第八章:动量典型例题

第八章:动量典型例题
第八章:动量典型例题

第一节 冲量和动量

1——冲量相等时物体的运动情况

如果物体在任何相等的时间内受到的冲量都相同,那么这个物体的运动( ). A 、可能是匀变速运动 B 、可能是匀速圆周运动 C 、可能是匀变速曲线运动 D 、可能是匀变速直线运动

分析与解:冲量是力与时间的乘积,在任何相等的时间内冲量都相同,也就是物体受到的力恒定不变,所以物体做匀变速运动,其轨迹可以是直线的也可以是曲线的.答案为A 、C 、D .

2——下落物体的重力冲量

一个质量为5kg 的物体从离地面80m 的高处自由下落,不计空气阻力,在下落这段时间内,物体受到的重力冲量的大小是( ).

A .200N ·s

B .150N ·s

C .100N ·s

D .250N ·s

分析与解:根据冲量的定义t F I ?=在这个过程中重力的大小是一个定值,只需求出这个过程所用的时间即可.

s

N 1002105)

s (22212?=??=?===

=t m g I t g h t gt h

答案:C .

3——冲量公式的简单应用

一匹马通过不计质量的绳子拉着货车从甲地到乙地,在这段时间内,下列说法中正确的是:( ).

A 、马拉车的冲量大于车拉马的冲量

B 、车拉马的冲量大于马拉车的冲量

C 、两者互施的冲量大小相等

D 、无法比较冲量大小

分析与解:在这个过程中,马对车的拉力,与车对马的拉力是一对作用力与反作用力,大小总是相等的,根据冲量的定义,时间也相同,所以冲量的大小是相等的.

答案:C .

4——关于动量的矢量计算

质量为5kg 的小球以5m /s 的速度竖直落到地板上,随后以3m /s 的速度反向弹回,若取竖直向下的方向为正方向,则小球动量的变化为( )

A .10kg ·m /s

B .-10kg ·m /s

C .40kg ·m /s

D .-40kg ·m /s

分析与解:动量的变化是末动量减去初动量,规定了竖直向下为正. 初动量255511=?==mv p kg ·m/s 末动量15)3(522-=-?==mv p kg ·m /s

动量的变化40251512-=--=-=?p p p kg ·m /s

答案:D .

5——关于抛体运动物体的重力冲量

质量为5kg 的小球,从距地面高为20m 处水平抛出,初速度为10m /s ,从抛出到落地过程中,重力的冲量是( ).

A .60N ·s

B .80N ·s

C .100N ·s

D .120N ·s

分析与解:在这个过程中,小球所受重力恒定不变,只需求出这个过程的时间即可

)s N (1002105)s (210

20

22212?=??=?=?==?=

=

=

t mg t F I t g h t gt h

答案:C .

6——动量大小与速度的关系

质量为60kg 以1m/s 速度步行的人和以800m/s 速度飞行的质量为0.01kg 的子弹,哪个动量大?

解:人m/s 60kg m/s 1kg 60111?=??=?=v m p 子弹m/s kg 8m/s kg 80001.0222?=??=?=v m p

即:人的动量大.

7——课本例题分析与设疑

一个质量是0.1kg 的钢球,以6 m /s 的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m /s 的速度水平向左运动(如图).碰撞前后钢球的动量有没有变化?变化了多少?

分析:动量是矢量,它的大小和(或)方向发生了变化,动量就发生了变化,碰撞前后虽然钢球速度大小没有变化,都是6m /s ,但速度的方向发生了变化,动量的方向与速度的方向相同,动量的方向也发生了变化,所以钢球的动量发生了变化.

解:取水平向右的方向为正方向,碰撞前钢球的速度6=v m/s ,碰撞前钢球的动量为:

m/s 0.6kg m/s kg 61.0?=??==mv p

碰撞后钢球的速度6-='v m/s ,碰撞后钢球的动量为

m/s 0.6kg m/s kg 61.0?-=??-='='v m p

碰撞前后钢球动量的变化为

m/s kg 2.1m/s 0.6kg m/s 0.6kg ?-=?-?-=-'p p

动量的变化p p p -'=?也是矢量,求得的数值为负值,表示p ?的方向与所取的正方向相反,p ?的方向水平向左。

结论:碰撞前后物体仍在同一条直线上运动,可先设一个正方向,末动量p '和初动量p 可据此用正、负值表示,则动量的变化p ?却可用代数方法求出.

设疑:若碰撞前后物体不在同一条直线上运动,那么动量的变化又如何求呢? 8——课本思考与讨论的分析

思考与讨论:

如图所示,一个质量是0.2kg 的钢球,以2m/s 的速度斜射到坚硬的大理石板上,入射的角度是45°,碰撞后被斜着弹出,弹出的角度也是45°,速度仍为2m/s ,你能不能用作图法求出钢球动量变化的大小和方向?

本书虽然不要求作这种计算,但是思考一下这个问题,会帮助你进一步认识动量的矢量性.

分析:(如图)动量是矢量,动量方向与速度方向相同,我们可以用作图法(如图)根据平行四边形定则求动量变化p ?.

根据mv

p

p

p

p

p

p2

2

)

(=

=

-

+'

=

-'

=

?可求得56

.0

=

?p kg·m/s,方向竖直向上.

