AM∥CN,∴∠DFC=∠HCF=90°﹣α.∵∠BFC=3∠BCN,∴∠BFC=3α.∴∠DFB=∠DFC﹣∠BFC=90°﹣α.由(2)知:∠DBF=45°+α.∵BD⊥AM,∴∠D=90°.∴∠DBF+∠DFB=90°.∴45°+α+90°﹣α=90°.解得:α=15°.∴∠FBC=∠DBF=45°+α=52.5°.∴∠EBC=∠FBC+∠EBF=52.5°+45°=97.5°.26.如图1,在平面直角坐标系中,点A,B的坐标分别是(﹣2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC、BD、CD.(1)写出点C,D的坐标并求出四边形ABDC的面积.(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.(3)如图2,点F是直线BD上一个动点,连接FC、FO,当点F在直线BD上运动时,请直接写出∠OFC与∠FCD,∠FOB的数量关系.【答案】(1) 12(2)存在(3)当点F在线段BD上,∠OFC=∠FOB+∠FCD;;当点F在线段BD的延长线上,∠OFC=∠FOB﹣∠FCD.【解答】解:(1)∵点A,B的坐标分别是(﹣2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度得到A,B的对应点C,D,∴点C的坐标为(0,2),点D的坐标为(6,2);四边形ABDC的面积=2×(4+2)=12;(2)存在.设点E的坐标为(x,0),∵△DEC的面积是△DEB面积的2倍,∴×6×2=2××|4﹣x|×2,解得x=1或x=7,∴点E的坐标为(1,0)和(7,0);(3)当点F在线段BD上,作FM∥AB,如图1,∵MF∥AB,∴∠2=∠FOB,∵CD∥AB,∴CD∥MF,∴∠1=∠FCD,∴∠OFC=∠1+∠2=∠FOB+∠FCD;当点F在线段DB的延长线上,作FN∥AB,如图2,∵FN∥AB,∴∠NFO=∠FOB,∵CD∥AB,∴CD∥FN,∴∠NFC=∠FCD,∴∠OFC=∠NFC﹣∠NFO=∠FCD﹣∠FOB;同样得到当点F在线段BD的延长线上,得到∠OFC=∠FOB﹣∠FCD.。
期中选择、填空题压轴题必刷常考题七年级数学下学期期中期末满分必刷常考压轴题人教版
选择、填空题压轴题必刷常考题【压轴题题必考】一、选择题1.(红谷滩)如图,将长方形ABCD沿线段EF折叠到EB'C'F的位置,若∠EFC'=100°,则∠DFC'的度数为()A.20°B.30°C.40°D.50°【答案】A【解答】解:由翻折知,∠EFC=∠EFC'=100°,∴∠EFC+∠EFC'=200°,∴∠DFC'=∠EFC+∠EFC'﹣180°=200°﹣180°=20°,故选:A.2.(奉化)如图,AD∥BC,∠D=∠ABC,点E是边DC上一点,连接AE交BC的延长线于点H.点F是边AB上一点.使得∠FBE=∠FEB,作∠FEH的角平分线EG交BH于点G,若∠DEH=100°,则∠BEG的度数为()A.30°B.40°C.50°D.60°【答案】B【解答】解:设FBE=∠FEB=α,则∠AFE=2α,∠FEH的角平分线为EG,设∠GEH=∠GEF=β,∵AD∥BC,∴∠ABC+∠BAD=180°,而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,∠DEH=100°,则∠CEH=∠F AE=80°,∠AEF=180°﹣∠FEG﹣∠HEG=180°﹣2β,在△AEF中,80°+2α+180﹣2β=180°故β﹣α=40°,而∠BEG=∠FEG﹣∠FEB=β﹣α=40°,故选:B.3.(泰兴)如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°,则下列结论:①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确的有()A.