浙江省温州市绣山中学2019-2020学年九年级水平测试数学试题(word无答案)

合集下载

2020年4月温州市绣山中学九年级第一次学业调研(中考模拟)试题及参考答案

2020年4月温州市绣山中学九年级第一次学业调研(中考模拟)试题及参考答案

2019学年第二学期九年级第一次学业调研(数学试卷)亲爱的同学:请你认真审题,积极思考,细心答题,发挥最佳水平.答题时,请注意以下几点:1.全卷共4页,有三大题,24小题.全卷满分150分.考试时间120分钟.2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效.3.答题前,认真阅读答题纸上的《注意事项》,按规定答题.试卷Ⅰ一、选择题(本题有10小题,每小题4分,共40分.请选出各题中唯一的正确选项,不选、多选、错选,均不给分)1.计算2-3的结果是(▲)A .-1B .0C .1D .52.如图,由三个相同小正方体组成的立体图形的左视图...是(▲)A .B .C .D .3.根据调查显示,温州市去年中考报名人数约83600人,83600用科学记数法可以表示为(▲)A .210836⨯B .3106.83⨯C .41036.8⨯D .510836.0⨯4.在平面直角坐标系中,点P (-1,2)关于原点对称的点在(▲)A .第一象限B .第二象限C .第三象限D .第四象限5.方程的根是(▲)A .x =3B .x =2C .x =-2D .x =-2或x =36.为调查某班学生每天使用零花钱的情况,张华随机调查了20名同学,结果如下表:每天使用零花钱(单位:元)1015202530人数13655则这20名同学每天使用的零花钱的中位数是(▲)A .17.5B .20C .22.5D .257.关于x 的一元二次方程x 2-2x +m =0有实数根,则实数m 的值可以为(▲)A .1B .2C .3D .48.如图为一节楼梯的示意图,BC ⊥AC ,∠BAC=α,AC=6米.现要在楼梯上铺一块地毯,楼梯宽度为1米,则地毯的面积至少需要(▲)平方米.A .6tan 6+αB .6tan 6+αC .αcos 6D .αsin 69.已知点A (x 1,y 1),B (x 2,y 2)在二次函数y=x ²-bx 的图象上,当x 1,x 2满足2<x 1<x 2<3时,均有y 1<y 2<0,则b 的取值范围是(▲)A .2<b ≤4B .b >3C .3<b ≤4D .4≤b <6第8题)233x x x=--(第2题)主视方向(第8题)15题).10.在矩形ABCD 中(AB <BC ),四边形ABFE 为正方形,G ,H 分别是DE ,CF 的中点,将矩形DGHC 移至FB 右侧得到矩形FBKL ,延长GH 与KL交于点M ,以K 为圆心,KM 为半径作圆弧与BH 交于点P ,古代印度几何中利用这个方法,可以得到与矩形ABCD 面积相等的正方形的边长.若矩形ABCD 的面积为16,HP :PF=1:4,则CH 的值为(▲)A.21B .1C .35D .2试卷Ⅱ二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:m ²-6m +9=▲.12.不等式组的解为▲.13.在一个不透明的布袋里装有2个黑球,1个白球,它们除颜色外都相同.小方从袋子中摸出一个球,记下颜色后不放回,再从袋中摸出一个球,则小方两次摸出的球均为黑色的概率为▲.14.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的底面半径是▲.15.如图,直线y =2x 与双曲线ky x=(k >0)交于点A ,B ,C 为x 轴正半轴上一点,且OC=5,P 为半径为1的⊙C 上一点,E 为BP 的中点.若OE 的最小值为2,则此时k 的值为▲.16.如图1是一盏可调节台灯,图2,图3为示意图,AO 为固定底座,且AO ⊥OE 于点O ,AB 为固定支撑杆,BC 为可绕着点B 旋转的调节杆,灯体CD 始终保持垂直BC ,MN 为台灯照射在桌面的区域,如图2,旋转调节杆使BC ∥OE ,已知此时DM =DN ,tan ∠B =34,AO=CD=1dm ,AB=5dm ,BC=7dm ,点M 恰好为ON 的中点,此时cos ∠DME=▲,如图3,旋转调节杆使BC ⊥AB ,则此时MN=▲dm .三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(本题8分)(1)计算:|-3|-4cos60°+(2019-2020)0.(2)先化简,再求值:()()222--+x x x ,其中x=2.10题)13+11x x -≤⎧⎨>⎩图2图3图1OA BCDMN E (第16题)MBC DH E FGAM P LK(第10题)ABCEOPBCDNEO A(第15题)xy18.(本题8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,请按要求画图.(1)在图1中画出一个格点△ABC ,使∠ABC =90°,且AB 与BC 的长度都是无理数.(1)在图2中画出一个格点四边形ABCD ,使AC ⊥BD ,且四边形的面积为5.19.(本题8分)如图,点C 在线段AB 上,AD ∥EB ,AC=BE ,AD=BC .(1)求证:∠ADC=∠BCE .(2)若∠A =40°,∠ADC =20°,求∠CDE 的度数.20.(本题10分)某校开发了“摄影、绘画、器乐、书法”四门拓展课程.为了解全校学生对每门课程的选择情况,随机抽取了部分学生进行调查(每人必选且只能选一门).现将调查结果绘制成如下两幅不完整的统计图:(1)本次随机调查了_______名学生;补全条形统计图中的空缺部分.(2)求m ,n 的值.(3)若该校共有1800名学生,请估计全校学生选择A 课程的人数.21.(本题10分)如图,在Rt △ACD 中,∠D =90°,点O 在AC 上,以OC 为半径作半圆O ,与AD 相切于点E ,与AC ,CD 分别交于点B ,F .(1)求证:CE 平分∠ACD .(2)若AE=4,AB=2,求FC 的长.19题)21题)1图218题)(第19题)(第21题)图1图2(第20题)图1图2(第18题))22.(本题10分)如图,已知二次函数图像与x 轴交于点A (-3m ,0),B (1,0),交y 轴于点C (0,2m )(m >0)(1)当m=1时,求抛物线的表达式及对称轴;(2)P 为抛物线在第二象限上的一点,BP 交抛物线对称轴于点D .若tan ∠PBA=32,PD=31DB ,求m 的值.23.(本题12分)疫情发生后,口罩成了人们生活的必需品.某药店销售A ,B 两种口罩,今年3月份的进价如下表:A 种口罩B 种口罩进价(元/包)1228售价(元/包)已知B 种口罩每包售价比A 种口罩贵20元,9包A 种口罩和4包B 种口罩总售价相同.(1)求A 种口罩和B 种口罩每包售价.(2)若该药店3月份购进A 种和B 种口罩共1500包进行销售,且B 种口罩数量不超过A 种口罩的41,如果所进口罩全部售出,应该购进A 种口罩多少包,才能使利润最大,并求出最大利润.(3)为满足不同顾客的需求,该药店准备4月份新增购进进价为每包10元的C 种口罩,A 种和B 种口罩仍按需购进,进价与3月份相同,A 种口罩的数量是B 种口罩的4倍,共花费12000元,则该店至少可以购进三种口罩共多少包?24.(本题14分)如图,在正方形ABCD 中,AB =6,E 为AC 上一点,以AE 为直角边构造等腰直角△AEF (点F 在AB 左侧),EF 交AB 于点G ,分别延长FB ,DE 相交于点H ,DH 交BC 于点M ,连结BE.(1)求证:△AFB ≌△AED.(2)当AE =24时,求tan ∠MBH 的值.(3)当点H 关于直线BE 的对称点落在△ABC 的边上时,求∠EBC 的度数.(4)若△BEH 与△DEC 的面积相等,求△EMC 与△ABE面积的比值.22题)ABCGEFDH M(第24题)(第22题)九年级(上)数学试题参考答案第1页(共6页)2019学年第二学期九年级第一次学业调研(数学试卷)数学参考答案及评分标准2020.4一、选择题(本题有10小题,每小题4分,共40分)题号12345678910答案ADCDCCAACC 二、填空题(本题有6小题,每小题5分,共30分)11.()23m -12.04x ≤<13.4914.415.816.1010283三、解答题(本题有8小题,共80分)17.(本题8分)1=3-413232121⨯+=-+=(1)解:原式分分22=x 44x 226412=161x x x x ++-+=+= (2)解:原式分分当时,原式分18.(本题8分)(1)(画出一种即可)(2)(画出一种即可)九年级(上)数学试题参考答案第2页(共6页)//3=1AD EBA B AC BE AD BCADC BCE ADC BCE ∴∠=∠==∴∆≅∆∴∠∠ (1)解:又分分=40=206020802180805022A ADC DCB A ADC BCE ADC DCE DCB BCE ADC BCE CD CECDE CED ∠∠∴∠=∠+∠=∠=∠=∴∠=∠+∠=∆≅∆∴=-∴∠=∠==(2)解:,又分分20.(本题10分)432=16%20016280=40%20036040%144240%7202m n A ∴=∴=⨯=⨯= (1)200.略分(2)分分(3)1800(人)答:选择课程720人分(第19题)九年级(上)数学试题参考答案第3页(共6页)/112/O AD OE AD AD OE CD OEC DEC OEC OEC DCE OCE CE ACD OE CD ∴⊥⊥∴∴∠=∠∠=∠∴∠=∠∴∠ (切1)证明:连接分分E 平分分与于点()222/42322/3cos cos 5318cos 6552(2)连接中.设解得分分中.分CD EOA DC BFRt OAE OB OE r r r r OE Rt BC A F ADC EOA DCA CF BC ∴∠=∠=∆=∴∠∠=∠=⨯===++=∆=22.(本题10分)()()()()()()()13,00,21310,232223231311m A C y a x x C a a y x x x =-=+--=∴=-∴=-+-=- (1)解:当时,分设把代入,得分对称轴为直线分九年级(上)数学试题参考答案第4页(共6页)()()()()()310,232223.43432tan 32383814,2328143433131321222-3(2)设把代入得解得分作轴于于点易证设分代入得:又解得分y a x m x C m ma ma PE x E DF AB F PBE DBF BE PB BF DB BE t BF tPBA PE BE tPE t P t tt m t mtt m =+--==-⊥⊥∆∆∴====∠=∴=∴=⎛⎫∴- ⎪⎝⎭--+-=--=⎧=⎪⎪⎨⎪=⎪⎩23.(本题12分)()()120.942016216,36.2()设种口罩每包售价元,种口罩每包售价元由题意得解得分答:种口罩每包售价元种口罩每包售价元分A xB x x x x A B +=+=九年级(上)数学试题参考答案第5页(共6页)()max .481500120004111500412001401200.7200.2A x y y x x x x x x y x x y y =+-=--≤∴≥-∴∴== (2)设应购种口罩元,利润为元由题意得分分<随的增长而减小当时,有最大值元分()min 4..412+81051200013120015513120055171571951552130515512004037971797.B x A x n x x n x n x n x x x x x x n x x n ⨯+-==-∴-∴∴≤-∴==-= (3)设购入种口罩包,种口罩包购进三种口罩包由题意得分>><为正整数且为的倍数分<随的增大而减小当时,分答:至少可以购进包24.(本题14分),4590,45,.ABCD AB AD BAC CAD AEF FAE FAB AE AF AFB AED =∠=∠=∆∴∠=∠==∴∆≅∆ (1)在正方形中,是等腰直角三角形......1分......1分......1分九年级(上)数学试题参考答案第6页(共6页)459090//42,4,21tan tan 2BAE GEA AGE ABC FE BC HBM GFB AE AG GE FG BG MBH GFB ∠=∠=∴∠=∠=∴∴∠=∠=∴====∠=∠=(2)又,,,901..9090,.1303602..AG EFBF BE BFE BEF GEB EBC EDC MBH MDC BMH DMC H BCD H BE N BC EHB ENB HEB BEH EBA EBA EDA FEH BEH FEN EBN H BE AB EBC ∴=∠=∠∠=∠=∠∴∠=∠∠=∠∴∠=∠=∠=∴∠=∴∠=∠=∠∠=∠=∠∴∠=∠=∴∠=∠(3)垂直平分当点关于直线对称的对称点落在上时当点关于直线的对称点在上时22303..45,215322EDC HBM GBC EBC BCG EBC H BE AC AEB EBC NBE EBC EBC =∠=∠∴∠=∠=∠∴∠=∠=+∠∠=∠∴∠=-当点关于直线的对称点落在上时(4)......1分......3分ABCEFDH NGAB C EFDHG (N )ABCEFDHG N......1分......2分∴∠BEH =∠BEN =∠EBA......1分......1分......1分......1分。

