高一年级期末考试数学试卷
高一数学第一学期期末试卷及答案5套
高一数学第一学期期末试卷及答案5套完卷时间:120分钟 满分:150分第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题意要求的) 1、若角终边经过点,则( )A.B.C. D.2、函数的一条对称轴是( ) A.B.C.D.3、已知集合}1{>=x x A ,11{|()}24xB x =>,则A B ⋂=( ) A .R B .),1(+∞C .)2,(-∞D .)2,1( 4、( ) A.B.C.D.5、已知⎪⎩⎪⎨⎧>+-≤=0,1)1(0,2cos )(x x f x x x f π,则=)2(f ( ) A . 1- B .1 C . 3- D . 36、已知,则()()3sin 2cos 2sin sin 2πθπθπθπθ⎛⎫+++ ⎪⎝⎭⎛⎫--- ⎪⎝⎭等于( )A. 23—B. C. D. 7、若向量,,则在方向上的投影为( ) A. -2 B. 2 C.D.8、若()f x 对于任意实数x 都有12()()21f x f x x-=+,则(2)f =( )A.0B.1C.83D.49、若向量,i 为互相垂直的单位向量,—j 2=j m +=且与的夹角为锐角,则实数m 的取值范围是 ( )A .⎝ ⎛⎭⎪⎫12,+∞B .(-∞,-2)∪⎝ ⎛⎭⎪⎫-2,12C .⎝ ⎛⎭⎪⎫-2,23∪⎝ ⎛⎭⎪⎫23,+∞D .⎝⎛⎭⎪⎫-∞,1210、已知函数2(43)3,0,()log (1)1,0,a x a x a x f x x x ⎧+-+<⎪=⎨++≥⎪⎩在R 上单调递减,则实数a 的取值范围是( )A. 13[,]34B.1334⎛⎤ ⎥⎝⎦,C. 103⎛⎤ ⎥⎝⎦,D.30,4⎛⎫⎪⎝⎭11、已知,函数在(,)上单调递减,则的取值范围是( )A. (0,]B. (0,2]C. [,]D. [,]12、将函数()⎪⎭⎫⎝⎛=x 2cos 4x f π和直线()1x x g —=的所有交点从左到右依次记为,若P 点坐标为()30,=++A P 2....( )A. 0B. 2C. 6D. 10二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡的相应位置上) 13、已知角θ的终边经过点(39,2)a a -+,且θsin >0,θcos <0则a 的取值范围是 14、已知函数3()2,(0,1)x f x a a a -=+>≠且,那么其图象经过的定点坐标是15、已知2cos ,63πα⎛⎫-=⎪⎝⎭则2sin 3πα⎛⎫-= ⎪⎝⎭________. 16、已知关于的方程0a cos 3sin =+θθ—在区间()π,0上有两个不相等的实数根,则=+2cosβα__________.三、解答题:(本大题共6小题,共70分.解答写出文字说明,写明过程或演算步骤) 17、(本题满分10 分)已知四点A (-3,1),B (-1,-2),C (2,0),D ()(1)求证:;(2) ,求实数m 的值.18、(本题满分12 分) 已知是的三个内角,向量,,且.(1) 求角; (2)若,求.19、(本题满分12 分)已知函数()log (2)log (3),a a f x x x =++-其中01a <<. (1)求函数()f x 的定义域;(2)若函数()f x 的最小值为4-,求a 的值20、(本题满分12 分)已知函数()sin()f x A x ωϕ=+,其中0,0,0A ωϕπ>><<,函数()f x 图像上相邻的两个对称中心之间的距离为4π,且在3x π=处取到最小值2-. (1)求函数()f x 的解析式;(2)若将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将向左平移6π个单位,得到函数()g x 图象,求函数()g x 的单调递增区间。
高一数学期末考试试题及答案doc
高一数学期末考试试题及答案doc一、选择题(每题5分,共50分)1. 下列哪个选项是二次函数的图像?A. 直线B. 抛物线C. 圆D. 椭圆答案:B2. 函数f(x)=2x^2-4x+3的零点是:A. x=1B. x=2C. x=3D. x=-1答案:A3. 集合{1,2,3}与集合{2,3,4}的交集是:A. {1,2,3}B. {2,3}C. {3,4}D. {1,2,3,4}答案:B4. 如果一个角是直角三角形的一个锐角的两倍,那么这个角是:A. 30°B. 45°C. 60°D. 90°答案:C5. 函数y=x^3-3x^2+4x-2在x=1处的导数值是:A. 0B. 1C. 2D. -1答案:B6. 以下哪个是等差数列的通项公式?A. a_n = a_1 + (n-1)dB. a_n = a_1 + n(n-1)/2C. a_n = a_1 + n^2D. a_n = a_1 + n答案:A7. 圆的面积公式是:A. A = πrB. A = πr^2C. A = 2πrD. A = 4πr^2答案:B8. 以下哪个选项是复数的模?A. |z| = √(a^2 + b^2)B. |z| = a + biC. |z| = a - biD. |z| = a * bi答案:A9. 以下哪个选项是向量的点积?A. a·b = |a||b|cosθB. a·b = |a||b|sinθC. a·b = |a||b|tanθD. a·b = |a||b|secθ答案:A10. 以下哪个选项是三角恒等式?A. sin^2x + cos^2x = 1B. sin^2x - cos^2x = 1C. sin^2x - cos^2x = 0D. sin^2x + cos^2x = 0答案:A二、填空题(每题5分,共30分)1. 如果一个等差数列的前三项分别是2,5,8,那么它的公差是______。
高一期末数学试卷及答案
一、选择题(每题5分,共50分)1. 下列各数中,有理数是:A. √2B. πC. √-1D. 0.1010010001…2. 若 a > b > 0,则下列不等式成立的是:A. a² > b²B. a - b > 0C. a/b > 1D. ab > 03. 已知函数 f(x) = 2x - 3,若 f(x) + f(2 - x) = 0,则 x 的值为:A. 1B. 2C. 3D. 44. 在直角坐标系中,点 A(2,3),B(4,5),则线段 AB 的中点坐标为:A. (3,4)B. (4,3)C. (3,5)D. (4,4)5. 已知等差数列 {an} 的前n项和为 Sn,若 a1 = 3,d = 2,则 S10 的值为:A. 100B. 105C. 110D. 1156. 若复数 z 满足 |z - 1| = |z + 1|,则 z 在复平面上的位置是:A. 实轴上B. 虚轴上C. 第一象限D. 第二象限7. 下列函数中,是奇函数的是:A. f(x) = x²B. f(x) = |x|C. f(x) = x³D. f(x) = 1/x8. 在△ABC中,若 a = 3,b = 4,c = 5,则△ABC是:A. 直角三角形B. 等腰三角形C. 等边三角形D. 钝角三角形9. 已知函数f(x) = x² - 4x + 4,其图像的对称轴是:A. x = 1B. x = 2C. y = 1D. y = 410. 若等比数列 {an} 的前三项分别是 2, 6, 18,则其公比为:A. 2B. 3C. 6D. 9二、填空题(每题5分,共50分)1. 若 a + b = 5,a - b = 1,则a² - b² 的值为________。
2. 已知等差数列 {an} 的前n项和为 Sn,若 a1 = 3,d = 2,则 S10 的值为________。
2023-2024学年江苏省徐州市高一(上)期末数学试卷【答案版】
2023-2024学年江苏省徐州市高一(上)期末数学试卷一、选择题。
本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x|14<2x <4},B ={0,1,2},则A ∩B =( )A .{0}B .{0,1}C .{1,2}D .{0,1,2}2.已知扇形的半径为2cm ,弧长为4cm ,则该扇形的面积为( ) A .1cm 2B .2cm 2C .4cm 2D .8cm 23.若命题“∃x ∈R ,x 2+4x +t <0“是假命题,则实数t 的最小值为( ) A .1B .2C .4D .84.已知a >b ,则下列不等式中,正确的是( ) A .a 2>b 2 B .|a |>|b |C .sin a >sin bD .2a >2b5.若α=4π3,则√1−sinα1+sinα+√1+sinα1−sinα=( ) A .4B .2C .4√33D .2√336.2023年12月30日,我国在酒泉卫星发射中心使用长征二号丙运载火箭成功发射卫星互联网技术试验卫星.在不考虑空气阻力的情况下,火箭的最大速度v (单位:km /s )和燃料的质量M (单位:kg )、火箭(除燃料外)的质量m (单位:kg )的函数关系是v =alg(1+Mm)(a 是参数).当M =5000m 时,v 大约为( )(参考数据:1g 2≈0.3010) A .2.097aB .3.699aC .3.903aD .4.699a7.已知函数f(x)=1x 2+1−e 4x +1e2x ,若a =tan171°,b =tan188°,c =tan365°,则( )A .f (a )<f (b )<f (c )B .f (b )<f (a )<f (c )C .f (b )<f (c )<f (a )D .f (c )<f (b )<f (a )8.已知函数f (x )=x +1x −2,且关于x 的方程f (|e x ﹣1|)+2k|e x −1|−3k 2=0有三个不同的实数解,则实数k 的取值范围为( ) A .(0,23)B .(−12,0)∪(23,+∞)C .(1+√73,+∞) D .{−12}∪(1+√73,+∞)二、选择题。
2023-2024学年江苏省南通市高一(上)期末数学试卷【答案版】
2023-2024学年江苏省南通市高一(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若扇形的圆心角为2rad,半径为1,则该扇形的面积为()A.12B.1C.2D.42.已知全集U=R,集合A={x|﹣2≤x≤3},B={x|x<﹣1或x>4},则集合A∩(∁U B)=()A.{x|﹣1≤x≤3}B.{x|x≤3或x≥4}C.{x|﹣2≤x<﹣1}D.{x|﹣2≤x<4}3.函数f(x)=4x+9x+1,x∈(﹣1,+∞)的最小值为()A.6B.8C.10D.124.若角θ的终边经过点P(1,3),则sinθcosθ+cos2θ=()A.−65B.−25C.25D.655.函数f(x)=2log3x+2x﹣5的零点所在区间是()A.(0,1)B.(1,32)C.(32,2)D.(2,3)6.设函数f(x)=sin(ωx+π4)(ω>0)的最小正周期为T.若2π<T<3π,且对任意x∈R,f(x)+f(π3)≥0恒成立,则ω=()A.23B.34C.45D.567.已知函数f(x)的定义域为R,y=2f(x)﹣sin x是偶函数,y=f(x)﹣cos x是奇函数,则[f(x)]2+[f(π2+x)]2=()A.5B.2C.32D.548.已知函数f(x)=lg|x|﹣cos x,记a=f(log0.51.5),b=f(1.50.5),c=f(sin(1﹣π)),则()A.a<b<c B.a<c<b C.c<b<a D.c<a<b二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.下列各式中,计算结果为1的是()A.sin75°cos15°+cos75°sin15°B.cos222.5°﹣sin222.5°C.√3−tan15°1+√3tan15°D.tan22.5°1−tan222.5°10.若a>b>0,c>d>0,则()A .a ﹣c >b ﹣dB .a (a +c )>b (b +d )C .d a+d<c b+cD .b+d b+c<a+d a+c11.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( ) A .y =x −23B .y =2|x |+1C .y =x 2﹣x ﹣2D .y =2x ﹣2﹣x12.如图,弹簧挂着的小球做上下振动,小球的最高点与最低点间的距离为10(单位:cm ),它在t (单位:s )时相对于平衡位置(静止时的位置)的高度hcm 由关系式ℎ=Asin(πt +π4)确定,其中A >0,t ≥0.则下列说法正确的是( )A .小球在往复振动一次的过程中,从最高点运动至最低点用时2sB .小球在往复振动一次的过程中,经过的路程为20cmC .小球从初始位置开始振动,重新回到初始位置时所用的最短时间为12sD .小球从初始位置开始振动,若经过最高点和最低点的次数均为10次,则所用时间的范围是[2014,2114)三、填空题:本题共4小题,每小题5分,共20分。
完整版)高一第一学期数学期末考试试卷(含答案)
完整版)高一第一学期数学期末考试试卷(含答案)高一第一学期期末考试试卷考试时间:120分钟注:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R,集合A={x|3≤x<7},B={x|x^2-7x+10<0},则(A∩B)的取值为A。
(−∞,3)∪(5,+∞)B。
(−∞,3)∪[5,+∞)C。
(−∞,3]∪[5,+∞)D。
(−∞,3]∪(5,+∞)2.已知a⋅3^a⋅a的分数指数幂表示为A。
a^3B。
a^3/2C。
a^3/4D。
都不对3.下列指数式与对数式互化不正确的一组是A。
e=1与ln1=0B。
8^(1/3)=2与log2^8=3C。
log3^9=2与9=3D。
log7^1=0与7^1=74.下列函数f(x)中,满足“对任意的x1,x2∈(−∞,0),当x1f(x2)”的是A。
x^2B。
x^3C。
e^xD。
1/x5.已知函数y=f(x)是奇函数,当x>0时,f(x)=logx,则f(f(100))的值等于A。
log2B。
−1/lg2C。
lg2D。
−lg26.对于任意的a>0且a≠1,函数f(x)=ax^−1+3的图像必经过点(1,4/5)7.设a=log0.7(0.8),b=log1.1(0.9),c=1.10.9,则a<b<c8.下列函数中哪个是幂函数A。
y=−3x^−2B。
y=3^xC。
y=log_3xD。
y=x^2+1是否有模型能够完全符合公司的要求?原因是公司的要求只需要满足以下条件:当x在[10,1000]范围内时,函数为增函数且函数的最大值不超过5.参考数据为e=2.L,e的8次方约为2981.已知函数f(x)=1-2a-a(a>1),求函数f(x)的值域和当x 在[-2,1]范围内时,函数f(x)的最小值为-7.然后求出a的值和函数的最大值。
福建省福建师范大学附属中学2023-2024学年高一下学期7月期末考试数学试题(含答案)
福建师大附中2023-2024学年第二学期期末考试高一数学试卷时间:120分钟满分:150分试卷说明:(1)本卷共四大题,20小题,解答写在答卷的指定位置上,考试结束后,只交答卷.(2)考试过程中不得使用计算器或具有计算功能的电子设备.第Ⅰ卷(选择题,共58分)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.设i 为虚数单位,复数满足,则复数的虚部是( )A .B .C .3iD .32.某汽车生产厂家用比例分配的分层随机抽样方法从A ,B ,C 三个城市中抽取若干汽车进行调查,各城市的汽车销售总数和抽取数量如右表所示,则样本容量为( )城市销售总数抽取数量A 420m B 28020C 700nA .60B .80C .100D .1203.某校文艺部有4名学生,其中高一、高二年级各2名,从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A.B .C .D .4.设是两条不同的直线,是两个不同的平面,给出下列说法,其中正确的是( )A .若,则B .若,则C .若,则D .若,则5.如图,在三棱锥中,分别是,的中点,则异面直线所成角的余弦值为()z ()i 142i z +=+z i-1-16131223,m n ,αβ,,m n m n αβ⊥⊥∥αβ⊥,m m αβ⊥∥αβ⊥,,m n m n αβ⊥⊂⊂αβ⊥,,m n m n αβ⊥⊂⊥αβ⊥A BCD -6,4,,AB AC BD CD AD BC M N ======AD BC ,AN CMA.B .C .D .6.有一组样本数据:,其平均数为2024.由这组数据得到一组新的样本数据:,那么这两组数据一定有相同的( )A .极差B .中位数C .方差D .众数7.已知正四棱台上底面边长为1,下底面边长为2,体积为7,则正四棱台的侧棱与底面所成角的正切值为( )ABCD .8.已知三棱锥中,平面,底面是以为直角顶点的直角三角形,且,三棱锥,过点作于,过作于,则三棱锥外接球的体积为()A .BCD .二、选择题:本题共3小题,每小题6分,共18分。
2023-2024学年江苏省南京市高一(上)期末数学试卷【答案版】