①②③④B.①②③C.①③④D.①②④【答案】B【解答】解:∵AB∥CD,∠ABO=a°,∴∠ABO=∠BOD=a°,∵OE平分∠BOC,∠BOC+∠BOD=180°,∴∠BOE=(180﹣a)°,故①正确;∵OF⊥OE,OP⊥CD,OE平分∠BOC,∴∠BOE+∠BOF=90°,∠EOC+∠EOP=90°,∠EOC=∠EOB,∠EOC+∠DOF=90°,∴∠POE=∠BOF,∠BOF=∠DOF,故③正确;∴OF平分∠BOD,故②正确;∵AB∥CD,∴∠ABO=∠BOD,∴∠ABO=2∠DOF,而题目中不能得到∠ABO=∠POB,故④错误;故选:B.4.(碑林)如图,AB∥CD∥EF,若∠CEF=105°,∠BCE=55°,则∠ABC的度数为()A.110°B.115°C.130°D.135°【答案】C【解答】解:∵CD∥EF,∴∠ECD+∠CEF=180°,∵∠CEF=105°,∴∠ECD=180°﹣∠CEF=180°﹣105°=75°,∵∠BCE=55°,∴∠BCD=∠BCE+∠ECD=55°+75°=130°,∵AB∥CD,∴∠ABC=∠BCD=130°,故选:C.5.(济南)如图,直线l1∥l2被直线l3所截,∠1=∠2=36°,∠P=90°,则∠3=()A.36°B.54°C.46°D.44°【答案】B【解答】解:如图:∵直线l1∥l2被直线l3所截,∠1=∠2=36°,∴∠CAB=180°﹣∠1﹣∠2=180°﹣36°﹣36°=108°,∵△ABP中,∠2=36°,∠P=90°,∴∠P AB=90°﹣36°=54°,∴∠3=∠CAB﹣∠P AB=108°﹣54°=54°.故选:B.6.(巴南)如图,点E在长方形ABCD的内部,点F在BC上且不与B、C重合,点G在CD上且不与C、D重合.如果三角形GCF沿直线GF折叠后能与三角形GEF重合,且FH平分∠BFE,那么()A.∠GFH是钝角B.∠GFH是锐角C.∠GFH是直角D.∠GFH的大小不能确定【答案】C【解答】解:∵∠CFG=∠EFG且FH平分∠BFE.∠GFH=∠EFG+∠EFH∴∠GFH=∠EFG+∠EFH=∠EFC+∠EFB=(∠EFC+∠EFB)=×180°=90°,即∠GFH为直角.故选:C.7.(武汉)如图,已知AB∥CD,EF⊥AB于点E,∠AEH=∠FGH=20°,∠H=50°,则∠EFG的度数是()A.120°B.130°C.140°D.150°【答案】C【解答】解:过点H作HM∥AB,延长EF交CD于点N,如图所示:∵AB∥CD,EF⊥AB,∴AB∥HM∥CD,EN⊥CD,∴∠EHM=∠AEH=20°,∠ENG=90°,∠CGH=∠GHM,∴∠GHM=∠EHG﹣∠EHM=30°,∴∠CGH=30°,∴∠CGF=∠CGH+∠FGH=50°,∵∠EFG是△FGN的外角,∴∠EFG=∠ENG+∠CGF=140°.故选:C.8.(端州)将一副三角板按如图放置,有下列结论:①若∠2=30°,则AC∥DE;②∠BAE+∠CAD=180°;③若BC∥AD,则∠2=30°;④若∠CAD=150°,则∠4=∠C.其中正确的是()A.①②④B.①③④C.②③④D.①②③④【答案】A【解答】解:∵∠1+∠2=90°,∠2=30°,∴∠1=60°.∴∠CAD=∠1+∠EAD=150°.∵∠D=30°,∴∠CAD+∠D=180°.∴AC∥DE,∴①的结论正确;∵∠BAE=90°﹣∠1,∠CAD=90°+∠1,∴∠BAE+∠CAD=180°.∴②的结论正确;∵BC∥AD,∴∠3=∠B=45°.∴∠2=90°﹣∠3=45°.∴③的结论错误;∵∠CAD=150°,∠D=30°,∴∠CAD+∠D=180°.∴AC∥DE.∴∠4=∠C.∴④的结论正确.综上所述,正确的结论有:①②④,故选:A.9.