浙江省温州市名校2019-2020学年中考数学模拟学业水平测试试题

浙江省温州市名校2019-2020学年中考数学模拟学业水平测试试题

浙江省温州市名校2019-2020学年中考数学模拟学业水平测试试题一、选择题1.如图,AB ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).A.12B.7C.5D.132.已知点()1,3x ,()2,2x 是直线 2 1y x =-+上两点,则下列正确的是( )A.120x x ->B.120x x -<C.12x x =D.120x x +>3.已知反比例函数3(k y k x -=为常数),当0x <时,y 随x 的增大而减小,k 的取值范围是() A .k <0B .k 0C .k <3D .k >3 4.计算12123⎛⎫-⨯-⎪⎝⎭的结果是( ) A .1 B .1- C .13 D .13- 5.在平面直角坐标系中,将A(﹣1,5)绕原点逆时针旋转90°得到A′,则点A′的坐标是( )A .(﹣1,5)B .(5,﹣1)C .(﹣1,﹣5)D .(﹣5,﹣1)6.已知在△ABC 中,∠BAC =90°,M 是边BC 的中点,BC 的延长线上的点N 满足AM ⊥AN .△ABC 的内切圆与边AB 、AC 的切点分别为E 、F ,延长EF 分别与AN 、BC 的延长线交于P 、Q ,则PN QN =( ) A .1B .0.5C .2D .1.5 7.某赛季甲、乙两名篮球运动员各参加10场比赛,各场得分情况如图,下列四个结论中,正确的是( )A .甲运动员得分的平均数小于乙运动员得分的平均数B .甲运动员得分的中位数小于乙运动员得分的中位数C .甲运动员得分的最小值大于乙运动员得分的最小值D .甲运动员得分的方差大于乙运动员得分的方差8.如图,在△ABC 中,AB=AC ,∠C=30°,AB ⊥AD ,AD=4,则BC 的长为( )A .4B .8C .12D .169.如图,AB 是⊙O 的直径,△ACD 内接于⊙O ,延长AB ,CD 相交于点E,若∠CAD =35°,∠CDA =40°,则∠E 的度数是( )A.20°B.25°C.30°D.35°10.下列运算正确的是( )A .2223x 25x x +=B .2223a 26a a ⋅=C .236(2)8x y x y -=-D .22322m()m n m m n -=-11.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出两个小球,两球恰好是一个黄球和一个红球的概率为( )A .16B .14C .13D .1212.剪纸是中国古老的民间艺术,下列作品中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .二、填空题13.如图,根据函数图象回答问题:方程组y kx 3y ax b =+⎧=+⎨⎩的解为______.14.如图,在5×5的正方形(每个小正方形的边长为1)网格中,格点上有A 、B 、C 、D 、E 五个点,如果要求连接两个点之后线段的长度大于3且小于4,则可以连接_____. (写出一个答案即可)15.计算20180(1)2)--=_____.16.如图,在四边形ABCD 中,E 为AB 的中点,DE ⊥AB 于点E ,∠A =66°,∠ABC =90°,BC =AD ,∠C 的度数________.17.计算(的结果等于__________.18.分解因式:2ax a- =____三、解答题19.如图,△ABC是⊙O的内接圆,且AB是⊙O的直径,点D在⊙O上,BD平分∠ABC交AC于点E,DF ⊥BC交BC延长线于点F.(1)求证:DF是⊙O的切线.(2)若34,sin5BD DBF=∠=,求DE的长.20.某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度,方法如下:如图,首先在测量点A处用高为1.5m的测角仪AC测得人民英雄纪念碑MN项部M的仰角为37°,然后在测量点B处用同样的测角仪BD测得人民英雄纪念碑MN顶部M的仰角为45°,最后测量出A,B两点间的距离为15m,并且N,B,A三点在一条直线上,连接CD并延长交MN于点E.请你利用他们的测量结果,计算人民英雄纪念碑MN的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan35°≈0.75)21.如图,正方形ABCD中,AB=O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF(1)如图1,求证:AE=CF;(2)如图2,若A,E,O三点共线,求点F到直线BC的距离.22.已知:如图,AB=AD,AC=AE,∠BAG=∠DAF.求证:BC=DE.23.计算112x xx x ⎛⎫⎛⎫++÷-⎪ ⎪⎝⎭⎝⎭24.已知A(m,2),B(﹣3,n)两点关于原点O对称,反比例函数y=kx的图象经过点A.(1)求反比例函数的解析式并判断点B是否在这个反比例函数的图象上;(2)点P(x1,y1)也在这个反比例函数的图象上,﹣3<x1<m且x1≠0,请直接写出y1的范围.25.如图,AB是⊙O的直径AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC交AC的延长线于点E,连接BD,OE,OE交AD于点F(1)求证:DE是⊙O的切线;(2)若35ACAB=,求AFDF的值;(3)在(2)的条件下,若⊙O的直径为10,求BD的长.【参考答案】***一、选择题13.12 xy=-⎧⎨=⎩14.答案不唯一,如:AD 15.016.78°17.618.a(x+1)(x-1)三、解答题19.(1)见解析(2)9 4【解析】【分析】(1)连接OD,根据角平分线的定义得到∠ABD=∠DBF,由等腰三角形的性质得到∠ABD=∠ODB,等量代换得到∠DBF=∠ODB,推出∠ODF=90°,根据切线的判定定理得到结论;(2)连接AD,根据圆周角定理得到∠ADE=90°,根据角平分线的定义得到∠DBF=∠ABD,解直角三角形得到AD=3,求得DE=94.【详解】解:(1)连接OD,∵BD平分∠ABC交AC于点E,∴∠ABD=∠DBF,∵OB=OD,∴∠ABD=∠ODB,∴∠DBF=∠ODB,∵∠DBF+∠BDF=90°,∴∠ODB+∠BDF=90°,∴∠ODF=90°,∴FD是⊙O的切线;(2)连接AD,∵AB是⊙O的直径,∴∠ADE=90°,∵BD平分∠ABC交AC于点E,∴∠DBF=∠ABD,在Rt△ABD中,BD=4,∵sin∠ABD=sin∠DBF=35,∴AD=3,∵∠DAC=∠DBC,∴sin∠DAE=sin∠DBC=35,在Rt△ADE中,sin∠DAC=35,∴DE=94.【点睛】本题考查了切线的判定和性质,角平分线的定义,圆周角定理,解直角三角形,正确的作出辅助线是解题的关键.20.人民英雄纪念碑MN的高度约为36.5米.【解析】【分析】在Rt△MED中,由∠MDE=45°知ME=DE,据此设ME=DE=x,则EC=x+15,在Rt△MEC中,由ME=EC•tan∠MCE知x≈0.7(x+15),解之求得x的值,根据MN=ME+EN可得答案.【详解】由题意得四边形ABDC、ACEN是矩形,∴EN=AC=1.5,AB=CD=15,在Rt△MED中,∠MED=90°,∠MDE=45°,∴ME=DE,设ME=DE=x,则EC=x+15,在Rt△MEC中,∠MEC=90°,∠MCE=35°,∵ME=EC•tan∠MCE,∴x≈0.7(x+15),解得:x≈35,∴ME≈35,∴MN=ME+EN≈36.5,答:人民英雄纪念碑MN的高度约为36.5米.【点睛】本题考查了解直角三角形中的仰俯角问题,解题的关键是从实际问题中整理出直角三角形并利用解直角三角形的知识解题.21.(1)详见解析;(2)点F到直线BC.【解析】【分析】(1)由旋转的性质可得∠EDF=90°,DE=DF,由正方形的性质可得∠ADC=90°,DE=DF,可得∠ADE =∠CDF,由“SAS”可证△ADE≌△CDF,可得AE=CF;(2)由勾股定理可求AO的长,可得AE=CF=3,通过证明△ABO∽△CPF,可得CF PFAO BO=,即可求PF的长,即可求点F到直线BC的距离.【详解】证明:(1)∵将线段DE绕点D逆时针旋转90°得DF,∴∠EDF=90°,DE=DF.∵四边形ABCD是正方形,∴∠ADC=90°,DE=DF,∴∠ADC=∠EDF,∴∠ADE=∠CDF,且DE=DF,AD=CD,∴△ADE≌△CDF(SAS),∴AE=CF,(2)解:如图2,过点F作FP⊥BC交BC延长线于点P,则线段FP的长度就是点F到直线BC的距离.∵点O是BC中点,且AB=BC=∴BO∴AO5,∵OE=2,∴AE=AO﹣OE=3.∵△ADE≌△CDF,∴AE=CF=3,∠DAO=∠DCF,∴∠BAO=∠FCP,且∠ABO=∠FPC=90°,∴△ABO∽△CPF,∴CF PF AO BO=,∴35 =∴PF=5,∴点F到直线BC.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,正方形的性质,相似三角形的判定和性质,证明△ABO∽△CPF是本题的关键.22.详见解析【解析】【分析】根据等式的性质得出∠DAE=∠BAC,利用SAS证明△DAE与△BAC全等,进而利用全等三角形的性质解答即可.【详解】证明:∵∠BAG=∠DAF,∴∠BAG+∠CAE=∠DAF+∠CAE,即∠CAB=∠EAD,∵AB=AD,AC=AE,∴△ABC≌△ADE(SAS),∴BC=DE.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:AAS、SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.23.11 xx+ -【解析】【分析】括号内先通分,利用完全平方公式和平方差公式分子、进行因式分解,再按照分式除法法则计算、约分即可得答案.【详解】原式=22121 x x xx x ++-÷=2(1)(1)(1) x xx x x+⋅+-=11 xx+-.【点睛】本题主要考查分式的除法、完全平方公式及平方差公式,熟练掌握分式除法的运算法则是解题关键.24.(1)6y x =,点B 在这个反比例函数的图象上;(2)y 1<-2或y 1>2. 【解析】【分析】(1)先求出m 的值,进而得出A 、B 的坐标,代入k y x =,求出反比例函数的解析式,再判断点B 是否在反比例函数的图象上;(2)根据反比例函数的性质求解即可.【详解】(1)∵A (m ,2),B (-3,n )两点关于原点O 对称,∴m =3,n =-2,即A (3,2),B (-3,-2), ∵反比例函数k y x =的图象经过点A ,∴23k =,解得k =6, ∴反比例函数的解析式为6y x =. 当x =-3时,6623y x ===--,∴点B 在这个反比例函数的图象上. (2)根据k>0,y 随x 的增大而减小可得:y 1<-2或y 1>2.【点睛】本题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,注意数形结合数学思想的应用.25.(1)证明见解析;(2)85;(3. 【解析】【分析】(1)连接OD ,只需证明OD ⊥DE 即可;(2)连接BC ,设AC =3k ,AB =5k ,BC =4k ,可证OD 垂直平分BC ,利用勾股定理可得到OG ,得到DG ,于是AE =4k ,然后通过OD ∥AE ,利用相似比即可求出AF DF的值. (3)由△ADB ∽△AFO 可得AD ,由Rt △ABD 勾股定理可得BD【详解】(1)证明:连接OD ,∵OD =OA ,∴∠OAD =∠ADO ,∵∠EAD =∠BAD ,∴∠EAD =∠ADO ,∴OD ∥AE ,∴∠AED+∠ODE =180°,∵DE ⊥AC ,即∠AED =90°,∴∠ODE =90°,∴OD ⊥DE ,∵OD 是圆的半径,∴DE是⊙O的切线;(2)解:连接OD,BC交OD于G,如图,∵AB为直径,∴∠ACB=90°,又∵OD∥AE,∴∠OGB=∠ACB=90°,∴OD⊥BC,∴G为BC的中点,即BG=CG,又∵35 ACAB=,∴设AC=3k,AB=5k,根据勾股定理得:BC4k,∴OB=12AB=5k2,BG=12BC=2k,3k2=,∴DG=OD﹣OG=5k3k22-=k,又∵四边形CEDG为矩形,∴CE=DG=k,∴AE=AC+CE=3k+k=4k,而OD∥AE,∴48552AF AE kkFD OD===.(3)连接BD由(2)可知85 AFDF=设AF=8k,DF=5k △ADB∽△AFOAF AOAB AD解得kAD=2在Rt△ADB中,AB2=AD2+BD2BD=2【点睛】考查了切线的判定定理,能够综合运用角平分线的性质、全等三角形的判定和性质以及平行线分线段成比例定理.。

2019-2020年最新浙江温州中考数学仿真模拟及答案解析

2019-2020年最新浙江温州中考数学仿真模拟及答案解析

中考数学试卷精品解析年浙江省温州市中考数学试卷(满分150分,考试时间120分钟)一、(共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确的选项填在题后的括号内)1.(浙江温州,1,4分)计算(+5)+(-2)的结果是()A.7 B.-7 C.3 D.-3【答案】C【逐步提示】本题考查了有理数的加法,熟记运算法则是解题的关键.根据有理数的加法运算法则进行计算即可得解.【详细解答】解:(+5)+(-2)=+(5-2)=3.故选C.【解后反思】有理数的加法,首先确定和的符号,再确定和的绝对值.【关键词】有理数的加法.2.(浙江温州,2, 4分)如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时B.4~6小时C.6~8小时D.8~10小时【答案】B【逐步提示】本题考查频数分布直方图,解题的关键是明确题意,利用数形结合的思想解答.根据条形统计图可以得到哪一组的人数最多,从而可以解答本题.【详细解答】解:由条形统计图可得,人数最多的一组是4~6小时,频数为22,故选B.【解后反思】频数分布直方图用频数表示直方图的高,矩形的高越大则频数越大.频数分布直方图以小长方形的面积来反映数据落在各个小组内的频数的大小,小长方形的高是频数与组距的比值.小长方形的面积=组距×频数组距=频数.【关键词】频数(率)分布直方图3.(浙江温州,3,,4分)三本相同的书本叠成如图所示的几何体,它的主视图是()A.B.C.D.【答案】B【逐步提示】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.主视图是从物体正面看,所得到的图形.【详细解答】解:观察图形可知,从物体正面看,确定所得到的图形.故选:B.【解后反思】三视图问题一直是中考必问题,一般题目难度中等偏下,实物的俯视图,关键是要分清上、下、左、右各个方位.本题所用的知识是:主视图是指从立体图形的正面看到的平面图,左视图指从立体图形的左面看到的平面图,俯视图指从立体图形的上面看到的平面图.另外,学习三视图主要是掌握三视图的基本特征:主俯长对正,主左高平齐,左俯宽相等.【关键词】三视图;主视图;4.(浙江温州,4, 4分)已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x,乙数为y,根据题意,列方程组正确的是()A.7,2x yx y+=⎧⎨=⎩B.7,2x yy x+=⎧⎨=⎩C.27,2x yx y+=⎧⎨=⎩D.27,2x yy x+=⎧⎨=⎩【答案】 A【逐步提示】本题主要考查了由实际问题抽象出二元一次方程组,关键是把已知量和未知量联系起来,找出题目中的相等关系.根据题意可得等量关系:①甲数+乙数=7,②甲数=乙数×2,根据等量关系列出方程组即可.【详细解答】解:设甲数为x,乙数为y,根据题意,可列方程组,得:7,2x yx y+=⎧⎨=⎩,故选:A.【解后反思】由实际问题抽象出二元一次方程组的主要步骤是:(1)弄清题意;(2)找准题中的两个等量关系;(3)设出合适的未知数;(4)根据找到的等量关系列出两个方程并组成二元一次方程组.【关键词】二元一次方程组;建模思想;5.(浙江温州,5, 4分)若分式23xx-+的值为0,则x的值是()A.﹣3 B.﹣2 C.0 D.2【答案】D【逐步提示】本题主要考查了分式的值为零的条件,正确把握分式的值为零的条件是解题关键.直接利用分式的值为0,则分子为0,得到x-2=0, 进而求出答案.【详细解答】解:∵分式23xx-+的值为0,∴x﹣2=0,∴x=2.故选:D.【解后反思】对于分式AB,值为0的条件是AB=⎧⎨≠⎩,有意义的条件是0B≠,无意义的条件是B=.【关键词】分式的值为零的条件6.(浙江温州,6,4分)一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A.12B.13C.310D.15【答案】A【逐步提示】此题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.由题意可得,共有10可能的结果,其中从口袋中任意摸出一个球是白球的有5情况,利用概率公式即可求得答案.【详细解答】解:∵从装有2个黄球、3个红球和5个白球的袋中任意摸出一个球有10种等可能结果,其中摸出的球是白球的结果有5种,∴从袋中任意摸出一个球,是白球的概率是51 102=,故选:A.【解后反思】求简单事件的概率的公式:()mP An=,其中n为所有事件的总数,m为事件A 发生的总次数. 概率的求法关键是要找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【关键词】概率的计算公式.7.(浙江温州,7, 4分)六边形的内角和是()A.540° B.720°C.900°D.1080°【答案】B【逐步提示】此题主要考查了多边形内角和公式,关键是熟练掌握多边形内角和公式:(n﹣2)•180°(n≥3,且n为整数).由n边形+9+·的内角和等于(n﹣2)×180°(n≥3,且n为整数),直接把n=6代入计算可得.【详细解答】解:由内角和公式可得:(6﹣2)×180°=720°,故选:B.【解后反思】n边形的内角和为(n-2)·180°,这个定理的运用包括两个方面:一是已知边数求内角和,二是已知内角和求边数,此时常结合方程思想解决问题.【关键词】多边形内角与外角和;8. (浙江温州,8, 4分)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+10【答案】C【逐步提示】本题主要考查矩形的性质及点的坐标的意义,根据坐标的意义得出x、y之间的关系是解题的关键.设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据题意可得到x、y之间的关系式,可得出答案.【详细解答】解:设P点坐标为(x,y),如图,过P点分别作PD⊥x轴,PC⊥y 轴,垂足分别为D、C,∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为10,∴2(x+y)=10,∴x+y=5,即y=﹣x+5,故选C.【解后反思】解决这种类型题目,一定要读懂题意,看清函数图象所在的平面直角坐标系的x轴、y轴所表示的含义,并根据问题,考虑函数或实际意义去确定函数的解析式。

浙江温州地区2019年初三下学期年中学业水平检测数学试题

浙江温州地区2019年初三下学期年中学业水平检测数学试题

浙江温州地区2019年初三下学期年中学业水平检测数学试题九年级数学试卷亲爱的同学:欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最正确水平。

答题时,请注意以下几点:1、全卷共4页,有三大题,24小题,总分值为150分,考试时间为120分钟.2、答案必须做在答题纸相应的位置上,写在试题卷、草稿纸上均无效.3、答题前,认真阅读答题纸上的《考前须知》,按规定答题.【一】精心选一选〔此题有10小题,每题4分,共40分、每题只有一个选项是正确的,不选、多项选择、错选,均不给分〕1、 -4的倒数是A 、4B 、-4C 、14D 、-142、在“百度”搜索引擎中输入“马航失联最新消息”,能搜索到与之相关的结果个数约为5640000,这个数用科学记数法表示为 〔 ▲ 〕A 、5.64×104B 、5.64×105C 、5.64×106D 、5.64×1073、下面四个几何体中,主视图与俯视图相同的几何体共有〔 ▲ 〕4、如图,数轴上所表示的不等式组的解集是( ▲A 、X ≤2B 、-1≤X ≤2C 、-1《X ≤2D 、X 》-1 5、以下事件是必然事件的是〔 ▲ 〕.A 、直线Y =3X +B 经过第一象限B 、当A 是一切实数时,a a =2C 、两个无理数相加和为无理数D 、解方程0222=-+-x x x 得X =26、在某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩〔单位:个〕如下表:A. 47, 49B. 47.5, 49C. 48, 49D. 48, 507、如图,A ,B ,C ,D 是⊙O 上的四点,CD 是直径,∠AOD =30°,那么∠ABC 的度数为〔 ▲ 〕A 、55°B 、65°C 、75°D 、85°8、两圆相交,圆心距为12,那么两圆半径可以是〔 ▲ 〕A 、15,20B 、 10,30C 、1,10D 、 5,7第4题9、如图,在RT△ABC中, AB=AC,∠A=90,BD是角平分线,DE⊥BC,垂足为点E假设CD=AD的长是〔▲〕A、、52 D、510、如图,点A、B、C、D在一次函数Y=-2X+M的图像上,它们的横坐标分别是-1、0、3、7,分别过这些点作X轴、Y轴的垂线,得到三个矩形,那么这三个矩形的周长和为〔▲〕A. 6M-14B. 52C. 48D. 8M-726小题,每题5分,共30分〕244a a++=▲、第一轮10枪打完后两人打靶的环数如下图,▲、13. 如图,直线A∥B,∠1=40°,∠2=60°、那么∠3等于▲、14. 甲、乙、丙三家超市为了促销一种定价均为M元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是▲、15、将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的N倍得△AB′C′,即如图①,∠BAB′=θ,AB B C ACnAB BC AC''''===,我们将这种变换记为【θ,N】、如图②,在△DEF中,∠DFE=90°,将△DEF绕点D旋转,作变换【60°,N】得△DE′F′,如果点E、F、F′恰好在同一直线上,那么N=▲、16.如图,在平行四边形ABCD中,以对角线AC为直径的⊙O分别交BC,CD于M,N,假设AB=13,AD=14,CM=9,那么直径AC的长度为▲,MN的长度为▲、【三】用心做一做〔此题有8小题,共80分,解答需写出必要的文字说明,演算步骤或证明过程〕17、〔本小题总分值10分〕〔1〕计算:〔2〕化简:xxxxxx-+-÷+-222121118、〔本小题总分值8分〕如图,菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连结CE.(1)求证:BD=EC;(2)假设∠E=50°,求∠BAO的大小.19、〔本小题总分值8分〕在如下图的方格纸中,ABC∆的顶点都在边长为单位1的小正方形的顶点上,以小正方形互相垂直的两边所在直线为坐标轴建立直角坐标系。

浙江省温州市绣山中学2019-2020年九年级学业水平在线检测(Word版,无答案)

浙江省温州市绣山中学2019-2020年九年级学业水平在线检测(Word版,无答案)

成 曹操 就:建安时文学家,东汉丞相 个性追求:老骥伏枥,志在千里。

成苏轼 就:擅长诗词、散文、书画等 个性追求:莫听穿林打叶声,何妨吟啸且徐行。

2019 学年第二学期九年级学业水平在线检测语 文 试 卷 2020.04亲爱的同学:欢迎参加考试!请你认真审题,积极思考,细心答题,发挥出最佳水平。

答题时,请注意以下几点:1.全卷共 8 页,有三大板块,19 小题。

满分 150 分(含.书.写.5.分.)。

考试时间 120 分钟。

2.答案必须写在答题纸相应的位置上,根据提示上传,写在试题卷、草稿纸上均无效。

一、语文知识积累(20 分)1.读下面这段文字,根据拼音写出相应的汉字。

(4 分)2.古诗文名句默写。

(13 分) ⑴忽如一夜春风来, ▲ 。

(岑参《白雪歌送武判官归京》) ⑵ ▲ ,波涛如怒,山河表里潼关路。

(张养浩《山坡羊·潼关怀古》) ⑶一抹晚烟荒戍垒, ▲ 。

(纳兰性德《浣溪沙》)⑷ ▲ ,再而衰,三而竭。

(《曹刿论战》)⑸“千古文人家国梦”,诗意的文字,失意的人生。

范仲淹写下“ ▲ , ▲ ”,道出征人们想家却又不甘无功而返的矛盾心理;夏完淳呐喊着 “ ▲ , ▲ ”,悲痛于山河的支离破碎。

但一时的失意又怎会压垮文人的傲骨。

苏轼立下志向“ ▲ ,西北 望,射天狼”,渴望为国御敌立功;文天祥在《过零丁洋》中高呼“ ▲ , ▲ ”,气势磅礴、情绪高亢,表现出崇高的民族气节和舍身取义的生死观;辛弃疾欲恢复山河,建立功名,在《破阵子·为陈同甫赋壮词以寄之》中写下“ ▲ , ▲ ” 的豪情壮志。