2023-2024学年江苏省南京市高一(上)期末数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符 1.已知集合M ={﹣1,0,1},N ={0,1,2},则M ∪N =( ) A .{﹣1,0,1,2} B .{﹣1,0,1} C .{﹣1,0,2}D .{0,1}2.命题“∀x ∈R ,x +2≤0”的否定是( ) A .∃x ∈R ,x +2>0 B .∃x ∈R ,x +2≤0 C .∀x ∈R ,x +2>0D .∀x ∉R ,x +2>0 3.若函数f (x )=x 2﹣mx +3在区间(﹣∞,2)上单调递减,则实数m 的取值范围是( ) A .(﹣∞,2]B .[2,+∞)C .(﹣∞,4]D .[4,+∞)4.已知角θ的终边经过点P (x ,﹣5),且tanθ=512,则x 的值是( ) A .﹣13B .﹣12C .12D .135.已知a =log 0.32,b =log 0.33,c =log 32,则下列结论正确的是( ) A .a <b <cB .a <c <bC .c <a <bD .b <a <c6.北京时间2023年5月10日21时22分,搭载天舟六号货运飞船的长征七号遥七运载火箭,在我国文昌航天发射场点火发射,约10分钟后,天舟六号货运飞船与火箭成功分离并进入预定轨道,发射取得圆满成功.在不考虑空气阻力的情况下,火箭的最大速度v (km /s )和燃料的质量M (kg )、火箭(除燃料外)的质量m (kg )的函数关系的表达式为v =2ln(1+Mm ),若火箭的最大速度v 达到10km /s ,则M m的值是( ) A .5e ﹣1B .e 5﹣1C .510﹣1D .105﹣17.已知定义在R 上的函数f (x )={cosx ,x ≤0f(x −π),x >0,则f(113π)的值是( )A .−√32B .−12C .12D .√328.在等式a b =N 中,如果只给定a ,b ,N 三个数中的一个数,那么a b =N 就成为另两个数之间的“函数关系”.如果N 为常数10,将a 视为自变量x (x >0且x ≠1),则b 为x 的函数,记为y ,那么x y =10,现将y 关于x 的函数记为y =f (x ).若f (m 2)>f (2m ),则实数m 的取值范围是( ) A .(0,2)B .(1,2)C .(0,1)∪(1,2)D .(0,12)∪(1,2)二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题 9.若a <b <0,c ∈R ,则( )A .a +c <b +cB .ab <b 2C .1a <1bD .b a <ab10.已知关于x 的不等式ax 2+bx +c >0的解集是{x |1<x <3},则( ) A .a <0B .a +b +c =0C .4a +2b +c <0D .不等式cx 2﹣bx +a <0的解集是{x |x <﹣1或x >−13}11.古人立杆测日影以定时间,后来逐步形成了正切和余切的概念.余切函数可以用符号表示为f (x )=cot x ,其中cotx =tan(π2−x),则下列关于余切函数的说法正确的是( )A .定义域为{x |x ≠k π,k ∈Z }B .在区间(π2,π)上单调递增C .与正切函数有相同的对称中心D .将函数y =﹣tan x 的图象向右平移π2个单位可得到函数y =cot x 的图象12.已知扇形的半径为r ,弧长为l .若其周长的数值为面积的数值的2倍,则下列说法正确的是( ) A .该扇形面积的最小值为8 B .当扇形周长最小时,其圆心角为2 C .r +2l 的最小值为9D .1r 2+4l 2的最小值为12三、填空题:本大题共4小题,每小题5分,共20分.请把答案填写在答题卡相应位置上 13.已知幂函数f (x )=x α的图象经过点(9,3),则f (8)的值是 . 14.已知sin(x +π6)=13,则sin 2(π3−x)的值是 .15.已知定义在实数集R 上的偶函数f (x )在区间[0,+∞)上是单调增函数,若f (lgx )<f (1),则实数x 的取值范围是 .16.已知函数f(x)=log 9x +12x −1的零点为x 1.若x 1∈(k ,k +1)(k ∈Z ),则k 的值是 ;若函数g (x )=3x +x ﹣2的零点为x 2,则x 1+x 2的值是 .四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要的文字说明, 17.(10分)(1)已知a +a﹣1=3,求a 12+a−12的值;(2)求值:e ln 2+(lg 5)2+lg 5lg 2+lg 20.18.(12分)设全集U =R ,已知集合A ={x |x 2﹣5x +4≤0},B ={x |m ≤x ≤m +1}. (1)若A ∩B =∅,求实数m 的取值范围;(2)若“x ∈B ”是“x ∈A ”的充分条件,求实数m 的取值范围.19.(12分)已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示. (1)求函数f (x )的解析式;(2)求函数y =f (x )在区间[﹣π,0]上的单调减区间.20.(12分)已知函数f(x)=a⋅2x−12x +1(a ∈R).(1)若函数f (x )为奇函数,求a 的值;(2)当a =3时,用函数单调性的定义证明:函数f(x)=a⋅2x−12x +1在R 上单调递增;(3)若函数y =f (x )﹣2x 有两个不同的零点,求a 的取值范围.21.(12分)如图,有一条宽为30m 的笔直的河道(假设河道足够长),规划在河道内围出一块直角三角形区域(图中△ABC )种植荷花用于观赏,C ,B 两点分别在两岸l 1,l 2上,AB ⊥AC ,顶点A 到河两岸的距离AE =h 1,AD =h 2,设∠ABD =α.(1)若α=30°,求荷花种植面积(单位:m 2)的最大值; (2)若h 2=4h 1,且荷花的种植面积为150m 2,求sin α.22.(12分)若存在实数对(a ,b ),使等式f (x )•f (2a ﹣x )=b 对定义域中每一个实数x 都成立,则称函数f (x )为(a ,b )型函数.(1)若函数f (x )=2x 是(a ,1)型函数,求a 的值; (2)若函数g(x)=e 1x 是(a ,b )型函数,求a 和b 的值;(3)已知函数h (x )定义在[﹣2,4]上,h (x )恒大于0,且为(1,4)型函数,当x ∈(1,4]时,ℎ(x)=−(log 2x)2+m ⋅log 2x +2.若h (x )≥1在[﹣2,4]恒成立,求实数m 的取值范围.2023-2024学年江苏省南京市高一(上)期末数学试卷参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符1.已知集合M={﹣1,0,1},N={0,1,2},则M∪N=()A.{﹣1,0,1,2}B.{﹣1,0,1}C.{﹣1,0,2}D.{0,1}解:因为集合M={﹣1,0,1},N={0,1,2},所以M∪N={﹣1,0,1,2},故选:A.2.命题“∀x∈R,x+2≤0”的否定是()A.∃x∈R,x+2>0B.∃x∈R,x+2≤0C.∀x∈R,x+2>0D.∀x∉R,x+2>0解:命题为全称命题,则命题的否定为“∃x∈R,x+2>0”.故选:A.3.若函数f(x)=x2﹣mx+3在区间(﹣∞,2)上单调递减,则实数m的取值范围是()A.(﹣∞,2]B.[2,+∞)C.(﹣∞,4]D.[4,+∞)解:函数f(x)=x2﹣mx+3开口向上,对称轴方程为x=m 2,所以函数的单调递减区间为(﹣∞,m2 ],要使在区间(﹣∞,2)上单调递减,则m2≥2,解得m≥4.即m的范围为[4,+∞).故选:D.4.已知角θ的终边经过点P(x,﹣5),且tanθ=512,则x的值是()A.﹣13B.﹣12C.12D.13解:由题意得,tanθ=512=−5x,故x=﹣12.故选:B.5.已知a=log0.32,b=log0.33,c=log32,则下列结论正确的是()A.a<b<c B.a<c<b C.c<a<b D.b<a<c解:∵log0.33<log0.32<log0.31=0,∴b<a<0,∵log32>log31=0,∴c>0,∴b<a<c.故选:D.6.北京时间2023年5月10日21时22分,搭载天舟六号货运飞船的长征七号遥七运载火箭,在我国文昌航天发射场点火发射,约10分钟后,天舟六号货运飞船与火箭成功分离并进入预定轨道,发射取得圆满成功.在不考虑空气阻力的情况下,火箭的最大速度v (km /s )和燃料的质量M (kg )、火箭(除燃料外)的质量m (kg )的函数关系的表达式为v =2ln(1+Mm ),若火箭的最大速度v 达到10km /s ,则M m的值是( ) A .5e ﹣1B .e 5﹣1C .510﹣1D .105﹣1解:由题意知火箭的最大速度v 达到10km /s ,故10=2ln(1+M m ),即1+Mm =e 5,∴M m =e 5−1. 故选:B .7.已知定义在R 上的函数f (x )={cosx ,x ≤0f(x −π),x >0,则f(113π)的值是( )A .−√32B .−12C .12D .√32解:定义在R 上的函数f (x )={cosx ,x ≤0f(x −π),x >0,则f(113π)=f(83π)=f(5π3)=f(2π3)=f(−π3)=cos(−π3)=12. 故选:C .8.在等式a b =N 中,如果只给定a ,b ,N 三个数中的一个数,那么a b =N 就成为另两个数之间的“函数关系”.如果N 为常数10,将a 视为自变量x (x >0且x ≠1),则b 为x 的函数,记为y ,那么x y =10,现将y 关于x 的函数记为y =f (x ).若f (m 2)>f (2m ),则实数m 的取值范围是( ) A .(0,2)B .(1,2)C .(0,1)∪(1,2)D .(0,12)∪(1,2)解:因为x y =10,(x >0且x ≠1),所以lgx y =lg 10=1,即ylgx =1, 所以y =f (x )=1lgx,所以函数f (x )在(0,1),(1,+∞)上单调递减, 若f (m 2)>f (2m ),则0<m 2<2m <1,或1<m 2<2m ,解得0<m <12或1<m <2.故选:D .二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题 9.若a <b <0,c ∈R ,则( ) A .a +c <b +cB .ab <b 2C .1a <1bD .b a <ab解:对于A ,由a <b ,两边都加上c ,可得a +c <b +c ,故A 正确; 对于B ,a <b <0,两边都乘以b ,可得ab >b 2,故B 不正确; 对于C ,a <b <0,则1a −1b =b−a ab >0,可知1a >1b,故C 不正确;对于D,a<b<0,则ba −ab=b2−a2ab=(b+a)(b−a)ab<0,可得ba<ab,故D正确.故选:AD.10.已知关于x的不等式ax2+bx+c>0的解集是{x|1<x<3},则()A.a<0B.a+b+c=0C.4a+2b+c<0D.不等式cx2﹣bx+a<0的解集是{x|x<﹣1或x>−13}解:因为不等式ax2+bx+c>0的解集是{x|1<x<3},所以a<0且1,3为方程ax2+bx+c=0的两根,A正确;故{1+3=−ba1×3=ca,所以b=﹣4a,c=3a,所以a+b+c=a﹣4a+3a=0,B正确;4a+2b+c=4a﹣8a+3a=﹣a>0,C错误;由不等式cx2﹣bx+a=3ax2+4ax+a<0可得3x2+4x+1>0,解得x<﹣1或x>−13,D正确.故选:ABD.11.古人立杆测日影以定时间,后来逐步形成了正切和余切的概念.余切函数可以用符号表示为f(x)=cot x,其中cotx=tan(π2−x),则下列关于余切函数的说法正确的是()A.定义域为{x|x≠kπ,k∈Z}B.在区间(π2,π)上单调递增C.与正切函数有相同的对称中心D.将函数y=﹣tan x的图象向右平移π2个单位可得到函数y=cot x的图象解:根据cotx=tan(π2−x),所以余切函数的图象如图所示:对于A:函数的定义域为{x|x≠kπ,k∈Z},故A正确;对于B:在区间(π2,π)上单调递减,故B错误;对于C :与正切函数有相同的对称中心,都为(kπ2,0)(k ∈Z ),故C 正确;对于D :将函数y =﹣tan x 的图象向右平移π2个单位可得到函数y =﹣tan (x −π2)=cot x 的图象,故D 正确. 故选:ACD .12.已知扇形的半径为r ,弧长为l .若其周长的数值为面积的数值的2倍,则下列说法正确的是( ) A .该扇形面积的最小值为8 B .当扇形周长最小时,其圆心角为2 C .r +2l 的最小值为9D .1r 2+4l 2的最小值为12解:因为扇形的半径为r ,弧长为l ,所以扇形的周长为2r +l ,面积为12lr ;因为2r +l =2×12lr ,所以l =2rr−1,且r >1;所以扇形的面积为S =12×2r r−1×r =r 2r−1=(r−1)2+2(r−1)+1r−1=(r ﹣1)+1r−1+2≥2√(r −1)⋅1r−1+2=4,当且仅当r ﹣1=1r−1,即r =2时取等号,所以选项A 错误; 扇形的周长为L =2r +2r r−1=2(r ﹣1)+2r−1+4≥2√2(r −1)⋅2r−1+4=8, 当且仅当2(r ﹣1)=2r−1,即r =2时取等号,此时圆心角为|α|=l r =42=2,α=±2,选项B 错误; r +2l =r +4r r−1=r +4+4r−1=(r ﹣1)+4r−1+5≥2√(r −1)⋅4r−1+5=9, 当且仅当r ﹣1=4r−1,即r =3时取等号,选项C 正确; 1r 2+4l 2=1r 2+(r−1)2r 2=1−2r +2r 2=2(1r −12)2+14]≥12,当r =2时取等号,所以选项D 正确.故选:CD .三、填空题:本大题共4小题,每小题5分,共20分.请把答案填写在答题卡相应位置上 13.已知幂函数f (x )=x α的图象经过点(9,3),则f (8)的值是 2√2 . 解:根据幂函数f (x )=x α的图象经过点(9,3),可得9α=3,求得α=12,故f (x )=x 12=√x .故f (8)=√8=2√2.故答案为:2√2.14.已知sin(x +π6)=13,则sin 2(π3−x)的值是 89 .解:∵cos (π3−x )=sin(x +π6)=13,∴sin2(π3−x)=1﹣cos2(π3−x)=1−19=89.故答案为:8 9.15.已知定义在实数集R上的偶函数f(x)在区间[0,+∞)上是单调增函数,若f(lgx)<f(1),则实数x的取值范围是110<x<10.解:∵f(x)定义在实数集R上的偶函数,在区间[0,+∞)上是单调增函数∴f(x)中(﹣∞,0)上是减函数又f(lgx)<f(1)∴﹣1<lgx<1∴110<x<10故答案为:110<x<1016.已知函数f(x)=log9x+12x−1的零点为x1.若x1∈(k,k+1)(k∈Z),则k的值是1;若函数g (x)=3x+x﹣2的零点为x2,则x1+x2的值是2.解:函数f(x)=log9x+12x−1是增函数,f(1)=−12<0,f(2)=log92>0,满足f(1)f(2)<0,所以函数的零点x1∈(1,2),所以k的值为1.函数f(x)=log9x+12x−1=12(log3x+x﹣2),函数的零点是y=log3x与y=2﹣x两个函数的图象的交点的横坐标x1,函数g(x)=3x+x﹣2的零点为x2,是函数y=3x与y=2﹣x图象交点的横坐标,由于y=log3x与y=3x是反函数,关于y=x对称,并且y=2﹣x与y=x垂直,交点坐标(1,1),所以x1+x2的值是2.故答案为:1;2.四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,17.(10分)(1)已知a+a﹣1=3,求a 12+a−12的值;(2)求值:e ln2+(lg5)2+lg5lg2+lg20.解:(1)因为(a 12+a−12)2=a+a﹣1+2=3+2=5,又因为a 12+a−12>0,所以a12+a−12=√5;(2)e ln2+(lg5)2+lg5lg2+lg20=2+1g5(lg5+1g2)+1g2+1=2+1g5+1g2+1=2+1+1=4.18.(12分)设全集U=R,已知集合A={x|x2﹣5x+4≤0},B={x|m≤x≤m+1}.(1)若A∩B=∅,求实数m的取值范围;(2)若“x∈B”是“x∈A”的充分条件,求实数m的取值范围.解:(1)由x 2﹣5x +4≤0,解得1≤x ≤4,所以A ={x |1≤x ≤4}. 因为A ∩B =∅,且B ≠∅,所以m +1<1或m >4,得m <0或m >4, 所以实数m 的取值范围是{m |m <0或m >4}.(2)因为“x ∈B ”是“x ∈A ”的充分条件,所以B ⊆A , 所以{m ≥1m +1≤4,解得1≤m ≤3,所以实数m 的取值范围是{m |1≤m ≤3}.19.(12分)已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示. (1)求函数f (x )的解析式;(2)求函数y =f (x )在区间[﹣π,0]上的单调减区间.解:(1)由图可知A =2,T =4×(π3−π12)=π,所以ω=2πT=2.∵f (x )=2sin (2x +φ)的图象经过点(π12,2), ∴π6+φ=π2+2kπ,k ∈Z ,即φ=π3+2kπ,k ∈Z .∵0<φ<π,所以φ=π3,∴f(x)=2sin(2x +π3).(2)令π2+2kπ≤2x +π3≤3π2+2kπ,k ∈Z ,解得π12+kπ≤x ≤7π12+kπ,k ∈Z ,∴f(x)=2sin(2x +π3)的减区间为[π12+kπ,7π12+kπ],k ∈Z ,∴f(x)=2sin(2x +π3)在[﹣π,0]上的减区间为[−11π12,−5π12].20.(12分)已知函数f(x)=a⋅2x−12x +1(a ∈R).(1)若函数f (x )为奇函数,求a 的值;(2)当a =3时,用函数单调性的定义证明:函数f(x)=a⋅2x−12x +1在R 上单调递增;(3)若函数y =f (x )﹣2x 有两个不同的零点,求a 的取值范围.解:(1)由 f (0)=0,得a =1,此时f(x)=2x−12x +1.因为f(−x)=2−x−12−x +1=1−2x1+2x =−f(x),所以f (x )为奇函数,故a =1. 证明:(2)当a =3时,f(x)=3⋅2x−12x +1=3−42x +1.任取x 1,x 2∈R ,且x 1<x 2,则f(x 1)−f(x 2)=42x 2+1−42x 1+1=4(2x1−2x2)(1+2x 1)(1+2x 2), 因为x 1<x 2,所以2x 1<2x 2,2x 1+1>0,2x 2+1>0, 所以4(2x 1−2x 2)(1+2x 1)(1+2x 2)<0,即f (x 1)<f (x 2),所以函数f(x)=a⋅2x−12x +1在R 上单调递增.解:(3)y =f (x )﹣2x 有两个不同的零点,等价于(2x )2+(1﹣a )2x +1=0有两个不同的实数解. 令t =2x (t >0),则t 2+(1﹣a )t +1=0在(0,+∞)有两个不同的实数解, 所以{(1−a)2−4>0a −1>0,解得a >3.所以a 的取值范围为(3,+∞).21.(12分)如图,有一条宽为30m 的笔直的河道(假设河道足够长),规划在河道内围出一块直角三角形区域(图中△ABC )种植荷花用于观赏,C ,B 两点分别在两岸l 1,l 2上,AB ⊥AC ,顶点A 到河两岸的距离AE =h 1,AD =h 2,设∠ABD =α.(1)若α=30°,求荷花种植面积(单位:m 2)的最大值; (2)若h 2=4h 1,且荷花的种植面积为150m 2,求sin α.解:由题可得,AB =ℎ2sinα,AC =ℎ1cosα. (1)当α=30°时,AB =2h 2,AC =2√31, 所以S △ABC =12AB ⋅AC =2√31ℎ2,又因为h 1+h 2=30,h 1,h 2≥0, 所以S △ABC =√31ℎ2≤√3(ℎ1+ℎ22)2=150√3,当且仅当h 1=h 2=15时取等号.所以荷花种植区域面积的最大值为150√3m 2.(2)因为h 1+h 2=30,h 2=4h 1,所以h 1=6,h 2=24,故AB =24sinα,AC =6cosα,α∈(0,π2), 从而S △ABC =12AB ⋅AC =72sinαcosα=150, 所以sinαcosα=1225,① 所以(sinα+cosα)2=1+2sinαcosα=4925. 又因为α∈[0,π2],所以sinα+cosα=75,② 由①②解得:sinα=35或45. 22.(12分)若存在实数对(a ,b ),使等式f (x )•f (2a ﹣x )=b 对定义域中每一个实数x 都成立,则称函数f (x )为(a ,b )型函数.(1)若函数f (x )=2x 是(a ,1)型函数,求a 的值;(2)若函数g(x)=e 1x 是(a ,b )型函数,求a 和b 的值;(3)已知函数h (x )定义在[﹣2,4]上,h (x )恒大于0,且为(1,4)型函数,当x ∈(1,4]时,ℎ(x)=−(log 2x)2+m ⋅log 2x +2.若h (x )≥1在[﹣2,4]恒成立,求实数m 的取值范围.解:(1)由f (x )=2x 是(a ,1)型函数,得f (x )•f (2a ﹣x )=2x •22a ﹣x =1,即22a =1,所以a =0. (2)由g(x)=e 1x是(a ,b )型函数,得g(x)⋅g(2a −x)=e 1x ⋅e 12ax −x =b ,则1x +12a−x =lnb ,因此x 2lnb ﹣2axlnb +2a =0对定义域{x |x ≠0}内任意x 恒成立,于是{lnb =02alnb =02a =0,解得a =0,b =1,所以a =0,b =1.(3)由h (x )是(1,4)型函数,得h (x )•h (2﹣x )=4,(1)当x =1时,h (1)•h (1)=4,而h (x )>0,则h (1)=2,满足h (x )≥1;(2)当x ∈(1,4]时,ℎ(x)=−(log 2x)2+m ⋅log 2x +2≥1恒成立,令log 2x =t ,则当t ∈(0,2]时,﹣t 2+mt +2≥1恒成立,于是m ≥t −1t 恒成立,而函数y =t −1t在(0,2]单调递增,则t −1t ≤32,当且仅当t =2时取等号,因此m ≥32; (3)当x ∈[﹣2,1)时,2﹣x ∈(1,4],则ℎ(x)=4ℎ(2−x)=4−[log 2(2−x)]2+m⋅log 2(2−x)+2,由h (x )≥1,得0<−[log 2(2−x)]2+m ⋅log 2(2−x)+2≤4,令log 2(2﹣x )=u ,则当u ∈(0,2]时,0<﹣u 2+mu +2≤4,由(2)知﹣u 2+mu +2≥1,则只需u ∈(0,2]时,﹣u 2+mu +2≤4恒成立,即m ≤2u +u 恒成立,又u +2u≥2√u ⋅2u =2√2,当且仅当u =√2时取等号,因此m ≤2√2, 所以实数m 的取值范围是:[32,2√2].。