(嵊州)如图,将长方形纸片沿EB,CF折叠成图1,使AB,CD在同一直线上,再沿BF折叠成图2,使点D落在点D'处,BD'交CF于点P,若∠CEB=37°,则∠CPB的度数为()A.110°B.111°C.112°D.113°【答案】B【解答】解:如图所示由题意得:EG∥HF,∴∠BCG=∠CBH,∠HBE=∠CEB=37°,∠FCG=∠BFC,由折叠性质得:∠HBE=∠CBE=∠CBH,∠FCG=∠BCF=∠BCG,∴∠CBE=∠BCF=∠BFC=∠CEB=37°,∠CBH=74°,∴∠DBF=∠CBH=74°,在图2中,由折叠的性质得:∠BFP=∠BFC=37°,∠FBD'=∠DBF=74°,∴∠CPB=∠FBD'+∠BFP=111°.故选:B.10.(诸暨)已知数a,b,c的大小关系如图,下列说法:①ab+ac>0;②﹣a﹣b+c<0;③;④|a﹣b|+|c+b|﹣|a﹣c|=﹣2b;⑤若x为数轴上任意一点,则|x ﹣b|+|x﹣a|的最小值为a﹣b.其中正确结论的个数是()A.1B.2C.3D.4【答案】B【解答】解:由题意b<0,c>a>0,|c|>|b|>|a|,则①ab+ac>0,故原结论正确;②﹣a﹣b+c>0,故原结论错误;③++=1﹣1+1=1,故原结论错误;④|a﹣b|+|c+b|﹣|a﹣c|=a﹣b+c+b﹣(﹣a+c)=2a,故原结论错误;⑤当b≤x≤a时,|x﹣b|+|x﹣a|a﹣b,故原结论正确.故正确结论有2个.故选:B.11.(天心)设S1=1,S2=1,S3=1,…,S n=1,则的值为()A.B.C.D.【答案】A【解答】解:,,,=,…,,∴=1+1…+1+﹣=24+1﹣=.故选:A.12.﹣2014=()A.20142B.20142﹣1C.2015D.20152﹣1【答案】B【解答】解:﹣2014=﹣2014=(2014.52﹣1.25)﹣2014=2014.52﹣2014.5+0.25﹣1=(2014.5﹣0.5)2﹣1=20142﹣1.故选:B.13.(沙坪坝)如图,在平面直角坐标系中,已知A1(﹣,0),以OA1为直角边构造等腰Rt△OA1A2,再以OA2为直角边构造等腰Rt△OA2A3,再以OA3为直角边构造等腰Rt△OA3A4,…,按此规律进行下去,则点A1033的坐标为()A.(﹣2515,0)B.(﹣2515,2515)C.(﹣2514,2514)D.(﹣2514,0)【答案】A【解答】解:∵等腰直角三角形OA1A2的直角边OA1在x轴的负半轴上,且OA1=A1A2=,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,∴OA1=,OA2=,OA3=×()2,…,OA1033=()1032,∵A1、A2、A3、…,每8个一循环,再回到x轴的负半轴,1.33=8×129+1,∴点A1033在x轴负半轴上,∵OA1033=()1032=2515,∴点A1033的坐标为:(﹣2515,0).故选:A.14.(固始)如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,…照此规律,点P第2020次跳动至点P2020的坐标是()A.(﹣506,1010)B.(﹣505,1010)C.(506,1010)D.(505,1010)【答案】C【解答】解:设第n次跳动至点P n,观察发现:P(1,0),P1(1,1),P2(﹣1,1),P3(﹣1,2),P4(2,2),P5(2,3),P6(﹣2,3),P7(﹣2,4),P8(3,4),P9(3,5),…,∴P4n(n+1,2n),P4n+1(n+1,2n+1),P4n+2(﹣n﹣1,2n+1),P4n+3(﹣n﹣1,2n+2)(n为自然数).∵2020=505×4,∴P2020(505+1,505×2),即(506,1010).故选:C.15.(重庆)如图,在平面直角坐标系上有点A(1,﹣1),点A第一次向左跳动至A1(﹣1,0),第二次向右跳动至A2(2,0),第三次向左跳动至A3(﹣2,1),第四次向右跳动至A4(3,1)…依照此规律跳动下去,点A第9次跳动至A9的坐标()A.