3.在“话说千古风流人物”的综合性活动中,小杰尝试用诗文名句来评说部分历史人物的个性与追求。

在下列选项中,你认为人物与诗文内涵不.相.符.的一项是( ▲ )(3 分) A.B.C. D. 我听见回声,来自山谷和心间,以寂寞的镰刀收割空 kuàng (1) 的灵魂,不断地重复决绝,又重复幸福,终有绿洲摇 y è (2) 在沙漠。

浙江省温州市2019-2020学年九年级下学期数学中考模拟试卷(含答案)

浙江省温州市2019-2020学年九年级下学期数学中考模拟试卷(含答案)

浙江省温州市2019-2020学年九年级下学期数学中考模拟试卷(含答案)一、选择题(本题有10小题,每小题4分,共40分。

每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.-2的相反数是( )A. 2B. -C. -2D. -【答案】A【考点】相反数及有理数的相反数2.截至目前中国森林面积达到175 000 000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175 000 000用科学计数法表示为( )A. 179×106B. 17.5×107C. 1.75×108D. 0.175×109【答案】C【考点】科学记数法—表示绝对值较大的数3.一个几何体的三视图如图所示,则这个几何体是( )A. 圆柱B. 圆锥C. 长方体D. 正方体【答案】A【考点】由三视图判断几何体4.在一个不透明的袋子内装有2个红球、3个红球和4黑球,它们除了颜色外其余均相同,从中任意摸出一个红球的概率是( )A. B. C. D.【答案】C【考点】等可能事件的概率5.甲,乙,内,丁四名同学在学校演讲选拔赛的成绩平均数方差s2如下表所示:平均数8.0根据表中数据,要从中选一名成绩好又发挥稳定的同学参加市演讲比赛,应该选择( )A. 甲B. 乙C. 丙D. 丁【答案】C【考点】平均数及其计算,方差6.如图,是一个三角板,则下列选项中可能是由该图经过一次轴对称变换后得到的是( )A. B. C. D.【答案】 D【考点】作图﹣轴对称7.如图,矩形ABCD是一道门的门框,将一条长为1米的木棒的一端放在门框AB上的点E处,将木棒靠在左边门框AD上时,另一端落在点G处,保持一端在点E不动,将木棒靠在右边门框BC时,另一端落在点F处.测得∠AGE=30°,∠EFB=45°,则与门框的宽度AB最接近的长度为( )(参考:≈1.414,≈1.732)A. 1米B. 1.2米C. 1.5米D. 1.6米【答案】B【考点】解直角三角形的应用8.某果糖店的甲,乙两种果糖的销售单价分别为每公斤a,b元,先将m公斤甲种果糖和n公斤乙种果糖混合成什锦糖,店长为了保持利润不变,则该什锦糖每公斤应定价为( )A. B. C. a+b D.【答案】 D【考点】列式表示数量关系9.在直角坐标系中,直线y=x+2和抛物线y=x2-x+1的若干组函数值如下表所示:根据表格,这两个图象一个交点的横坐标范围是( )A. 1<x<1.5B. 1.5<Xx2C. 2<x<2.5D. 2.5<x<3【答案】C【考点】二次函数与一次函数的综合应用10.如图,存Rt△ABC中,∠ACB=90°,以AB为边向下作正方形ADEB,连结CD,CE.分别记△ACD,△BCE 的而积为S1,S2,用S1,S2的代数式表示边AB的长为( )A. B. C. D.【答案】B【考点】列式表示数量关系二、填空题(共有6小题,每小题5分,共30分)11.因式分解:4-9x2=________.【答案】(2+3x)(2-3x)【考点】因式分解﹣运用公式法12.要使根式有意义,则字母x的取值范围是________.【答案】x≥-1【考点】二次根式有意义的条件13.一个正n多边形的内角和是它外角和的2倍,则n=________.【答案】6【考点】多边形内角与外角14.如图,点A在直线y1=-x+4上,且位于第一象限.AB⊥x轴于点B,AC⊥y轴于点C,延长CA交直线y2=-x+4于点D,连结BC,BD.若,则△BCD 的周长________.【答案】【考点】一次函数的实际应用15.小东同学将“L”型尺子和量角器按如图所示摆放,其中“L”型尺子的一边AB与量角器的零度线在同一直线上,另一边BC与量角器相切于点B.且AB=OB.P为BC边上一点,射线PM经过点A,射线PN与量角器切于点D.若点D在量角器上的读数为50°,则∠MPN的度数为________.【答案】75°【考点】切线的性质16.如图,A,B是反比例函数 (k>0)卜两点,纵坐标分别为3,1,连结AO并延长交双曲线于另一点C,连结BC.若AC=BC,则k的值为________.【答案】【考点】反比例函数图象上点的坐标特征三、解答题17.计算题(1)计算:(2)化简:a(a-2)-(2a-1)(2a+1)+2a.【答案】(1)原式==-2(2)a²-2a-4a²+1+2a=-3a²+1【考点】实数的运算,整式的混合运算18.如图,在ABCD中,点E,F和对角线AC上,连结BE,DF,若BE∥DF.(1)求证:△ADF≌△CBE.(2)若AF=8,AC=13,求EF的长.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADF=∠EBC,又∵ BE∥DF,∴∠CEB=∠DFA,在△ADF和△CBE中,∵,∴△ADF≌△CBE(ASA).(2)由(1)知△ADF≌△CBE,∴AF=CE,∵ AF=8,AC=13,∴AE=CF=AC-AF=5,∴EF=AC-AE-CF=13-5-5=3.【考点】全等三角形的判定与性质19.如图,由边长为1个单位的小正方形组成了10×10的网格,每个小正方形的顶点称为格点.如图,点A,B均为格点.(1)在图①中确定格点C,D,使得以A,B,C,D为顶点的四边形为矩形,且矩形的邻边之比为1:2,作出一个这样的矩形.(2)在图②中确定格点C,D,使得以A,B,C,D为顶点的四边形为平行四边形,且其中一个内角的正切值为2,作出一个这样的平行四边形.【答案】(1)(2)【考点】作图—复杂作图20.为了提倡节约用水,某市自来水制定了二级收费标准,具体收费如下表:(注:第二,三级水费均为超出部分的水费).该市某用户在4月1日到6日这6天的用水量如下图所示:(1)求该用户在这6天的用水量的众数和中位数.(2)该用户4月份平均每天用水量与这6天的平均每天用水量相同.由于天气变热,4,5,6月份的用水量逐月增加.若5,6两个月合计用水60吨,共缴水费170元,求该用户在5,6月分别用了多少吨水?【答案】(1)由图可知:6天用水量为:1.2,1,0.6,0.8,0.8,0.4,将这组数据从大到小排列为:1.2,1,0.8,0.8,0.6,0.4,∴这组数据的中位数是0.8,众数是0.8.(2)依题可得:4月份的用水量为24吨,则5月份用水量超过20吨而少于30吨,6月份用水量超过30吨,设5月份用水量为x吨,6月份用水量为y吨,依题可得:,解得:.答: 该用户在5月份用水量为26吨,6月份用水量为34吨.【考点】二元一次方程组的其他应用,中位数,众数21.如图,△ABC是⊙O的内接三角形,且AB为⊙O的直径.点D在⊙O 上且BC=BD,连结AD,过点D 作DE⊥BC于点E,交AB于点F,连结CF.(1)求证:四边形ACFD是菱形.(2)若DE=12,BC=13,求线段AC的长.【答案】(1)证明:连结CD,交AB于H,如图:∵ AB为⊙O的直径,∴AC⊥BC,又∵DE⊥BC,∴AC∥DE,∴∠CAH=∠DFH,∠ACH=∠FDH,∵BC=BD,AB为⊙O的直径,∴CH=DH,AC=AD,在△ACH和△FDH中,∵,∴△ACH≌△FDH(AAS),∴AC=FD,AD=CF,∴四边形ACFD是平行四边形,又∵AC=AD,∴平行四边形ACFD是菱形.(2)解:连结DB,如图:∵DE⊥BC,∴∠DEB=90°,在Rt△DEB中,∵DB=BC=13,DE=12,∴BE==5,∴CE=BC-BE=8,设DF=x,则EF=12-x,由(1)知CF=DF=AC=x,在Rt△CFE中,∵CF2=EF2+CE2,即x2=(12-x)2+82,解得:x=,∴DF=AC=.【考点】圆的综合题22.如图,在坐标系中,抛物线y=-x2+x+4交y轴于点A ,点P(4,p)存第一象限内,且在抛物线的下方.(1)求P的取值范围.(2)过点P作PB⊥x轴于点B,延长AP,AB分别交抛物线于点C,D,连结CD,当S△ACD的值最大时,求P的值.【答案】(1)∵P(4,p),∴将x=4代入y=-x2+x+4,解得:y=6,∵ P在第一象限且在抛物线下方,∴p>0,∴ p的取值范围为:0<p<6.(2)解:∵抛物线y=-x2+x+4与y轴交于点A,∴A(0,4),又∵ PB⊥x轴,P(4,p),∴B(4,0),设直线AB解析式为y=kx+b,∴,解得:,∴直线AB解析式为:y=-x+4,∴,解得:,∴D(10,-6)过点C作CE⊥x轴交AD于点E,如图:设C(x,-x2+x+4),则E(x,-x+4),∴CE=(-x2+x+4)-(-x+4)=-x2+x,∴S△ACD=·CE·x D=×(-x2+x)×10,=-(x-5)2+,∴当且仅当x=5时,S△ACD取得最大,且最大值为,∴C(5,),设直线AC解析式为:y=cx+d,∴,解得:,∴直线AC解析式为:y=x+4,∵P(4,p)在直线AC上,∴p=×4+4=5.【考点】二次函数与一次函数的综合应用23.活动课上,学习小组对小明同学正常走路的步长、步数之间的关系进行了测量,得到如下关系:n=160p,其中n表示每分钟走的步数,p(米)表示两个相连脚步脚跟间(或脚尖间)的距离.(1)当小明以每分钟80的步数走完100米需要几步?(2)小明每分钟走的路程为S(米).请写出S关于p的函数关系式:________.(3)小明每分钟走的路程为S(米).小东正常走路的步长、步数之间的关系为n1=kp1(k为常量),小明和小东匀速走完100米均用1.6分钟,小东比小明少走了20步,若小东走完100米恰好用了整数步,求k的值.(注:如图所示,脚尖紧靠起点线内侧至脚尖跟刚好触碰到终点线为走完100米)【答案】(1)解:将n=80代入n=160p,得p=0.5.,100÷0.5=200(步)答:当小明以每分钟80的步数走完100米需要200步(2)S=160p²(3)S= = ,代入S=160p²,得p= ,完成100米的步数= ,∴小东完成100米的步数为140步,p1= ,n1= ,∴k=【考点】根据实际问题列二次函数关系式,二次函数与一次函数的综合应用24.在△OBD中,OB⊥OD,∠OBD=30°,点A,C分别在BO,DO的延长线上,且AC=BD,E为AC的中点,连结DE,交AO于点F.(1)如图①,判断∠C和∠1数量关系,并说明理由.(2)如图①,当△AFE是等腰三角形时,求∠1的度数.(3)如图②,当OA=OD时,过点D作DH⊥BC于点H.①求证:DE=DH.②连结EH,延长EO交DH 于点G,求S△HEG:S△DFG的值.【答案】(1)解:∠C=2∠1,理由如下:连结OE,∵OB⊥OD,∠OBD=30°,∴OE= AC,OD=BD,∵AC=BD,∴CE=OE=OD,∴∠1=∠OED,∠EOC=∠C=2∠1,∴∠C=2∠1.(2)解:设∠1=x,由(1)知∠C=2∠1=2x,∴∠AEF=3x,∠EAF=90-2x,∠AFE=90-x,①当AE=AF时,∴∠AEF=∠AFE,即3x=90-x,解得x=22.5°,即∠1=22.5°;②当AF=EF时,∴∠AEF=∠EAF,即3x=90-2x,解得x=18°,即∠1=18°;③当AF=AE时,不存在;综上所述:∠1的度数为22.5°或18°.(3)①证明:过点C作AD的垂线段CP ,如图,∵OA=OD,AC=BD,∠AOC=∠DOB=90°,∴Rt△AOC≌Rt△DOB,∴∠ACO=∠DBO=2∠CDE=30°,OC=OB,∴∠CDE=15°,∴△AOD、△OCB、△CPD均为等腰直角三角形,∴∠APC=∠BHD=90°,∠ACP=∠BDH=15°,CA=BD,∴Rt△ACP≌Rt△DBH,∴CP=DH,连结EP,∵E为AC中点,∴CE=PE,CE=OE=OD,∴∠PCE=∠CPE=15°,∠OCE=∠COE=30°,∠OED=∠ODE=15°,∠∠∴∠PEC=150°,∠DEO=120°,∴∠DPE=75°,∠DEP=75°,即∠DEP=∠EPD,∴DP=DE,∴DE=DH.②解:由①知DE=DH,∠HDE=60°,∴△DHE是等边三角形,∵OD=OE,∴直线OH是△DHE的对称轴,∴S△HEG:S△DEG=S△HKD:S△EKD,分别过E,H作CD的垂线段EM,EN,∴S△HKD:S△EKD=HN:EM= .【考点】全等三角形的判定与性质,等腰三角形的判定与性质,含30度角的直角三角形,直角三角形斜边上的中线,等腰直角三角形。

浙江省温州市绣山中学2019-2020学年九年级水平测试数学试题(word无答案)

浙江省温州市绣山中学2019-2020学年九年级水平测试数学试题(word无答案)

浙江省温州市绣山中学2019-2020学年九年级水平测试数学试题(word无答案)一、单选题(★) 1 . 在实数2,0,,1.5中,其中是负数的是()A.2B.0C.D.1.5(★) 2 . 某校欲举办“校园吉尼斯挑战赛”,小尤对该校全体学生进行“你最喜欢的挑战项目”问卷调查(每人都选了一项),并将结果绘制成如图所示的统计图,则该校学生最喜欢的项目是()A.羽毛球B.踢毽子C.跳绳D.乒乓球(★★) 3 . 由两块大小不同的正方体搭成如图所示的几何体,它的主视图是()A.B.C.D.(★) 4 . 有理数在数轴上的位置如图所示,则的值()A.小于0B.等于0C.大于0D.大于2(★) 5 . 13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头毛驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀”,则餐刀数为()A.35B.42C.D.(★) 6 . 在“一日捐”活动中,九(2)班42名同学捐款金额统计如下表,则在这次活动中,该班同学捐款金额的众数是()金额(元)20303550100150学生数5791353(名)A.3B.35C.50D.150(★★) 7 . 如图,在等边中,,点在边上,,过点作交于点,为边的中点,则的值为()A.B.C.D.(★★) 8 . 一张三角形纸片,其三边之比为.小方将纸片对折,第一次使顶点和重合,第二次使顶点和重合,第三次使顶点和重合,三条折痕依次记为,,,则的值为()A.B.C.D.(★★★★) 9 . 如图,已知 A, B为反比例函数 y 1=图象上两点,连接 AB,线段 AB经过点O, C是反比例函数 y 2= ( k<0)在第二象限内的图象上一点,当△ CAB是以 AB为底的等腰三角形,且时, k的值为()A .﹣B .﹣3C .﹣4D .﹣(★★) 10 . 当 时,二次函数 有最大值4,则实数的值为()A .B .或C .2或D .2或或二、填空题(★) 11 . 合并同类项:________. (★) 12 . 如图,圆锥的底面半径 为,母线 为 ,那么这个圆锥的高 是________.(★) 13 . 我们知道方程 的解是, .现给出另一个方程,它的解是________.(★) 14 . 某果园有苹果树100棵,为了估计该果园的苹果总产量,小王先按长势把苹果树分成了A 、B 、C 三个级别,其中A 级30棵, B 级60棵, C 级10棵,然后从A 、B 、C 三个级别的苹果树中分别随机抽取了3棵、6棵、1棵,测出其产量,制成了如下的统计表.小李看了这个统计表后马上正确估计出了该果园的苹果总产量,那么小李的估计值是 ____ 千克.苹果树长势A 级B 级C 级随机抽取棵数(棵)361所抽取果树的平均产量(千克)807570(★★) 15 . 如图,在平面直角坐标系中,点 , , 的坐标分别为 , ,,一直线经过点将四边形分割成两块,这两块的面积比为1:2,则该直线的表达式为________ .(★★) 16 . 如图,小明家卫生间有一块直角梯形地方(其中),它恰好可以用四块相同型号的小直角梯形瓷砖无缝拼接而成,则________.三、解答题(★) 17 . (1)计算:;(2)化简:.(★★)18 . “校园手机”现象越来越受到社会的关注,小记者张明随机调查了某校若干名学生和家长对中学生带手机现象的看法,制作了如图所示的统计图.(1)这次调查的学生人数是________名,家长人数是________名;(2)补全两个统计图;(3)针对随机调查的情况,张明决定从九(1)班表示赞成的4名家长中随机选择2名进行深入调查,其中包含小亮的爸爸和妈妈,小亮的爸爸和妈妈被同时选中的概率是________.(★) 19 . 如图,在方格纸中(小正方形的边长为1个单位长度),点,,都在格点上,以为坐标原点建立平面直角坐标系.(1)分别写出点,的坐标:________,画出线段绕着点逆时针旋转的线段;(2)若线段的中点在反比例函数的图象上,则的值为________.(直接写出答案)(★★) 20 . 如图,在等腰梯形中,,,分别为上、下两底,的中点,,分别为,的中点,求证:四边形是菱形.(★★) 21 . 如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73)(★★★★)22 . 如图,在中,,经过,两点,交延长线于点,过点作的切线交于点,且.(1)求证:;(2)设交于点,若,,求的值.(★★) 23 . 小慧和小聪沿图①中的景区公路游览.小慧乘坐车速为30 km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20 km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB,GH的交点B的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30 km/h的速度按原路返回,那么返回途中他几点钟遇见小慧?(★★★★) 24 . 如图,在平面直角坐标系中,点,,的坐标分别为,,.点和点分别从点和点同时出发沿轴正方向运动,同时点从点出发沿轴正方向运动,以,为邻边构造,已知点,的运动速度均为,点的运动速度为,运动时间为.过点的抛物线交轴于另一点(点在点的右侧),,且该二次函数的最大值不变,均为.(1)①当时,求的长;(用含的代数式表示);②当时,求点的坐标;(2)当时,试判断点是否恰好落在抛物线上,并说明理由;(3)若点关于直线的对称点恰好落在抛物线上,请求出所有满足条件的的值.。