2023-2024学年江苏省连云港市高一(上)期末数学试卷【答案版】
2023-2024学年江苏省连云港市高一(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |﹣1<x ≤1},B ={x |0≤x <2},则A ∩B =( ) A .{0,1}B .{﹣1,2}C .(﹣1,2)D .[0,1]2.sin210°=( ) A .−12B .12C .−√32D .√323.“|a |>|b |”是“a >b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件4.人的心脏跳动时,血压在增加或减少.若某人的血压满足函数式p (t )=110+20sin (140πt ),其中p (t )为血压(单位:mmHg ),t 为时间(单位:min ),则此人每分钟心跳的次数为( ) A .50B .70C .90D .1305.在△ABC 中,∠ACB =90°,BC =a ,AC =b ,且1a +2b=1,则△ABC 的面积的最小值为( )A .3+√2B .2C .4D .86.设a 为实数,已知函数f(x)=a −13x−1的图象关于原点对称,则a 的值为( ) A .−12B .12C .2D .﹣27.已知函数f(x)={−log 2x ,x ≥1,2−x ,x <1,若f (2+a 2)<f (6a ﹣3),则实数a 的取值范围是( )A .1<a <5B .a >5或a <1C .2<a <3D .a >3或a <28.已知函数f(x)=Asin(ωx +φ)+B(A >0,ω>0,|φ|<π2)的部分图象如图,则函数f (x )( )A .图象关于直线x =−π3对称B .图象关于点(π6,3)对称C .在区间(2π3,5π6)上单调递减 D .在区间(−5π12,π12)上的值域为(1,3) 二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分. 9.下列不等式成立的有( )A .1.212>0.812B .cos4π7<cos 5π8C .1.20.8>0.81.2D .log 520>log 2510.要得到函数f(x)=sin(2x −π3)的图象,只要把( )A .函数y =sin2x 的图象向右平移π6个单位长度B .函数y =sin(x −π3)的图象上每一个点的横坐标变为原来的2倍(纵坐标不变)C .函数y =sin2x 的图象向左平移5π6个单位长度D .函数y =cos2x 的图象向右平移5π12个单位长度11.已知函数f (x )=lgx ,任意的x 1,x 2∈(0,+∞),下列结论正确的是( ) A .f(x 1)−f(x 2)=f(x 1x 2)B .若x 1≠x 2,则f(x 1)+f(x 2)2>f(x 1+x 22)C .y =f(1−x1+x)是奇函数D .若|f (x 1)|=|f (x 2)|,且x 1≠x 2,则x 1+x 2>212.已知函数f (x )=2|cos x |﹣cos|x |,则( ) A .函数f (x )的最大值为3B .函数f (x )的最小正周期为πC .函数f (x )的图象关于直线x =π对称D .函数f (x )在(2π3,3π2)上单调递减 三、填空题:本题共4小题,每小题5分,共20分. 13.求值:log 48= .14.已知cos α<0,且tan α>0,则角α是第 象限角.15.已知函数f (x )=sin (ωx )在[−π3,π4]上单调递增,则ω的最大值是 .16.已知函数f (x )是R 上的偶函数,f (x +1)为奇函数,则函数f (x )的最小正周期为 . 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知tan α=2,计算: (1)sinα+cosα5cosα−2sinα;(2)cos αsin α.18.(12分)设a 为实数,函数f (x )=ax 2﹣(a ﹣1)x +a .(1)若函数f(x)有且只有一个零点,求a的值;(2)若不等式f(x)>0的解集为空集,求a的取值范围.19.(12分)已知函数f(x)=2sin(2x+π6).(1)用“五点法”画出函数f(x)在一个周期内的简图;(2)若关于x的方程f(x)=t(t∈R)在区间[0,π2]上有唯一解,求t的取值范围.20.(12分)如图1,有一块半径为2(单位:cm)的半圆形钢板,计划裁剪成等腰梯形ABCD的形状,它的下底AB是半圆的直径,上底CD的端点在圆周上.为了求出等腰梯形ABCD的周长y(单位:cm)的最大值,小明和小亮两位同学分别给出了如下两种方案:(1)小明的方案:设梯形的腰长为x(单位:cm),请你帮他求y与x之间的函数关系式,并求出梯形周长的最大值;(2)小亮的方案:如图2,连接AC,设∠BAC=θ,请你帮他求y与θ之间的函数关系式,并求出梯形周长的最大值.21.(12分)已知函数f(x)=log2(4x﹣a•2x+a+2)(a∈R).(1)若a=5,解不等式f(x)>0;(2)若函数f(x)在区间[﹣1,+∞)上的最小值为﹣1,求a的值.22.(12分)设m,t为实数,函数f(x)=lnx+x+m和g(x)=x2﹣tx﹣1.(1)若函数f(x)在区间(2,e)上存在零点,求m的取值范围;(2)设x1∈{x|F(x)=0},x2∈{x|G(x)=0},若存在x1,x2,使得|x1﹣x2|≤1,则称F(x)和G(x)“零点贴近”.当m=﹣1时,函数f(x)与g(x)“零点贴近”,求t的取值范围.2023-2024学年江苏省连云港市高一(上)期末数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|﹣1<x≤1},B={x|0≤x<2},则A∩B=()A.{0,1}B.{﹣1,2}C.(﹣1,2)D.[0,1]解:∵集合A={x|﹣1<x≤1},B={x|0≤x<2},∴A∩B={x|0≤x≤1}.故选:D.2.sin210°=()A.−12B.12C.−√32D.√32解:sin210°=sin(180°+30°)=﹣sin30°=−1 2,故选:A.3.“|a|>|b|”是“a>b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解:设a=﹣2,b=0,此时满足|a|>|b|,但不满足a>b,充分性不成立,设a=2,b=﹣3,此时满足a>b,但不满足|a|>|b|,必要性不成立,故|a|>|b|是a>b的既不充分也不必要条件.故选:D.4.人的心脏跳动时,血压在增加或减少.若某人的血压满足函数式p(t)=110+20sin(140πt),其中p(t)为血压(单位:mmHg),t为时间(单位:min),则此人每分钟心跳的次数为()A.50B.70C.90D.130解:因为函数p(t)=110+20sin(140πt)的周期为T=2π140π=170(min),所以此人每分钟心跳的次数f=1T=70.故选:B.5.在△ABC中,∠ACB=90°,BC=a,AC=b,且1a+2b=1,则△ABC的面积的最小值为()A.3+√2B.2C.4D.8解:因为a>0,b>0,可得1a>0,2b>0,则1a+2b≥2√1a⋅2b=2√2ab,当且仅当1a =2b 时,即a =2,b =4时,等号成立,所以√2ab ≤1,解得ab ≥8,所以△ABC 的面积的最小值为S =12ab ≥4.故选:C .6.设a 为实数,已知函数f(x)=a −13x−1的图象关于原点对称,则a 的值为( ) A .−12B .12C .2D .﹣2解:因为f(x)=a −13x−1的图象关于原点对称,所以f (x )为奇函数,所以f (﹣x )+f (x )=0, 即a −13x −1+a −13−x −1=2a −13x −1+3x3x −1=2a +1=0,所以a =−12.故选:A .7.已知函数f(x)={−log 2x ,x ≥1,2−x ,x <1,若f (2+a 2)<f (6a ﹣3),则实数a 的取值范围是( )A .1<a <5B .a >5或a <1C .2<a <3D .a >3或a <2解:因为函数f(x)={−log 2x ,x ≥1,2−x,x <1,,当x ≥1时,f (x )=﹣log 2x 单调递减,且最大值为f (1)=0, 当x <1时,f (x )=2﹣x单调递减,且最小值y >2﹣1=12,故函数f(x)={−log 2x ,x ≥1,2−x,x <1,单调递减f (2+a 2)<f (6a ﹣3),则2+a 2>6a ﹣3,可得a 2﹣6a +5>0,解得a >5或a <1. 故选:B .8.已知函数f(x)=Asin(ωx +φ)+B(A >0,ω>0,|φ|<π2)的部分图象如图,则函数f (x )( )A .图象关于直线x =−π3对称B .图象关于点(π6,3)对称C .在区间(2π3,5π6)上单调递减 D .在区间(−5π12,π12)上的值域为(1,3) 解:由图象可得A =12(5﹣1)=2,则f (x )=2sin (ωx +φ)+B ,f (x )的最大值为2+B =5,∴B =3, ∴f (x )=2sin (ωx +φ)+3,f (x )过点(0,2),∴f (0)=2sin φ+3=2,∴sin φ=−12,∵|φ|<π2,∴φ=−π6,∴f (x )=2sin (ωx −π6)+3,∵f (x )过点(−π6,1),∴f (−π6)=2sin (−π6ω−π6)+3=1,可得sin (π6ω+π6)=1,∴π6ω+π6=2k π+π2,k ∈Z ,可得ω=2+12k ,k ∈Z ,由图象可知T 4>π6,∴T >2π3,即2πω>2π3,∴0<ω<3,∴ω=2, ∴f (x )=2sin (2x −π6)+3,对于A :f (−π3)=2sin (−5π6)+3=2,不是最值,则f (x )的图象不关于直线x =−π3对称,错误;对于B :f (π6)=2sin π6+3=4≠3,错误;对于C :2k π+π2≤2x −π6≤2k π+3π2,k ∈Z , ∴k π+π3≤x ≤k π+5π6,k ∈Z , ∴f (x )的单调递减区间为[k π+π3,k π+5π6],k ∈Z .k =0时,f (x )在[π3,5π6]上单调递减,(2π3,5π6)⊆[π3,5π6],正确;对于D :∵x ∈(−5π12,π12), ∴2x −π6∈(﹣π,0),可得sin (2x −π6)∈[﹣1,0),∴f (x )∈[1,3),D 错误. 故选:C .二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分. 9.下列不等式成立的有( )A .1.212>0.812B .cos4π7<cos 5π8C .1.20.8>0.81.2D .log 520>log 25解:对于A .因为幂函数y =√x 在定义域上单调递增,所以1.212>0.812成立,故A 正确;对于B ,因为函数y =cos x 在(0,π)上单调递减,且0<4π7<5π8<π, 所以cos4π7>cos 5π8,故B 错误; 对于C ,1.20.8>1.20>1,0.81.2<0.80<1,所以1.20.8>0.81.2,故C 正确; 对于D ,log 520<log 525=2,log 25>log 24=2,所以log 520<log 25,故D 错误. 故选:AC .10.要得到函数f(x)=sin(2x −π3)的图象,只要把( )A .函数y =sin2x 的图象向右平移π6个单位长度B .函数y =sin(x −π3)的图象上每一个点的横坐标变为原来的2倍(纵坐标不变)C .函数y =sin2x 的图象向左平移5π6个单位长度D .函数y =cos2x 的图象向右平移5π12个单位长度 解:函数y =sin2x 的图象向右平移π6个单位长度得f (x )=sin[2(x −π6)]=sin(2x −π3),故A 正确;对于B ,函数y =sin(x −π3)的图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得y =sin(12x −π3),故B 错误;对于C ,函数y =sin2x 的图象向左平移5π6个单位长度得;f (x )=sin[2(x +5π6)]=sin(2x +5π3)=sin(2x −π3),故C 正确; 对于D ,函数y =cos2x 的图象向右平移5π12个单位长度得:f (x )=cos[2(x −5π12)]=cos(2x −5π6)=cos(2x −π3−π2)=sin(2x −π3),故D 正确. 故选:ACD .11.已知函数f (x )=lgx ,任意的x 1,x 2∈(0,+∞),下列结论正确的是( ) A .f(x 1)−f(x 2)=f(x1x 2)B .若x 1≠x 2,则f(x 1)+f(x 2)2>f(x 1+x 22)C .y =f(1−x1+x)是奇函数D .若|f (x 1)|=|f (x 2)|,且x 1≠x 2,则x 1+x 2>2解:对于A ,f (x 1)﹣f (x 2)=lgx 1﹣lgx 2=lg x 1x 2,故A 正确;对于B ,因为f (x )=lgx 在(0,+∞)上是增函数,且x 1≠x 2,所以f(x 1)+f(x 2)2=lg √x 1x 2,f (x 1+x 22)=lg x 1+x 22,x 1+x 22>√x 1x 2,故B 错误;对于C ,f (1−x 1+x )=lg 1−x 1+x ,f (1+x 1−x )=lg 1+x 1−x ,因为f (1−x 1+x )+f (1+x 1−x )=lg 1−x 1+x +lg 1+x 1−x =lg [1−x 1+x ⋅1+x1−x ]=lg 1=0,故y =f (1−x1+x)是奇函数,故C 正确;对于D ,由x 1≠x 2得f (x 1)=﹣f (x 2),即lgx 1+lgx 2=0,即lg (x 1x 2)=0,所以x 1x 2=1,由基本不等式得x 1+x 2⩾2×1=2,因为x 1≠x 2,所以等号取不到,所以x 1+x 2>2,故D 正确. 故选:ACD .12.已知函数f (x )=2|cos x |﹣cos|x |,则( ) A .函数f (x )的最大值为3B .函数f (x )的最小正周期为πC .函数f (x )的图象关于直线x =π对称D .函数f (x )在(2π3,3π2)上单调递减 解:对于A ,根据余弦函数的性质,可知当x =π时,f (x )=2|cos π|﹣cos|π|=2+1=3,达最大值,故A 正确; 对于B ,因为f (π3)=12,f (4π3)=32,可得f(π3)≠f(π3+π),故函数f (x )的最小正周期不是π,B 项不正确;对于C ,因为cos|(2π﹣x )|=cos (2π﹣x )=cos x =cos|x |, 所以f (2π﹣x )=2|cos (2π﹣x )|﹣cos|(2π﹣x )|=2|cos x |﹣cos|x |,可得f (2π﹣x )=f (x ),所以f (x )的图象关于直线x =π对称,故C 正确; 对于D ,因为在(2π3,3π2)上f (x )有最大值f (π)=2, 所以f (x )在(2π3,3π2)上先增后减,故D 不正确. 故选:AC .三、填空题:本题共4小题,每小题5分,共20分. 13.求值:log 48=32. 解:log 48=lo g 2223=32.故答案为:32.14.已知cos α<0,且tan α>0,则角α是第 三 象限角.解:∵cos α<0,∴角α是第二三象限的角或者在x 轴的非正半轴上,∵tan α>0,∴角α是第一三象限的角,则角α是第三象限的角. 故答案为:三.15.已知函数f (x )=sin (ωx )在[−π3,π4]上单调递增,则ω的最大值是 32 .解:∵函数f (x )=sin (ωx )在[−π3,π4]上单调递增,∴−π3•ω≥−π2 且π4•ω≤π2,求得ω≤32,则ω的最大值为32,故答案为:32.16.已知函数f (x )是R 上的偶函数,f (x +1)为奇函数,则函数f (x )的最小正周期为 4 . 解:因为函数f (x )是R 上的偶函数,所以f (﹣x )=f (x ), 因为f (x +1)为奇函数,所以f (x )的图象关于(1,0)对称,即f (2﹣x )+f (x )=0, 所以f (2+x )+f (﹣x )=f (2+x )+f (x )=0, 所以f (2+x )=﹣f (x ),所以f (4+x )=f (x ),则函数f (x )的最小正周期为4. 故答案为:4.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知tan α=2,计算: (1)sinα+cosα5cosα−2sinα;(2)cos αsin α.解:(1)因为tan α=2,所以sinα+cosα5cosα−2sinα=tanα+15−2tanα=2+15−2×2=3;(2)cos αsin α=sinαcosαsin 2α+cos 2α=tanαtan 2α+1=222+1=25. 18.(12分)设a 为实数,函数f (x )=ax 2﹣(a ﹣1)x +a . (1)若函数f (x )有且只有一个零点,求a 的值; (2)若不等式f (x )>0的解集为空集,求a 的取值范围. 解:(1)根据题意,f (x )=ax 2﹣(a ﹣1)x +a , 当a =0时,f (x )=x ,有且只有一个零点,符合题意,当a ≠0时,若f (x )有且只有一个零点,即方程ax 2﹣(a ﹣1)x +a =0有且只有1个根, 则有Δ=(a ﹣1)2﹣4a 2=0,解可得a =﹣1或13,综合可得:a =0或﹣1或13;(2)f(x)>0即ax2﹣(a﹣1)x+a>0,当a=0时,f(x)>0即x>0,其解集不是空集,不符合题意;当a≠0时,f(x)>0即ax2﹣(a﹣1)x+a>0,若其解集为∅,必有{a>0Δ=(a−1)2−4a2≤0,解可得a≤﹣1,即a的取值范围为(﹣∞,﹣1].19.(12分)已知函数f(x)=2sin(2x+π6).(1)用“五点法”画出函数f(x)在一个周期内的简图;(2)若关于x的方程f(x)=t(t∈R)在区间[0,π2]上有唯一解,求t的取值范围.解:(1)列表:描点,连线,画出f(x)在[0,π]上的大致图像如图:;(2)由于x∈[0,π2],所以2x+π6∈[π6,7π6],所以f(x)=2sin(2x+π6)∈[−12,1],由于关于x的方程f(x)=t(t∈R)在区间[0,π2]上有唯一解,所以t∈[−12,12).20.(12分)如图1,有一块半径为2(单位:cm)的半圆形钢板,计划裁剪成等腰梯形ABCD的形状,它的下底AB是半圆的直径,上底CD的端点在圆周上.为了求出等腰梯形ABCD的周长y(单位:cm)的最大值,小明和小亮两位同学分别给出了如下两种方案:(1)小明的方案:设梯形的腰长为x(单位:cm),请你帮他求y与x之间的函数关系式,并求出梯形周长的最大值;(2)小亮的方案:如图2,连接AC,设∠BAC=θ,请你帮他求y与θ之间的函数关系式,并求出梯形周长的最大值.解:(1)作DE⊥AB于E,连接BD,因为AB为直径,所以∠ADB=90°,在Rt△ADB与Rt△AED中,∠ADB=90°=∠AED,∠BAD=∠DAE,所以Rt△ADB∽Rt△AED,所以ADAB=AEAD,即AE=AD2AB;又AD =x ,AB =4,所以AE =x 24;所以CD =AB ﹣2AE =4﹣2×x 24=4−x 22, 于是y =AB +BC +CD +AD =4+x +4−x 22+x =−12x 2+2x +8, 由于AD >0,AE >0,CD >0,所以x >0,x 24>0,4−x 22>0,解得0<x <2√2;所以函数为y =−12x 2+2x +8,x ∈(0,2√2).当x =−22×(−12)=2时,y 取得最大值为−12×4+2×2+8=10.