(﹣5,4)B.(﹣5,3)C.(6,4)D.(6,3)【答案】A【解答】解:通过坐标可以发现A1、A3、A5、A7都位于y轴左侧,由题干发现:第一次跳动A1(﹣1,0)即(﹣,),第三次跳动A3(﹣2,1)即(﹣,),第五次跳动A5(﹣3,2)即(﹣,),……第九次跳动A9(﹣,)即(﹣5,4),故选:A.16.(阜南)如图,一个粒子在第一象限和x,y轴的正半轴上运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…),且每秒运动一个单位长度,那么2020秒时,这个粒子所处位置为()A.(4,44)B.(5,44)C.(44,4)D.(44,5)【答案】A【解答】解:由题意,设粒子运动到A1,A2,…,A n时所用的间分别为a1,a2,…,a n,则a1=2,a2=6,a3=12,a4=20,…,a n﹣a n﹣1=2n,a2﹣a1=2×2,a3﹣a2=2×3,a4﹣a3=2×4,…,a n﹣a n﹣1=2n,相加得:a n﹣a1=2(2+3+4+…+n)=n2+n﹣2,∴a n=n(n+1).∵44×45=1980,故运动了1980秒时它到点A44(44,44);又由运动规律知:A1,A2,…,A n中,奇数点处向下运动,偶数点处向左运动.故达到A44(44,44)时向左运动40秒到达点(4,44),即运动了2020秒.所求点应为(4,44).故选:A.17.(许昌)如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是()A.(672,0)B.(673,1)C.(672,﹣1)D.(673,0)【答案】D【解答】解:由P3、P6、P9 可得规律:当下标为3的整数倍时,横坐标为,纵坐标为0,∵2019÷3=673,∴P2019 (673,0)则点P2019的坐标是(673,0).故选:D.二、填空题18.(公安)如图(1)是长方形纸片,∠DEF=21°,将纸片沿EF折叠成图(2)的形状,则图(2)中的∠CFG的度数是.【答案】138°【解答】解:∵AD∥BC,∴∠DEF=∠EFB=21°,由折叠可得:∠EFC=180°﹣21°=159°,∴∠CFG=159°﹣21°=138°,故答案为:138°19.(皇姑)在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…这样依次得到点A1,A2,A3,…,A n,…,若点A2的坐标为(1,3),则点A2015的坐标为.【答案】(﹣2,2)【解答】解:由已知:点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…∵点A2的坐标为(1,3),∴﹣y+1=1,x+1=3,∴y=0,x=2,∴A1(2,0),∵A2(1,3),∴A3(﹣2,2),A4(﹣1,﹣1),A5(﹣2,2),…发现规律:每4个点为一个循环,∴2015÷4=503 (3)则点A2015的坐标为(﹣2,2).故答案为:(﹣2,2).20.(富拉尔基)在平面直角坐标系中,点A与原点重合,将点A向右平移1个单位长度得到点A1,将A1向上平移2个单位长度得到点A2,将A2向左平移3个单位长度得到A3,将A3向下平移4个单位长度得到A4,将A4向右平移5个单位长度得到A5…按此方法进行下去,则A2021点坐标为.【答案】(1011,﹣1010)【解答】解:由题意A1(1,0),A5(3,﹣2),A9(5,﹣4),A13(7,﹣6),•,可以看出,3=,5=,7=,各个点的纵坐标等于横坐标的相反数+1,故=1011,∴A2021(1011,﹣1010),故答案为:(1011,﹣1010).21.(江岸)如图第一象限内有两点P(m﹣4,n),Q(m,n﹣3),将线段PQ平移,使点P、Q分别落在两条坐标轴上,则点P平移后的对应点的坐标是.