结论:碰撞前后物体不在同一条直线上运动,可用作图法,根据平行四边形定则,以p 和-p为邻边,作出平行四边形,其对角线长与p

?大小成正比,方向就是p

?的方向.

第二节动量定理

1——由动量定理判断物体的冲量变化

甲、乙两个质量相同的物体,以相同的初速度分别在粗糙程度不同的水平面上运动,乙物体先停下来,甲物体又经较长时间停下来,下面叙述中正确的是().

A、甲物体受到的冲量大于乙物体受到的冲量

B、两个物体受到的冲量大小相等

C、乙物体受到的冲量大于甲物体受到的冲量

D、无法判断

分析与解:本题中甲、乙两物体受到的冲量是指甲、乙两物体所受合外力的冲量,而在这个过程中甲、乙两物体所受合外力均为摩察力,那么由动量定理可知,物体所受合外力的冲量等于动量的增量,由题中可知,甲、乙两物体初、末状态的动量都相同,所以所受的冲量均相同.

答案:B.

2——由动量大小判断外力大小

质量为0.1kg的小球,以10m/s的速度水平撞击在竖直放置的厚钢板上,而后以7m/s的速度被反向弹回,设撞击的时间为0.01s,并取撞击前钢球速度的方向为正方向,则钢球受到的平均作用力为().

A.30N B.-30N C.170N D.-170N

分析与解在撞击过程中小球的动量发生了变化,而这个变化等于小球所受合外力的冲量,这个合外力的大小就等于钢板对钢球作用力的大小.(此时可忽略小球的重力)

N

170

)

10

(1.0

)7

(

1.0

01

.0

1

2

-

=

-

-

-

?

=

?

-

=

?

?

=

F

F

m v

m v

t

F

p

I

答案:D.

3——由速度变化判断冲量

质量为m 的钢球自高处落下,以速率1v 碰地,竖直向上弹回,碰撞时间极短离地的速率为2v ,在碰撞过程中,地面对钢球的冲量的方向和大小为( ).

A .向下,)(21v v m -

B .向下,)(21v v m +

C .向上,)(21v v m -

D .向上,)(21v v m +

分析与解:在小球碰撞到弹起的过程中,小球速度变化的方向是向上的,所以小球受到地面冲量的方向一定是向上的,在忽略小球重力的情况下,地面对小球冲量的大小等于小球动量的变化.

以竖直向上为正方向.

)

()(1212v v m I v m mv I +=--=

答案:D .

4——小球下落到软垫时受到的平均作用力

一质量为100g 的小球从0.8m 高处自由下落到一个软垫上,若从小球接触软垫到小球陷至最低点经历了0.2s ,则这段时间内软垫对小球的冲量为(g 取2

/10s m ,不计空气阻力)

解析:根据动量定理,设向上为正.

)()(0mv t mg F --=- ①

gh v 20= ②

由①、②得到6.0=?t F N ·s 题目本身并没有什么难度,但一部分学生在学习中练习此类问题时却屡做屡错.原因是: (1)对基本概念和基本规律没有引起重视; (2)对动量定理等号左边I 的意义不理解; (3)对此类问题中重力的取舍不清楚. 题目中所给的0.2s 并没有直接用上,但题目中的0.2s 告诉我们作用时间t 较长,重力作用不能忽略,我们可以进一步剖析此题.

由题目中所给的0.2s 时间,可以求出软垫对小球的冲力为:

32

.06

.0==

F N ,而重力为1=mg N 。相差不了多少.重力不能忽略. 而假设作用的时间为0.002s 时,则:

300='F N ,与重力mg 相比,mg F >>',重力可以忽略.

点拔:在处理此类问题时,若作用时间极短,大约小于0.01s ,计算中可以忽略重力影响,若时间较长,则重力的影响是不能忽略的.

5——应用动量定理忽略中间过程

质量为m 的物体静止在足够大的水平面上,物体与桌面的动摩擦因数为μ,有一水平

恒力作用于物体上,并使之加速前进,经1t 秒后去掉此恒力,求物体运动的总时间t .

解析:

解法一、见图.物体的运动可分为两个阶段,第一阶段受两个力F 、f 的作用,时间1t ,物体由A 运动到B 速度达到1v ;第二阶段物体只受f 的作用,时间为2t ,由B 运动到C ,速度由1v 变为O .

设向右为正,据动量定理:

第一阶段:1011)(mv mv mv t f F =-=-① 第二阶段:1110mv mv t f -=-=?-② 两式相加:0)(211=+-?t t f t F

mg f μ= ,代入上式,可求出:

mg

t mg F t μμ1

2)(-=

∴mg

Ft t t t μ1

21=

+=总 解法二:如果用P t F t F t F I n n ?=??+?= 2211,把两个阶段当成一个过程来看: F 作用1t 时间,ng μ则作用了总t 时间,动量变化0=?P

01=-?总mgt t F μ

m g

t F t μ1

?=

总 点拨:物体动量的变化等于各个力在各段时间上积累总的效果,即:

P t F t F t F n n ?=??+? 2211

例6、将质量为0.10kg 的小球从离地面20m 高处竖直向上抛出,抛出时的初速度为15m /s ,当小球落地时,求: (1)小球的动量;

(2)小球从抛出至落地过程中的动量增量;

(3)小球从抛出至落地过程中受到的重力的冲量.