(2)过点C 作CF 垂直于AB 于点F ,因为AB 是半圆的直径,所以∠ACB =90°,AB =4, 所以BC =AB sin θ=4sin θ,又因为∠BCF =∠CAB =θ,所以BF =BC sin θ=4sin 2θ, 所以CD =AB ﹣2BF =4﹣8sin 2θ,所以梯形ABCD 的周长为y =AB +CD +2BC =4+4﹣8sin 2θ+8sin θ=﹣8sin 2θ+8sin θ+8,且θ∈(0,π4),即y =﹣8sin 2θ+8sin θ+8,θ∈(0,π4);设t =sin θ,则t ∈(0,√22),所以y =﹣8t 2+8t +8,当t =12时,y 取得最大值为﹣8×14+8×12+8=10,即当θ=π6时,y 取得最大值10.21.(12分)已知函数f (x )=log 2(4x ﹣a •2x +a +2)(a ∈R ). (1)若a =5,解不等式f (x )>0;(2)若函数f (x )在区间[﹣1,+∞)上的最小值为﹣1,求a 的值. 解:(1)当a =5时,f(x)=log 2(4x −5⋅2x +7),不等式为log 2(4x −5⋅2x +7)>0,则4x ﹣5•2x +7>1,即4x ﹣5•2x +6>0, 设t =2x >0,不等式化为t 2﹣5t +6>0,解得0<t <2或t >3,故x <1或x >log 23, 故不等式的解集为(﹣∞,1)∪(log 23,+∞). (2)设g (x )=4x ﹣a •2x +a +2,根据题意知,当x∈[﹣1,+∞)时,g(x)min=1 2,设t=2x≥12,函数化为h(t)=t2﹣at+a+2,其对称轴为t=a2,当a2≤12,即a≤1时,ℎ(t)min=ℎ(12)=94+12a=12,解得a=−72,符合题意;当a2>12,即a>1时,ℎ(t)min=ℎ(a2)=a+2−a24=12,解得a=2+√10或a=2−√10(舍),故a值为−72或2+√10.22.(12分)设m,t为实数,函数f(x)=lnx+x+m和g(x)=x2﹣tx﹣1.(1)若函数f(x)在区间(2,e)上存在零点,求m的取值范围;(2)设x1∈{x|F(x)=0},x2∈{x|G(x)=0},若存在x1,x2,使得|x1﹣x2|≤1,则称F(x)和G(x)“零点贴近”.当m=﹣1时,函数f(x)与g(x)“零点贴近”,求t的取值范围.解:(1)令f(x)=0,即f(x)=lnx+x+m=0,得m=﹣(lnx+x).令h(x)=﹣(lnx+x),易知g(x)在(0,+∞)上单调递减,h(2)=﹣(ln2+2),h(e)=﹣(lne+e)=﹣(1+e),所以h(x)在(2,e)上的值域为(﹣1﹣e,﹣ln2﹣2),所以m的取值范围(﹣1﹣e,﹣ln2﹣2).(2)当m=﹣1时,f(x)=lnx+x﹣1,易知函数f(x)在(0,+∞)上单调递增,令f(x)=lnx+x﹣1=0,易知f(1)=ln1+1﹣1=0,所以x1=1.由|x1﹣x2|≤1,得|1﹣x2|≤1,解得0≤x2≤2,即x2∈[0,2].要使函数f(x)与g(x)“零点贴近”,则函数g(x)在[0,2]上有零点,对于g(x)=x2﹣tx﹣1,Δ=t2+4>0,所以g(x)=0有两个零点,而g(0)=﹣1<0,所以g(2)≥0,即22﹣2t﹣1≥0,解得t≤3 2.故实数t的取值范围是(−∞,32 ].。
2023-2024学年度河北省唐山市高一年级第二学期末考试数学试卷(含答案)
2023-2024学年度河北省唐山市高一年级第二学期末考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知复数z=3−i,则z的虚部为( )A. −1B. 1C. −iD. 32.某学校高一、高二、高三年级学生人数之比为3:2:2,利用分层抽样的方法抽取容量为35的样本,则从高一年级抽取学生人数为( )A. 7B. 10C. 15D. 203.已知圆锥的高为2,其底面圆的半径为1,则圆锥的侧面积为( )A. πB. 2πC. 5πD. (5+1)π4.若一组数据的平均数为5,方差为2,将每一个数都乘以2,再减去1,得到一组新数据,则新数据的平均数和方差分别为( )A. 9,3B. 9,8C. 9,7D. 10,85.已知A,B是两个随机事件且概率均大于0,则下列说法正确的为( )A. 若A与B互斥,则A与B对立B. 若A与B相互独立,则A与B互斥C. 若A与B互斥,则A与B相互独立D. 若A与B相互独立,则A与B相互独立6.设m,n是两条不同的直线,α,β是两个不同的平面,则( )A. 若m⊥n,n//α,则m⊥αB. 若m⊥α,n//α,则m⊥nC. 若m⊥α,α⊥β,则m//βD. 若m⊥n,n⊥β,则m//β7.在正四面体ABCD中,E是棱BD的中点,则异面直线CE与AB所成角的余弦值为( )A. −56B. 56C. −36D. 368.已知锐角△ABC的面积为43,B=π3,则边AB的取值范围是( )A. (2,22)B. [22,4]C. (22,42)D. [22,42]二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
9.已知复数z=1−2i,则( )A. |z|=5B. z+z=2C. z⋅z=5D. 1z表示的点在第一象限10.已知平行四边形ABCD的两条对角线交于点O,AE=14AC,则( )A. DE =34DA +14DCB. DE =14DA +34DCC. BE =32BO +12BCD. BE =32BO−12BC 11.在直三棱柱ABC−A 1B 1C 1中,高为ℎ,BA =BC = 3,∠ABC =90∘,下列说法正确的是( )A. V C 1−A 1ABB 1=2V A 1−ABCB. 若存在一个球与棱柱的每个面都内切,则ℎ=2 6− 3C. 若ℎ=3,则三棱锥A 1−ABC 外接球的体积为9π2D. 若ℎ=3,以A 为球心作半径为2的球,则球面与三棱柱表面的交线长度之和为23π12三、填空题:本题共3小题,每小题5分,共15分。
2023-2024学年福建省福州第三中学高一下学期数学期末考试数学试卷
2023-2024学年福建省福州第三中学高一下学期数学期末考试数学试卷1.已知复数z满足,则()A.i B.C.D.12.已知,是不共线的向量,且,,,若B,C,D三点共线,则()A.B.C.D.3.已知,,是三条不同的直线,,是两个不同的平面,且,,.设甲:,乙:,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.至少有一个黑球与都是黑球B.至少有一个黑球与都是红球C.恰有一个黑球与恰有两个黑球D.至少有一个黑球与至少有一个红球5.已知圆锥的表面积为,它的侧面展开图是一个半圆,则此圆锥的体积为()A.B.C.D.6.某单位共有A、B两部门,1月份进行服务满意度问卷调查,得到两部门服务满意度得分的频率分布条形图如下.设A、B两部门的服务满意度得分的第75百分位数分别为,,方差分别为,,则()A.,B.,C.,D.,7.已知函数在区间上单调递减,,则()A.B.C.D.8.已知正四棱台的下底面边长为,侧棱与下底面所成角的大小为45°,则该正四棱台体积的取值范围是()A.B.C.D.9.下图为2018~2023年前三季度全国城镇居民人均可支配收入及人均消费支出统计图,据此进行分析,则()A.2018~2023年前三季度全国城镇居民人均可支配收入逐年递增B.2018~2023年前三季度全国城镇居民人均消费支出逐年递增C.2018~2023年前三季度全国城镇居民人均可支配收入的极差比人均消费支出的极差大D.2018~2023年前三季度全国城镇居民人均消费支出的中位数为元10.在一个有限样本空间中,事件发生的概率满足,,A与互斥,则下列说法正确的是()A.B.A与相互独立C.D.11.如图,一张矩形白纸,,,E,F分别为AD,BC的中点,BE交AC于点M,DF交AC于点.现分别将,沿BE,DF折起,且点A,C在平面的同侧,则下列命题正确的是()A.当平面平面时,平面B.当A,C重合于点时,平面C.当A,C重合于点时,三棱锥的外接球的表面积为D.当A,C重合于点时,四棱锥的体积为12.已知向量满足,且,则___________.13.某学校高一年级男生共有490人,女生共有510人,为调查该年级学生的身高情况,通过按比例分配的分层抽样,得到男生和女生样本数据的平均数和方差分别为和.若,则该校高一年级全体学生身高的方差为___________.14.在锐角中,角,,所对的边分别为,,,若,则的取值范围是___________.15.已知是复数,和均为实数,,其中是虚数单位.(1)求复数的共轭复数;(2)若复数在复平面内对应的点在第一象限,求实数的取值范围.16.在中,角的对边分别为.(1)求的大小;(2)若,且边上的中线长为,求的面积.17.小明从一幅扑克牌中挑出和共8张牌(和各四个花色:红桃(红色)、方块(红色)、黑桃(黑色)、梅花(黑色)).现从这张牌中依次取出张,抽到一张红色和一张红色即为游戏获胜.现有三种游戏方式,如下表:游戏方式方式①方式②方式③抽取规则有放回依次抽取不放回依次抽取按颜色等比例分层抽样获胜概率(1)分别求出在三种不同游戏方式下获胜的概率;(2)若三种游戏方式小明各进行一次,第一次采取方式①,后两次采用方式②和方式③,那么方式②和方式③按照怎样的顺序进行游戏能使得三次游戏中仅连续两次获胜的概率最大?18.已知某工厂一区生产车间与二区生产车间均生产某种型号的零件,这两个生产车间生产的该种型号的零件尺寸的频率分布直方图如图所示(每组区间均为左开右闭).尺寸大于M的零件用于大型机器制造,尺寸小于或等于M的零件用于小型机器制造.(1)若,试分别估计该工厂一区生产车间生产的500个该种型号的零件和二区生产车间生产的500个该种型号的零件中用于大型机器制造的零件个数;(2)若,现有足够多的来自一区生产车间与二区生产车间的零件,分别用于大型机器、小型机器各1000台的制造,每台机器仅使用一个该种型号的零件.现将一区生产车间生产的零件都用于大型机器制造,其中尺寸小于或等于M的零件若用于大型机器制造,每台会使得工厂损失200元;将二区生产车间生产的零件都用于小型机器制造,其中尺寸大于M的零件若用于小型机器制造,每台会使得工厂损失100元.求工厂损失费用的估计值H(M)(单位:元)的取值范围.19.如图,四边形ABCD是边长为1的正方形,四边形ABEF是等腰梯形,,平面平面,三棱锥的体积为.(1)求点E到平面ABCD的距离;(2)设G是棱CD上一点,若二面角的正切值是3,求CG.20.点A是直线PQ外一点,点M在直线PQ上(点M与P,Q两点均不重合),我们称如下操作为“由A点对PQ施以视角运算”:若点M在线段PQ上,记;若点M在线段PQ外,记.(1)若M在正方体的棱AB的延长线上,且,由对AB施以视角运算,求的值;(2)若M在正方体的棱AB上,且,由对AB施以视角运算,得到,求的值;(3)若是边BC的等分点,由A对BC施以视角运算,求的值.。
平顶山市2024届高一数学第一学期期末统考试题含解析
平顶山市2024届高一数学第一学期期末统考试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12小题,共60分)1.已知圆C :x 2+y 2+2x =0与过点A (1,0)的直线l 有公共点,则直线l 斜率k 的取值范围是() A.33,22⎡-⎢⎣⎦ B.33,33⎡-⎢⎣⎦C.11,22⎡⎤-⎢⎥⎣⎦ D.[]1,1-2.已知函数,则()2log 1,026,0x x f x x x ->⎧=⎨-≤⎩,则()()11f f --=A.22log 32- B.2log 71-C.2D.2log 63.如果幂函数()a f x x =的图象经过点()2,4,则()f x 在定义域内A.为增函数B.为减函数C.有最小值D.有最大值4.已知(2,5,6)A -,点P 在y 轴上,||7PA =,则点P 的坐标是A.(0,8,0)B.(0,2,0)C.(0,8,0)或(0,2,0)D.(0,8,0)-5.角α的终边经过点()2,1-,则2sin 3cos αα+的值为()A.55-C.5D.5-6.已知函数1()sin()f x x ωφ=+(0,2ωφπ><)的部分图象如图所示,则,ωφ的值分别为A.2,3π B.2, 3π-C.1, 6π D.1, 6π-7.已知1tan 2α=,则cos sin cos sin αααα+=-().A.2B.2-C.3D.3-8.如图,四边形ABCD 是平行四边形,则()A. B.C. D.9.下表是某次测量中两个变量,x y 的一组数据,若将y 表示为关于x 的函数,则最可能的函数模型是x 23456789y0.63 1.01 1.26 1.46 1.63 1.77 1.89 1.99A.一次函数模型B.二次函数模型C.指数函数模型D.对数函数模型10.已知角α满足2cos2cos 04παα⎛⎫=+≠⎪⎝⎭,则sin2α=A .18- B.78-C.18 D.7811.已知角θ为第四象限角,则点()sin ,tan P θθ位于()A.第一象限B.第二象限C.第三象限D.第四象限12.从3名男同学,2名女同学中任选2人参加体能测试,则选到的2名同学中至少有一名男同学的概率是()A.910 B.45C.25 D.12二、填空题(本大题共4小题,共20分)0.258+(1258-)0+323log=_____14.若tan(2,4πα+=则sin cossin cosαααα-=+______15.已知tan3α=,则sin cossin cosαααα+=-___________16.函数212()log()f x x x=-的单调增区间为________三、解答题(本大题共6小题,共70分)17.降噪耳机主要有主动降噪耳机和被动降噪耳机两种.其中主动降噪耳机的工作原理是:先通过微型麦克风采集周围的噪声,然后降噪芯片生成与噪声振幅相同、相位相反的反向声波来抵消噪声(如图所示).已知某噪声的声波曲线是()2sin(0,0)3f x A x Aπϕϕπ⎛⎫=+>≤<⎪⎝⎭,其中的振幅为2,且经过点()1,2-.(1)求该噪声声波曲线的解析式()f x以及降噪芯片生成的降噪声波曲线的解析式()g x;(2)将函数()f x图象上各点的横坐标变为原来的3π倍,纵坐标不变得到函数()h x的图象.若锐角θ满足()1013hθ=-,求cos2θ的值.18.已知定义域为R的函数()122xxaf xb+-+=+是奇函数.(1)求,a b的值;(2)判断函数()f x的单调性(只写出结论即可);(3)若对任意的[1,1]t∈-不等式()()2220f t t f k t-+-<恒成立,求实数k的取值范围19.已知a R ∈,函数()21log f x a x ⎛⎫=+ ⎪⎝⎭.(1)当5a =时,解不等式()0f x >;(2)若关于x 的方程()()2log 4250f x a x a ⎡⎤--+-=⎣⎦的解集中恰有一个元素,求a 的取值范围;(3)设0a >,若对任意1,12t ⎡⎤∈⎢⎥⎣⎦,函数()f x 在区间[],1t t +上的最大值与最小值的差不超过1,求a 的取值范围.20.如图,正三棱柱111ABC A B C -的底面边长为3,侧棱13AA =,D 是CB 延长线上一点,且BD BC =()1求二面角1B AD B --的正切值;()2求三棱锥11C ABB -的体积21.函数()()2log 21x f x =-(1)解不等式()1f x <;(2)若方程()()4log 4x f x m =-有实数解,求实数m 的取值范围22.已知,a b ∈R ,0a ≠,函数()cos )f x x x b =++,1()sin cos 22a g x a x x a =⋅+++(1)若(0,)x π∈,()5f x b =-+,求sin cos x x -的值;(2)若不等式()()f xg x ≤对任意x ∈R 恒成立,求b 的取值范围参考答案一、选择题(本大题共12小题,共60分)1、B【解析】利用点到直线的距离公式和直线和圆的位置关系直接求解【详解】根据题意得,圆心(﹣1,0),r =1,设直线方程为y ﹣0=k (x ﹣1),即kx ﹣y ﹣k =0∴圆心到直线的距离d =≤1,解得33-≤k 33≤故选B【点睛】本题考查直线和圆的位置关系,点到直线的距离公式,属于基础题2、B 【解析】因为()2log 1,026,0x x f x x x ->⎧=⎨-≤⎩,所以()()()()2112617117log 71f f f f --=---=--==-,,故选B.3、C【解析】由幂函数()f x x α=的图象经过点(2,4),得到2()f x x =,由此能求出函数的单调性和最值【详解】解: 幂函数()f x x α=的图象经过点(2,4),()224a f ∴==,解得2a =,2()f x x ∴=,()f x ∴在(],0x ∈-∞递减,在[)0,x ∈+∞递增,有最小值,无最大值故选C【点睛】本题考查幂函数的概念和应用,是基础题.解题时要认真审题,仔细解答4、C【解析】依题意设()0,,0P b ,根据7PA ==,解得2,8b =,所以选C .5、D【解析】根据三角函数定义求解即可.【详解】因为角α的终边经过点()2,1-,所以5sin 5α==,25cos 5α==-,所以2565452sin 3cos 555αα+=-=-.故选:D6、B 【解析】由条件知道:27,36x x ππ==均是函数的对称中心,故这两个值应该是原式子分母的根,故得到27sin()0,sin()036w w πφπφ+=+=,由图像知道周期是π,故2w =,故47sin()0,sin()033πφπφ+=+=,再根据三角函数的对称中心得到4+=k 3πφπ,故.3πφ=-如果7433k πφπφπ+=⇒=-,根据2πφ<,得到.3πφ=-故答案为B 点睛:根据函数的图像求解析式,一般要考虑的是图像中的特殊点,代入原式子;再就是一些常见的规律,分式型的图像一般是有渐近线的,且渐近线是分母没有意义的点;还有常用的是函数的极限值等等方法7、C 【解析】将cos sin cos sin αααα+-分子分母同除以cos α,再将1tan 2α=代入求解.【详解】11cos sin 1tan 231cos sin 1tan 12αααααα+++===---.故选:C【点睛】本题主要考查同角三角函数基本关系式,还考查了运算求解的能力,属于基础题.8、D【解析】由线性运算的加法法则即可求解.【详解】如图,设交于点,则.故选:D9、D【解析】对于A ,由于x 均匀增加1,而y 值不是均匀递增,∴不是一次函数模型;对于B ,由于该函数是单调递增,不是二次函数模型;对于C ,x y a =过()0,1,∴不是指数函数模型,故选D.10、B【解析】∵2cos2cos 4παα⎛⎫=+ ⎪⎝⎭∴2222(cos sin )2(cos sin )(cos sin )(cos sin )02αααααααα-=+-=-≠,∴2cos sin 4αα+=,两边平方整理得11+2sin cos 1+sin28ααα==,∴7sin28α=-.选B 11、C 【解析】根据三角函数的定义判断sin θ、tan θ的符号,即可判断.【详解】因为θ是第四象限角,所以sin 0θ<,tan 0θ<,则点(sin ,tan )θθ位于第三象限,故选:C12、A【解析】先计算一名男同学都没有的概率,再求至少有一名男同学的概率即可.【详解】两名同学中一名男同学都没有的概率为2225110C C =,则2名同学中至少有一名男同学的概率是1911010-=.故选:A .二、填空题(本大题共4小题,共20分)13、5【解析】根据根式、指数和对数运算化简所求表达式.【详解】依题意,原式()1134422122125=⨯++=++=.故答案为:5【点睛】本小题主要考查根式、指数和对数运算,考查化归与转化的数学思想方法,属于基础题.14、12-【解析】sin cos sin cos αααα-=+tan 111tan 12tan()4απαα-=-=-++15、2【解析】将齐次式弦化切即可求解.【详解】解:因为tan 3α=,所以sin cos tan 1312sin cos tan 131+++===---αααααα,故答案为:2.16、1,12⎡⎫⎪⎢⎣⎭.【解析】结合定义域由复合函数的单调性可解得结果.【详解】由20x x ->得()f x 定义域为()0,1,令2t x x =-,则t 在112⎡⎫⎪⎢⎣⎭,单调递减,又12log y t =在()0,∞+单调递减,所以()f x 的单调递增区间是112⎡⎫⎪⎢⎣⎭,.故答案为:112⎡⎫⎪⎢⎣⎭,.