【答案】(0,3)或(﹣4,0)【解答】解:设平移后点P、Q的对应点分别是P′、Q′.分两种情况:①P′在y轴上,Q′在x轴上,则P′横坐标为0,Q′纵坐标为0,∵0﹣(n﹣3)=﹣n+3,∴n﹣n+3=3,∴点P平移后的对应点的坐标是(0,3);②P′在x轴上,Q′在y轴上,则P′纵坐标为0,Q′横坐标为0,∵0﹣m=﹣m,∴m﹣4﹣m=﹣4,∴点P平移后的对应点的坐标是(﹣4,0);综上可知,点P平移后的对应点的坐标是(0,3)或(﹣4,0).故答案为:(0,3)或(﹣4,0).22.(重庆)某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,当k≥2时,,[a]表示非负实数a的整数部分,例如[2.8]=2,[0.3]=0.按此方案,第2021棵树种植点的坐标为.【答案】(1,405)【解答】解:分别求出横纵坐标的规律,x1=1;y1=1;当k=2时,x2=x1+1﹣5×(0﹣0)=2;y2=y1+0﹣0=1;当k=3时,x3=x2+1﹣5×(0﹣0)=3;y3=y2+0﹣0=1;当k=4时,x4=x3+1﹣5×(0﹣0)=4;y4=y3+0﹣0=1;当k=5时,x5=x4+1﹣5×(0﹣0)=5;y5=y4+0﹣0=1;当k=6时,x6=x5+1﹣5×(1﹣0)=1;y6=y5+1﹣0=2;当k=7时,x7=x6+1﹣5×(1﹣1)=2;y7=y6+1﹣1=2;……由此规律,横坐标的周期为5,2021÷5=404…1,故x2021=1;纵坐标的周期为5,5个数为一组,且同一周期内数相同,组内数等于组数,故y2021=405.故答案为:(1,405).23.(临颍)如图,A、B两点的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP 的面积为6,则点P的坐标为.【答案】(3,0)或(9,0)【解答】解:如图,设P点坐标为(x,0),根据题意得•4•|6﹣x|=6,解得x=3或9,所以P点坐标为(3,0)或(9,0).故答案为:(3,0)或(9,0).24.(洪山)对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”,例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).若点P在x轴的正半轴上,点P 的“k属派生点”为P′点.且线段PP'的长度为线段OP长度的3倍,则k的值.【答案】±3【解答】解:设P(m,0)(m>0),由题意:P′(m,mk),∵PP′=3OP,∴|mk|=3m,∵m>0,∴|k|=3,∴k=±3.故答案为±325.(鼓楼)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…,如果(1,0)是第一个点,探究规律如下:(1)坐标为(3,0)的是第个点,坐标为(5,0)的是第个点;(2)坐标为(7,0)的是第个点;(3)第74个点的坐标为.【答案】(1)6,15;(2)28;(3)(12,7)【解答】解:(1)由图可知,坐标为(3,0)的点是第1+2+3=6个点,坐标是(5,0)的点是第1+2+3+4+5=15个点,故答案为:6,15;(2)坐标为(7,0)的点是第1+2+3+4+5+6+7=28个点,故答案为:28;(3)∵(11,0)是第1+2+3+…+11=66个点,(12,11)是第1+2+3+…+12=78个点,∴第74个点是(12,7),故答案为:(12,7).26.(沙坪坝)设m=,那么m+的整数部分是.【答案】2【解答】解:m+===.∵2<<2.5,∴12<6<15,∴2<m+=<3,故答案为:2.27.(资中)定义:不超过实数x的最大整数称为x的整数部分,记作[x].例如[3.6]=3,[﹣]=﹣2,按此规定,[1﹣2]=.