选题目的:考查动量和冲量的理解和计算.

解析:首先要求出小球落地时的速度v ,然后再根据有关定义分别求解.

根据运动学中位移和速度关系式as v v 22

02=-可得

201021522??=-v

25=v m/s

取向下为正方向.

(1)落地时小球的动量为:

5.2251.0=?==mv p

(2)小球从抛出至落地的动量增加

0mv mv p -=?

151.0251.0?-?= 0.1=kg ·m/s

方向竖直向下

(3)小球下落的时间t 可由速度公式at v v +=0得

101525+=t 0.1=t s

小球受到的重力的冲量

0.10.1101.0=??=?=t mg I N·s

例7、一细绳跨过一轻的定滑轮,两端分别挂有质量m 及M 的物体,如图所示,M 静止在地面上,且m M >,当m 自由下落h 距离后,绳子才被拉紧,求绳子刚被拉紧时两物体的速度,以及M 能上升的最大高度.

选题目的:考查动量定理的运用.

解析:绳子在拉紧而使两物体碰撞时,绳子的弹力大小是变化的,时间是极短而不好确定的,因此无法用牛顿运动定律求解,必须应用动量定理解题.整个问题可分三个阶段来讨论

第一阶段:m 自由落下h 距离使绳子拉紧,此时m 的速度为

gh v 21=

第二阶段:当绳子拉紧时,m 和M 除受到重力外,还受到绳子的弹力F ,经过极短时间t ?后,m 和M 才以相同的速度v '分别作向上向下的运动.

我们应分别对m 和M 应用动量定理,皆选定向上的方向为正向.受力如图所示. 对m 物体应用动量定理:

)()(11mv v m t mg F --'-=?-

对M 物体也应用动量定理

)()(12mv v M t Mg F --'=?-

由于弹力F F F ==21,且重力mg 、Mg 和弹力21F F 、相比较,可以忽略,则由上两式可得

m

M gh m m M mv v +=

+=

'21

此即绳子被拉紧时两物体的速度

第三阶段:绳子被拉紧后,m 和M 分别作向下和向上的加速运动,其加速度可由牛顿第二定律求出:

对隔离体M Ma F Mg =- 对偏离体m ma mg F =-

故g m

M m

M a +-=

当M 以初速度v '上升,其加速度a 的方向与速度方向相反,即作匀减速运动,上升到最大高度H 时速度为零,即

g

m

M m M m M gh m a v H aH

v +-+='=='2/)2(2222

2 2

22m

M h

m -=

第三节 动量守恒定律

1——关于碰撞系统的动量守恒

质量为2m 的物体A ,以一定的速度沿光滑水平面运动,与一静止的物体B 碰撞后粘为一体继续运动,它们共同的速度为碰撞前A 的速度的2/3,则物体B 的质量为

( ).

A .m

B .2m

C .3m

D .

m 3

2

分析与解在碰撞的过程中,A ,B 物体构成的系统,动量守恒,并且碰撞后两者具有共同的速度.

设碰撞前A 的速度为0v ,碰撞后两者共同的速度为03

2

v v =

,B 物体质量为M m

M v M m v m v M m m v =?+=?+=0003

2

)2(2)2(2

答案:A .

2——微观粒子的动量守恒的应用

一个不稳定的原子核,质量为M ,处于静止状态,当它以速度0v 释放一个质量为m 的粒子后,则原子核剩余部分的速度为( ).

A .

0v m M m - B .0v M m - C .0v m M m -- D .0v m

M m

+-

分析与解:在这个过程中原子核和它释放出的粒子构成的系统,满足动量守恒定律且总动量大小为零,选取0v 的方向为正方向.

0)(0v m

M m v v m M m v --=-+=

方向与0v 的方向相反. 答案:C .

3——空中爆炸物体的平抛运动

向空中发射一物体,不计空气阻力,当此物体的速度恰好沿水平方向时,物体炸裂成a 、b 两块,若质量较大的a 块的速度仍沿原来的方向,那么下列说法中正确的是( ). A 、b 的速度方向一定与原速度方向相反

B 、从炸裂到落地这段时间内,a 飞行距离一定比b 大

C 、a 、b 一定同时到达水平地面

D 、a 、b 受到的爆炸力的冲量大小一定相等

分析与解:当炸弹爆炸瞬间,炸弹具有水平方向的速度,并且水平方向不受外力.所以水平

方向炸弹的动量守恒,那么以后a 、b 两块的动量和一定保持不变,且方向一定与原来水平方向相同,所以b 的速度方向也可能与原方向相同.由于两者具有水平方向的速度且高地高度相同,因此一定同时落地,由于不知a 、b 速度的大小所以无法比较a 、b 飞行的水平距离.爆炸力对a 、b 的作用大小是相同的,且作用的时间相同,所以爆炸力冲量的大小相等.

答案:C 、D .

例4:气球质量为200kg ,载有质量为50kg 的人,静止在空中距地面20m 高的地方,气球下方悬根质量可忽略不计的绳子,此人想从气球上沿绳慢慢下滑至地面,为了安全到达地面,则这根绳长至少为多少米?(不计人的高度)

选题目的:考查动量守恒定律的灵活运用.