三、解答题(本大题共6小题,共70分)17、(1)()252sin 36f x x ππ⎛⎫=+ ⎪⎝⎭,()252sin 36g x x ππ⎛⎫=-+ ⎪⎝⎭(2)123526【解析】(1)利用函数的振幅求得A ,代入()1,2-求得ϕ的值,从而求得函数()f x ,利用对称性求得函数()g x ;(2)利用三角函数图像变换求得()h x ,由()1013h θ=-得5cos 2313πθ⎛⎫+=- ⎪⎝⎭,利用同角三角函数的基本关系式及两角和与差的三角公式求得结果.【小问1详解】解:由()2sin (0,0)3f x A x A πϕϕπ⎛⎫=+>≤< ⎪⎝⎭振幅为2知2A =,()22sin 3f x x πϕ⎛⎫∴=+ ⎪⎝⎭,代入()1,2-有22sin 23πϕ⎛⎫+=- ⎪⎝⎭,272,2326k k πππϕπϕπ∴+=-+∴=-+,而0ϕπ≤<,()525,2sin 636f x x πππϕ⎛⎫∴=∴=+ ⎪⎝⎭而()f x 与()g x 关于x 轴对称,()()252sin 36g x f x x ππ⎛⎫∴=-=-+ ⎪⎝⎭【小问2详解】由已知()352sin 26h x f x x ππ⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭,()5102sin 22sin 22cos 2623313h ππππθθθθ⎛⎫⎛⎫⎛⎫∴=+=++=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,5cos 2313πθ⎛⎫∴+=- ⎪⎝⎭40,22333ππππθθ<<∴<+< ,而514cos 2cos 31323ππθ⎛⎫+=->-= ⎪⎝⎭,故223ππθπ<+<,12sin 2313πθ⎛⎫∴+= ⎪⎝⎭cos2cos 233ππθθ⎡⎤⎛⎫∴=+- ⎪⎢⎥⎝⎭⎣⎦cos 2cos sin 2sin 3333ππππθθ⎛⎫⎛⎫=+++ ⎪ ⎝⎭⎝⎭51123132132⎛⎫=-⨯+⨯ ⎪⎝⎭123526-=.18、(1)1a =,2b =;(2)见解析;(3)(2,)+∞.【解析】(1)根据函数奇偶性得()00f =,()()11f f -=-,解得,a b 的值;最后代入验证,(2)可举例比较大小确定单调性,(3)根据函数奇偶性与单调性将不等式化简为2k t >,再根据恒成立转化为对应函数最值问题,最后根据函数最值得结果.【详解】(1) ()f x 在R 上是奇函数,∴()00f =,∴102a b -+=+,∴1a =,∴()1122x x f x b+-=+,∴()()11f f -=-,∴111214b b --=-++,∴2b =,∴()11222xx f x +-=+,经检验知:()()f x f x -=,∴1a =,2b =(2)由(1)可知,()()()21211221221x x x f x -++==-+++在R 上减函数.(3)()()2220f t t f k t -+-< 对于[]1,1t ∈-恒成立,()()222f t t f k t ∴-<--对于[]1,1t ∈-恒成立, ()f x 在R 上是奇函数,()()222f t t f t k ∴-<-对于[]1,1t ∈-恒成立,又 ()f x 在R 上是减函数,222t t t k ∴->-,即2k t >对于[]1,1t ∈-恒成立,而函数()2g x t =在[]1,1-上的最大值为2,2k ∴>,∴实数k 的取值范围为()2,+∞【点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.19、(1)()1,0,4x ⎛⎫∈-∞-⋃+∞ ⎪⎝⎭.(2)(]{}1,23,4 .(3)2,3⎡⎫+∞⎪⎢⎣⎭【解析】(1)当5a =时,解对数不等式即可;(2)根据对数的运算法则进行化简,转化为一元二次方程,讨论a 的取值范围进行求解即可;(3)根据条件得到11f t f t -+≤()(),恒成立,利用换元法进行转化,结合对勾函数的单调性进行求解即可.试题解析:(1)由21log 50x >⎛⎫+ ⎪⎝⎭,得151x +>,解得()1,0,4x ⎛⎫∈-∞-⋃+∞ ⎪⎝⎭(2)由f (x )﹣log 2[(a ﹣4)x +2a ﹣5]=0得log 2(1x +a )﹣log 2[(a ﹣4)x +2a ﹣5]=0即log 2(1x +a )=log 2[(a ﹣4)x +2a ﹣5],即1x+a =(a ﹣4)x +2a ﹣5>0,①则(a ﹣4)x 2+(a ﹣5)x ﹣1=0,即(x +1)[(a ﹣4)x ﹣1]=0,②,当a =4时,方程②的解为x =﹣1,代入①,成立当a =3时,方程②的解为x =﹣1,代入①,成立当a ≠4且a ≠3时,方程②的解为x =﹣1或x 14a =-,若x =﹣1是方程①的解,则1x +a =a ﹣1>0,即a >1,若x 14a =-是方程①的解,则1x+a =2a ﹣4>0,即a >2,则要使方程①有且仅有一个解,则1<a ≤2综上,若方程f (x )﹣log 2[(a ﹣4)x +2a ﹣5]=0的解集中恰好有一个元素,则a 的取值范围是1<a ≤2,或a =3或a =4(3)函数f (x )在区间[t ,t +1]上单调递减,由题意得f (t )﹣f (t +1)≤1,即log 2(1t +a )﹣log 2(11t ++a )≤1,即1t +a ≤2(11t ++a ),即a ()12111t t t t t -≥-=++设1﹣t =r ,则0≤r 12≤,()()()2111232t r r t t r r r r -==+---+,当r =0时,232r r r =-+0,当0<r 12≤时,212323r r r r r =-++-,∵y =r 2r +在(0)上递减,∴r 219422r +≥+=,∴211229323332r r r r r =≤=-++--,∴实数a 的取值范围是a 23≥【一题多解】(3)还可采用:当120x x <<时,1211a a x x ++>,221211log log a a x x >⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,所以()f x 在()0,∞+上单调递减则函数()f x 在区间[],1t t +上的最大值与最小值分别为()f t ,()1f t +()()22111log log 11f t f t a a t t ⎛⎫⎛⎫-+=+-+≤ ⎪ ⎪+⎝⎭⎝⎭即()2110at a t ++-≥,对任意1,12t ⎡⎤∈⎢⎥⎣⎦成立因为0a >,所以函数()211y at a t =++-在区间1,12⎡⎤⎢⎥⎣⎦上单调递增,12t =时,y 有最小值3142a -,由31042a -≥,得23a ≥故a 的取值范围为2,3⎡⎫+∞⎪⎢⎣⎭20、(1)2(2)934【解析】()1取BC 中点O,11B C 中点E,连结OE,OA,以O 为原点,OD 为x 轴,OE 为y 轴,OA 为z 轴,建立空间直角坐标系,利用向量法能求出二面角1B AD B --的正切值()2三棱锥11C ABB -的体积1111C ABB A BB C V V --=,由此能求出结果【详解】()1取BC 中点O ,11B C 中点E ,连结OE ,OA ,由正三棱柱111ABC A B C -的底面边长为3,侧棱13AA =,D 是CB 延长线上一点,且BD BC=以O 为原点,OD 为x 轴,OE 为y 轴,OA 为z 轴,建立空间直角坐标系,则13(,2B 3,0),(0,A 0,2,9(,2D 0,0),3(,2B 0,0),所以9(,2AD = 0,33)2-,13(,2AB = 3,332-,其中平面ABD 的法向量(0,n =1,0),设平面1ADB 的法向量(,m x = y ,)z ,则19330223333022m AD x z m AB x y z ⎧⋅=-=⎪⎪⎨⎪⋅=+-=⎪⎩,取3z =,得(1,m =1,3),设二面角1B AD B --的平面角为θ,则1cos 5m n m n θ⋅==⋅,则12sin 155θ=-=,则sin tan 2cos θθθ==,所以二面角1B AD B --的正切值为2()2由(1)可得AO ⊥平面11BB C ,所以AO 是三棱锥11A BB C -的高,且332AO =,所以三棱锥11C ABB -的体积:11111111331933333224C ABB A BB C BB C V V AO S --==⨯⨯=⨯⨯⨯⨯= 【点睛】本题主要考查了二面角的求解,及空间几何体的体积的计算,其中解答中根据几何体的结构特征,建立适当的空间直角坐标系,利用向量的夹角公式求解二面角问题是求解空间角的常用方法,同时注意“等体积法”在求解三棱锥体积中的应用,着重考查了推理与运算能力,属于中档试题21、(1){}20log 3x x <<(2)1m >【解析】(1)由()1f x <,根据对数的单调性可得212x -<,然后解指数不等式即可.(2)由()()4log 4x f x m =-实数根,化为214x x m -=-有实根,令2x t =,22()210t t m ⋅-⋅+-=有正根即可,对称轴12t =,开口向上,只需0∆≥即可求解.【详解】(1)由()1f x <,即2log (21)1x -<,所以0212x <-<,123x <<,解得20log 3x <<所以不等式的解集为{}20log 3x x <<.(2)由()()4log 4x f x m =-实数根,即()()221log 21log 42x x m -=-有实数根,所以21x -=有实根,两边平方整理可得22(2)2210x x m ⋅-⋅+-=令2x t =,且1t >,由题意知22()210t t m ⋅-⋅+-=有大于1根即可,即22()21t t m ⋅-⋅+=,令2()2()21g t t t =⋅-⋅+,1t >,故()1g t >故1m >.故实数m 的取值范围1m >.【点睛】本题考查了利用对数的单调性解不等式、根据对数型方程的根求参数的取值范围,属于中档题.22、(1)5(2)见解析.【解析】(1)利用同角三角函数基本关系式进行求解;(2)作差,分离参数,将问题转化为求函数的最值问题,再利用换元思想进行求解.试题解析:(1)依题意得10sin cos 5x x +=,222sin cos 2sin ·cos 5x x x x ∴++=,即32sin ·cos 5x x =-812sin ·cos 5x x ∴-=,即()2228sin cos 2sin ·cos sin cos 5x x x x x x +-=-=由32sin ·cos 05x x =-<,()0,x π∈,得,2x ππ⎛⎫∈ ⎪⎝⎭,sin 0,cos sin cos 0,x x x x ∴>∴-210sin cos ,5x x ∴-=(2)即不等式)1sin cos sin cos 22a b a x x x x a ≤⋅+++++对任意R x ∈恒成立,即)min1sin cos sin cos 22a b a x x x x a ⎡⎤≤⋅++++⎢⎥⎣⎦下求函数)1sin cos sin cos 22a y a x x x x a =⋅+++++的最小值令sin cos ,t x x =+则4t x π⎛⎫⎡=+∈ ⎪⎣⎝⎭且21sin cos .2t x x -⋅=令())1sin cos sin cos 22a m t y a x x x x a ==⋅+++++()2211122222a t a a t a a-=+++=+++()22221222,022a a t t t a a a a ⎛⎫⎛=+++=++≠ ⎪ ⎪ ⎝⎭⎝⎭1°当()201,a m t a⎡-<<<⎣即时在区间上单调递增,()()(min 1.m t m a a ∴==+2°当20a ≤-<,即1a ≥时,()2min 2.m t m a ⎛⎫=-= ⎪ ⎪⎝⎭3°当()(2101,min a m t m a a a <-≤≤-==+即时4°当()(2110,min .a m t m a a a ->-<<==+即时min 2111,0a y a a a a ≥⎧⎪∴=⎨+<≠⎪⎩,所以当1a ≥时,2b ≤;当0a <或0<1a <时,1.b a a ≤+。
2023-2024学年高一下学期期末考试数学试卷
秘密★启用前【考试时间:2024年6月18日14:00-16:00】2023~2024学年度下期高中2023级期末联考数学考试时间120分钟,满分150分注意事项:1.答题前,考生务必在答题卡上将自己的姓名、座位号、准考证号用0.5毫米的黑色签字笔填写清楚,考生考试条形码由监考老师粘贴在答题卡上的“贴条形码区”.2.选择题使用2B 铅笔填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦擦干净后再填涂其它答案;非选择题用0.5毫米的黑色签字笔在答题卡的对应区域内作答,超出答题区域答题的答案无效;在草稿纸上、试卷上答题无效.3.考试结束后由监考老师将答题卡收回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知1cos 2α=,则cos2α=( )12 D.12−2.MN PQ MP −−=( )A.QNB.NQC.PMD.MP3.在ABC 中,3,4,5AB BC AC ===,则CB CA ⋅=( )A.-16B.16C.32D.-324.一个水平放置的平面图形OABC 按斜二测画法得到的直观图O A B C ′′′′如图所示.知24,O A C B O C A B ′===′′′′′′′,则平面图形OABC 的面积为( )A.3B.6C. 5.把函数()sin f x x =的图象向左平移π6个单位长度,再把横坐标变为原来的6π倍(纵坐标不变),得到函数()g x 的图象,下列关于函数()g x 的说法正确的是( ) A.函数()y g x =的最小正周期6T = B.函数()y g x =在区间()2,8上单调递减C.函数()2y g x =+是奇函数 D.函数()2y g x =+在区间[]3,4上的最大值为126.某一时段内,从天空降落到地面上的雨水,未经蒸发、渗透、流失而在水平面上积聚的深度,称为这个时段的降雨量(单位:mm ).24小时降雨量的等级划分如下: 24小时降雨量(精确到0.1)0.1~9.910.024.9∼25.049.9∼50.0~99.9降雨等级小雨中雨大雨暴雨在一次降雨过程中,用一个侧棱180mm AA =的三棱柱容器收集的24小时的雨水如图所示,当侧面11AA B B 水平放置时,水面恰好过1111,,,AC BC AC B C 的中点.则这24小时的降雨量的等级是( )A.小雨B.中雨C.大雨D.暴雨7.如图,圆锥PO 的底面直径和高均为12,过PO 上一点O ′作平行于底面的截面,以该截面为底面挖去一个圆柱,我们称该圆柱为圆锥的内接圆柱.则该圆锥的内接圆柱侧面积的最大值为( )A.12πB.24πC.36πD.72π8.在ABC 中,4AB AC BC ===,点P 满足BP tBC =,且1AP BC BC⋅=,则t =( ) A.34 B.14 C.34− D.14−二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求;全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,m n 是两条不同的直线,α是平面,若m ∥,n αα⊂,则,m n 的关系可能为( )A.平行B.垂直C.相交D.异面10.ABC 的内角,,A B C 的对边分别为,,a b c ,下列结论正确的是( ) A.若222sin sin sin sin sin A B C B C =+−,则角π3A =B.存在,,A B C ,使tan tan tan tan tan tan A B C A B C ++>成立C.若sin2sin2A B =,则ABC 为等腰或直角三角形D.若30ab A ,则ABC 有两解 11.如图,在正方体1111ABCD A B C D −中,E 为棱AB 上的动点,DF ⊥平面1,D EC F 为垂足,下列结论正确的是( )A.1FD FC =B.三棱锥1C DED −的体积为定值C.11ED A D ⊥D.1BC 与AC 所成的角为45三、填空题:本题共3小题,每小题5分,共15分.12.已知,a b为共线向量,且()()()3,1,,2ab x x =∈R ,则x =__________.13.在ABC 中,,D E 分别为,AC BC 的中点,AE 交BD 于点M .若2,4AB AC ==,π3BAC ∠=,则cos EMD ∠=__________.14.降维类比和升维类比主要应用于立体几何的学习,将空间三维问题降为平面二维或者直线一维问题就是降维类比.平面几何中多边形的外接圆,即找到一点,使得它到多边形各个顶点的距离相等.这个点就是外接圆的圆心,距离就是外接圆的半径.若这样的点存在,则这个多边形有外接圆,若这样的点不存在,则这个多边形没有外接圆.事实上我们知道,三角形一定有外接圆,如果只求外接圆的半径,我们可通过正弦定理来求,我们也可以关注九年义教初中《几何》第三册第94页例2.的结论:三角形外接圆的直径等于两边的乘积除以第三边上的高所得的商.借助求三角形外接圆的方法解决问题:若等腰梯形ABCD 的上下底边长分别为6和8,高为1,这个等腰梯形的外接圆半径为__________;轴截面是旋转体的重要载体,圆台的轴截面中包含了旋转体中的所有元素:高、母线长、底面圆的半径,通过研究其轴截面,可将空间问题转化为平面问题.观察图象,通过类比,我们可以找到一般圆台的外接球问题的研究方法,正棱台可以看作由圆台切割得到.研究问题:如图,正三棱台的高为1,上、下底面边长分别为和一球面上,则该球的体积为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知1111ABCD A B C D −是棱长为2的正方体.(1)求三棱锥11D A BC −的体积;(2)若N 是1D C 的中点,M 是1BC 的中点,证明:NM ∥平面ABCD .16.(15分)已知向量,a b 满足,4,a b == ,且a 在b 上的投影向量为b − . (1)求,a b 及a b ⋅ 的值;(2)若()()2a b a b λ−⊥+,求λ的值.17.(15分)记ABC 的内角,,A B C 的对边分别为,,a b c ,若cos πsin 2cos 6BC A=−,且sin 2sin b C B =. (1)求A 及c ;(2)若点D 在边BC 上,且3,BC BD AD ==ABC 的面积. 18.(17分)在平行四边形ABCD 中,2,45,,AB ADA E F == 分别为,AB AD 的中点,将三角形ADE 沿DE 翻折,使得二面角A ED C −−为直二面角后,得到四棱锥A EBCD −.(1)求证:EF ∥平面ABC ;(2)求证:平面AED ⊥平面ACD ; (3)求EC 与平面ACD 所成角的正弦值. 19.(17分)“费马点”是由十七世纪法国数学家费马提出并征解的一个问题,该问题是:“在一个三角形内求作一点,使其与此三角形的三个顶点的距离之和最小”.如图1,三个内角都小于120 的ABC 内部有一点P ,连接,,PA PB PC ,求PA PB PC ++的最小值.我们称三角形内到三角形三个顶点距离之和最小的点为费马点.要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可求出这三条线段和的最小值.某数学研究小组先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题,具体的做法如图2,将APC 绕点C 顺时针旋转60 ,得到EDC ,连接,PD BE ,则BE 的长即为所求,此时与三个顶点连线恰好三等分费马点P 的周角.同时小组成员研究教材发现:已知对任意平面向量(),AB x y = ,把AB绕其起点沿逆时针方向旋转θ角得到向量()cos sin ,sin cos AQ x y x y θθθθ=−+.(1)已知平面内点()(1,2,12A B +−,把点B 绕点A 沿顺时针方向旋转π4后得到点P ,求点P 的坐标;(2)在ABC 中,30,12,5ACB BC AC ∠===,借助研究成果,直接写出PA PB PC ++的最小值;(3)已知点()()()1,0,1,0,0,2A B C −,求ABC 的费马点P 的坐标.。