【答案】﹣4【解答】解:∵<2=<,∴4<2<5,∴﹣4>﹣2>﹣5,∴﹣3>1﹣2>﹣4,故,[1﹣2]=﹣4.故答案为:﹣4.28.(鼓楼)如图,将一副三角板的直角顶点重合,摆放在桌面上,当∠AOC=时,AB所在直线与CD所在直线互相垂直.【答案】105°或75°【解答】解:当AB⊥直线CD时,AB,BO分别交DC的延长线于M,N点,如图,∴∠BMN=90°,∵∠B=45°,∴∠CNO=∠BNM=45°,∵∠DCO=60°,∠DCO=∠CNO+∠BOC,∴∠BOC=60°﹣45°=15°,∵∠AOB=90°,∴∠AOC=∠AOB+∠BOC=90°+15°=105°;当AB⊥CD时,AB,AO分别交CD于点E,F,∴∠AEC=90°,∵∠A=45°,∴∠CFO=∠AFE=90°﹣45°=45°,∵∠CFO=∠AOD+∠D,∠D=30°,∴∠AOD=45°﹣30°=15°,∵∠COD=90°,∴∠AOC=∠COD﹣∠AOD=90°﹣15°=75°.综上,∠AOC的度数为105°或75°.29.如图,AB∥CD,P2E平分∠P1EB,P2F平分∠P1FD,若设∠P1EB=x°,∠P1FD=y°则∠P1=度(用x,y的代数式表示),若P3E平分∠P2EB,P3F平分∠P2FD,可得∠P3,P4E平分∠P3EB,P4F平分∠P3FD,可得∠P4…,依次平分下去,则∠P n =度.【答案】(x+y);()n﹣1(x+y)【解答】解:(1)如图,分别过点P1、P2作直线MN∥AB,GH∥AB,∴∠P1EB=∠MP1E=x°.又∵AB∥CD,∴MN∥CD.∴∠P1FD=∠FP1M=y°.∴∠EP1F=∠EP1M+∠FP1M=x°+y°.(2)∵P2E平分∠BEP1,P2F平分∠DFP1,∴=..以此类推:,,...,.故答案为:(x+y),()n﹣1(x+y).30.(青秀)在平面直角坐标系中,点P位于原点,第1秒钟向右移动1个单位,第2秒钟向上移动2个单位,第3秒钟向左移动3个单位,第4秒钟向下移动4个单位,第5秒钟向右移动5个单位,…依此类推,经过2021秒钟后,点P的坐标是.【答案】(1011,﹣1010)【解答】解:观察图形可知经过2017秒钟后,点P在第四象限的直线y=﹣x+1上,∵2021÷4=505余1,∴P2021的横坐标为1+2×505=1011,∴y=﹣1011+1=﹣1010,∴P(1011,﹣1010).故答案为(1011,﹣1010).31.(雨花)在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第20个正方形(实线)四条边上的整点个数共有个.【答案】80【解答】解:从内到外的正方形依次编号为1,2,3,……,n,则有:正方形的序号正方形四边上的整点的个数1 2×4﹣4=4×1;2 3×4﹣4=8=4×2;3 4×4﹣4=12=4×3;…………n4(n+1)﹣4=4n.由里向外第20个正方形(实线)四条边上的整点个数共有4×20=80.故答案为80.32.(兴宁)观察下列各式:(1)=5;(2)=11;(3)=19;…根据上述规律,若,则a=.【答案】181【解答】解:由题意可知:(1)=1×4+1=5;(2)=2×5+1=11;(3)=3×6+1=19;由上面几个式子的规律可得:=12×15+1=181.故答案为:181.33.(锦江)如图,长方形ABCD中,AB=6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,第n次平移将长方形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到长方形A n B n∁n D n(n>2),则AB n长为.【答案】5n+6【解答】解:每次平移5个单位,n次平移5n个单位,即BN的长为5n,加上AB的长即为AB n的长.AB n=5n+AB=5n+6,故答案为:5n+6.34.