浙江省温州市2019-2020学年数学中考一模试卷(含答案)

浙江省温州市2019-2020学年数学中考一模试卷(含答案)

浙江省温州市2019-2020学年数学中考一模试卷(含答案)一、单选题1.在,,0,-2这四个数中,为无理数的是( )A. B. C. 0 D. -2【答案】A【考点】无理数的认识2.下列计算正确的是()A. a2+a3=a5B. a2•a3=a5C. (2a)2=4aD. (a2)3=a5【答案】B【考点】同底数幂的乘法,合并同类项法则及应用,积的乘方,幂的乘方3.如图所示,该圆柱体的左视图是()A. B. C. D.【答案】C【考点】简单几何体的三视图4.如图,△ABC内接于⊙O,∠A=68°,则∠OBC等于()A. 22°B. 26°C. 32°D. 34°【答案】A【考点】圆周角定理5.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,统计结果如下表所示:表中表示成绩分数的数据中,中位数是()A. 38分B. 38.5分C. 39分D. 39.5分【答案】C【考点】中位数6.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A. (x+3)2=1B. (x﹣3)2=1C. (x+3)2=19D. (x﹣3)2=19【答案】 D【考点】公式法解一元二次方程7.不等式组的解集是()A. x≥2B. 1<x<2C. 1<x≤2D. x≤2【答案】C【考点】解一元一次不等式组8.已知点(﹣2,y1),(1,0),(3,y2)都在一次函数y=kx﹣2的图象上,则y1,y2,0的大小关系是()A. 0<y1<y2B. y1<0<y2C. y1<y2<0D. y2<0<y1【答案】B【考点】比较一次函数值的大小9.七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”.如图是一个七巧板迷宫,它恰好拼成了一个正方形ABCD,其中点E,P分别是AD,CD的中点,AB=2 ,一只蚂蚁从A处沿图中实线爬行到出口P处,则它爬行的最短路径长为()A. 3B. 2+C. 4D. 3【答案】B【考点】七巧板,勾股定理,矩形的性质10.如图,矩形ABCD中,AB=8,BC=6,将矩形ABCD绕点A逆时针旋转得到矩形AEFG,AE,FG分别交射线CD于点PH,连结AH,若P是CH的中点,则△APH的周长为()A. 15B. 18C. 20D. 24【答案】C【考点】相似三角形的判定与性质,旋转的性质二、填空题11.分解因式:a2﹣4a=________.【答案】a(a﹣4)【考点】因式分解-提公因式法12.一个布袋里装有10个只有颜色不同的球,这10个球中有m个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m的值约为________.【答案】3【考点】利用频率估计概率13.某种品牌手机经过4,5月份连续两次降价,每部售价由5000降到3600元,且5月份降价的百分率是4月份降价的百分率的2倍.设4月份降价的百分率为x,根据题意可列方程:________(不解方程).【答案】5000(1﹣x)(1﹣2x)=3600【考点】一元二次方程的实际应用-销售问题14.如图,把菱形ABCD沿折痕AH翻折,使B点落在BC延长线上的点E处,连结DE,若∠B=30°,则∠CDE=________°.【答案】45【考点】菱形的判定与性质,翻折变换(折叠问题)15.如图,要在宽AB为20米的瓯海大道两边安装路灯,路灯的灯臂CD与灯柱BC成120°角,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线(即O为AB的中点)时照明效果最佳,若CD= 米,则路灯的灯柱BC高度应该设计为________米(计算结果保留根号).【答案】【考点】相似三角形的判定与性质,相似三角形的应用,解直角三角形16.如图,直角坐标系xOy中,直线y=﹣x+b分别交x,y轴的正半轴于点A,B,交反比例函数y=﹣的图象于点C,D(点C在第二象限内),过点C作CE⊥x轴于点E,记四边形OBCE的面积为S1,△OBD 的面积为S2,若,则CD的长为________.【答案】【考点】反比例函数与一次函数的交点问题,反比例函数的实际应用三、解答题17.计算:(﹣2)0﹣()2+|﹣1|.【答案】解:原式=1﹣6+1=﹣4【考点】实数的运算18.如图,在△ABE中,C为边AB延长线上一点,BC=AE,点D在∠EBC内部,且∠EBD=∠A=∠DCB.(1)求证:△ABE≌△CDB.(2)连结DE,若∠CDB=60°,∠AEB=50°,求∠BDE的度数.【答案】(1)证明:∵∠ABE+∠EBD+∠DBC=180°,∠A+∠AEB+∠EBA=180°,∵∠EBD=∠A=∠DCB,∴∠EBA=∠DBC,在△ABE与△CDB中,∴△ABE≌△CDB(AAS)(2)解:∵△ABE≌△CDB,∴BE=DB,∠AEB=∠DBC,∵∠CDB=60°,∠AEB=50°,∴∠DBC=50°,∴∠C=180°﹣60°﹣50°=70°,∴∠EBD=∠DCB=70°,∴∠BDE= .【考点】全等三角形的判定与性质19.如图,5×5的正方形网格中隐去了一些网格线,AB,CD间的距离是2个单位,CD,EF间的距离是3个单位,格点O在CD上(网格线的交点叫格点).请分别在图①、②中作格点三角形OPQ,使得∠POQ=90°,其中点P在AB上,点Q在EF上,且它们不全等.【答案】解:△POQ如图所示;【考点】勾股定理,作图—复杂作图20.随着道路交通的不断完善,某市旅游业快速发展,该市旅游景区有A、B、C、D、E等著名景点,市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图(不完整)如下所示,根据相关信息解答下列问题:(1)2017年“五•一”期间,该市旅游景点共接待游客________万人,扇形统计图中A景点所对应的圆心角的度数是________,并补全条形统计图.________(2)在等可能性的情况下,甲、乙两个旅行团在A、B、D三个景点中选择去同一景点的概率是多少?请用画树状图或列表加以说明.【答案】(1)50;108°;补全条形图如下,(2)解:画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率= =【考点】扇形统计图,条形统计图,列表法与树状图法21.如图,钝角△ABC中,AB=AC,BC=2 ,O是边AB上一点,以O为圆心,OB为半径作⊙O,交边AB 于点D,交边BC于点E,过E作⊙O的切线交边AC于点F.(1)求证:EF⊥AC.(2)连结DF,若∠ABC=30°,且DF∥BC,求⊙O的半径长.【答案】(1)证明:连接OE,如图,∵OB=OE,∴∠B=∠OEB,∵AB=AC,∴∠B=∠C,∴∠OEB=∠C,∴OE∥AC,∵EF为切线,∴OE⊥EF,∴EF⊥AC(2)解:连接DE,如图,设⊙O的半径长为r,∵BD为直径,∴∠BED=90°,在Rt△BDE中,∵∠B=30°,∴DE= BD=r,BE= r,∵DF∥BC,∴∠EDF=∠BED=90°,∵∠C=∠B=30°,∴∠CEF=60°,∴∠DFE=∠CEF=60°,在Rt△DEF中,DF= r,∴EF=2DF= r,在Rt△CEF中,CE=2EF= r,而BC=2 ,∴r+ r=2 ,解得r= ,即⊙O的半径长为.【考点】圆周角定理,切线的性质,解直角三角形22.如图,▱ABCD位于直角坐标系中,AB=2,点D(0,1),以点C为顶点的抛物线y=ax2+bx+c经过x轴正半轴上的点A,B,CE⊥x轴于点E.(1)求点A,B,C的坐标.(2)将该抛物线向上平移m个单位恰好经过点D,且这时新抛物线交x轴于点M,N.①求MN的长.________②点P是新抛物线对称轴上一动点,将线段AP绕点A顺时针旋转60°得AQ,则OQ的最小值为________(直接写出答案即可)【答案】(1)解:∵四边形ABCD是平行四边形,∴CD=AB=2,∵CE⊥x轴,∴OE=2,∵点E是AB中点,∴AE=BE=1,∴OA=2﹣1=1.OB=OE+BE=3,∴A(1,0),B(3,0),∵D(0,1),∴C(2,1)(2)解:由(1)知,抛物线的顶点C(2,1),∴设抛物线的解析式为y=a(x﹣2)2+1,∵A(1,0)在抛物线上,∴a(1﹣2)2+1=0,∴a=﹣1,∴抛物线解析式为y=﹣(x﹣2)2+1,①该抛物线向上平移m个单位恰好经过点D,设平移后的抛物线解析式为y=﹣(x﹣2)2+1+m,∵D(0,1),∴﹣(﹣2)2+1+m=1,∴m=4,∴平移后的抛物线解析式为y=﹣(x﹣2)2+5,令y=0,∴0=﹣(x﹣2)2+5,∴x=2± ,∴M(2+ ,0),N(2﹣,0),∴MN=2;【考点】待定系数法求二次函数解析式,二次函数的实际应用-几何问题23.如图,王爷爷家院子里有一块三角形田地ABC,AB=AC=5米,BC=6米,现打算把它开垦出一个矩形MNFE区域种植韭菜,△AMN区域种植芹菜,△CME和△BNF区域种植青菜(开垦土地面积损耗均忽略不计),其中点M,N分别在AC,AB上,点E,F在BC上,已知韭菜每平方米收益100元,芹菜每平方米收益60元,青菜每平方米收益40元,设CM=5x米,王爷爷的蔬菜总收益为W元.(1)当矩形MNFE恰好为正方形时,求韭菜种植区域矩形MNFE的面积.(2)若种植韭菜的收益等于另两种蔬菜收益之和的2倍,求这时x的值.(3)求王爷爷的蔬菜总收益为W关于x的函数表达式及W的最大值.【答案】(1)解:作AH⊥BC于H,交MN于D.∵AB=AC,AH⊥BC,∴CH=HB=3,在Rt△ACH中,AH= =4,∵ME∥AH,∴= = ,∴CE=3x,EM=EF=4x,易证△MEC≌△NFB,∴CE=BF=3x,∴3x+4x+3x=6,∴x= ,∴EM= ,∴矩形MNFE的面积为平方米(2)解:由题意:100×4x•(6﹣6x)=2•[60× ×(6﹣6x)•(4﹣4x)+40×4x×3x],解得x= 或(3)解:由题意W=100×4x•(6﹣6x)+60× ×(6﹣6x)•(4﹣4x)+40×4x×3x=﹣1200x2+960x+720=﹣1200(x﹣)2+912,,∵﹣1200<0,∴x= 时,W有最大值,最大值为912元.【考点】相似三角形的判定与性质,一元二次方程的实际应用-销售问题,二次函数的实际应用-销售问题24.如图,矩形ABCD中,AD=10,CD=15,E是边CD上一点,且DE=5,P是射线AD上一动点,过A,P,E三点的⊙O交直线AB于点F,连结PE,EF,PF,设AP=m.(1)当m=6时,求AF的长.(2)在点P的整个运动过程中.①tan∠PFE的值是否改变?若不变,求出它的值;若改变,求出它的变化范围.②当矩形ABCD恰好有2个顶点落在⊙O上时,求m的值.(3)若点A,H关于点O成中心对称,连结EH,CH.当△CEH是等腰三角形时,求出所有符合条件的m 的值.(直接写出答案即可)【答案】(1)解:如图1中,连接AE.在Rt△DPE中,∵DE=5,DP=AD﹣AP=4,∴PE= = ,在Rt△ADE中,AE= =5 ,∵∠PAF=90°,∴PF是⊙O的直径,∴∠PEF=∠ADF=90°,∵∠DAE=∠PFE,∴△ADE∽△FEP,∴= ,∴= ,∴PF= ,在Rt△PAF中,AF= = =13.(2)解:①tan∠PFE的值不变.理由:如图1中,∵∠PFE=∠DAE,∴tan∠PFE=tan∠DAF= = .②如图2中,当⊙O经过A、D时,点P与D重合,此时m=10.如图3中,当⊙O经过A、B时,在Rt△BCE中,BE= =10 ,∵tan∠PFE= ,∴PE=5 ,∴PD= =5,∴m=PA=5.如图4中当⊙O经过AC时,作FM⊥DC交DC的延长线于M.根据对称性可知,DE=CM=BF=5,在Rt△EFM中,EF= =5 ,∴PE= EF= ,∴PD= = ,∴m=AD﹣PD= ,综上所述,m=10或5或时,矩形ABCD恰好有2个顶点落在⊙O上(3)解:如图5中,当EC=CH时,根据对称性可知:PE=CH=EC=10,PD= =5 ,∴m=10﹣5 .如图6中当EC=EH=10时,在Rt△AEH中,AH= = =5 ,易知PF=AH=5 ,∵∴∴PE:EF:PF=1:2:,∴PE= ,在Rt△PDE中,DP= =2 ,∴m=PA=AD﹣PD=10﹣2 .如图7中当HC=HE时,延长FH交CD于M,则EM=CM=BF=5,HM= ,∴m=PA=HF=10﹣= .如图8中,当EH=EC时,PF=AH= = =5 ,∵PE:EF:PF=1:2:,∴PE= ,在Rt△PDE中,PD= =3 ,∴m=PA=AD+PD=10+3 ,综上所述,满足条件的m的值为10﹣5 或10﹣2 或或10+3 .【考点】圆的综合题,几何图形的动态问题。