高一数学第一学期期末考试试卷(共5套,含参考答案)
高一第一学期期末考试数学试卷 满分:150分 时间: 120分钟一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}|27,|1,A x x B x x x N =-<<=>∈,则AB 的元素的个数为( )A.3B.4C.5D.62.两条直线a ,b 满足a ∥b ,b α⊂,则a 与平面α的关系是( ) A.a ∥α B.a 与α相交 C.a 与α不相交 D.a α⊂3.方程的1xe x =的根所在的区间是( ). A.)21,0( B.)1,21( C.)23,1( D.)2,23(4.函数y=x (x 2-1)的大致图象是( )5.如图所示,已知正四棱锥S —ABCD 侧棱长为2,底面边长为3,E 是SA 的中点,则异面直线BE 与SC 所成角的大小为( ) A.90°B.60°C.45°D.30°6.长方体1111ABCD A B C D -中,2AB =,1AA =3AD =,则 长方体1111ABCD A B C D - 的外接球的直径为 ( ) A.2 B.3 C.4 D.57.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( ) A.120° B.150° C.180° D.240°8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是( ) A.BD ∥平面CB 1D 1 B.AC 1⊥BDC.AC 1⊥平面CB 1D 1D.异面直线AD 与CB 1角为60°9.若方程1ln 02xx a ⎛⎫-+= ⎪⎝⎭有两个不等的实数根,则a 的取值范围是( )A.1,2⎛⎫+∞ ⎪⎝⎭B.()1,+∞C.1,2⎛⎫-∞ ⎪⎝⎭D.(),1-∞10.某几何体的三视图如图所示(单位: cm ),则该几何体的表面积是( )A.65B.6C.2D.511.已知函数()22log f x x x =+,则不等式()()120f x f +-<的解集为( )A. ()(),13,-∞-⋃+∞B. ()(),31,-∞-⋃+∞C. ()()3,11,1--⋃-D. ()()1,11,3-⋃12.已知()()()2,log 0,1x a f x ag x x a a -==>≠,若()()440f g ⋅-<,则y=()f x ,y=()g x 在同一坐标系内的大致图象是( )二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知不等式062<-+px x 的解集为{|32}x x -<<,则p = .14.2lg 2= _________15.函数()lg 21y x =+的定义域是______________________. 16.函数x21f x =-log x+23⎛⎫⎪⎝⎭()()在区间[-1,1]上的最大值为________. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)全集R U =,函数()lg(3)f x x =+-的定义域为集合A ,集合{}02<-=a x x B .(1)求U A ð; (2)若A B A = ,求实数a 的取值范围.18.(本题满分12分)已知函数⎪⎩⎪⎨⎧>-+≤-=)0(,1)1(log )0(,2)21()(2x x x x f x(1)求)(x f 的零点; (2)求不等式()0f x >的解集.19.(12分)如图,在直角梯形ABCD 中,AD ∥BC ,AD =AB ,∠A =90°,BD ⊥DC ,将△ABD 沿BD 折起到△EBD 的位置,使平面EBD ⊥平面BDC. (1) 求证:平面EBD ⊥平面EDC ; (2) 求ED 与BC 所成的角.20.(12分)一块边长为10 cm 的正方形铁块按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器.(1)试把容器的容积V 表示为x 的函数; (2)若x =6,求图2的正视图的面积.21.(本小题满分12分)在三棱柱111C B A ABC -中,侧面11A ABB 为矩形,1AB =,1AA ,D 为1AA 的中点,BD 与1AB 交于点O ,⊥CO 侧面11A ABB .(Ⅰ)证明:1AB BC ⊥; (Ⅱ)若OA OC =,求点1B 到平面ABC 的距离.1A A1B B1C COD22.(本小题满分12分)已知函数4()log (41)x f x kx =++(k ∈R ),且满足(1)(1)f f -=. (1)求k 的值;(2)若函数()y f x =的图象与直线12y x a =+没有交点,求a 的取值范围; (3)若函数1()2()421f x xx h x m +=+⋅-,[]20,log 3x ∈,是否存在实数m 使得()h x 最小值为0,若存在,求出m 的值;若不存在,请说明理由.高一第一学期期末考试 数学试卷参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 1 14. 2 15. 16. 316.解析:∵y =⎝ ⎛⎭⎪⎫13x 和y =-log 2(x +2)都是[-1,1]上的减函数,∴f(x)=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上是减函数,∴函数f(x)在区间[-1,1]上的最大值为f(-1)=3.答案:3三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.解:(1)∵⎩⎨⎧>->+0302x x ∴23x -<<…………………………………3分∴A=(-2,3) ∴(][)23u C A =-∞-+∞,,……………………………5分 (2)当0≤a 时,φ=B 满足A B A = ……………………………6分当0>a 时,)(a a B ,-= ∵AB A = ∴A B ⊆[]∴⎪⎩⎪⎨⎧≤-≥-32a a , ∴40≤<a ……………………………9分 综上所述:实数a 的范围是4≤a ……………………………………10分18.解:(1)由0)(=x f 得,⎪⎩⎪⎨⎧=-≤02)21(0x x 或⎩⎨⎧=-+>01)1(log 02x x ,解得1-=x 或1=x .所以,函数)(x f 的零点是—1,1..................................6分(2)由()0f x >得,01()202xx ≤⎧⎪⎨->⎪⎩或20log (1)10x x >⎧⎨+->⎩,解得1x <-或1x >.所以,不等式1)(>x f 的解集是{x |1x <-或1x >}.................................12分19.(1) 证明:∵平面EBD ⊥平面BDC ,且平面EBD ∩平面BDC =BD ,CD ⊥BD , ∴CD ⊥平面EBD , ∵CD 平面EDC ,∴平面EBD ⊥平面EDC.……………………………6分 (2) 解:如答图,连接EA ,取BD 的中点M ,连接AM ,EM , ∵AD ∥BC ,∴∠EDA 即为ED 与BC 所成的角. 又∵AD =AB ,∴ED =EB. ∴EM ⊥BD ,∴EM ⊥平面ABCD.设AB =a ,则ED =AD =a ,EM =MA , ∴AE =a ,∴∠EDA =60°.即ED 与BC 所成的角为60°……………………………12分20.(12分)解 (1)设所截等腰三角形的底边边长为x cm. 在Rt △EOF 中,EF =5 cm ,OF =12x cm ,所以EO =25-14x 2.于是V =13x225-14x 2(cm 3).依题意函数的定义域为{x|0<x<10}.……………………………6分(2)正视图为等腰三角形,腰长为斜高,底边长=AB =6, 底边上的高为四棱锥的高=EO =25-14x 2=4,S =4×62=12(cm 2).……………………………12分21.解:(1),由 得又即又又BD 与CO 交于O 点,又……………………………6分(2),,又AB=1,可得,由得……………………………12分22.解析:(1)(1)(1)f f -=,即144log (41)log (41)k k -+-=++444512log log 5log 144k ∴=-==- ∴12k =- ………………………………………………………………………… ………5分(2)由题意知方程411log (41)22x x x a +-=+即方程4=log (41)x a x +-无解, 令4()log (41)x g x x =+-,则函数()y g x =的图象与直线y a =无交点444411()log 41)log log (1)44x x x xg x x +=+-==+( 任取1x 、2x ∈R ,且12x x <,则12044x x <<,121144x x ∴>. 12124411()()log 1log 1044x x g x g x ⎛⎫⎛⎫∴-=+-+> ⎪ ⎪⎝⎭⎝⎭,()g x ∴在(),-∞+∞上是单调减函数.1114x +>, 41()log 104xg x ⎛⎫∴=+> ⎪⎝⎭. ∴a 的取值范围是(],0.-∞ ……………………………………………………………… 9分注意:如果从复合函数角度分析出单调性,给全分。
高一数学期末考试试题及答案
高一数学期末考试试题及答案高一期末考试试题一、选择题1.已知集合M={x∈N/x=8-m,m∈N},则集合M中的元素的个数为()A.7 B.8 C.9 D.10答案:B。
解析:当m=1时,x=7;当m=2时,x=6;当m=3时,x=5;当m=4时,x=4;当m=5时,x=3;当m=6时,x=2;当m=7时,x=1;当m=8时,x=0.因此,集合M中的元素的个数为8.2.已知点A(x,1,2)和点B(2,3,4),且AB=26,则实数x的值是()A.−3或4 B.6或2 C.3或−4 D.6或−2答案:C。
解析:根据勾股定理,AB=√[(x-2)²+(1-3)²+(2-4)²]=√[(x-2)²+4]。
因为AB=26,所以√[(x-2)²+4]=26,解得x=3或-7.但是题目中说了点A的横坐标为实数,所以x=3.3.已知两个球的表面积之比为1:9,则这两个球的半径之比为()A.1:3 B.1:3 C.1:9 D.1:81答案:B。
解析:设两个球的半径分别为r1和r2,则它们的表面积之比为4πr1²:4πr2²=1:9,化简得.4.圆x+y=1上的动点P到直线3x−4y−10=0的距离的最小值为()A.2 B.1 C.3 D.4答案:A。
解析:首先求出直线3x−4y−10=0与圆x+y=1的交点Q,解得Q(2,-1),然后求出点P到直线的距离d,设P(x,y),则d=|(3x-4y-10)/5|,根据点到直线的距离公式。
将P点的坐标代入d中,得到d的表达式为d=|(3x-4y-16)/5|。
将d表示成x和y的函数,即d=f(x,y)=(3x-4y-16)/5,然后求出f(x,y)的最小值。
由于f(x,y)的系数3和-4的比值为3:4,所以f(x,y)的最小值为f(2,-1)=-2/5,即P点到直线的最小距离为2/5,取整后为2.5.直线x−y+4=0被圆x²+y²+4x−4y+6=0截得的弦长等于()A.12B.22C.32D.42答案:B。
2023-2024学年北京市海淀区高一(上)期末数学试卷【答案版】
2023-2024学年北京市海淀区高一(上)期末数学试卷一、选择题:共14小题,每小题4分,共56分.在每小题列出的四个选项中,选出符合题目要求的一项 1.已知全集U ={﹣2,﹣1,0,1,2},集合A ={﹣2,﹣1,0},则∁U A =( ) A .{1,2,3}B .{1,2}C .(0,2)D .(1,2)2.某学校有高中学生1500人,初中学生1000人.学生社团创办文创店,想了解初高中学生对学校吉祥物设计的需求,用分层抽样的方式随机抽取若干人进行问卷调查,已知在初中学生中随机抽取了100人,则在高中学生中抽取了( ) A .150人B .200人C .250人D .300人3.命题p :“∃x ∈R ,x +2≤0”的否定是( ) A .∀x ∈R ,x +2≤0 B .∃x ∈R ,x +2≥0 C .∀x ∈R ,x +2>0D .∃x ∈R ,x +2>04.方程组{x +y =0x 2+x =2的解集是( )A .{(1,﹣1),(﹣1,1)}B .{(1,1),(﹣2,2)}C .{(1,﹣1),(﹣2,2)}D .{(2,﹣2),(﹣2,2)}5.某部门调查了200名学生每周的课外活动时间(单位:h ),制成了如图所示的频率分布直方图,其中课外活动时间的范围是[10,20],并分成[10,12),[12,14),[14,16),[16,18),[18,20]五组.根据直方图,判断这200名学生中每周的课外活动时间不少于14h 的人数是( )A .56B .80C .144D .1846.若实数a ,b 满足a >b ,则下列不等式成立的是( ) A .|a |>|b |B .a +c >b +cC .a 2>b 2D .ac 2>bc 27.函数f (x )=2x +2x 的零点所在的区间为( ) A .(0,1)B .(﹣1,0)C .(1,2)D .(2,3)8.在同一个坐标系中,函数f (x )=log a x ,g (x )=a ﹣x ,h (x )=x a 的部分图象可能是( )A.B.C.D.9.下列函数中,既是奇函数,又在(0,+∞)上单调递减的是()A.f(x)=√x B.f(x)=﹣x|x|C.f(x)=1x2+1D.f(x)=x310.已知a=20.1,b=log2√3,c=log3√2,则实数a,b,c的大小关系是()A.c>a>b B.c>b>a C.a>c>b D.a>b>c11.已知函数f(x)=12x+1−a2,则“a=1”是f(x)为奇函数的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12.已知函数f(x)=log2(x+1)+x﹣2,则不等式f(x)<0的解集为()A.(﹣∞,1)B.(﹣1,1)C.(0,1)D.(1,+∞)13.科赫(Koch)曲线是几何中最简单的分形,科赫曲线的产生方式如下:如图,将一条线段三等分后,以中间一段为边作正三角形并去掉原线段生成1级科赫曲线“”,将1级科赫曲线上每一线段重复上述步骤得到2级科赫曲线,同理可得3级科赫曲线…在分形中,一个图形通常由N个与它的上一级图形相似,且相似比为r的部分组成.若r D=1N,则称D为该图形的分形维数.那么科赫曲线的分形气维数是()A .log 23B .log 32C .1D .2log 3214.已知函数f(x)={x +a ,x ≤ax 2,x >a ,若存在非零实数x 0,使得f (﹣x 0)=﹣f (x 0)成立,则实数a 的取值范围是( ) A .(﹣∞,0]B .(−∞,14]C .[4,0]D .[−2,14]二、填空题:共6小题,每小题5分,共30分 15.函数f (x )=lg (x ﹣1)的定义域是 .16.已知幂函数f (x )的图象经过点(2,8),则f (x )= .17.农科院作物所为了解某种农作物的幼苗质量,分别从该农作物在甲、乙两个不同环境下培育的幼苗中各随机抽取了15株幼苗进行检测,量出它们的高度如图(单位:cm ):记该样本中甲、乙两种环境下幼苗高度的中位数分别为a ,b ,则|a ﹣b |= .若以样本估计总体,记甲、乙两种环境下幼苗高度的标准差分别为s 1,s 2,则s 1 s 2(用“<,>或=”连接).18.已知函数f(x)=x +4x−a 没有零点,则a 的一个取值为 ;a 的取值范围是 .19.已知函数f(x)={2x ,x ≥0−x 2,x <0,则f (x )的单调递增区间为 ;满足|f (x )|<4×104的整数解的个数为 .(参考数据:lg 2≈0.30)20.共享单车已经逐渐成为人们在日常生活中必不可少的交通工具.通过调查发现人们在单车选择时,可以使用“Tullock 竞争函数”进行近似估计,其解析式为S(x)=x ax a +(1−x)a ,x ∈[0,1],a >0(其中参数a 表示市场外部性强度,a 越大表示外部性越强).给出下列四个结论: ①S (x )过定点(12,12);②S (x )在[0,1]上单调递增; ③S (x )关于x =12对称;④取定x ,外部性强度a 越大,S (x )越小. 其中所有正确结论的序号是 .三、解答题:共64分,解答应写出文字说明,演算步骤或证明过程.21.(12分)化简求值:(Ⅰ)(49)0.5+(6427)13+(0.1)−0.2−3π0(Ⅱ)5log32−log3329+5log5322.(12分)已知一元二次方程2x2+3x﹣2=0的两个实数根为x1,x2.求值:(1)x12+x22;(2)1x1+1x2.23.(9分)国务院正式公布的《第一批全国重点文物保护单位名单》中把重点文物保护单位(下述简称为“第一批文保单位”)分为六大类.其中“A:革命遗址及革命纪念建筑物”、“B:石窟寺”、“C:古建筑及历史纪念建筑物”、“D:石刻及其他”、“E:古遗址”、“F:古墓葬”,北京的18个“第一批文保单位”所在区分布如下表:(Ⅰ)某个研学小组随机选择北京市“第一批文保单位”中的一个进行参观,求选中的参观单位恰好为“C:古建筑及历史纪念建筑物”的概率;(Ⅱ)小王同学随机选择北京市“第一批文保单位”中的“A:革命遗址及革命纪念建筑物”中的一个进行参观:小张同学随机选择北京市“第一批文保单位”中的“C:古建筑及历史纪念建筑物”中的一个进行参观.两人选择参观单位互不影响,求两人选择的参观单位恰好在同一个区的概率;(Ⅲ)现在拟从北京市“第一批文保单位”中的“C:古建筑及历史纪念建筑物”中随机抽取2个单位进行常规检查,记抽到海淀区的概率为P1,抽不到海淀区的概率记为P2,试判断P1和P2的大小(直接写出结论).24.(9分)已知集合A={x|x2−x−2<0},B={x||x−52|≥32}.(Ⅰ)求A∪B,A∩∁R B;(Ⅱ)记关于x的不等式x2﹣(2m+4)x+m2+4m≤0的解集为M,若B∪M=R,求实数m的取值范围.25.(11分)已知函数f(x)=ln(1﹣x)+kln(1+x),请从条件①、条件②这两个条件中选择一个作为已知,解答下面的问题:条件①:f(x)+f(﹣x)=0条件②:f(x)﹣f(﹣x)=0注:如果选择条件①和条件②分别解答,按第一个解答记分.(Ⅰ)求实数k的值;(Ⅱ)设函数F(x)=(1﹣x)(1+x)k,判断函数F(x)在区间上(0,1)的单调性,并给出证明;(Ⅲ)设函数g(x)=f(x)+x k+2|k|,指出函数g(x)在区间(﹣1,0)上的零点的个数,并说明理由.26.(11分)已知函数f(x),g(x),h(x)的定义域均为R,给出下面两个定义:①若存在唯一的x∈R,使得f(g(x))=h(f(x)),则称g(x)与h(x)关于f(x)唯一交换;②若对任意的x∈R,均有f(g(x))=h(f(x)),则称g(x)与h(x)关于f(x)任意交换.(Ⅰ)请判断函数g(x)=x+1与h(x)=x﹣1关于f(x)=x2是唯一交换还是任意交换,并说明理由;(Ⅱ)设f(x)=a(x2+2)(a≠0),g(x)=x2+bx﹣1,若存在函数h(x),使得g(x)与h(x)关于f(x)任意交换,求b的值;(Ⅲ)在(Ⅱ)的条件下,若g(x)与f(x)关于ω(x)=e x−1e x+1唯一交换,求a的值.2023-2024学年北京市海淀区高一(上)期末数学试卷参考答案与试题解析一、选择题:共14小题,每小题4分,共56分.在每小题列出的四个选项中,选出符合题目要求的一项 1.已知全集U ={﹣2,﹣1,0,1,2},集合A ={﹣2,﹣1,0},则∁U A =( ) A .{1,2,3}B .{1,2}C .(0,2)D .(1,2)解:∵全集U ={﹣2,﹣1,0,1,2},集合A ={﹣2,﹣1,0},∴∁U A ={1,2}. 故选:B .2.某学校有高中学生1500人,初中学生1000人.