(饶平)如图,在平面直角坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次扩展下去,则P2018的坐标为.【答案】(﹣505,﹣505)【解答】解:由规律可得,2018÷4=504…2,∴点P2018第三象限,∵点P2(﹣1,﹣1),点P6(﹣2,﹣2),点P10(﹣3,﹣3),∴点P2018(﹣505,﹣505),故答案为:(﹣505,﹣505)35.(涪城)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3次操作后变为1,类似地:(1)对81只需进行次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是.【答案】3;255.【解答】解:(1)∵[]=9,[]=3,[]=1,∴对81只需进行3次操作后变为1,故答案为:3.(2)最大的正整数是255,理由是:∵[]=15,[]=3,[]=1,∴对255只需进行3次操作后变为1,∵[]=16,[]=4,[]=2,[]=1,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级(下)数学期中考复习
一、精心选一选
1.下列各图中,∠1与∠2是对顶角的是:
( )
2、AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的夹角为( )度
A 60°
B 65°
C 90°
D 80°
3.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度( ) A . 先向左转130°,再向左转50° B . 先向左转60°,再向右转60° C . 先向左转50°,再向右转40° D . 先向左转50°,再向左转40°
4.在直角坐标系中,点P (-2,3)向右平移3个单位长度后的坐标为( ) A .(3,6) B.(1,3) C.(1,6) D.(3,3) 5. 如下图,下列条件中,不能判断直线a//b 的是( ) A 、∠1=∠3 B 、∠2=∠3 C 、∠4=∠5 D 、∠2+∠4=180° 6、如下图,直线a b ∥,则A ∠的度数是( )。
A.38° B.48°
C.42°
D.39°
7、如下图,若m ∥n ,∠1=105º,则∠2=( ) (A )55º (B )60º (C )65º(D )75º
8.已知:直线l 1∥l 2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于( )
c
b
a
5 4
3
2
1 2
1
m n
A . 30°
B . 35°
C . 40°
D .
45°
9、在△ABC 中,∠A=540,∠B=460,则△ABC 是( )
A 、锐角三角形
B 、直角三角形
C 、钝角三角形
D 、不能确定
10、有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③等角的邻补角相等;④垂直于同一条直线的两条直线互相平行.其中真命题的个数为( ) A .1 B .2 C .3 D .4
11、如果甲图形上的点P(-2,4)经平移变换后是Q(3,-2),则甲图上的点M(1,-2)经这样平移后的对应点的坐标是 ( )
A 、(5,3 )
B 、(-4,4)
C 、 (6,-8)
D 、(3,-5) 12、一个三角形的三个内角中 ( ).
A 、至少有一个钝角
B 、至少有一个直角
C 、至多有一个锐角
D 、至少有两个锐角
13、下列图形中,正确画出AC 边上的高的是 ( ).
14、通过平移,可将图中的福娃“欢欢”移动到图( ).
15.如图,AB ∥CD ,直线EF 交AB 于点E ,交CD 于点F ,EG 平分∠BEF ,交CD 于点G ,∠1=50°,则∠2等于( )
Q
O
R
P
A .
50° B .
60° C .