解析:人和气球静止空中,所以人球组成的系统所受合外力为零,人沿绳下滑,不论

人以何种方式运动,根据动量守恒,气球都要向相反的方向(向上)运动.当人下滑到地时,气球上升一段距离,此时人相对气球运动的距离为原离地高度与气球上升的距离之和.如图所示,即为21s s +,正是人安全到地的绳长.

解法一:设人下滑速度为1v ,气球上升速度为2v ,选向下为正方向,因系统合外力为零,故系统动量守恒.

22110v m v m -=

由于人球运动规律相同,所以上式两边同乘以时间t 得: ∴5m m 20200

50

.1212=?==

s m m s 故绳长为25m 5m m 2021=+=+=s s l

解法二:设人的下滑速度为1v ',球上升速度为2v ',选向下为正方向,则人对地速度为21

v v '-',由系统动量守恒得 2221

1)(v m v v m '-'-'= 因作用时间相同,上式两边同乘以t 得:

2211

1)(0s m m s m '+-'= 又121

)(s t v v ='-' 即 121

s t s s ='-'

解得:25m m 20200

200

5022

2

11

=?+=

+='s m m m s

例5:质量为M 的一列火车在平直的轨道上匀速行驶,速度为v 0.已知列车各部分所受的阻力都等于它们的重力的k 倍.某时刻列车后部质量为m 的一段脱钩,司机未能发现,仍以原牵引力带动列车前进.求

①当脱离部分的速度减为v 0/2时,前面部分的速度.

②当后面部分停止后多长时间,前面部分的速度达到2 v 0.

选题目的:考查动量守恒定律的应用.

解析:以整列火车为研究对象,脱钩前后相比较,除了两部分间的相互作用力有变化以外,所受外力没有发生变化,因此满足动量守恒的条件,但只限于后面部分运动过程中.

①根据动量守恒 M v 0=(M-m )v+ m v 0/2, 解出前面部分的速度为 v=

0)

(22v m M m

M --.

②后面部分停止时刻,前面部分的速度为v’,根据动量守恒

Mv 0= (M-m )v’, 则 v’=

0v m

M M

-,

后面部分停止后,对前面部分应用动量定理,设再经过时间t 速度达到2 v 0, 则 [kMg-k (M-m )g ]·t=(M-m )(2 v 0- v’), 解出 t=

kmg

v m M 0

)2(-.

(最后答案中若M<2m ,则t 为负值,说明在后面部分停止运动之前,前面部分的速度就已达到2 v 0了.)

例6:如图所示,一质量为m 的木块沿光滑的水平直轨道以速度v 0=12m/s 匀速运动,木块顶部边缘有一质量为m’的钢珠随它一起运动.木块与另一质量为m /3的静止木板发生碰撞,碰撞时间极短.碰后即合在一起运动.已知木块顶部距木板的高度为h =1.8m ,要想使钢珠落在木板上,木板的长度至少多大?(取g =10m/s 2)

选题目的:考查动量守恒定律与运动知识的综合运用.

解析:木块与木板碰撞过程中总动量守恒, 即:m v 0=(m+m /3)v , 解出 v=3 v 0/4=9m/s .

碰后钢珠作平抛运动,初速度为v 0=12m/s ,而木板与木块一起作匀速运动,速度为v=9m/s .钢珠落到木板上所需的时间=

g

h

2=0.6s , 钢珠落在木板上时与木块边缘的距离l= v 0t - vt = 1.8m ,即木板的长度至少为1.8m .

第四节 动量守恒定律的应用

例题:如图 所示质量5.0=m kg 的木块以1m /s 的水平速度滑到在光滑水平面上静止的质量为2=M kg 的小车上,经过0.2s 木块和小车达到相同速度一起运动,求木块和小车间的动摩擦因数。

分析与解答: 由于水平面是光滑的,所以木块和小车构成的系统满足动量守恒定律,这样可以解得木块和小车共同的求速度,而小车动量的变化是由于摩擦力的冲量引起的,根据动量定理可以解得木块所受的摩擦力,可以求得动摩擦因数。

以木块初速度0v 的方向为正方向,木块和小车共同的速度为v

4.02

2

.01)m/s (2.015

.25

.000

0=-=-=

-=?-?==?=+=

gt v v m v m v t m g p

I v M m m v μμ

例题 在质量为M 的小车中挂有一个单摆、摆球的质量为0m ,小车(和单摆)以恒定的速度v 沿光滑水平地面运动,与位于正对面的质量为m 的静止的木块发生碰撞,碰撞时间极短,在此碰撞过程中,下列哪个或哪些说法是可能发生的?

(A )小车、木块、摆球的速度都发生变化,分别变为321v v v 、、,

满足:30210)v m mv Mv v m M ++=+(

(B )摆球的速度不变,小车和木块的速度变1v 和2v , 满足:21mv Mv Mv +=

(C )摆球的速度不变,小车和木块的速度都变为v , 满足;v m M Mv )(+=

(D )小车和摆球的速度都变为1v ,木块的速度变为2v , 满足:2100)()mv v m M v m M ++=+(

解析 题目中所给的条件为碰撞时间极短,因此在碰撞后,摆球的速度还没有来得及变化,因此只有小车与木块发生相互作用,有可能碰后二者分开,B 对.有可能碰后粘在一起,C 对,A 、D 错.