学生社团创办文创店,想了解初高中学生对学校吉祥物设计的需求,用分层抽样的方式随机抽取若干人进行问卷调查,已知在初中学生中随机抽取了100人,则在高中学生中抽取了( ) A .150人B .200人C .250人D .300人解:由题意可知,抽样比为1001000=110,所以在高中学生中抽取的人数为1500×110=150人.故选:A .3.命题p :“∃x ∈R ,x +2≤0”的否定是( ) A .∀x ∈R ,x +2≤0 B .∃x ∈R ,x +2≥0 C .∀x ∈R ,x +2>0D .∃x ∈R ,x +2>0解:由含有量词的命题的否定方法:先改变量词,然后再否定结论, 命题p :∃x ∈R ,x +2≤0,则命题p 的否定是:∀x ∈R ,x +2>0. 故选:C .4.方程组{x +y =0x 2+x =2的解集是( )A .{(1,﹣1),(﹣1,1)}B .{(1,1),(﹣2,2)}C .{(1,﹣1),(﹣2,2)}D .{(2,﹣2),(﹣2,2)}解:解{x +y =0x 2+x =2得,{x =−2y =2或{x =1y =−1,∴原方程组的解集为:{(1,﹣1),(﹣2,2)}. 故选:C .5.某部门调查了200名学生每周的课外活动时间(单位:h ),制成了如图所示的频率分布直方图,其中课外活动时间的范围是[10,20],并分成[10,12),[12,14),[14,16),[16,18),[18,20]五组.根据直方图,判断这200名学生中每周的课外活动时间不少于14h 的人数是( )A.56B.80C.144D.184解:每周的课外活动时间不少于14h的频率为2×(0.16+0.12+0.08)=0.72,故所求人数N=0.72×200=144,故选:C.6.若实数a,b满足a>b,则下列不等式成立的是()A.|a|>|b|B.a+c>b+c C.a2>b2D.ac2>bc2解:由a>b,取a=1,b=﹣1,则可排除A,C,当c=0时,ac2=bc2,故D错误,由a>b,可得a+c>b+c,故B正确.故选:B.7.函数f(x)=2x+2x的零点所在的区间为()A.(0,1)B.(﹣1,0)C.(1,2)D.(2,3)解:函数定义域为R,且在R上单调递增,<0,f(﹣1)•f(0)<0f(0)=1>0,f(﹣1)=2﹣1﹣2=−32所以函数在(﹣1,0)有唯一零点,故选:B.8.在同一个坐标系中,函数f(x)=log a x,g(x)=a﹣x,h(x)=x a的部分图象可能是()A.B.C .D .解:当a >1时,A 中,g (x )=a ﹣x应该单调递减,而h (x )=x a 在(0,1)应该在y =x 的下方,所以A 不正确; C 中,g (x )=a﹣x应该单调递减,而h (x )=x a 在(0,1)应该在y =x 的下方,f (x )=log a x 的图象应该单调递增,所以C 不正确;B 中,h (x )=x a 在(0,1)应该在y =x 的下方,所以B 不正确; D 中,f (x )=log a x 的图象应该单调递增,所以D 不正确;当0<a <1时,A 中f (x )=log a x 的图象应该单调递减,所以A 不正确; B 中,g (x )=a﹣x应该单调递增,f (x )=log a x 的图象应该单调递减,所以B 不正确;C 中,三个图象正确;D 中,g (x )=a﹣x应该单调递增,h (x )=x a 应该在(0,1)在y =x 的上方,所以D 不正确.综上所述:只有0<a <1时C 正确. 故选:C .9.下列函数中,既是奇函数,又在(0,+∞)上单调递减的是( ) A .f(x)=√x B .f (x )=﹣x |x |C .f(x)=1x 2+1 D .f (x )=x 3解:在A 中,f (x )=√x 的定义域为{x |x ≥0},定义域不关于原点对称,是非奇非偶函数,故A 错误; 在B 中,f (x )=﹣x |x |的定义域为R ,f (﹣x )=x |x |=﹣g (x ),是奇函数,x >0时,f (x )=﹣x 2在(0,+∞)上单调递减,故B 正确; 在C 中,f (x )=1x 2+1是偶函数,故C 错误;在D 中,f (x )=x 3是奇函数,在(0,+∞)上单调递增,故D 错误. 故选:B .10.已知a =20.1,b =log 2√3,c =log 3√2,则实数a ,b ,c 的大小关系是( ) A .c >a >bB .c >b >aC .a >c >bD .a >b >c解:由20.1>20,得a =20.1>1,又log 2√2<log 2√3<log 22,得12<b <1,由log 3√2<log 3√3,得c <12,综上可得a >b >c .故选:D . 11.已知函数f(x)=12x+1−a2,则“a =1”是f (x )为奇函数的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解:∵函数f(x)=12x+1−a2的定义域为R , ∴f (x )为奇函数,可得f (0)=0,解得a =1,当a =1时,f (x )=12x +1−12,f (﹣x )+f (x )=12−x +1−12+12x +1−12=2x2x +1−12+12x +1−12=0,故f (x )为奇函数.∴“a =1”是f (x )为奇函数的充要条件. 故选:C .12.已知函数f (x )=log 2(x +1)+x ﹣2,则不等式f (x )<0的解集为( ) A .(﹣∞,1)B .(﹣1,1)C .(0,1)D .(1,+∞)解:函数f (x )=log 2(x +1)+x ﹣2的定义域为(﹣1,+∞),因为y =log 2(x +1)在(﹣1,+∞)上单调递增,y =x ﹣2在(﹣1,+∞)上单调递增, 所以f (x )在(﹣1,+∞)上单调递增, 又因为f (1)=log 22+1﹣2=0,且f (x )<0,所以f (x )<f (1),所以{x >−1x <1,所以不等式f (x )<0的解集为(﹣1,1).故选:B .13.科赫(Koch )曲线是几何中最简单的分形,科赫曲线的产生方式如下:如图,将一条线段三等分后,以中间一段为边作正三角形并去掉原线段生成1级科赫曲线“”,将1级科赫曲线上每一线段重复上述步骤得到2级科赫曲线,同理可得3级科赫曲线…在分形中,一个图形通常由N 个与它的上一级图形相似,且相似比为r 的部分组成.若r D =1N,则称D 为该图形的分形维数.那么科赫曲线的分形气维数是( )A .log 23B .log 32C .1D .2log 32解:根据题意,n 级科赫曲线是由把上一级的科赫曲线全体缩小13的4个相似图形构成的,即r =13,N =4,若r D =1N ,即(13)D =14,则D =log r (1N)=log 34=2log 32.故选:D .14.已知函数f(x)={x +a ,x ≤ax 2,x >a ,若存在非零实数x 0,使得f (﹣x 0)=﹣f (x 0)成立,则实数a 的取值范围是( ) A .(﹣∞,0]B .(−∞,14]C .[4,0]D .[−2,14]解:∵x 0和﹣x 0同属于(﹣∞,a ]或(a ,+∞)时,都不可能有f (﹣x 0)=﹣f (x 0), ∴﹣x 0≤a 且x 0>a ,或x 0≤a 且﹣x 0>a , ①当﹣x 0≤a 且x 0>a 时,则﹣x 0<x 0, ∴x 0>0,若存在非零实数x 0,使得f (﹣x 0)=﹣f (x 0)成立,则﹣x 0+a =−x 02, 即a =−x 02+x 0=−(x 0−12)2+14,∵x 0>0,∴﹣(x 0−12)2+14≤14,∴a ≤14,①当x 0≤a 且﹣x 0>a 时,则﹣x 0>x 0,∴x 0<0,若存在非零实数x 0,使得f (﹣x 0)=﹣f (x 0)成立,则(﹣x 0)2=﹣(x 0+a ), 即a =−x 02−x 0=−(x 0+12)2+14,∵x 0<0,∴﹣(x 0+12)2+14≤14,∴a ≤14,综上所述,实数a 的取值范围是(﹣∞,14].故选:B .二、填空题:共6小题,每小题5分,共30分 15.函数f (x )=lg (x ﹣1)的定义域是 {x |x >1} .解:要使函数有意义,则有x ﹣1>0,解得,x >1,∴函数的定义域是{x |x >1}, 故答案为:{x |x >1}.16.已知幂函数f (x )的图象经过点(2,8),则f (x )= x 3 . 解:设幂函数f (x )=x α,把点(2,8)代入函数的解析式可得2α=8, 解得 α=3,故函数的解析式为f (x )=x 3,故答案为 x 3.17.农科院作物所为了解某种农作物的幼苗质量,分别从该农作物在甲、乙两个不同环境下培育的幼苗中各随机抽取了15株幼苗进行检测,量出它们的高度如图(单位:cm ):记该样本中甲、乙两种环境下幼苗高度的中位数分别为a ,b ,则|a ﹣b |= 3 .若以样本估计总体,记甲、乙两种环境下幼苗高度的标准差分别为s 1,s 2,则s 1 > s 2(用“<,>或=”连接).解:对空①:由题意得甲环境的幼苗高度为:31,32,33,33,35,43,44,45,49,55,57,58,59,63,65,其中位数a =45,乙环境的幼苗高度为:37,43,44,45,45,47,48,48,49,52,54,54,55,58,60,其中位数b =48,所以|a ﹣b |=|45﹣48|=3;对空②:甲环境下的幼苗平均高度为:115(31+32+33+33+35+43+44+45+49+55+57+58+59+63+65)=46.8,s 1=√115[(31−46.8)2+(32−46.8)2+(33−46.8)2+⋯+(65−46.8)2]≈1171,乙环境下的幼苗平均高度为115(37+43+44+45+45+47+48+48+49+52+54+54+55+58+60)=73915,所以s 2=√115[(37−73915)2+(43−73915)2+(44−73915)2+⋯+(60−73915)2]≈599, 所以S 1>S 2. 故答案为:3;>.18.已知函数f(x)=x +4x−a 没有零点,则a 的一个取值为 0(答案不唯一) ;a 的取值范围是 (﹣4,4) .解:函数y =x +4x ,当x >0时,y ≥2√x ⋅4x =4,当且仅当x =2时取等号,当x <0时,y ≤﹣4,所以函数f(x)=x +4x−a 没有零点,则a 的一个取值为0(答案不唯一);a 的取值范围是(﹣4,4).故答案为:0(答案不唯一);(﹣4,4).19.已知函数f(x)={2x ,x ≥0−x 2,x <0,则f (x )的单调递增区间为 (﹣∞,+∞) ;满足|f (x )|<4×104的整数解的个数为215.(参考数据:lg2≈0.30)解:当x≥0时,f(x)=2x,单调递增,当x<0时,f(x)=﹣x2,单调递增,又∵0<20=1,∴f(x)在R上单调递增,即f(x)的单调递增区间为(﹣∞,+∞),当x≥0时,f(x)=2x,由|f(x)|<4×104,可得2x<4×104,∴x<log2(4×104)=2+4lg2≈15.33,∴0≤x<15.33,又∵x∈Z,∴x的个数为16个,当x<0时,f(x)=﹣x2,由|f(x)|<4×104,可得x2<4×104,∴﹣200<x<200,又∵x<0,∴﹣200<x<0,又∵x∈Z,∴x的个数为199个,综上所述,满足|f(x)|<4×104的整数解的个数为16+199=215个.故答案为:(﹣∞,+∞);215.20.共享单车已经逐渐成为人们在日常生活中必不可少的交通工具.通过调查发现人们在单车选择时,可以使用“Tullock竞争函数”进行近似估计,其解析式为S(x)=x ax a+(1−x)a,x∈[0,1],a>0(其中参数a表示市场外部性强度,a越大表示外部性越强).给出下列四个结论:①S(x)过定点(12,12);②S(x)在[0,1]上单调递增;③S(x)关于x=12对称;④取定x,外部性强度a越大,S(x)越小.其中所有正确结论的序号是①②.解:对于①,在S(x)中,令x=12,则S(12)=(12)a2×(12)a=12,过定点(12,12),故①正确;对于②,S(x)=x ax a+(1−x)a=11+(1−xx)a=11+(1x−1)a,令g(x)=(1x−1)a,当x∈(0,1],则g(x)≥0,且由基本初等函数及复合函数的单调性知g(x)在(0,1]上单调递减,则S(x)在[0,1]上单调递增,故②正确;对于③,由②知S(x)在[0,1]上单调递增,故在[0,1]不存在对称轴,故③错误;对于④,方法一:由①知当x=12时,S(x)=12,与a的取值无关,故④错误.方法二:以a为自变量,设S(x)为T(a),则T′(a)=[x(1−x)]a[x a+(1−x)a]2lnx1−x,∵a>0,故[x(1−x)]a[x a+(1−x)a]2>0,T′(a)的正负取决于ln x1−x,当x1−x<1,即0<x<12时,T′(a)<0,随着a的增大,S(x)减小,当x1−x>1,即12<x<1时,T′(a)>0,随着a的增大,S(x)增大,故④错误.故答案为:①②.三、解答题:共64分,解答应写出文字说明,演算步骤或证明过程.21.(12分)化简求值:(Ⅰ)(49)0.5+(6427)13+(0.1)−0.2−3π0(Ⅱ)5log32−log3329+5log53解:(Ⅰ)(49)0.5+(6427)13+(0.1)−0.2−3π0=23+43+√105−3=√105−1.(Ⅱ)5log32−log3329+5log53=log3(32×932)+3=5.22.(12分)已知一元二次方程2x2+3x﹣2=0的两个实数根为x1,x2.求值:(1)x12+x22;(2)1x1+1x2.解:由题意可得x1+x2=−32,x1⋅x2=−1.(1)x12+x22=(x1+x2)2−2x1x2=(−32)2−2×(−1)=94+2=178;(2)1x1+1x2=x1+x2x1x2=−32−1=32.23.(9分)国务院正式公布的《第一批全国重点文物保护单位名单》中把重点文物保护单位(下述简称为“第一批文保单位”)分为六大类.其中“A:革命遗址及革命纪念建筑物”、“B:石窟寺”、“C:古建筑及历史纪念建筑物”、“D:石刻及其他”、“E:古遗址”、“F:古墓葬”,北京的18个“第一批文保单位”所在区分布如下表:(Ⅰ)某个研学小组随机选择北京市“第一批文保单位”中的一个进行参观,求选中的参观单位恰好为“C:古建筑及历史纪念建筑物”的概率;(Ⅱ)小王同学随机选择北京市“第一批文保单位”中的“A:革命遗址及革命纪念建筑物”中的一个进行参观:小张同学随机选择北京市“第一批文保单位”中的“C:古建筑及历史纪念建筑物”中的一个进行参观.两人选择参观单位互不影响,求两人选择的参观单位恰好在同一个区的概率;(Ⅲ)现在拟从北京市“第一批文保单位”中的“C:古建筑及历史纪念建筑物”中随机抽取2个单位进行常规检查,记抽到海淀区的概率为P1,抽不到海淀区的概率记为P2,试判断P1和P2的大小(直接写出结论).解:(Ⅰ)设选中参观单位恰好为“ C :古建筑及历史纪念建筑物”为事件A,由题意知总共有18,“ C :古建筑及历史纪念建筑物”有12,所以P(A)=1218=23;(Ⅱ)设两人选择的参观单位恰好在同一个区为事件B,由题意可知小王参观“A:革命遗址及革命纪念建筑物”与小张参观“C:古建筑及历史纪念建筑物”在同一个区的只有东城区,所以小王参观东城区景区的概率为34,小张参观东城区景区的概率为512,所以P (B )=34×512=516; (Ⅲ)当抽到的2个都是海淀区的概率为212×111=166,当抽到的2个中有1个是海淀区的概率为212×1011=1066=533, 所以P 1=166+533=16,P 2=1−16=56, 所以P 1<P 2.24.(9分)已知集合A ={x|x 2−x −2<0},B ={x||x −52|≥32}.(Ⅰ)求A ∪B ,A ∩∁R B ;(Ⅱ)记关于x 的不等式x 2﹣(2m +4)x +m 2+4m ≤0的解集为M ,若B ∪M =R ,求实数m 的取值范围. 解:(Ⅰ)∵x 2﹣x ﹣2<0,解得﹣1<x <2, ∴A ={x |﹣1<x <2},∵|x −52|≥32,解得x ≥4或x ≤1,∴B ={x |x ≤1或x ≥4},∴A ∪B ={x |x <2或x ≥4}, ∵∁R B ={x |1<x <4}, ∴A ∩∁R B ={x |1<x <2}.(Ⅱ)∵关于x 的不等式x 2﹣(2m +4)x +m 2+4m ≤0的解集为M , 由x 2﹣(2m +4)x +m 2+4m ≤0,得m ≤x ≤m +4, ∴M ={x |m ≤x ≤m +4},∵B ∪M =R ,∴{m ≤1m +4≥4,解得0≤m ≤1,∴实数m 的取值范围是{m |0≤m ≤1}.25.(11分)已知函数f (x )=ln (1﹣x )+kln (1+x ),请从条件①、条件②这两个条件中选择一个作为已知,解答下面的问题: 条件①:f (x )+f (﹣x )=0 条件②:f (x )﹣f (﹣x )=0注:如果选择条件①和条件②分别解答,按第一个解答记分. (Ⅰ)求实数k 的值;(Ⅱ)设函数F (x )=(1﹣x )(1+x )k ,判断函数F (x )在区间上(0,1)的单调性,并给出证明; (Ⅲ)设函数g (x )=f (x )+x k +2|k |,指出函数g (x )在区间(﹣1,0)上的零点的个数,并说明理由.解:(Ⅰ)令{1−x >01+x >0,解得﹣1<x <1,所以函数f (x )的定义域为(﹣1,1),若选①因为f (x )+f (﹣x )=0,即f (x )为奇函数,则ln (1﹣x )+kln (1+x )+ln (1+x )+kln (1﹣x )=0,所以(1+k )ln (1﹣x 2)=0, 因为对任意x ∈(﹣1,1)上式均成立,所以1+k =0,解得k =﹣1; 若选②因为f (x )﹣f (﹣x )=0,即f (x )为偶函数,则ln (1﹣x )+kln (1+x )﹣[ln (1+x )+kln (1﹣x )]=0,所以(1−k)ln 1−x1+x=0, 因为对任意x ∈(﹣1,1)上式均成立,可得1﹣k =0,解得k =1. (Ⅱ)若选①则k =﹣1,可得F(x)=(1−x)(1+x)−1=1−x 1+x =21+x−1, 则函数F (x )在区间(0,1)上单调递减,证明如下: 对任意x 1,x 2∈(0,1),且x 1<x 2, 则F(x 1)−F(x 2)=(21+x 1−1)−(21+x 2−1)=21+x 1−21+x 2=2(x 2−x 1)(1+x 1)(1+x 2), 因为0<x 1<x 2<1,则1+x 1>0,1+x 2>0,x 2﹣x 1>0, 所以F (x 1)﹣F (x 2)>0,即F (x 1)>F (x 2), 所以函数F (x )在区间(0,1)上单调递减;若选②则k =1,可得F (x )=(1﹣x )(1+x )=1﹣x 2, 则函数F (x )在区间(0,1)上单调递减,证明如下: 对任意x 1,x 2∈(0,1),且x 1<x 2,则F(x 1)−F(x 2)=(1−x 12)−(1−x 22)=x 22−x 12=(x 1+x 2)(x 2−x 1),因为0<x 1<x 2<1,则x 1+x 2>0,x 2﹣x 1>0, 所以F (x 1)﹣F (x 2)>0,即F (x 1)>F (x 2), 所以函数F (x )在区间(0,1)上单调递减.(Ⅲ)若选①则k =﹣1,则g(x)=f(x)+1x +2=ln 1−x 1+x +1x+2,由(Ⅱ)可知,F(x)=1−x1+x在(0,1)内单调递减,且y =lnx 在定义域内单调递增, 则f(x)=ln(1−x)−ln(1+x)=ln1−x1+x在(0,1)内单调递减, 又f (x )为奇函数,则f (x )在(﹣1,0)内单调递减,且y =1x 在(﹣1,0)内单调递减,则g (x )在(﹣1,0)内单调递减,结合g(−12)=ln3>0,g(−110)=ln 119−8<0,可知g (x )在(﹣1,0)内有且仅有一个零点;若选②则k=1,则g(x)=f(x)+x+2=ln(1﹣x2)+x+2,由(Ⅱ)可知,F(x)=1﹣x2在(0,1)内单调递减,且y=lnx在定义域内单调递增,则f(x)=ln(1﹣x)+ln(1+x)=ln(1﹣x2)在(0,1)内单调递减,又f(x)为偶函数,则f(x)在(﹣1,0)内单调递增,且y=x+2在(﹣1,0)内单调递增,则g(x)在(﹣1,0)内单调递增,结合g(−12)=ln34+32>ln1e+32=12>0,g(−99100)=ln19910000+101100<ln1e2+2=0,可知g(x)在(﹣1,0)内有且仅有一个零点.26.