2019年浙江省温州市鹿城区绣山中学中考数学二模试卷.docx

2019年浙江省温州市鹿城区绣山中学中考数学二模试卷.docx

2019 年浙江省温州市鹿城区绣山中学中考数学二模试卷一.选择题(共10 小题,满分40 分,每小题 4 分)1.3 的相反数是()A.﹣ 3B. 3C.D.﹣2.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.3.我县人口约为 530060 人,用科学记数法可表示为()A. 53006× 10 人B.× 105人C. 53× 104人D.× 106人4.计算(﹣x2)3的结果是()A.﹣x6B.x6C.﹣x5D.﹣x85.不等式x+5< 2 的解在数轴上表示为()A.B.C.D.6.掷一枚六个面分别标有1,2,3,4,5,6 的正方体骰子,则向上一面的数不大于 4 的概率是()A.B.C.D.7.AD是△ABC的中线,E是AD上一点,AE:ED=1: 3,BE的延长线交AC于 F, AF: FC=()A. 1: 3 8.如图, ?B. 1: 4ABCD的对角线 AC,BD交于点C.1: 5O, AC⊥AB, AB=,且D. 1: 6AC: BD=2:3,那么AC的长为()A. 2B.C.3D. 49.如,在平面直角坐系xOy 中,点 A, B 在反比例函数y=(x>0)的象上,如果将矩形的面S1,矩形的面S2,那么S1,S2的关系是()OCAD OEBFA.S1>S2B.S1=S2C.S1<S2D.不能确定10.如,将两5, 1 的矩形条交叉,两个矩形角交点重合,且使重叠部分成一个菱形.当两条垂直,菱形周的最小是4,把一个矩形两个矩形重合的角交点旋一定角度,在旋程中,得出所有重叠部分菱形的四形中,周的最大是()A. 8B. 10C.D. 12二.填空(共 6 小,分30 分,每小 5 分)11.把多式3mx6my分解因式的果是.12.如果本x1,x2, x3,⋯,x n的平均数5,那么本x1+2, x2+2, x3+2,⋯ x n+2的平均数是13.如,正五形ABCDE的点D作直l ∥AB,∠ 1 的度数是.14.如,Rt△ABC中,∠C=90°,∠ ABC=30°, AB=8,将△ABC沿CB向右平移得到△DEF,若四形ABED的面等于8,平移得距离等于.15.某工艺品车间有20 名工人,平均每人每天可制作12 个大花瓶或10 个小饰品,已知 2 个大花瓶与 5 个小饰品配成一套,则要安排名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套.16.如图,AB是⊙ O的直径,点P 在BA的延长线上,PD与⊙ O相切与点D,过点 B 作PD的垂线,与 PD的延长线相交于点C,若⊙O的半径为4,BC= 6,则PA的长为.三.解答题(共8 小题,满分80 分,每小题10 分)17.计算:(1)﹣ 12018+()﹣3﹣ |1 ﹣ 3tan30 ° |(2)x(x+2y)﹣(x﹣y)(x+y)18.如图,已知E、 F 分别是? ABCD的边 BC、 AD上的点,且BE= DF.(1)求证:四边形AECF是平行四边形;(2)若BC= 10,∠BAC= 90°,且四边形AECF是菱形,求BE的长.19.《如果想毁掉一个孩子,就给他一部手机! 》这是 2017 年微信圈一篇热传的文章.国际上,法国教育部宣布从 2018 年 9 月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是 40 人.你根据以上信息解答下列:( 1)在扇形中,“玩游” 的百分比,心角度数是度;( 2)全条形;( 3)校共有学生2100 人,估每周使用手机在 2 小以上(不含 2 小)的人数.20.在平面直角坐系中,点O 坐原点,我把横、坐都整数的点称整点,定点都是整点的三角形整点三角形.如,已知整点O(0,0), A(2,4),在所网格区域(含界)上按要求画.( 1)在 1 中画一个整点三角形OAB,其中点 B 在第一象限,且点 B 的横、坐之和等于点A 的横坐;(2)在 2 中画一个整点三角形OAC,其中点C的坐( 3t,t),且点C的横、坐之和是点 A 的坐的2倍.直接写出△ OAC的面.21.一个二次函数象上部分点的横坐x,坐y 的如下表:x⋯432101234⋯y⋯020m6⋯( 1)求个二次函数的表达式;(2)求m的值;(3)在给定的直角坐标系中,画出这个函数的图象;(4)根据图象,写出当y< 0 时,x的取值范围.22.小明和小亮分别从甲地和乙地同时出发,沿同一条路相向而行,小明开始跑步,中途改为步行,到达乙地恰好用40min.小亮骑自行车以300m/ min的速度直接到甲地,两人离甲地的路程y( m)与各自离开出发地的时间x( min)之间的函数图象如图所示,( 1)甲、乙两地之间的路程为( 2)求小亮离甲地的路程y 关于m,小明步行的速度为x 的函数表达式,并写出自变量m/ min;x 的取值范围;( 3)求两人相遇的时间.23.( 12 分)如图 1,在平面直角坐标系中,点D 是 ?的对角线的中点,=8,=4,OABC OB OA OC∠ COA=60°,点 E是 OC边上的任意一点,连接DE,将 DE绕着点 D逆时针方向旋转90°到DF.(1)当点E为OC中点时,求点F的坐标;(2)如图 2,当点F恰好落在OA边上时,求AF的长;( 3)当点E 从点运动到点C的过程,线段FA的最小值为.(直接写出答案)O24.( 14 分)( 1)特例探究.如图( 1),在等边三角形ABC中, BD是∠ ABC的平分线, AE是 BC边上的高线, BD和 AE相交于点F.请你探究=是否成立,请说明理由;请你探究=是否成立,并说明理由.( 2)归纳证明.如图( 2),若△ABC为任意三角形,BD 是三角形的一条内角平分线,请问=一定成立吗并证明你的判断.( 3)拓展应用.如图( 3),BC是△ABC外接圆⊙O的直径,BD是∠ABC的平分线,交⊙O于点 E,过点 E 作 AB的垂线,交 BA的延长线于点F,连接 OF,交 BD于点 G,连接 CG,其中cos∠ ACB=,请直接写出的值;若△ BGF的面积为 S,请求出△ COG的面积(用含S的代数式表示).2019 年浙江省温州市鹿城区绣山中学中考数学二模试卷参考答案与试题解析一.选择题(共10 小题,满分40 分,每小题 4 分)1.【分析】依据相反数的定义回答即可.【解答】解: 3 的相反数是﹣ 3.故选: A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【解答】解: A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选: D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【分析】根据科学记数法的定义及表示方法进行解答即可.【解答】解:∵ 530060 是 6 位数,∴10 的指数应是 5,故选: B.【点评】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.4.【分析】根据积的乘方和幂的乘方的运算法则计算可得.【解答】解:(﹣ x2)3=﹣ x6,故选: A.【点评】本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方的运算法则.5.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:移项得, x<2﹣5,合并同类项得,x<﹣3,在数轴上表示为;故选: D.【点评】本题考查的是在数轴上表示一元一次不等式的解集,熟知实心原点与空心原点的区别是解答此题的关键.6.【分析】直接根据概率公式求解.【解答】解:向上一面的数不大于 4 的概率==.故选: C.【点评】本题考查了概率公式:随机事件 A 的概率 P(A)=事件 A 可能出现的结果数除以所有可能出现的结果数.7.【分析】作DH∥BF交AC于H,根据三角形中位线定理得到FH= HC,根据平行线分线段成比例定理得到==,计算得到答案.【解答】解:作 DH∥ BF交 AC于 H,∵AD是△ABC的中线,∴ FH= HC,∵DH∥ BF,∴==,∴AF: FC=1:6,故选: D.【点评】本题考查平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.8.【分析】根据平行四边形的性质可知,OA= OC,OB= OD,由 AC: BD=2:3,推出 OA:OB=2:3,设OA=2m, OB=3m,在Rt△ AOB中利用勾股定理即可解决问题.【解答】解:∵四边形 ABCD是平行四边形,∴ OA= OC, OB= OD,∵ AC: BD=2:3,∴OA: OB=2:3,设 OA=2m, BO=3m,∵ AC⊥ BD,∴∠ BAO=90°,222∴ OB= AB+OA,2 2∴9m= 5+2m,∴m=±1,∵ m>0,∴m=1,∴AC=2OA=4.故选: D.【点评】本题考查平行四边形的性质、勾股定理等知识,解题的关键是灵活应用平行四边形的性质解决问题,学会设未知数,把问题转化为方程去思考,属于中考常考题型.9.【分析】因为过双曲线上任意一点引x 轴、 y 轴垂线,所得矩形面积S 是个定值,即S=| k|.从而证得 S1= S2.【解答】解:∵点 A, B 在反比例函数 y=( x>0)的图象上,∴矩形 OCAD的面积 S1=| k|=2,矩形 OEBF的面积 S2=| k|=2,∴S1=S2故选: B.【点评】本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x 轴、 y 轴垂线,所得矩形面积为| k| ,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.10.【分析】由矩形和菱形的性质可得AE= EC,∠ B=90°,由勾股定理可求AE的长,即可求四边形AECF的周长.【解答】解:如图所示,此时菱形的周长最大,∵四边形 AECF是菱形∴AE= CF= EC= AF,222在 Rt △ABE中,AE=AB+BE,22∴ AE=1+( 5 AE),∴ AE=∴菱形 AECF的周=×4=故: C.【点】本考了旋的性,菱形的性,矩形的性,勾股定理,熟运用勾股定理求段的度是本的关.二.填空(共 6 小,分30 分,每小 5 分)11.【分析】直接提取公因式3m,而分解因式即可.【解答】解: 3mx6my= 3m(x2y).故答案: 3m(x2y).【点】此主要考了提取公因式法分解因式,正确找出公因式是解关.12.【分析】首先由平均数的定得出x1+x2+⋯,+x n的,再运用求算平均数的公式算,求出本 x1+2, x2+2,⋯, x n+2的平均数.【解答】解:∵ 本x1,x2,⋯ x n的平均数5,(x1+2)+(x2+2)+⋯ +(x n+2)=(x1+x2+⋯+x n)+2n∴ 本 x1+2, x2+2,⋯, x n+2的平均数=5+2=7,故答案: 7.【点】主要考了平均数的概念.平均数是指在一数据中所有数据之和再除以数据的个数.13.【分析】根据正五形的性求出∠DCB=∠ ABC=×(52)× 180°= 108°,求出∠OCB=∠OBC=72°,根据三角形内角和定理求出∠ O,根据平行的性得出∠1=∠ O,代入求出即可.【解答】解:延 DC、 AB交于 O,∵五形 ABCDE是正五形,∴∠ DCB=∠ ABC=×(52)× 180°= 108°,∴∠ OCB=∠ OBC=180° 108°=72°,∴∠ O=180°﹣72°﹣72°=36°,∵直线 l ∥ AB,∴∠ 1=∠O= 36°,故答案为: 36°.【点评】本题考查了多边形和平行线的性质的应用,能正确作出辅助线是解此题的关键,注意:两直线平行,内错角相等.14.【分析】先根据含30 度的直角三角形三边的关系得到AC=AB=4,再根据平移的性质得AD=BE, AD∥BE,于是可判断四边形ABED为平行四边形,则根据平行四边形的面积公式得到AC?BE=8,即 4BE= 8,则可计算出BE= 2,所以平移距离等于2.【解答】解:在 Rt△ABC中,∵∠ABC= 30°,∴ AC= AB=4,∵△ ABC沿 CB向右平移得到△DEF,∴AD= BE, AD∥ BE,∴四边形 ABED为平行四边形,∵四边形 ABED的面积等于8,∴AC? BE=8,即4BE=8,∴BE=2,即平移距离等于2.故答案为: 2.【点评】本题考查了含 30°角的直角三角形的性质,平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.也考查了平行四边形的判定与性质.15.【分析】设制作大花瓶的x 人,则制作小饰品的有(20﹣x)人,再由 2 个大花瓶与 5 个小饰品配成一套列出方程,进一步求得x 的值,计算得出答案即可.【解答】解:设制作大花瓶的x 人,则制作小饰品的有(20﹣x)人,由题意得:12x× 5=10( 20﹣x)× 2,解得:x=5,20﹣ 5= 15(人).答:要安排 5 名工人制作大花瓶,才能使每天制作的大花瓶和小饰品刚好配套.故答案是: 5.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.16.【分析】直接利用切线的性质得出∠PDO=90°,再利用相似三角形的判定与性质分析得出答案.【解答】解:连接 DO解:连接 DO,∵PD与⊙O相切于点D,∴∠ PDO=90°,∵∠ C=90°,∴ DO∥ BC,∴△ PDO∽△ PCB,∴∴∴ PA=4故答案为4【点评】本题主要考查了切线的性质以及相似三角形的判定与性质,正确得出△题关键.三.解答题(共8 小题,满分80 分,每小题10 分)17.【分析】( 1)利用负整数指数幂、特殊角的函数值等知识代入后即可求得算式的值;( 2)利用单项式乘以多项式及平方差公式的知识计算后即可得到正确的结果;PDO∽△ PCB是解【解答】解:(=﹣ 1+8﹣(1)﹣ 12018+(﹣ 1))﹣ 3﹣|1﹣3tan30°|= 8﹣;(2)x(x+2y)﹣(x﹣y)(x+y)= x2+2xy﹣( x2﹣ y2)= 2xy +y2.【点评】本题考查了平方差公式、负整数指数幂及特殊角的三角函数值的有关知识,属于基础题,比较简单.2)由已18.【分析】( 1)首先由已知证明AF∥ EC, BE= DF,推出四边形AECF是平行四边形.(知先证明 AE= BE,即 BE=AE= CE,从而求出BE的长.【解答】( 1)证明:∵四边形ABCD是平行四边形,∴AD∥ BC,且 AD=BC,∴AF∥ EC,∵BE= DF,∴ AF= EC,∴四边形 AECF是平行四边形.(2)解:∵四边形AECF是菱形,∴ AE= EC,∴∠ 1=∠ 2,∵∠ 3= 90°﹣∠ 2,∠ 4=90°﹣∠ 1,∴∠ 3=∠ 4,∴ AE= BE,∴ BE= AE= CE= BC=5.【点评】此题考查的知识点是平行四边形的判定和性质及菱形的性质,解题的关键是运用平行四边形的性质和菱形的性质推出结论.19.【分析】( 1)由扇形统计图其他的百分比求出“玩游戏”的百分比,乘以360 即可得到结果;( 2)求出 3 小时以上的人数,补全条形统计图即可;( 3)由每周使用手机时间在 2 小时以上(不含 2 小时)的百分比乘以2100 即可得到结果.【解答】解:( 1)根据题意得:1﹣( 40%+18%+7%)= 35%,则“玩游戏”对应的圆心角度数是 360°× 35%= 126°,故答案为: 35%, 126;( 2)根据题意得:40÷ 40%= 100(人),∴3 小时以上的人数为 100﹣( 2+16+18+32)= 32(人),补全图形如下:;( 3)根据题意得:2100 ×=1344(人),则每周使用手机时间在 2 小时以上(不含 2 小时)的人数约有1344 人.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.20.【分析】( 1)由点A的横坐标为2,且点 B 的横、纵坐标之和等于点 A 的横坐标可得点B坐标为( 1, 1),据此可得;( 2)由点 A 的纵坐标为 4 且点C的横、纵坐标之和是点A的纵坐标2 倍可得3t +t=8,解之得的t =2,据此知点C(6,2),据此作图可得,再根据割补法求解可得.【解答】解:( 1)如图所示,△OAB即为所求;( 2)如图所示,△OAC即为所求,S△OAC=6×4﹣×2× 4﹣× 6× 2﹣× 2× 4=10.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握坐标与图形的性质及割补法求三角形的面积.21.【分析】(1)先确定出顶点坐标,再设顶点式解析式为y= a(x+1)2+2,然后将点(1,0)代入求出 a 的值,从而得解;(2)将x= 2 代入函数解析式计算即可得解;(3)根据二次函数图象的画法作出图象即可;(4)根据函数图象,写出x轴上方部分的x的取值范围即可.【解答】解:( 1)由图表可知抛物线的顶点坐标为(﹣1, 2),2所以,设这个二次函数的表达式为y=a( x+1)+2,∴a(1+1)2+2=0,∴a=﹣,∴这个二次函数的表达式为y=﹣(x+1)2+2;( 2)x=2 时,m=﹣(2+1)2+2=﹣;( 3)函数图象如图所示;( 4)y<0 时,x<﹣ 3 或x> 1.【点评】本题考查了抛物线与 x 轴的交点问题,二次函数的性质,待定系数法求二次函数解析式,读懂题目信息,从表格中判断出顶点坐标是解题的关键.22.【分析】( 1)认真分析图象得到路程与速度数据;( 2)采用方程思想列出小东离家路程y 与时间 x 之间的函数关系式;( 3)两人相遇实际上是函数图象求交点.【解答】解:( 1)结合题意和图象可知,线段CD为小亮路程与时间函数图象,折线O﹣ A﹣ B 为小明路程与时间图象,则甲、乙两地之间的路程为8000 米,小明步行的速度==100m/min,故答案为8000, 100(2)∵小亮从离甲地 8000m处的乙地以 300m/ min的速度去甲地,则xmin时,∴小亮离甲地的路程 y=8000﹣300x,自变量 x 的取值范围为:0≤ x≤(3)∵A( 20, 6000)∴直线 OA解析式为: y=300x∴8000﹣300x= 300x,∴x=∴两人相遇时间为第分钟.【点评】本题是一次函数实际应用问题,考查了对一次函数图象代表意义的分析和从方程角度解决一次函数问题.23.【分析】( 1)过点B 作⊥ 于点,根据平行四边形的性质可得==4,∥,BG OA G AB OC AB OCBC∥ OA, OA= BC=8,根据直角三角形的性质可得A G=AB=2,BG=AG=6,根据三角形中位线的性质可得DE∥ BC∥ OA, DE=BC=4,根据平行线分线段成比例可得,可求出 ON=OG=4+,DN=BG=3,即可得 NF=1,则可得点F 的坐标;( 2)过点E作EM⊥OA,过点D作DG⊥EM,DH⊥OA,根据矩形的性质可得GD= MH,GM= DH,∠GDH= 90°,根据“AAS”可证△EDG≌△FDH,可得DG=DH=3,FH=EG,根据锐角三角函数可得OM===,根据 OM+MH= OH,可得 EG=,即可求 AF的长;( 3)当点E与点C重合时,过点D作 DG⊥ BC于点 G,延长 GD交 AO于点 M,过点 F 作 FH⊥ GD 于点 H,根据全等三角形的判定和性质求出点 F 的坐标,即求出点 F 的运动轨迹是直线y=﹣x+,则当 AF 垂直于直线y=﹣x+时, AF的值最小,根据直角三角形的性质可求 AF的最小值.【解答】解:( 1)如图,过点B 作⊥于点,BG OA G∵四边形 OABC平行四边形,∴AB= OC=4, AB∥ OC,BC∥ OA,OA= BC=8,∴∠ BAG=∠ COA=60°,∵BG⊥ OA,∠ BAG=60°,∴∠ ABG=30°,∴AG= AB=2, BG= AG=6,∴OG=8+2,∵将 DE绕着点 D逆时针方向旋转90°到DF,∴DE= DF,∠ EDF=90°,∵点 E 是 OC中点,点 D是 OB中点∴ DE∥ BC∥ OA, DE=BC=4∴∠ EDN+∠ DNO=180°,且∠ EDN=90°,∴∠ DNO=90°,且 BG⊥ OA,∴DN∥ BG,∴,∴ON= OG=4+, DN= BG=3,∴NF= DF﹣ DN=4﹣3=1,∴点 F 坐标为(4+,﹣1),点 D坐标为(4+,3),( 2)如图,过点E作EM⊥OA,过点D作DG⊥EM,DH⊥OA,∴四边形 DHMG是矩形,∴GD= MH, GM= DH,∠ GDH=90°,∵点 D坐标为(4+,3),∴DH=3,OH=4+∵∠ EDF=90°,∠ GDH=90°,∴∠ EDG+∠ GDF=90°,∠ GDF+∠ FDH=90°,∴∠ EDG=∠ FDH,且 ED= DF,∠ EGD=∠ DHF,∴△ EDG≌△ FDH(AAS)∴DG= DH=3, FH=EG,∴MH=3=GM,∵ tan ∠COA= tan60 °==,∴ OM===,∵OM+MH=OH,∴+3=4+,∴ EG=,∴ FH=,OF=OH﹣FH=4+﹣=4,∵AF= OA﹣ OF,∴ AF=8﹣4=4( 3)如图,当点 E 与点 C重合时,过点D作 DG⊥ BC于点 G,延长 GD交 AO于点 M,过点 F 作 FH ⊥GD于点 H,∵OA∥ BC, DG⊥BC,∴ GM⊥ OA,∵( 8,0),(4+,3),A D∴C(2,6),∴GD=3=DM, CG=4﹣,∵∠CDF=90°,∠ DGD=90°,∴∠ GCD+∠ GDC=90°,∠ FDH+∠ CDG=90°,∴∠ GCD=∠ FDH,且 CD= FD,∠CGD=∠ FHD,∴△ CDG≌△ DFH(AAS)∴GD= FH=3, CG=DH=4﹣,∴MH=3﹣(4﹣)=﹣1,∴点 F(+1,﹣ 1),由( 1)( 2)可知:点F1(4+,﹣ 1),点F2( 4, 0),设直线 F1F2的解析式为: y= kx+b解得: k=﹣,b=∴直线 F1F2的解析式为: y=﹣x+,当 x=+1 时,y=﹣(+1) +=﹣1,∴点 F 的运动轨迹为直线y=﹣x+,如图,当 AF垂直于直线y=﹣x+时,AF的值最小,∵直线 y=﹣x+与x轴交于点H,∴H(4,0),∠ AHF=30°,∴AH=4,且 AF⊥ HF,∠ AHF=30°,∴AF=2,∴AF的最小值为2,故答案为: 2【点评】本题是四边形综合题,考查了平行四边形的性质,矩形的判定和性质,全等三角形的判定和性质,三角形中位线定理,锐角三角函数,一次函数的应用等知识,求出点 F 的运动轨迹是本题的关键.24.【分析】( 1)根据等边三角形的性质可得出AD= CD= AC、 AB= BC、 AF=2EF、 BE=BC,进而即可得出= 1=、=2=;( 2)=一定成立,利用三角形的面积公式可得出=,同理可得出=,进而即可证出=(即理由面积法可得证);( 3)由 cos ∠ACB=,可得出sin ∠ACB==,利用(2)的结论即可得出==,由点 G在∠ ABC的平分线上,可得出△ BGF和△ COG等高(分别以 BF、CO为底),进而即可得出==,再根据=即可求出△ COG的面积(用含S 的代数式表示).【解答】解:( 1)=,=,理由如下:∵三角形 ABC为等边三角形,BD是∠ ABC的平分线, AE是 BC边上的高线,∴AD= CD= AC,AB= BC,AF=2EF, BE= BC,∴= 1=,= 2=.( 2)=一定成立.证明:∵ BD是∠ ABC的平分线,∴△ ABD和△ BCD等高(分别以AB、 BC为底),∴=.∵ AD、 CD在同一条直线上,∴△ ABD和△ BCD等高(分别以AD、 CD为底),∴=,∴=.(3)∵BC为直径,∴∠ BAC=90°.在 Rt △ABC中,∠BAC=90°,cos∠ACB=,∴ sin∠ ACB==.∵BD是∠ABC的平分线,∴ ==.∵点 G在∠ ABC的平分线上,∴△ BGF和△ COG等高(分别以BF、 CO为底),∴==.∵EO⊥ BC,∴= cos∠ABC=sin∠ ACB=,∴S△COG= S.【点评】本题考查了三角形的面积、等边三角形、角平分线的性质以及解直角三角形,解题的关键是:( 1)根据等边三角形的性质找出=1=、=2=;(2)利用面积法证出=;( 3)利用三角形的面积公式找出=.。