点拨 由于题目给的“碰撞时间极短”因此三者的相互作用为两个阶段.第一阶段,木块、小车发生相互作用,动量改变,第二阶段再经时间t 后摆球、木块、小车再次相互作用、动量再一次改变.

例题 如图所示,在光滑水平面上,质量为0.5kg 的球A 以2m /s 的速度向右运动与迎面而来的质量为2kg 速度大小为4m /s 的B 球正碰,碰后A 球以2m /s 的速率被反弹,求此时B 球的速度.

解析 两球碰撞时动量守恒.设A v 方向为正方向,A 球质量为A m ,B 球质量为B m .碰

后速度分别为B A v v ''、,可设B v '方向仍然向左

B B

B A A B B A A v v m v m v m v m '-?-=?-?'-'-=-225.04225.0

m/s 3='B v 方向向左.

点拨 碰撞前后物体运动状态要发生变化,确定好碰撞前后各个物体动量的方向是正确解题的关键.

例题 如图所示,质量为M 的车(包括物),以速度v 在光滑水平面上匀速运动,质量为m 的物体被向车后方以仰角θ方向相对地速度的大小为v '抛出.求抛出物体后车速度为多少?

解析 在抛出物体的瞬间,竖直方向合外力要发生变化,∴总动量不守恒,但在水平方向上合外力为零,因此水平方向动量守恒.

设车速v 的方向为正方向,由动量守恒定律

v m M v m Mv ?-+'-=)(cos θ

有:m

M v m Mv v -'+=

θ

cos

点拨 物体被抛出的瞬间,地面的支持力要大于重力,因此∑≠0外

F

总动量不守恒,但水平方向由于

∑=0外

F

∴水平方向动量守恒.

例1、 在以下几种情况中,属于动量守恒的有哪些?

(A )车原来静止,放于光滑水平面,车上的人从车头走到车尾.

(B )水平放置的弹簧一端固定,另一端与置于光滑水平面的物体相连,令弹簧伸长,使物体运动起来.

(C )斜面体放于光滑水平地面上,物体由斜面顶端自由滑下,斜面体后退.

(D )光滑水平地面上,用细线拴住一个弹簧,弹簧的两边靠放两个静止的物体,用火烧断弹簧的瞬间,两物体被弹出. 解析 静止的车放于光滑水平地面上

∑=0外

F

人从车头走到车尾过程中,

人与车通过摩擦力发生相互作用,符合动量守恒条件.A 对. 弹簧一端固定,在弹簧伸长使物体运动的过程中由于∑≠0外

F

∴动量不守恒.B 错.

物体从斜面顶端滑下,斜面后退,由于物体受重力作用 ∴∑≠0外

F

总动量不守恒.但因为水平方向

∑=0外

F

,∴ 只是在水平方向上动量守恒.∴ C 错.

光滑水平面,烧断弹簧,使两物体弹出的过程符合

∑=0外

F

。动量守恒.D 对.

点拨 判断物体系在物体相互作用过程中是否动量守恒,要扣住动量守恒的条件.

例2、 在做碰撞中的动量守恒实验中安装斜槽轨道时,应让斜槽末端点的切线保持水平,这样做的目的是为了使( )。 A 入射球得到较大的速度.

B 入射球与被碰球对心碰撞后,速度均为水平方向.

C 入射球与被碰球碰撞时动能无损失.

D 入射球与被碰球碰后均能从同一高度飞出.

分析与解 本实验的原理要用长度来代替小球在水平方向飞行时的初速度,所以必须要求小球在碰撞时和飞出时的速度是水平的,因此必须使斜槽末端点的切线保持水平。 答案:B 。 例3、质量相等的A 、B 两球在光滑水平面上沿同一直线,同一方向运动,A 球动量为7kg·m/s ,B 球的动量为5kg·m/s ,当A 球追上B 球时发生碰撞,则碰后A 、B 两球的动量P A 、P B 可能值是:

A 、P A =6kg·m/s P

B =6kg·m/s B 、P A =3kg·m/s P B =9kg·m/s

C 、P A =-2kg·m/s P B =14kg·m/s

D 、P A =-4kg·m/s P B =17kg·m/s

答案:A

第五节 反冲运动 火箭

例2、自动步枪每分钟能射出600颗子弹,每颗子弹的质量为20g ,以500m/s 的速度射出枪口,求因射击而使人受到的反冲力的大小.

选题目的:考查反冲力的计算.

解析:对子弹,由动量定理得

0-==nmv Ft

10060

500

02.0600=??==

t nmv F (N ) 根据牛顿第三定律得知,因射击而使人受到的反冲力的大小100==F F 人N .

例3:在反冲小车实验中,点燃酒精,水蒸气将橡皮塞冲出,小车沿相反方向运动.如

果小车总质量3=M kg ,水平喷出的橡皮塞质量为0.1kg ,橡皮塞喷出时速度9.2=v m/s ,求小车的反冲速度.

选题目的: 考查动量守恒定律在反冲运动中的应用.