(11分)已知函数f(x),g(x),h(x)的定义域均为R,给出下面两个定义:①若存在唯一的x∈R,使得f(g(x))=h(f(x)),则称g(x)与h(x)关于f(x)唯一交换;②若对任意的x∈R,均有f(g(x))=h(f(x)),则称g(x)与h(x)关于f(x)任意交换.(Ⅰ)请判断函数g(x)=x+1与h(x)=x﹣1关于f(x)=x2是唯一交换还是任意交换,并说明理由;(Ⅱ)设f(x)=a(x2+2)(a≠0),g(x)=x2+bx﹣1,若存在函数h(x),使得g(x)与h(x)关于f(x)任意交换,求b的值;(Ⅲ)在(Ⅱ)的条件下,若g(x)与f(x)关于ω(x)=e x−1e x+1唯一交换,求a的值.解:(Ⅰ)g(x)与h(x)关于f(x)是唯一交换,理由如下:因为f(g(x))=(x+1)2,h(f(x))=x2﹣1,令f(g(x))=h(f(x)),所以(x+1)2=x2﹣1,解得x=﹣1,所以f(g(x))=h(f(x))有唯一解x=﹣1,所以g(x)与h(x)关于f(x)是唯一交换.(Ⅱ)由题意可知,对任意的x∈R,f(g(x))=h(f(x))成立,即对任意的x∈R,a[(x2+bx﹣1)2+2]=h(a(x2+2));因为h(x)为函数,且h(a((﹣x)2+2))=h(a(x2+2)),故b=0,故a[(x2﹣1)2+2]=h(a(x2+2)),即a[(a(x2+2)a−3)2+2]=ℎ(a(x2+2)),所以ℎ(x)=a[(xa−3)2+2]=x2a−6x+11a,综上所述,b=0.(Ⅲ)当b=0时,g(x)=x2﹣1,因为g(x)与f(x)关于w(x)=e x−1e x+1唯一交换,所以存在唯一实数x ,使得w(x 2−1)=f(e x −1e x +1), 即存在唯一实数x ,使得e x 2−1−1e x 2−1+1=a[(e x −1e x +1)2+2],即存在唯一实数x ,使得a =e x 2−1−1e x 2−1+1[(e x −1e x +1)2+2]; 令s(x)=e x 2−1−1e x 2−1+1[(e x −1e x +1)2+2],q(x)=e x 2−1−1e e2−1+1,p(x)=(e x −1e x +1)2+2,且s (x ),q (x ),p (x )定义域均为R ,又q (−x )=e (−x)2−1−1e (−x)2−1+1=e x 2−1−1ex 2−1+1=q (x ),p(−x)=(e −x −1e −x +1)2+2=(1−e x 1+e x )2+2=(e x −1e x +1)2+2=p(x), 所以q (x ),p (x )都是偶函数,所以s (x )为偶函数,因此,若存在唯一实数x 使得a =e x 2−1−1e x 2−1+1[(e x −1e x +1)2+2],只能是a =s (0),所以a =1e −11e+12=1−e2(e+1),综上所述,a 的取值为1−e2(e+1).。
高一数学期末试题及答案
高一数学期末试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x2. 函数y = 2x + 3的斜率是:A. 2B. 3C. 1/2D. 1/33. 集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B等于:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3, 4}4. 圆的方程为(x-2)^2 + (y-3)^2 = 9,则圆心坐标是:A. (2, 3)B. (-2, -3)C. (0, 0)D. (3, 2)5. 函数f(x) = |x|的图象是:A. 直线B. 抛物线C. V形D. U形6. 等差数列{an}的首项a1 = 3,公差d = 2,则a5的值是:A. 11B. 13C. 15D. 177. 向量a = (3, -4)与向量b = (-2, 5)的点积是:A. 13B. -13C. 3D. -38. 函数y = sin(x)的周期是:A. πB. 2πC. 3πD. 4π9. 函数f(x) = x^2 - 4x + 3的顶点坐标是:A. (2, -1)B. (2, 1)C. (-2, 1)D. (-2, -1)10. 抛物线y = x^2 - 6x + 9的顶点坐标是:A. (3, 0)B. (-3, 0)C. (3, 9)D. (-3, 9)二、填空题(每题4分,共20分)11. 已知等比数列{bn}的首项b1 = 2,公比q = 3,则b3的值是________。
12. 函数y = 3x - 2与x轴的交点坐标是________。
13. 圆心在原点,半径为5的圆的方程是________。
14. 向量a = (1, 2)与向量b = (-2, 4)的向量积是________。
15. 函数f(x) = x^3 - 3x^2 + 2x + 1的极值点是________。
2023-2024学年河北省邯郸市高一(下)期末数学试卷+答案解析
2023-2024学年河北省邯郸市高一(下)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.有三组数据,5,5,6,6,6,7,7,7;,4,5,5,6,7,7,8,8;,3,3,3,6,9,9,9,设它们的方差依次为,则()A. B. C. D.2.在复平面内,非零复数z满足为虚数单位,则复数z对应的点在()A.一、三象限B.二、四象限C.实轴上除原点外D.坐标轴上除原点外3.已知向量,且,则向量与向量的夹角为()A. B. C. D.4.已知的顶点坐标分别是,则()A. B. C. D.5.设,是两个平面,m,l是两条直线,则下列命题为假命题的是()A.若,,,则B.若,,,则C.若,,,则D.若,,,则6.在中,,,平面内一点O满足,则向量在向量上的投影向量为()A. B. C. D.7.在三棱锥中,平面ABC,,,若该三棱锥的体积为,则其外接球的表面积为()A. B. C. D.8.甲、乙两人各有一枚质地均匀的硬币,甲抛掷2次,乙抛掷3次,事件“甲抛掷的两次中第一次正面朝上”,事件“甲抛掷的两次硬币朝上的面相同”,事件“甲得到的正面数比乙得到的正面数少”,则下列说法正确的是()A. B.C. D.二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得2分,有选错的得0分。
9.已知非零向量,下列说法错误的是()A.若,则B.若,则C.若,且,则D.若,则与垂直的单位向量的坐标为10.已知复数z,w均不为0,则下列式子正确的是()A. B. C. D.11.在中,内角A,B,C所对的边分别为a,b,c,已知:::5:6,D为线段AC上一点,则下列判断正确的是()A.为钝角三角形B.的最大内角是最小内角的2倍C.若D为AC中点,则D.若,则三、填空题:本题共3小题,每小题5分,共15分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一年级期末考试数 学 试 卷1已知ABC a b c A B C ∆中,、、分别为角、、的对边7,23c C π=∠=,且ABC ∆的面积为332,则a b +等于 211。
2已知数列{a n }满足a 1=1,a n =log n (n +1)(n ≥2,n ∈N *).定义:使乘积a 1·a 2·a 3……a k为正整数的k (k ∈N *)叫做“和谐数”,则在区间[1,2019]内所有的“和谐数”的和为20363.已知数列{a n }满足a 1+2a 2+3a 3+…+na n =n (n +1)(n +2),则它的前n 项和S n =_____2932n n +_____.4数列1, 12, 124,, 1242n +++++++,的前n 项和为 n n --+2215、管理人员从一池塘中捞出30条鱼做上标记,然后放回池塘,将带标记的鱼完全混合于鱼群中。
10天后,再捕上50条,发现其中带标记的鱼有2条。
根据以上数据可以估计该池塘有 750 条鱼。
6.右面是一个算法的伪代码.如果输入的x 的 值是20,则输出的y 的值是 150 .第6题7.2019年4月14日清晨我国青海省玉树县发生里氏7.1级强震。
国家抗震救灾指挥部迅速成立并调拨一批救灾物资从距离玉树县400千米的某地A 运往玉树县,这批救灾物资随17辆车以v 千米/小时的速度匀速直达灾区,为了安全起见,每两辆车之间的间距不得小于2)20(v 千米。
则这批救灾物资全部运送到灾区所需要的时间最短时车辆行驶的速度为___100=v _______(千米/小时).8.已知实数、、a b c 满足条件1ab bc ca ++=,给出下列不等式: ①2222221a b b c c a ++≥;②123abc≥;③2()2a b c ++>;④22213a bc abc abc ++≤;Read xIf x ≤5 then y ←10x Elsey ←7.5x End if Print y其中一定成立的式子有_________.8.③④[提示]:33a b c ===时排除①;2a =,3b =,1c =-时排除②;而2()a b c ++2222()3()3a b c ab bc ca ab bc ca =+++++≥++=2>,∴③成立;2()ab bc ca ++2223[()()()()()()]3()ab bc bc ca ca ab a bc ab c abc ≥++=++,∴④成立.9设1,1,,>>∈b a R y x ,若82,2=+==b a b a yx,则yx 11+得最大值 3 . 10已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a 、b 的取值分别是10.5,10.5a b == .11已知等差数列{}{},n n a b 的前 n 项和为 S n , T n ,若对于任意的自然数 n ,都有23,43n n S n T n -=-则935748a a b b b b +++ = 4119.12从长度分别为2,3,4,5的四条线段中任意取出三条,以这三条线段为边可以构成三角形的概率是3413在样本的频率分布直方图中,共有4个小长方形,这4个小长方形的面积由小到大构成等比数列}{n a ,已知122a a =,且样本容量为300,则小长方形面积最大的一组的频数为 16014设首项不为零的等差数列{}n a 前n 项之和是n S ,若不等式22212n n S a a nλ+≥对任意{}n a 和正整数n 恒成立,则实数λ的最大值为15.二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算....................步骤..) 15为了了解某中学学生的体能情况,体育组决定抽样三个年级部分学生进行跳绳测试,并将所得的数据整理后画出频率分布直方图(如下图).已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数是5. (1) 求第四小组的频率和参加这次测试的学生人数; (2) 在这次测试中,学生跳绳次数的中位数落在第几小组内?(3) 参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?16有一个容量为50的样本,数据的分组及各组的频数如下:[)5.15,5.12 3 [)5.18,5.15 8 [)5.21,5.18 9 [)5.24,5.21 11 [)5.27,5.24 10 [)5.30,5.27 5 [)5.33,5.30 4(1)列出样本的频率分布表; (2)画出频率分布直方图(3)根据频率分布直方图估计,数据落在[)5.24,5.15的可能性约是多少? 16 解: (1).设该厂本月生产轿车为n 辆,由题意得,5010100300n =+,所以n=2000. z=2000-100-300-150-450-600=400(2) 设所抽样本中有m 辆舒适型轿车,因为用分层抽样的方法在C 类轿车中抽取一个容量为5的样本,所以40010005m=,解得m=2也就是抽取了2辆舒适型轿车,3辆标准型轿车,分别记作S 1,S 2;B 1,B 2,B 3,则从中任取2辆的所有基本事件为(S 1, B 1), (S 1, B 2) , (S 1, B 3) (S 2 ,B 1), (S 2 ,B 2), (S 2 ,B 3),( (S 1, S 2),(B 1 ,B 2), (B 2 ,B 3) ,(B 1 ,B 3)共10个,其中至少有1辆舒适型轿车的基本事件有7个基本事件: (S 1, B 1), (S 1, B 2) , (S 1, B 3) (S 2 ,B 1), (S 2 ,B 2), (S 2 ,B 3),( (S 1, S 2),所以从中任取2辆,至少有1辆舒适型轿车的概率为710. (3)样本的平均数为1(9.48.69.29.68.79.39.08.2)98x =+++++++=, 那么与样本平均数之差的绝对值不超过0.5的数为9.4, 8.6, 9.2, 8.7, 9.3, 9.0这6个数,总的个数为8,所以该数与样本平均数之差的绝对值不超过0.5的概率为75.086=.17、上海某学校要从艺术节活动中所产生的4名书法比赛一等奖的同学和2名绘画比赛一等奖的同学中选出2名志愿者,参加即将在上海举行的世博会的志愿服务工作.(1)求选出的两名志愿者都是获得书法比赛一等奖的同学的概率;(2)求选出的两名志愿者中一名是获得书法比赛一等奖,另一名是获得绘画比赛一等奖的同学的概率.17、解:把4名获书法比赛一等奖的同学编号为1,2,3,4,2名获绘画比赛一等奖的同学编号为5,6. 从6名同学中任选两名的所有可能结果如下:(1,2),(1,3),(1,4),(1,5), (1,6),(2,3),(2,4),(2,5), (2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个.(1) 从6名同学中任选两名,都是书法比赛一等奖的所有可能是:(1,2),(1,3),(1,4), (2,3),(2,4),(3,4),共6个.∴选出的两名志愿者都是书法比赛一等奖的概率162. 155p==(2) 从6名同学中任选两名,一名是书法比赛一等奖,另一名是绘画比赛一等奖的所有可能是: (1,5), (1,6), (2,5), (2,6), (3,5),(3,6),(4,5),(4,6),共8个.∴选出的两名志愿者一名是书法比赛一等奖,另一名是绘画比赛一等奖的概率是28. 15p=18如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求B在AM上,D在AN上,且对角线MN过C点,已知|AB|=3米,|AD|=2米,⑴要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?⑵当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.D CN PMBA18解:⑴设AN 的长为x 米(x >2),∵||||||||AM DC AN DN =,∴|AM |=23-x x......... 2分 ∴AMPN S =|AN |•|AM |=232-x x ,由AMPN S >32得232-x x >32,∵x >2,∴3x 2-32x +64>0,即(3x -8)(x -8)>0∴382<<x 或x >8,即AN 长的取值范围是),8()38,2(∞+⋃ ............ 6分⑵12212)2(3212)2(12)2(32322+-+-=-+-+-=-=x x x x x x x y2412212)2(32=+-⋅-≥x x ..................................................................... 10分 当且仅当212)2(3-=-x x ,即x =4时,y =232-x x 取得最小值.即AMPN S 取得最小值24(平方米) .............................................................. 12分19已知函数()2log f x m x t =⋅+的图像经过点()4,1A 、点()16,3B 及点(),n C S n ,其中n S 为数列{}n a 的前n 项和,*n N ∈。
(1)求n S 和n a ;(2)设数列{}n b 的前n 项和为n T ,()1n n b f a =-,不等式n n T b ≤的解集,*n N ∈(1) 由.1,13412⎩⎨⎧-==⇒⎩⎨⎧=+=+t m t m t m 1分所以f(x)= log 2x – 1 .由条件得: n = log 2S n – 1 .得: )(21*+∈=N n S n n , 1分n n n n n n S S a n 222,211=-=-=≥+-时当,4,11===S a n n 时当,所以 ⎩⎨⎧=∈≥=时当时当14,22n N n n a n n . 2分(2) 0,111===T b n 时当, 不等式成立. 1分,2时当≥n b n = f(a n ) – 1= n – 2 ,.2232)1)(20(02+-=--++=n n n n T n02)3)(2(265)2(22322≤--=+-=--+-=-n n n n n n n b T n n ,解得: .32≤≤n 3分=∴∈*n N n ,2,3 1分所求不等式的解集为{1, 2,3 }. 1分20已知点)31,1(是函数x a x f =)((a >0,且a ≠1)的图像上一点.等比数列{a n }的前n 项和为f (n )-c .数列{b n }(b n >0)的首项为c ,且前n 项和S n 满足)2(11≥+=---n s s s s n n n n .⑴求数列{a n }和{b n }的通项公式;⑵若数列⎭⎬⎫⎩⎨⎧+11n n b b 的前n 项和为T n ,问满足20111000>n T 的最小正整数n 是多少?解:⑴31)1(==a f ,∴x x f )31()(= .................................................................... 1分 c c f a -=-=31)1(1,92])1([])2([2-=---=c f c f a , 272])2([])3([3-=---=c f c f a . 又数列{a n }成等比数列,c a a a -=-=-==31322728143221,所以c =1;又公比3112==a a q ,所以*)31(2)31(321N n a n n n ∈-=-=-.................. 4分 )2())((1111≥+=+-=-----n S S S S S S S S n n n n n n n n又b n >0,n S >0,∴11=--n n S S ;数列}{n S 构成一个首相为1公差为1的等差数列,n n S n =⨯-+=1)1(1, S n =n 2,当n ≥2,b n =S n -S n -1=n 2-(n -1)2=2n -1;∴b n =2n -1(n ∈N *) .................................................................................. 8分())12()12(1751531311111121433221+⨯-++⨯+⨯+⨯=++++=+n n b b b b b b b b T n n n=)121121(21)7151(21)5131(21)311(21+--++-+-+-n n =12)1211(21+=+-n n n由2011100012>+=n n T n 得n >90 满足20111000>n T 的最小正整数为91 ........................................................... 12分。