浙江省温州市2019-2020学年中考数学达标测试试题

浙江省温州市2019-2020学年中考数学达标测试试题

2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知二次函数y =x 2﹣4x+m 的图象与x 轴交于A 、B 两点,且点A 的坐标为(1,0),则线段AB 的长为( ) A .1 B .2 C .3 D .42.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长度为( )A .3B .2C .23D .()123+ 3.如图,在平面直角坐标系中,已知点A (―3,6)、B (―9,一3),以原点O 为位似中心,相似比为,把△ABO 缩小,则点A 的对应点A′的坐标是( )A .(―1,2)B .(―9,18)C .(―9,18)或(9,―18)D .(―1,2)或(1,―2)4.如图,数轴上的A 、B 、C 、D 四点中,与数﹣3表示的点最接近的是( )A .点AB .点BC .点CD .点D5.如图,已知正五边形 ABCDE 内接于O ,连结BD ,则ABD ∠的度数是( )A .60︒B .70︒C .72︒D .144︒6.下列二次根式中,最简二次根式的是()A.15B.0.5C.5D.507.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>-14B.k>-14且0k≠C.k<-14D.k≥-14且0k≠8.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为()A.15m B.25m C.30m D.20m9.如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18, 1.5OE=,则四边形EFCD的周长为()A.14 B.13 C.12 D.1010.一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体二、填空题(本题包括8个小题)11.如图,数轴上点A所表示的实数是________________.12.-3的倒数是___________13.如图,在平行四边形ABCD中,过对角线AC与BD的交点O作AC的垂线交于点E,连接CE,若AB=4,BC=6,则△CDE 的周长是______.14.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为____.15.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.16.把一张长方形纸条按如图所示折叠后,若∠AOB′=70°,则∠B′OG =_____.17.如图,PA ,PB 是⊙O 是切线,A ,B 为切点,AC 是⊙O 的直径,若∠P=46°,则∠BAC= ▲ 度.18.若一个等腰三角形的周长为26,一边长为6,则它的腰长为____.三、解答题(本题包括8个小题)19.(6分)先化简,再求值:(x+2y )(x ﹣2y )+(20xy 3﹣8x 2y 2)÷4xy ,其中x =2018,y =1.20.(6分)如图,在▱ABCD 中,以点A 为圆心,AB 的长为半径的圆恰好与CD 相切于点C ,交AD 于点E ,延长BA 与⊙O 相交于点F .若EF 的长为2,则图中阴影部分的面积为_____.21.(6分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.若AC=4,BC=2,求OE的长.试判断∠A与∠CDE的数量关系,并说明理由.22.(8分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据健民体育活动中心消费者的需求量,活动中心决定用不超过2550元钱购进甲、乙两种羽毛球共50筒,那么最多可以购进多少筒甲种羽毛球?23.(8分)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x 之间符合一次函数关系,部分数据如表:天数(x) 1 3 6 10每件成本p(元)7.5 8.5 10 12任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=()()220110401015x x xx x⎧+≤<⎪⎨≤≤⎪⎩,且为整数,且为整数,设李师傅第x天创造的产品利润为W元.直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:求李师傅第几天创造的利润最大?最大利润是多少元?任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?24.(10分)如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连结AE、BF.求证:(1)AE=BF;(2)AE⊥BF.25.(10分)如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA 延长线于点F .证明:△ADF 是等腰三角形;若∠B =60°,BD =4,AD =2,求EC 的长,26.(12分)已知:如图,AB=AE ,∠1=∠2,∠B=∠E .求证:BC=ED .参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】【分析】先将点A(1,0)代入y =x 2﹣4x+m ,求出m 的值,将点A(1,0)代入y =x 2﹣4x+m ,得到x 1+x 2=4,x 1•x 2=3,即可解答【详解】将点A(1,0)代入y =x 2﹣4x+m ,得到m =3,所以y =x 2﹣4x+3,与x 轴交于两点,设A(x 1,y 1),b(x 2,y 2)∴x 2﹣4x+3=0有两个不等的实数根,∴x 1+x 2=4,x 1•x 2=3,∴AB =|x 1﹣x 2|21212)4x x x x ++(=2;故选B .【点睛】此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.2.C【解析】【分析】过O作OC⊥AB,交圆O于点D,连接OA,由垂径定理得到C为AB的中点,再由折叠得到CD=OC,求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,即可确定出AB的长.【详解】过O作OC⊥AB,交圆O于点D,连接OA,由折叠得到CD=OC=12OD=1cm,在Rt△AOC中,根据勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:3,则3.故选C.【点睛】此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键.3.D【解析】【详解】试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且OA'OA=13.∴A EAD=0E0D=1 3.∴A′E=13AD=2,OE=13OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵点A(―3,6)且相似比为13,∴点A的对应点A′的坐标是(―3×13,6×13),∴A′(-1,2).∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2). 故答案选D.考点:位似变换.4.B【解析】【分析】3 1.732≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】3 1.732≈-, ()1.7323 1.268---≈ , ()1.73220.268---≈, ()1.73210.732---≈,因为0.268<0.732<1.268, 所以3-表示的点与点B 最接近,故选B.5.C【解析】【分析】根据多边形内角和定理、正五边形的性质求出∠ABC 、CD=CB ,根据等腰三角形的性质求出∠CBD ,计算即可.【详解】∵五边形ABCDE 为正五边形∴()1552180108ABC C ∠=∠=-⨯︒=︒ ∵CD CB =∴181(8326)010CBD ∠=︒-︒=︒ ∴72ABD ABC CBD ∠=∠-∠=︒故选:C .【点睛】本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n-2)×180°是解题的关键.6.C【解析】【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A ,被开方数含分母,不是最简二次根式;故A 选项错误;B 2,被开方数为小数,不是最简二次根式;故B 选项错误;C C 选项正确;D D 选项错误;故选C .考点:最简二次根式.7.B【解析】【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有两个实数根下必须满足△=b 2-4ac≥1.【详解】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b 2-4ac=(2k+1)2-4k 2=4k+1>1.因此可求得k >14-且k≠1. 故选B .【点睛】本题考查根据根的情况求参数,熟记判别式与根的关系是解题的关键.8.D【解析】【分析】根据三角形的中位线定理即可得到结果.【详解】解:由题意得AB=2DE=20cm ,故选D.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.9.C【解析】【详解】∵平行四边形ABCD ,∴AD ∥BC ,AD=BC ,AO=CO ,∴∠EAO=∠FCO ,∵在△AEO 和△CFO 中,AEO CFO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEO ≌△CFO ,∴AE=CF ,EO=FO=1.5,∵C 四边形ABCD =18,∴CD+AD=9,∴C 四边形CDEF =CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故选C.【点睛】本题关键在于利用三角形全等,解题关键是将四边形CDEF 的周长进行转化.10.A【解析】【分析】根据三视图的形状可判断几何体的形状.【详解】观察三视图可知,该几何体是直三棱柱.故选A .本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.二、填空题(本题包括8个小题)111【解析】【分析】A点到-1的距离等于直角三角形斜边的长度,应用勾股定理求解出直角三角形斜边长度即可. 【详解】=A点到-1则A点所表示的数为:﹣【点睛】本题考查了利用勾股定理求解数轴上点所表示的数.12.1 3 -【解析】【分析】乘积为1的两数互为相反数,即a的倒数即为1a,符号一致【详解】∵-3的倒数是13-∴答案是13-13.1【解析】【分析】由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,又由平行四边形ABCD的AB+BC=AD+CD=1,继而可得结论.【详解】∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC.∵AB=4,BC=6,∴AD+CD=1.∵OE⊥AC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=1.故答案为1.【点睛】本题考查了平行四边形的性质,线段的垂直平分线的性质定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.14.5 12【解析】【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用绿灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可.【详解】抬头看信号灯时,是绿灯的概率为255 3025512=++.故答案为:5 12.【点睛】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=2.15.360°.【解析】【分析】根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为360°.【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.16.55°【解析】【分析】由翻折性质得,∠BOG=∠B′OG,根据邻补角定义可得.【详解】解:由翻折性质得,∠BOG=∠B′OG,∵∠AOB′+∠BOG+∠B′OG=180°,∴∠B′OG=12(180°﹣∠AOB′)=12(180°﹣70°)=55°.故答案为55°.【点睛】考核知识点:补角,折叠.【解析】【分析】由PA、PB是圆O的切线,根据切线长定理得到PA=PB,即三角形APB为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP为圆O的切线,得到OA与AP垂直,根据垂直的定义得到∠OAP为直角,再由∠OAP-∠PAB即可求出∠BAC的度数【详解】∵PA,PB是⊙O是切线,∴PA=PB.又∵∠P=46°,∴∠PAB=∠PBA=000 18046=672.又∵PA是⊙O是切线,AO为半径,∴OA⊥AP.∴∠OAP=90°.∴∠BAC=∠OAP﹣∠PAB=90°﹣67°=1°.故答案为:1【点睛】此题考查了切线的性质,切线长定理,等腰三角形的性质,以及三角形的内角和定理,熟练掌握定理及性质是解本题的关键.18.1【解析】【分析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【详解】①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形;②当6为底边时,则腰长=(26-6)÷2=1,因为6-6<1<6+6,所以能构成三角形;故腰长为1.故答案为:1.【点睛】此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.三、解答题(本题包括8个小题)19.(x﹣y)2;2.【解析】首先利用多项式的乘法法则以及多项式与单项式的除法法则计算,然后合并同类项即可化简,然后代入数值计算即可.【详解】原式= x 2﹣4y 2+4xy(5y 2-2xy)÷4xy=x 2﹣4y 2+5y 2﹣2xy=x 2﹣2xy+y 2,=(x ﹣y)2,当x =2028,y =2时,原式=(2028﹣2)2=(﹣2)2=2.【点睛】本题考查的是整式的混合运算,正确利用多项式的乘法法则以及合并同类项法则是解题的关键.20.S 阴影=2﹣2π. 【解析】【分析】由切线的性质和平行四边形的性质得到BA ⊥AC ,∠ACB=∠B=45°,∠DAC=∠ACB=45°=∠FAE ,根据弧长公式求出弧长,得到半径,即可求出结果.【详解】如图,连接AC ,∵CD 与⊙A 相切,∴CD ⊥AC ,在平行四边形ABCD 中,∵AB=DC,AB ∥CD ∥BC ,∴BA ⊥AC ,∵AB=AC,∴∠ACB=∠B=45°,∵AD ∥BC,∴∠FAE=∠B=45°,∴∠DAC=∠ACB=45°=∠FAE ,∴EF EC =∴EF 的长度为45=1802R ππ 解得R=2, S 阴=S △ACD-S 扇形=2214522-=2-23602ππ⨯⨯【点睛】此题主要考查圆内的面积计算,解题的关键是熟知平行四边形的性质、切线的性质、弧长计算及扇形面积的计算.21.(15;(2)∠CDE=2∠A . 【解析】【分析】(1)在Rt △ABC 中,由勾股定理得到AB 的长,从而得到半径AO .再由△AOE ∽△ACB ,得到OE 的长;(2)连结OC ,得到∠1=∠A ,再证∠3=∠CDE ,从而得到结论.【详解】(1)∵AB 是⊙O 的直径,∴∠ACB=90°,在Rt △ABC 中,由勾股定理得: 222242AC BC +=+ =5 ∴AO=125. ∵OD ⊥AB ,∴∠AOE=∠ACB=90°,又∵∠A=∠A ,∴△AOE ∽△ACB , ∴OE AO BC AC=, ∴OE=25BC AO AC ⋅= 5. (2)∠CDE=2∠A .理由如下:连结OC ,∵OA=OC ,∴∠1=∠A ,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE.∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.考点:切线的性质;探究型;和差倍分.22.(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)最多可以购进1筒甲种羽毛球.【解析】【分析】(1)设该网店甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据“甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,购买了2筒甲种羽毛球和3筒乙种羽毛球共花费255元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进甲种羽毛球m筒,则购进乙种羽毛球(50﹣m)筒,根据总价=单价×数量结合总费用不超过2550元,即可得出关于m的一元一次不等式,解之取其最大值即可得出结论.【详解】(1)设该网店甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,依题意,得:x-y=152x+3y=255⎧⎨⎩,解得:x=60 y=45⎧⎨⎩.答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元.(2)设购进甲种羽毛球m筒,则购进乙种羽毛球(50﹣m)筒,依题意,得:60m+45(50﹣m)≤2550,解得:m≤1.答:最多可以购进1筒甲种羽毛球.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(1)W=216260(11020520(1015x x x x x x x ⎧-++≤<⎨-+≤≤⎩,为整数),为整数);(2)李师傅第8天创造的利润最大,最大利润是324元;(3)李师傅共可获得160元奖金.【解析】【分析】(1)根据题意和表格中的数据可以求得p 与x ,W 与x 之间的函数关系式,并注明自变量x 的取值范围:(2)根据题意和题目中的函数表达式可以解答本题;(3)根据(2)中的结果和不等式的性质可以解答本题.【详解】(1)设p 与x 之间的函数关系式为p=kx+b ,则有7.538.5k b k b +=⎧⎨+=⎩,解得,0.57k b =⎧⎨=⎩, 即p 与x 的函数关系式为p=0.5x+7(1≤x≤15,x 为整数),当1≤x <10时,W=[20﹣(0.5x+7)](2x+20)=﹣x 2+16x+260,当10≤x≤15时,W=[20﹣(0.5x+7)]×40=﹣20x+520,即W=2x 16260(11020520(1015x x x x x x ⎧-++≤<⎨-+≤≤⎩,为整数),为整数); (2)当1≤x <10时,W=﹣x 2+16x+260=﹣(x ﹣8)2+324,∴当x=8时,W 取得最大值,此时W=324,当10≤x≤15时,W=﹣20x+520,∴当x=10时,W 取得最大值,此时W=320,∵324>320,∴李师傅第8天创造的利润最大,最大利润是324元;(3)当1≤x <10时,令﹣x 2+16x+260=299,得x 1=3,x 2=13,当W>299时,3<x<13,∵1≤x<10,∴3<x<10,当10≤x≤15时,令W=﹣20x+520>299,得x<11.05,∴10≤x≤11,由上可得,李师傅获得奖金的的天数是第4天到第11天,李师傅共获得奖金为:20×(11﹣3)=160(元),即李师傅共可获得160元奖金.【点睛】本题考查了一次函数的应用,二次函数的应用等,明确题意,找出各个量之间的关系,确立函数解析式,利用函数的性质进行解答是关键.24.见解析【解析】【分析】(1)可以把要证明相等的线段AE,CF放到△AEO,△BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去∠BOE的结果,所以相等,由此可以证明△AEO≌△BFO;(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以证明AE⊥BF【详解】解:(1)证明:在△AEO与△BFO中,∵Rt△OAB与Rt△EOF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,∴△AEO≌△BFO,∴AE=BF;(2)延长AE交BF于D,交OB于C,则∠BCD=∠ACO由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,∴AE⊥BF.25.(1)见解析;(2)EC=1.【解析】【分析】(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90°,然后余角的性质可推出∠F=∠BDE,再根据对顶角相等进行等量代换即可推出∠F=∠FDA,于是得到结论;(2)根据解直角三角形和等边三角形的性质即可得到结论.【详解】(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=1,∴BE=12BD=2,∵AB=AC,∴△ABC是等边三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=1.【点睛】本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等知识点,关键根据相关的性质定理,通过等量代换推出∠F=∠FDA,即可推出结论.26.证明见解析.【解析】【分析】由∠1=∠2可得∠CAB =∠DAE,再根据ASA证明△ABC≌△AED,即可得出答案.【详解】∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,∴∠CAB=∠DAE,在△ABC与△AED中,B=∠E,AB=AE,∠CAB=∠DAE,∴△ABC≌△AED,∴BC=ED.2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(x -1)+3x=13B .2(x+1)+3x=13C .2x+3(x+1)=13D .2x+3(x -1)=132.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )A .18B .16 C .14 D .12 3.已知函数()()()()22113{513x x y x x --≤=-->,则使y=k 成立的x 值恰好有三个,则k 的值为( ) A .0 B .1 C .2 D .34.函数228y x x m =--+的图象上有两点()11,A x y ,()22,B x y ,若122x x <<-,则( )A .12y y <B .12y y >C .12 y y =D .1y 、2y 的大小不确定5.在六张卡片上分别写有13,π,1.5,5,0,2六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )A .16B .13C .12D .56 6.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y 值随x 值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()A .3y x =B .3y x =C .1y x =-D .2y x7.下列计算或化简正确的是( )A .234265+=B .842=C .2(3)3-=-D .2733÷=8.在数轴上标注了四段范围,如图,则表示8的点落在( )A .段①B .段②C .段③D .段④9.下列各式:33②177;2682;2432;其中错误的有( ).A .3个B .2个C .1个D .0个10.下列交通标志是中心对称图形的为( )A .B .C .D .二、填空题(本题包括8个小题)11.如图,正方形ABCD 边长为3,连接AC ,AE 平分∠CAD ,交BC 的延长线于点E ,FA ⊥AE ,交CB 延长线于点F ,则EF 的长为__________.12.已知二次函数y=ax 2+bx (a≠0)的最小值是﹣3,若关于x 的一元二次方程ax 2+bx+c=0有实数根,则c 的最大值是_____.13.如果点P 1(2,y 1)、P 2(3,y 2) 在抛物线22y x x =-+上,那么 y 1 ______ y 2.(填“>”,“<”或“=”). 14.如图,在平面直角坐标系中,点A 和点C 分别在y 轴和x 轴正半轴上,以OA 、OC 为边作矩形OABC ,双曲线6y x=(x >0)交AB 于点E,AE ︰EB=1︰3.则矩形OABC 的面积是 __________.15.如图,AB 是⊙O 的弦,点C 在过点B 的切线上,且OC ⊥OA ,OC 交AB 于点P ,已知∠OAB=22°,则∠OCB=__________.16.如图,已知P 是线段AB 的黄金分割点,且PA >PB .若S 1表示以PA 为一边的正方形的面积,S 2表示长是AB 、宽是PB 的矩形的面积,则S 1_______S 2.(填“>”“="”“" <”)17.甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是__km/h.18.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于a b、的等式为________.三、解答题(本题包括8个小题)19.(6分)解不等式组2233134x xx x+≤+⎧⎪+⎨<⎪⎩(),并把解集在数轴上表示出来.20.(6分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D作DE⊥AC,垂足为点E.求证:DE是⊙O的切线;当⊙O半径为3,CE=2时,求BD长.21.(6分)如图,一次函数y=k1x+b(k1≠0)与反比例函数22( 0 )ky kx=≠的图象交于点A(-1,2),B(m,-1).求一次函数与反比例函数的解析式;在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.22.(8分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.求证:DP是⊙O的切线;若⊙O的半径为3cm,求图中阴影部分的面积.23.(8分)如图,平面直角坐标系中,直线AB:13y x b=-+交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).求直线AB的解析式和点B的坐标;求△ABP的面积(用含n的代数式表示);当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.24.(10分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于12EF长为半径作圆弧,两条圆弧交于点P,连接AP,交CD于点M,若∠ACD=110°,求∠CMA的度数______.25.(10分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.26.(12分)A粮仓和B粮仓分别库存粮食12吨和6吨,现决定支援给C市10吨和D市8吨.已知从A 粮仓调运一吨粮食到C市和D市的运费分别为400元和800元;从B粮仓调运一吨粮食到C市和D市的运费分别为300元和500元.设B粮仓运往C市粮食x吨,求总运费W(元)关于x的函数关系式.(写出自变量的取值范围)若要求总运费不超过9000元,问共有几种调运方案?求出总运费最低的调运方案,最低运费是多少?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】【分析】要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买A饮料的钱+买B饮料的钱=总印数1元,明确了等量关系再列方程就不那么难了.【详解】设B种饮料单价为x元/瓶,则A种饮料单价为(x-1)元/瓶,根据小峰买了2瓶A种饮料和3瓶B种饮料,一共花了1元,可得方程为:2(x-1)+3x=1.故选A.【点睛】列方程题的关键是找出题中存在的等量关系,此题的等量关系为买A中饮料的钱+买B中饮料的钱=一共花的钱1元.2.B【解析】【分析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是1 6 .故选B.考点:简单概率计算.3.D【解析】【详解】解:如图:利用顶点式及取值范围,可画出函数图象会发现:当x=3时,y=k成立的x值恰好有三个. 故选:D.4.A【解析】【分析】根据x1、x1与对称轴的大小关系,判断y1、y1的大小关系.【详解】解:∵y=-1x1-8x+m,∴此函数的对称轴为:x=-b2a =-()-82-2⨯=-1,∵x1<x1<-1,两点都在对称轴左侧,a<0,∴对称轴左侧y随x的增大而增大,∴y1<y1.故选A.【点睛】此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键.5.B【解析】【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有π,共2个,∴卡片上的数为无理数的概率是21=63.故选B.【点睛】本题考查了无理数的定义及概率的计算.6.B【解析】y=3x的图象经过一三象限过原点的直线,y随x的增大而增大,故选项A错误;y=3x的图象在一、三象限,在每个象限内y随x的增大而减小,故选项B正确;y=−1x的图象在二、四象限,故选项C错误;y=x²的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D错误;故选B.7.D【解析】解:A.不是同类二次根式,不能合并,故A错误;B=,故B错误;C3=,故C错误;D3===,正确.故选D.8.C【解析】试题分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.∵ 3.44<4<4.5,∴1.5<4<1.91,∴1.41.9,所以8应在③段上.故选C考点:实数与数轴的关系9.A【解析】33+3=63,错误,无法计算;②177=1,错误;③2+6=8=22,错误,不能计算;④243=22,正确.故选A.10.C【解析】【分析】根据中心对称图形的定义即可解答.【详解】解:A、属于轴对称图形,不是中心对称的图形,不合题意;B、是中心对称的图形,但不是交通标志,不符合题意;C、属于轴对称图形,属于中心对称的图形,符合题意;D、不是中心对称的图形,不合题意.故选C.【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.二、填空题(本题包括8个小题)11.6【解析】【分析】利用正方形的性质和勾股定理可得AC的长,由角平分线的性质和平行线的性质可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的长.【详解】解:∵四边形ABCD为正方形,且边长为3,∴2∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴2,∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴,∴12.3【解析】【分析】由一元二次方程ax2+bx+c=0有实数根,可得y=ax2+bx(a≠0)和y=-c有交点,由此即可解答.【详解】∵一元二次方程ax2+bx+c=0有实数根,∴抛物线y=ax2+bx(a≠0)和直线y=-c有交点,∴-c≥-3,即c≤3,∴c的最大值为3.故答案为:3.【点睛】本题考查了一元二次方程与二次函数,根据一元二次方程有实数根得到抛物线y=ax2+bx(a≠0)和直线y=-c 有交点是解决问题的关键.13.>【解析】分析:首先求得抛物线y=﹣x2+2x的对称轴是x=1,利用二次函数的性质,点M、N在对称轴的右侧,y 随着x的增大而减小,得出答案即可.详解:抛物线y=﹣x2+2x的对称轴是x=﹣22=1.∵a=﹣1<0,抛物线开口向下,1<2<3,∴y1>y2.故答案为>.点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题.14.1【解析】【分析】根据反比例函数图象上点的坐标特征设E点坐标为(t,6t),则利用AE:EB=1:3,B点坐标可表示为(4t,6t),然后根据矩形面积公式计算.【详解】设E点坐标为(t,6t ),∵AE:EB=1:3,∴B点坐标为(4t,6t),∴矩形OABC的面积=4t•6t=1.故答案是:1.【点睛】考查了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.15.44°【解析】【分析】首先连接OB,由点C在过点B的切线上,且OC⊥OA,根据等角的余角相等,易证得∠CBP=∠CPB,利用等腰三角形的性质解答即可.【详解】连接OB,∵BC是⊙O的切线,∴OB⊥BC,∴∠OBA+∠CBP=90°,∵OC⊥OA,∴∠A+∠APO=90°,∵OA=OB,∠OAB=22°,∴∠OAB=∠OBA=22°,∴∠APO=∠CBP=68°,∵∠APO=∠CPB,∴∠CPB=∠ABP=68°,∴∠OCB=180°-68°-68°=44°,故答案为44°此题考查了切线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.16.=.【解析】【分析】黄金分割点,二次根式化简.【详解】设AB=1,由P 是线段AB 的黄金分割点,且PA >PB ,根据黄金分割点的,AP=12,BP=13122-=.∴211S S 1====⎝⎭∴S1=S1. 17.3.6【解析】分析:根据题意,甲的速度为6km/h ,乙出发后2.5小时两人相遇,可以用方程思想解决问题.详解:由题意,甲速度为6km/h .当甲开始运动时相距36km ,两小时后,乙开始运动,经过2.5小时两人相遇.设乙的速度为xkm/h4.5×6+2.5x=36解得x=3.6故答案为3.6点睛:本题为一次函数实际应用问题,考查一次函数图象在实际背景下所代表的意义.解答这类问题时,也可以通过构造方程解决问题.18.(a+b )2﹣(a ﹣b )2=4ab【解析】【分析】根据长方形面积公式列①式,根据面积差列②式,得出结论.【详解】S 阴影=4S 长方形=4ab①,S 阴影=S 大正方形﹣S 空白小正方形=(a+b )2﹣(b ﹣a )2②,由①②得:(a+b )2﹣(a ﹣b )2=4ab .故答案为(a+b )2﹣(a ﹣b )2=4ab .。