解析:小车与橡皮塞为一系统,所受外力之和为零,系统总动量为零

根据动量守恒定律 0)(=-+V m M mv

m/s 1.09.21

.031

.0-=?--=--

=v m M m v

负号表明小车运动方向与橡皮塞的运动方向相反,反冲速度大小是0.1m/s

小结:在反冲运动中系统动量守恒

讨论:若橡皮塞喷出时速度大小不变,方向与水平方向成60°角,小车的反冲速度又 是多少?

分析:小车与橡皮塞组成的系统在水平方向动量守恒

m/s

05.060cos 0

)(60cos 00-=-?

-==-+?m

M m v v v m M m v 小结:系统在某一方向上所受外力之和为零或不受外力,该方向上动量守恒,反冲运 动遵循动量守恒定律.

例4:一质量为60kg 的人以4m/s 的速度从后面跳上一辆静止在光滑水平面上质量为100kg 的小车,然后相对小车以2m/s 的速度向前跳下,求人跳下小车后小车的速度.

选题目的:考查动量守恒定律的应用.

解析:以小车和人为一系统,总动量守恒,设人质量为m ,小车质量为M ,人跳上车的速度为v ,人跳离车时相对车的速度为u ,小车此时速度为V 人跳上车之前,系统总动量mv p =

人跳离之后,系统总动量Mv u v m p ++=')(

根据动量守恒定律p p '=

m

m m u

m v v Mv

u v m m v +-=

∴++=∴)( 代入数据得 75.0=v m/s

例:甲乙两只小船在湖面上沿同一直线相向运动,已知甲船质量m 1=150kg, 速度是v 1=2.0m/s, 乙船质量m 2=250kg, 速度是v 2=1.0m/s .甲船上原站着一个质量为m =50kg 的人,当两船距离很近而将要发生碰撞时,船上的人用力跳到乙船上,求能避免碰撞的人的最小起跳水平速度(相对地面的).

选题目的:考查反冲运动中动量受恒定律的应用.

解析: 设人相对地面的最小起跳水平速度为v min ,他以这个速度跳到乙船上后,两船速度大小相等,设为v .则

对甲船和人 (m 1+m )v 1= m 1 v + mv min ,

对人和乙船 mv min + m 2(-v 2)= (m 2+m )v .

解以上两式,得 v min =1

22

21121)())((mm m m m v m m v m m m m ++-++=7.0m/s .

动量冲量和动量定理典型例题精析

动量、冲量和动量定理·典型例题精析 [例题1]质量为m的物体,在倾角为θ的光滑斜面上由静止开始下滑.如图7-1所示.求在时间t内物体所受的重力、斜面支持力以及合外力给物体的冲量. [思路点拨]依冲量的定义,一恒力的冲量大小等于这力大小与力作用时间的乘积,方向与这力的方向一致.所以物体所受各恒力的冲量可依定义求出.而依动量定理,物体在一段时间t内的动量变化量等于物体所受的合外力冲量,故合外力给物体的冲量又可依动量定理求出. [解题过程]依冲量的定义,重力对物体的冲量大小为 I G=mg·t, 方向竖直向下. 斜面对物体的支持力的冲量大小为 I N=N·t=mg·cosθ·t,

方向垂直斜面向上. 合外力对物体的冲量可分别用下列三种方法求出. (1)先根据平行四边形法则求出合外力,再依定义求出其冲量. 由图7-1(2)知,作用于物体上的合力大小为F=mg·sinθ,方向沿斜面向下. 所以合外力的冲量大小 I F=F·t=mg·sinθ·t. 方向沿斜面向下. (2)合外力的冲量等于各外力冲量的矢量和,先求出各外力的冲量,然后依矢量合成的平行四边形法则求出合外力的冲量. 利用前面求出的重力及支持力冲量,由图7-1(3)知合外力冲量大小为 方向沿斜面向下.

或建立平面直角坐标系如图7-1(4),由正交分解法求出.先分别求出合外力冲量I F在x,y方向上分量I Fx,I Fy,再将其合成. (3)由动量定理,合外力的冲量I F等于物体的动量变化量Δp. I F=Δp=Δmv=mΔv=m(at)=mgsinθ·t. [小结] (1)计算冲量必须明确计算的是哪一力在哪一段时间内对物体的冲量. (2)冲量是矢量,求某一力的冲量除应给出其大小,还应给出其方向. (3)本题解提供了三种不同的计算合外力冲量的方法.

新人教版八年级数学下册勾股定理典型例题分析

新人教版八年级下册勾股定理典型例习题 一、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理 222a b c += 解:⑴2210AB AC BC =+= ⑵228BC AB AC =-= 题型二:利用勾股定理测量长度 例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,.已 知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理! 根据勾股定理AC 2+BC 2=AB 2, 即AC2+92=152,所以AC 2 =144,所以AC=12. 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分B C的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如图 2. 由题意可知△AC D中,∠ACD=90°,在Rt △ACD 中,只知道CD =1.5,这是典型的利用勾股定理“知二求一”的类型。 标准解题步骤如下(仅供参考): 解:如图2,根据勾股定理,AC 2+CD 2=A D2 设水深AC= x 米,那么AD =A B=AC+CB =x +0.5 x2+1.52=( x +0.5)2 解之得x =2. 故水深为2米. 题型三:勾股定理和逆定理并用—— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1= 那么△DEF 是直角三角形吗?为什么? C B D A