65° D . 90°
16、下列说法中正确的是( ) (A )有且只有一条直线垂直于已知直线。
(C )互相垂直的两条线段一定相交。
(B )从直线外一点到这条直线的垂线段, 叫做这点到这条直线的距离。
(D )直线c 外一点A 与直线c 上各点连结而成的所有线段中最短线段的长是3cm ,则点A 到直线c 的距离是3cm 。
17、如图所示,在△ABC 中,CD 、BE 分别是AB 、AC 边上的高,并且 CD 、BE 交于点P ,若∠A=50°,则 ∠BPC 等于( ) A 、90° B 、130° C 、100° D 、150°
18、在实数范围内,下列判断正确的是 ( )
(A) .若m =n ,则n m = (B) .若22b a >, 则b a > (C) .若2a =2)(b ,则b a = (D) .若3a =3b ,则b a = 19、16的平方根是( )
(A )2 (B )4 (C )- 2或2 (D )- 4或4 20、若a 是(-3)2的平方根,则3a 等于( )
(A )-3 (B )33 (C )33或-33 (D )3或-3 二、细心填一填
1. 在同一平面内,两条直线有 种位置关系,它们是 ;
2、在平面直角坐标系中,点P (-2,-1)在第_______象限,关于原点对称点坐标是 。
3、若直线a//b ,b//c ,则 ,其理由是 ;
4.如下图,要把池中的水引到D 处,可过C 点引CD ⊥AB 于D ,然后沿CD 开渠,可使所开渠道最短,试说明设计的依据: ;
P
B
C
A
E D
5、如下图,有一个英文单词的字母顺序对应如图中的有序数对分别为(1,2),(5,1),(5,2)(5,2),(1,3),请你把这个英文单词写出来或者翻译成中文为。
6.点P(-2,3)关于X轴对称点的坐标是,关于Y轴对称坐标是。
7.点P(-7,3)是由点M先向左平移动3个单位,再向下平移动3个单位而得到,则M的坐标为()。
8.若点M(a+5,a-3)在y轴上,则点M的坐标为(),到X轴的距离为()。
9、点A(-3,0)在轴上,点B(-2,-3)在第象限。
10、把命题“等角的补角相等”改写成“如果……那么………”的形式是。
11、如图所示,已知△ABC为直角三角形,∠B=90°,若沿图中虚线剪去∠B,则∠1+∠2 等于________.
三、解答题
1.如图,AB∥CD,∠B = 72°,
∠D = 32°,求∠F的度数?
2、如下图,直角坐标系中,△ABC的顶点都在网格点上,
其中C点坐标为(1 ,2),
(1)、写出点A、B的坐标:A(,)、B(,)
(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A'B'C',则A'B'C'的三个顶点坐标分别是A'(、)、B'(、)、
A B C D E F G
H I J K L M N
O P Q R S T U
V W X Y Z
123457
1
2
3
4
6
C'(、)(3)计算△ABC的面积
3、已知a、b、c
a b b c
+++
4、已知一个数的两个平方根分别是3a+2和a+14,求这个数的立方根。
5、若m适合关系式y
x
y
x
m
y
x
m
y
x-
-
•
+
-
=
-
+
+
-
-
+2013
2013
3
2
1
2
3,请确定m的值。
6、平面上有四个点,它们的坐标分别是(2
A-,,(5
B-,,(5
C,(2
D,. (1)顺次连接A、B、C、D围成的四边形是什么图形?
(2)这个四边形的面积是多少?
(3)将这个四边形向上平移2
2个单位长度,四边形的四个顶点的坐标变为多少?此时新的图形面积是多少?若点A向右移动两个单位,其余点不动,此时面积又是多少?
c
a O
b
6、如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O—C—B—A—O的路线移动(即:沿着长方形移动一周)。
(1)写出点B的坐标()。
(2)当点P移动了4秒时,
描出此时P点的位置,
并求出点P的坐标。
(3)在移动过程中,当点P
到x轴距离为5个单位长度时,
求点P移动的时间。
附加题:
已知:2)3
(
a=8,则点A(1, a) 关于Y轴的对称点为点B,将点B向下平移2个单位后,再向左平移3个单位得到点C,则C点与原点及X轴所围成的三角形的面积为多少?(20分)。