浙江省温州市绣山中学2019-2020年九年级学业水平在线检测(Word版,无答案)

浙江省温州市绣山中学2019-2020年九年级学业水平在线检测(Word版,无答案)

成 曹操 就:建安时文学家,东汉丞相 个性追求:老骥伏枥,志在千里。

成苏轼 就:擅长诗词、散文、书画等 个性追求:莫听穿林打叶声,何妨吟啸且徐行。

2019 学年第二学期九年级学业水平在线检测语 文 试 卷 2020.04亲爱的同学:欢迎参加考试!请你认真审题,积极思考,细心答题,发挥出最佳水平。

答题时,请注意以下几点:1.全卷共 8 页,有三大板块,19 小题。

满分 150 分(含.书.写.5.分.)。

考试时间 120 分钟。

2.答案必须写在答题纸相应的位置上,根据提示上传,写在试题卷、草稿纸上均无效。

一、语文知识积累(20 分)1.读下面这段文字,根据拼音写出相应的汉字。

(4 分)2.古诗文名句默写。

(13 分) ⑴忽如一夜春风来, ▲ 。

(岑参《白雪歌送武判官归京》) ⑵ ▲ ,波涛如怒,山河表里潼关路。

(张养浩《山坡羊·潼关怀古》) ⑶一抹晚烟荒戍垒, ▲ 。

(纳兰性德《浣溪沙》)⑷ ▲ ,再而衰,三而竭。

(《曹刿论战》)⑸“千古文人家国梦”,诗意的文字,失意的人生。

范仲淹写下“ ▲ , ▲ ”,道出征人们想家却又不甘无功而返的矛盾心理;夏完淳呐喊着 “ ▲ , ▲ ”,悲痛于山河的支离破碎。

但一时的失意又怎会压垮文人的傲骨。

苏轼立下志向“ ▲ ,西北 望,射天狼”,渴望为国御敌立功;文天祥在《过零丁洋》中高呼“ ▲ , ▲ ”,气势磅礴、情绪高亢,表现出崇高的民族气节和舍身取义的生死观;辛弃疾欲恢复山河,建立功名,在《破阵子·为陈同甫赋壮词以寄之》中写下“ ▲ , ▲ ” 的豪情壮志。

3.在“话说千古风流人物”的综合性活动中,小杰尝试用诗文名句来评说部分历史人物的个性与追求。

在下列选项中,你认为人物与诗文内涵不.相.符.的一项是( ▲ )(3 分) A.B.C. D. 我听见回声,来自山谷和心间,以寂寞的镰刀收割空 kuàng (1) 的灵魂,不断地重复决绝,又重复幸福,终有绿洲摇 y è (2) 在沙漠。