动量守恒定律典型例题解析

动量守恒定律·典型例题解析 【例1】 如图52-1所示,在光滑的水平面上,质量为m 1的小球以速度v 1追逐质量为m 2,速度为v 2的小球,追及并发生相碰后速度分别为v 1′和v 2′,将两个小球作为系统,试根据牛顿运动定律推导出动量守恒定律. 解析:在两球相互作用过程中,根据牛顿第二定律,对小球1有:F ==,对有′==.由牛顿第三定律得=m a m m F m a m F 1112222????v t v t 12 -F ′,所以F ·Δt =-F ′·Δt ,m 1Δv 1=-m 2Δv 2,即m 1( v 1′-v 1)=-m 2(v 2′-v 2),整理后得:m 1v 1+m 2v 2=m 1v 1′+ m 2v 2′,这表明以两小球为系统,系统所受的合外力为零时,系统的总动量守恒. 点拨:动量守恒定律和牛顿运动定律是一致的,当系统内受力情况不明,或相互作用力为变力时,用牛顿运动定律求解很繁杂,而动量定理只管发生相互作用前、后的状态,不必过问相互作用的细节,因而避免了直接运用牛顿运动定律解题的困难,使问题简化. 【例2】 把一支枪水平地固定在光滑水平面上的小车上,当枪发射出一颗子弹时,下列说法正确的是 [ ] A .枪和子弹组成的系统动量守恒 B .枪和车组成的系统动量守恒 C .子弹、枪、小车这三者组成的系统动量守恒 D .子弹的动量变化与枪和车的动量变化相同 解析:正确答案为C 点拨:在发射子弹时,子弹与枪之间,枪与车之间都存在相互作用力,所以将枪和子弹作为系统,或枪和车作为系统,系统所受的合外力均不为零,系统的动量不守恒,当将三者作为系统时,系统所受的合外力为零,系统的动量守恒,这时子弹的动量变化与枪和车的动量变化大小相等,方向相反.可见,系统的动量是否守恒,与系统的选取直接相关. 【例3】 如图52-2所示,设车厢的长度为l ,质量为M ,静止于光滑的水平面上,车厢内有一质量为m 的物体以初速度v 0向右运动,与车厢壁来

(完整版)勾股定理典型例题详解及练习(附答案)

典型例题 知识点一、直接应用勾股定理或勾股定理逆定理 例1:如图,在单位正方形组成的网格图中标有AB CD EF、GH四条线段, 其中能构成一个直角三角形三边的线段是() A.CD、EF、 GH C. AB、CD GH B.AB、EF、GH D. AB、CD EF 愿路分乐屮 1)題意分析’本题考查幻股定理及勾股定理的逆定理.亠 2)解題思器;可利用勾脸定理直接求出各边长,再试行判断?』 解答过整屮 在取DEAF中,Af=l, AE=2,根据勾股定理,得昇 EF = Q抡於十£尸° = Q +F二艮 同理HE = 2百* QH. = 1 CD = 2^5 计算发现W十◎血尸=(鸥31即血+曲=GH2,根据勾股定理的逆宦理得到UAAE、EF\ GH为辺的三角形是直毎三角形.故选B. * 縮題后KJ思专:* 1.勾股定理只适用于直角三角形,而不适用于说角三角形和钝角三角形? 因此」辭题时一宦妾认真分析题目所蛤■条件■,看是否可用勾股定理来解口* 2.在运用勾股左理时,要正确分析题目所给的条件,不要习惯性地认为就是斜 迫而“固执”地运用公式川二/十就其实,同样是S6

"不一罡就等于餌,疋不一罡就昱斜辺,KABC不一定就是直角三祐

3.直角三第形的判定条件与勾股定理是互逆的.区别在于勾股定理的运用是一个从 卅形s—个三角形是直角三角形)到懺 y =沖十沪)的过程,而直角三角形的判定是一 ①从嗦(一个三角形的三辺满足X二护+酹的条件)到偲个三角形是直角三角形)的过 程.a 4?在应用勾股定理解题叭聲全面地琴虑间题.注意m题中存在的多种可能性,遊免漏辭.初 例玉如圏,有一块直角三角形?椀屈U,两直角迫4CM5沁丸m?现将直角边AC沿直绘AD折蠡便它落在斜边AB上.且点C落到点E处, 则切等于(、* C/) "禎 B. 3cm G-Icni n題童分析,本题着查勾股定理的应用刎 :)解龜思路;車题若直接在△MQ中运用勾股定理是无法求得仞的长的,因为貝知遒一条边卫0的长,由题意可知,AACD和心迓门关于直线KQ对称.因而^ACD^hAED ?进一歩则有应RUm CZAED ED 丄AB,设UD=E2>黄泱,则在Rt A ABO中,由勾股定 理可得^=^(^+^=^83=100,得AB=10cm,在松迟DE 中,W ClO-fl)2= d驚解得尸 九4 解龜后的思琴尸 勾股定理说到底是一个等式,而含有未知数的等式就是方程。所以,在利用勾股定理求线段的长时常通过解方程来解决。勾股定理表达式中有三个量,如果条件中只有一个已知量,必须设法求出另一个量或求出另外两个量之间的关系,这一点是利用勾股定理求线段长时需要明确的思路。 方程的思想:通过列方程(组)解决问题,如:运用勾股定理及其逆定理求线段的长度或解决实际问题时,经常利用勾股定理中的等量关系列出方程来解 决问题等。 例3:一场罕见的大风过后,学校那棵老杨树折断在地,此刻,张老师正和占 明、清华、绣亚、冠华在楼上凭栏远眺。 清华开口说道:“老师,那棵树看起来挺高的。” “是啊,有10米高呢,现在被风拦腰刮断,可惜呀!” “但站立的一段似乎也不矮,有四五米高吧。”冠华兴致勃勃地说。 张老师心有所动,他说:“刚才我跑过时用脚步量了一下,发现树尖距离树根恰好3米,你们能求出杨树站立的那一段的高度吗?” 占明想了想说:“树根、树尖、折断处三点依次相连后构成一个直角三角