2019-2020学年浙江省温州市中考数学达标测试试题

2019-2020学年浙江省温州市中考数学达标测试试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线2.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( )A .a≤﹣3B .a <﹣3C .a >3D .a≥33.如图,△ABC 的面积为8cm 2 , AP 垂直∠B 的平分线BP 于P ,则△PBC 的面积为( )A .2cm 2B .3cm 2C .4cm 2D .5cm 24.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( ) A .12B .13C .14D .165.通过观察下面每个图形中5个实数的关系,得出第四个图形中y 的值是( )A .8B .﹣8C .﹣12D .126.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A .B .C .D .7.如图,AB 是O 的直径,弦CD AB ⊥,CDB 30∠=,CD 23= )A.2πB.πC.π3D.2π38.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为( )A.72072054848x-=+B.72072054848x+=+C.720720548x-=D.72072054848x-=+9.如图所示,在平面直角坐标系中,抛物线y=-x2+23x的顶点为A点,且与x轴的正半轴交于点B,P点为该抛物线对称轴上一点,则OP+12AP的最小值为().A.3 B.23C.32214+D.3232+10.一、单选题如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C.D.二、填空题(本题包括8个小题)11.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线B D交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为______.12.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是_____.13.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是______.14.分解因式:3ax2﹣3ay2=_____.15.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_____个.16.如图,P(m,m)是反比例函数9yx在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为_____.17.若a+b=5,ab=3,则a2+b2=_____.18.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连接AD,将△ACD沿AD 折叠,点C落在点E处,连接DE交AB于点F,当△DEB是直角三角形时,DF的长为_____.三、解答题(本题包括8个小题) 19.(6分)解分式方程:28124x x x -=-- 20.(6分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A 型”、“B 型”、“AB 型”、“O 型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表: 血型 A B AB O 人数105(1)这次随机抽取的献血者人数为 人,m= ;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A 型的概率是多少?并估计这3000人中大约有多少人是A 型血?21.(6分)已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF , 求证:△ABC ≌△DEF .22.(8分)车辆经过润扬大桥收费站时,4个收费通道 A .B 、C 、D 中,可随机选择其中的一个通过.一辆车经过此收费站时,选择 A 通道通过的概率是 ;求两辆车经过此收费站时,选择不同通道通过的概率.23.(8分)如图,点E 、F 在BC 上,BE=CF ,AB=DC ,∠B=∠C ,AF 与DE 交于点G ,求证:GE=GF .24.(10分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.求证;∠BDC=∠A.若∠C=45°,⊙O的半径为1,直接写出AC的长.、.如图,求证:25.(10分)已知:正方形ABCD绕点A顺时针旋转至正方形AEFG,连接CE DF ;如图,延长CB交EF于M,延长FG交CD于N,在不添加任何辅助线的情况下,请直接CE DF写出如图中的四个角,使写出的每一个角的大小都等于旋转角.26.(12分)如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;分别写出B、C两点的对应点B′、C′的坐标;如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】【详解】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C.【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.2.A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.【详解】∵不等式组324x ax a<+⎧⎨>-⎩无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选A.【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.3.C【解析】【分析】延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.【详解】延长AP交BC于E.∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC 和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE S△ABC=4cm1.故选C.【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCE S△ABC.4.D【解析】【分析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是212=16;故选D.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.5.D【解析】【分析】根据前三个图形中数字之间的关系找出运算规律,再代入数据即可求出第四个图形中的y值.【详解】∵2×5﹣1×(﹣2)=1,1×8﹣(﹣3)×4=20,4×(﹣7)﹣5×(﹣3)=﹣13,∴y=0×3﹣6×(﹣2)=1.故选D.【点睛】本题考查了规律型中数字的变化类,根据图形中数与数之间的关系找出运算规律是解题的关键. 6.D 【解析】 【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D . 【详解】解:观察图形可知图案D 通过平移后可以得到. 故选D . 【点睛】本题考查图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转. 7.D 【解析】分析:连接OD ,则根据垂径定理可得出CE=DE ,继而将阴影部分的面积转化为扇形OBD 的面积,代入扇形的面积公式求解即可. 详解:连接OD, ∵CD ⊥AB , ∴13,2CE DE CD === (垂径定理), 故OCEODESS,=即可得阴影部分的面积等于扇形OBD 的面积, 又∵30CDB ∠=︒,∴60COB ∠= (圆周角定理), ∴OC=2,故S 扇形OBD=260π22π3603⨯=,即阴影部分的面积为2π3. 故选D.点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键. 8.D【解析】【详解】因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:72048x+,根据“因客户要求提前5天交货”,用原有完成时间72048减去提前完成时间72048x+,可以列出方程:7207205 4848x-=+.故选D.9.A【解析】【分析】连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+23x=0得到点B,再利用配方法得到点A,得到OA的长度,判断△AOB为等边三角形,然后利用∠OAP=30°得到PH= 12AP,利用抛物线的性质得到PO=PB,再根据两点之间线段最短求解.【详解】连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如图当y=0时-x2+3,得x1=0,x23所以B(3,0),由于y=-x2+332+3,所以A3),所以3,所以三角形AOB为等边三角形,∠OAP=30°得到PH= 12AP,因为AP垂直平分OB,所以PO=PB,所以OP+12AP=PB+PH,所以当H,P,B共线时,PB+PH最短,而BC=32AB=3,所以最小值为3.故选A.【点睛】本题考查的是二次函数的综合运用,熟练掌握二次函数的性质和最短途径的解决方法是解题的关键. 10.D【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.二、填空题(本题包括8个小题)113【解析】∵DE是BC的垂直平分线,∴DB=DC=2,∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,∴DE=AD=1,∴223-=BD DE3.点睛:本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.12.71【解析】分析:由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.详解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,AC=y,则x2=4y2+52,∵△BCD的周长是30,∴x+2y+5=30则x=13,y=1.∴这个风车的外围周长是:4(x+y)=4×19=71.故答案是:71.点睛:本题考查了勾股定理在实际情况中的应用,注意隐含的已知条件来解答此类题.13.①②③④.【解析】【分析】由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG 是矩形,得出S △FAB =12FB•FG =12S 四边形CBFG ,②正确; 由等腰直角三角形的性质和矩形的性质得出∠ABC =∠ABF =45°,③正确;证出△ACD ∽△FEQ ,得出对应边成比例,得出④正确.【详解】解:∵四边形ADEF 为正方形,∴∠FAD =90°,AD =AF =EF ,∴∠CAD +∠FAG =90°,∵FG ⊥CA ,∴∠GAF +∠AFG =90°,∴∠CAD =∠AFG ,在△FGA 和△ACD 中,G C AFG CAD AF AD ===∠∠⎧⎪∠∠⎨⎪⎩,∴△FGA ≌△ACD (AAS ),∴AC =FG ,①正确;∵BC =AC ,∴FG =BC ,∵∠ACB =90°,FG ⊥CA ,∴FG ∥BC ,∴四边形CBFG 是矩形,∴∠CBF =90°,S △FAB =12FB•FG =12S 四边形CBFG ,②正确; ∵CA =CB ,∠C =∠CBF =90°,∴∠ABC =∠ABF =45°,③正确;∵∠FQE =∠DQB =∠ADC ,∠E =∠C =90°,∴△ACD ∽△FEQ ,∴AC :AD =FE :FQ ,∴AD•FE =AD 2=FQ•AC ,④正确;故答案为①②③④.【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键. 14.3a (x +y )(x -y )【解析】【详解】解:3ax2-3ay2=3a(x2-y2)=3a(x+y)(x-y).【点睛】本题考查提公因式法与公式法的综合运用.15.1【解析】分析:类比于现在我们的十进制“满十进一”,可以表示满六进一的数为:万位上的数×64+千位上的数×63+百位上的数×62+十位上的数×6+个位上的数,即1×64+2×63+3×62+0×6+2=1.详解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1,故答案为:1.点睛:本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.16.933+.【解析】【详解】如图,过点P作PH⊥OB于点H,∵点P(m,m)是反比例函数y=9x在第一象限内的图象上的一个点,∴9=m2,且m>0,解得,m=3.∴PH=OH=3.∵△PAB是等边三角形,∴∠PAH=60°.∴根据锐角三角函数,得3.∴3∴S△POB=12OB•PH=9332+.17.1【解析】试题分析:首先把等式a+b=5的等号两边分别平方,即得a2+2ab+b2=25,然后根据题意即可得解.解:∵a+b=5,∴a2+2ab+b2=25,∵ab=3,∴a2+b2=1.故答案为1.考点:完全平方公式.18.32或34【解析】试题分析:如图4所示;点E与点C′重合时.在Rt△ABC中,BC=22AB AC-=4.由翻折的性质可知;AE=AC=3、DC=DE.则EB=2.设DC=ED=x,则BD=4﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+22=(4﹣x)2.解得:x=32.∴DE=32.如图2所示:∠EDB=90时.由翻折的性质可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四边形ACDC′为矩形.又∵AC=AC′,∴四边形ACDC′为正方形.∴CD=AC=3.∴DB=BC﹣DC=4﹣3=4.∵DE∥AC,∴△BDE∽△BCA.∴14DE DBAC CB==,即134ED=.解得:DE=34.点D在CB上运动,∠DBC′<90°,故∠DBC′不可能为直角.考点:翻折变换(折叠问题).三、解答题(本题包括8个小题)19.无解【解析】【分析】首先进行去分母,将分式方程转化为整式方程,然后按照整式方程的求解方法进行求解,最后对所求的解进行检验,看是否能使分母为零.【详解】解:两边同乘以(x+2)(x-2)得:x(x+2)-(x+2)(x-2)=8去括号,得:2x+2x-2x+4=8移项、合并同类项得:2x=4解得:x=2经检验,x=2是方程的增根∴方程无解【点睛】本题考查解分式方程,注意分式方程结果要检验.20.(1)50,20;(2)12,23;见图;(3)大约有720人是A型血.【解析】【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后用B型的人数除以抽取的总人数即可求得m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数.【详解】(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=1050×100=20,故答案为50,20;(2)O型献血的人数为46%×50=23(人),A型献血的人数为50﹣10﹣5﹣23=12(人),补全表格中的数据如下:故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率=126 5025,3000×625=720,估计这3000人中大约有720人是A型血.【点睛】本题考查了扇形统计图、统计表、概率公式、用样本估计总体等,读懂统计图、统计表,从中找到必要的信息是解题的关键;随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.21.证明见解析【解析】试题分析:首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS 即可证明△ABC ≌△DEF .试题解析:∵AF=DC ,∴AF ﹣CF=DC ﹣CF ,即AC=DF ;在△ABC 和△DEF 中∴△ABC ≌△DEF (SSS )22.(1)14;(2)34. 【解析】试题分析:(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.试题解析:(1)选择 A 通道通过的概率=14, 故答案为14; (2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率=1216=34.23.证明见解析.【解析】【分析】求出BF=CE ,根据SAS 推出△ABF ≌△DCE ,得对应角相等,由等腰三角形的判定可得结论.【详解】∵BE=CF ,∴BE+EF=CF+EF ,∴BF=CE ,在△ABF 和△DCE 中AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△DCE (SAS ),∴∠GEF=∠GFE ,∴EG=FG .【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.24.(1)详见解析;(2)1+2【解析】【分析】(1)连接OD ,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC ,再求AC.【详解】(1)证明:连结OD .如图,CD 与O 相切于点D ,OD CD ,∴⊥ 2BDC 90∠∠∴+︒=,AB 是O 的直径,ADB 90∠∴︒=,即1290∠∠+︒=,1BDC ∠∠∴=,OA OD =,1A ∠∠∴=,BDC A ∠∠∴=;(2)解:在Rt ODC 中,C 45∠︒=,2212OC OD AC OA OC ∴==∴=+=+ .【点睛】此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.25.(1)证明见解析;(2),,,DAG BAE CNF FMC ∠∠∠∠.【解析】【分析】(1)连接AF 、AC ,易证∠EAC=∠DAF ,再证明ΔEAC ≅ΔDAF ,根据全等三角形的性质即可得CE=DF ;(2)由旋转的性质可得∠DAG、∠BAE都是旋转角,在四边形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,由此即可解答.【详解】(1)证明:连接,AF AC,∵正方形ABCD旋转至正方形AEFG∴DAG BAE∠∠=,45BAC GAF∠=∠=︒∴BAE BAC DAG GAF∠+∠=∠+∠∴EAC DAF∠=∠在EAC∆和DAF∆中,AE ADEAC FADAC AF=⎧⎪∠=∠⎨⎪=⎩,∴EAC DAF∆≅∆∴CE DF=(2).∠DAG、∠BAE、∠FMC、∠CNF;由旋转的性质可得∠DAG、∠BAE都是旋转角,在四边形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,【点睛】本题考查了正方形的性质、旋转的性质及全等三角形的判定与性质,证明ΔEAC≅ΔDAF是解决问题的关键. 26.(1)画图见解析(2)B'(-6,2)、C'(-4,-2)(3) M'(-2x,-2y)【解析】【详解】解:(1)(2)以0点为位似中心在y轴的左侧将△OBC放大到两倍,则是对应点的坐标放大两倍,并将符号进行相应的改变,因为B(3,-1),则B’(-6,2) C(2,1),则C‘(-4,-2)(3)因为点M (x,y)在△OBC内部,则它的对应点M′的坐标是M的坐标乘以2,并改变符号,即M’(-2x,-2y)2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm2.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( )A.30°B.36°C.54°D.72°3.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°4.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×1055.如图,能判定EB∥AC的条件是( )A.∠C=∠ABE B.∠A=∠EBDC.∠A=∠ABE D.∠C=∠ABC6.已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A .3:2B .9:4C .2:3D .4:97.如图,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长,分别交对角线BD 于点F ,交BC 边延长线于点E .若FG =2,则AE 的长度为( )A .6B .8C .10D .128.如图,一束平行太阳光线FA 、GB 照射到正五边形ABCDE 上,∠ABG =46°,则∠FAE 的度数是( )A .26°.B .44°.C .46°.D .72°9.将2001×1999变形正确的是( )A .20002﹣1B .20002+1C .20002+2×2000+1D .20002﹣2×2000+1 10.已知关于x 的方程()2kx 1k x 10+--=,下列说法正确的是A .当k 0=时,方程无解B .当k 1=时,方程有一个实数解C .当k 1=-时,方程有两个相等的实数解D .当k 0≠时,方程总有两个不相等的实数解二、填空题(本题包括8个小题)11.如图,CD 是Rt △ABC 斜边AB 上的高,将△BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处,则∠A 等于____度.12.如图,每个小正方形边长为1,则△ABC 边AC 上的高BD 的长为_____.13.计算:﹣1﹣2=_____.14.若反比例函数y=﹣6x的图象经过点A(m,3),则m的值是_____.15.计算:2633⨯+=________.16.已知关于x的一元二次方程20x mx n++=的两个实数根分别是x1=-2,x2=4,则+m n的值为________.17.如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A 的度数是_____°.18.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2=_____°.三、解答题(本题包括8个小题)19.(6分)《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?20.(6分)李宁准备完成题目;解二元一次方程组48x yx y-=⎧⎨+=-⎩,发现系数“□”印刷不清楚.他把“□”猜成3,请你解二元一次方程组438x yx y-=⎧⎨+=-⎩;张老师说:“你猜错了”,我看到该题标准答案的结果x、y是一对相反数,通过计算说明原题中“□”是几?21.(6分)先化简,再求值:22144(1)1a aa a a-+-÷--,其中a是方程a(a+1)=0的解.22.(8分)在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE 交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.23.(8分)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:分别写出y A、y B与x之间的关系式;若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.24.(10分)如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t.⑴用含t的代数式表示:AP=,AQ=.⑵当以A,P,Q为顶点的三角形与△ABC相似时,求运动时间是多少?25.(10分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.从中任意摸出1个球,恰好摸到红球的概率是;先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.26.(12分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)转动转盘一次,求转出的数字是-2的概率;转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的长RN+NQ=3+2.5=3.5(cm).故选A.考点:轴对称图形的性质2.B【解析】【分析】在等腰三角形△ABE中,求出∠A的度数即可解决问题.【详解】解:在正五边形ABCDE中,∠A=15×(5-2)×180=108°又知△ABE是等腰三角形,∴AB=AE,∴∠ABE=12(180°-108°)=36°.故选B.【点睛】本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.3.D【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D.点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.4.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.C【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故本选项错误;B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;C、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确;D、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误.故选C.【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.6.A【解析】试题解析:过点D作DE⊥AB于E,DF⊥AC于F.∵AD 为∠BAC 的平分线,∴DE=DF ,又AB:AC=3:2,11:():():3:222ABD ACD S S AB DE AC DF AB AC ∴=⋅⋅==, 故选A.点睛:角平分线上的点到角两边的距离相等.7.D【解析】【分析】 根据正方形的性质可得出AB ∥CD ,进而可得出△ABF ∽△GDF ,根据相似三角形的性质可得出AF AB GF GD==2,结合FG=2可求出AF 、AG 的长度,由AD ∥BC ,DG=CG ,可得出AG=GE ,即可求出AE=2AG=1. 【详解】解:∵四边形ABCD 为正方形,∴AB=CD ,AB ∥CD ,∴∠ABF=∠GDF ,∠BAF=∠DGF ,∴△ABF ∽△GDF ,∴AF AB GF GD==2, ∴AF=2GF=4,∴AG=2.∵AD ∥BC ,DG=CG ,∴AG DG GE CG==1, ∴AG=GE∴AE=2AG=1.故选:D .【点睛】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF 的长度是解题的关键.8.A【解析】【分析】先根据正五边形的性质求出∠EAB 的度数,再由平行线的性质即可得出结论.【详解】解:∵图中是正五边形.∴∠EAB =108°.∵太阳光线互相平行,∠ABG =46°,∴∠FAE =180°﹣∠ABG ﹣∠EAB =180°﹣46°﹣108°=26°.故选A .【点睛】此题考查平行线的性质,多边形内角与外角,解题关键在于求出∠EAB.9.A【解析】【分析】原式变形后,利用平方差公式计算即可得出答案.【详解】解:原式=(2000+1)×(2000-1)=20002-1,故选A .【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.10.C【解析】当k 0=时,方程为一元一次方程x 10-=有唯一解.当k 0≠时,方程为一元二次方程,的情况由根的判别式确定:∵()()()221k 4k 1k 1∆=--⋅⋅-=+, ∴当k 1=-时,方程有两个相等的实数解,当k 0≠且k 1≠-时,方程有两个不相等的实数解.综上所述,说法C 正确.故选C .二、填空题(本题包括8个小题)11.30【解析】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省温州市绣山中学2019-2020学年九年级水平测试数学试题
(word无答案)
一、单选题
(★) 1 . 在实数2,0,,1.5中,其中是负数的是()
A.2B.0C.D.1.5
(★) 2 . 某校欲举办“校园吉尼斯挑战赛”,小尤对该校全体学生进行“你最喜欢的挑战项目”问卷调查(每人都选了一项),并将结果绘制成如图所示的统计图,则该校学生最喜欢的项目是()
A.羽毛球B.踢毽子C.跳绳D.乒乓球
(★★) 3 . 由两块大小不同的正方体搭成如图所示的几何体,它的主视图是()
A.B.C.D.
(★) 4 . 有理数在数轴上的位置如图所示,则的值()
A.小于0B.等于0C.大于0D.大于2
(★) 5 . 13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头毛驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀”,则餐刀数为()
A.35B.42C.D.
(★) 6 . 在“一日捐”活动中,九(2)班42名同学捐款金额统计如下表,则在这次活动中,该班同学捐款金额的众数是()
金额(元)20303550100150
学生数
5791353
(名)
A.3B.35C.50D.150
(★★) 7 . 如图,在等边中,,点在边上,,过点作
交于点,为边的中点,则的值为()
A.B.C.D.
(★★) 8 . 一张三角形纸片,其三边之比为.小方将纸片对折,第一次使顶点和重合,第二次使顶点和重合,第三次使顶点和重合,三条折痕依次记为,,,则的值为()
A.B.C.D.
(★★★★) 9 . 如图,已知 A, B为反比例函数 y 1=图象上两点,连接 AB,线段 AB经过点O, C是反比例函数 y 2= ( k<0)在第二象限内的图象上一点,当△ CAB是以 AB为底的等
腰三角形,且时, k的值为()
A .﹣
B .﹣3
C .﹣4
D .﹣
(★★) 10 . 当 时,二次函数 有最大值4,则实数
的值为()
A .
B .

C .2或
D .2或

二、填空题
(★) 11 . 合并同类项:
________. (★) 12 . 如图,圆锥的底面半径 为
,母线 为 ,那么这个圆锥的高 是________

(★) 13 . 我们知道方程 的解是
, .现给出另一个方程
,它的解是________.
(★) 14 . 某果园有苹果树100棵,为了估计该果园的苹果总产量,小王先按长势把苹果树分成
了A 、B 、C 三个级别,其中A 级30棵, B 级60棵, C 级10棵,然后从A 、B 、C 三个级别的苹果树中分别随机抽取了3棵、6棵、1棵,测出其产量,制成了如下的统计表.小李看了这个统计表后马上正确估计出了该果园的苹果总产量,那么小李的估计值是 ____ 千克.
苹果树长势
A 级
B 级
C 级
随机抽取棵数(棵)
3
6
1
所抽取果树的平均产量
(千克)
80
75
70
(★★) 15 . 如图,在平面直角坐标系中,点 , , 的坐标分别为 , ,

一直线经过点将四边形分割成两块,这两块的面积比为1:2,则该直线的表达式为
________ .
(★★) 16 . 如图,小明家卫生间有一块直角梯形地方(其中),它恰好可以用
四块相同型号的小直角梯形瓷砖无缝拼接而成,则________.
三、解答题
(★) 17 . (1)计算:;
(2)化简:.
(★★)18 . “校园手机”现象越来越受到社会的关注,小记者张明随机调查了某校若干名学生和
家长对中学生带手机现象的看法,制作了如图所示的统计图.
(1)这次调查的学生人数是________名,家长人数是________名;
(2)补全两个统计图;
(3)针对随机调查的情况,张明决定从九(1)班表示赞成的4名家长中随机选择2名进行深
入调查,其中包含小亮的爸爸和妈妈,小亮的爸爸和妈妈被同时选中的概率是________.
(★) 19 . 如图,在方格纸中(小正方形的边长为1个单位长度),点,,都在格点上,
以为坐标原点建立平面直角坐标系.
(1)分别写出点,的坐标:________,画出线段绕着点逆时针旋转的线段;(2)若线段的中点在反比例函数的图象上,则的值为________.(直接
写出答案)
(★★) 20 . 如图,在等腰梯形中,,,分别为上、下两底,的
中点,,分别为,的中点,求证:四边形是菱形.
(★★) 21 . 如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一
渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°
的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73)
(★★★★)22 . 如图,在中,,经过,两点,交延长线于点,过点作的切线交于点,且.
(1)求证:;
(2)设交于点,若,,求的值.
(★★) 23 . 小慧和小聪沿图①中的景区公路游览.小慧乘坐车速为30 km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20 km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:
(1)小聪上午几点钟从飞瀑出发?
(2)试求线段AB,GH的交点B的坐标,并说明它的实际意义;
(3)如果小聪到达宾馆后,立即以30 km/h的速度按原路返回,那么返回途中他几点钟遇见小慧?
(★★★★) 24 . 如图,在平面直角坐标系中,点,,的坐标分别为,,.点和点分别从点和点同时出发沿轴正方向运动,同时点从点出发沿
轴正方向运动,以,为邻边构造,已知点,的运动速度均为,点的运动速度为,运动时间为.过点的抛物线交轴于另一点
(点在点的右侧),,且该二次函数的最大值不变,均为.
(1)①当时,求的长;(用含的代数式表示);②当时,求点的坐标;(2)当时,试判断点是否恰好落在抛物线上,并说明理由;
(3)若点关于直线的对称点恰好落在抛物线上,请求出所有满足条件的的值.。

相关文档
最新文档