动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型) 例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为 4kg,地面光滑,则车后来的速度为多少? 例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少? 例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地 点的距离。(g取10m/s2) 例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。设 小车足够长,求: (1)木块和小车相对静止时小车的速度。 (2)从木块滑上小车到它们处于相对静止所经历的时间。 (3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。 例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞? 答案:1.

h b 分析:以物体和车做为研究对象,受力情况如图所示。 在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。因此地面给车的支持力远大于车与重物的重力之和。 系统所受合外力不为零,系统总动量不守恒。但在水平方向系统不受外力作用,所以系统水平方向动量守恒。以车的运动方向为正方向,由动量守恒定律可得: 车 重物初:v 0=5m/s 0末:v v ?Mv 0=(M+m)v ?s m v m N M v /454 14 0=?+=+= 即为所求。 2、分析:以滑块和小车为研究对象,系统所受合外力为零,系统总动量守恒。 以滑块的运动方向为正方向,由动量守恒定律可得 滑块 小车初:v 0=4m/s 0末:v v ?mv 0=(M+m)v ?s m v m M M v /143 11 0=?+=+= 再以滑块为研究对象,其受力情况如图所示,由动量定理可得 ΣF=-ft=mv-mv 0 ?s g v v t 5.110 2.0) 41(0=?--=-=μf=μmg 即为所求。 3、分析:手榴弹在高空飞行炸裂成两块,以其为研究对象,系统合外力不为零,总动量不守恒。但手榴弹在爆炸时对两小块的作用力远大于自身的重力,且水平方向不受外力,系统水平方向动量守恒,以初速度方向为正。 由已知条件:m 1:m 2=3:2 m 1 m 2 初:v 0=10m/s v 0=10m/s

高中物理动量典型例题

高中物理动量典型例题(基础必练题) 冲量相等时物体的运动情况 例1如果物体在任何相等的时间内受到的冲量都相同,那么这个物体的运动(). A、可能是匀变速运动 B、可能是匀速圆周运动 C、可能是匀变速曲线运动 D、可能是匀变速直线运动 分析与解:冲量是力与时间的乘积,在任何相等的时间内冲量都相同,也就是物体受到的力恒定不变,所以物体做匀变速运动,其轨迹可以是直线的也可以是曲线的.答案为A、C、D. 下落物体的重力冲量 例2 一个质量为5kg的物体从离地面80m的高处自由下落,不计空气阻力,在下落这段时间内,物体受到的重力冲量的大小是(). A.200N·s B.150N·s C.100N·s D.250N·s 分析与解:根据冲量的定义在这个过程中重力的大小是一个定值,只需求出这个过程所用的时间即可. 答案:C. 冲量公式的简单应用 例3 一匹马通过不计质量的绳子拉着货车从甲地到乙地,在这段时间内,下列说法中正确的是:(). A、马拉车的冲量大于车拉马的冲量 B、车拉马的冲量大于马拉车的冲量 C、两者互施的冲量大小相等 D、无法比较冲量大小 分析与解:在这个过程中,马对车的拉力,与车对马的拉力是一对作用力与反作用力,大小总是相等的,根据冲量的定义,时间也相同,所以冲量的大小是相等的.答案:C. 关于动量的矢量计算 例4 质量为5kg的小球以5m/s的速度竖直落到地板上,随后以3m/s的速度反向弹回,若取竖直向下的方向为正方向,则小球动量的变化为()

A.10kg·m/s B.-10kg·m/s C.40kg·m/s D.-40kg·m/s 分析与解:动量的变化是末动量减去初动量,规定了竖直向下为正. 初动量kg·m/s 末动量kg·m/s 动量的变化kg·m/s 答案:D. 关于抛体运动物体的重力冲量 例5 质量为5kg的小球,从距地面高为20m处水平抛出,初速度为10m/s,从抛出到落地过程中,重力的冲量是(). A.60N·s B.80N·s C.100N·s D.120N·s 分析与解:在这个过程中,小球所受重力恒定不变,只需求出这个过程的时间即可 答案:C. 动量大小与速度的关系 例6 质量为60kg以1m/s速度步行的人和以800m/s速度飞行的质量为的子弹,哪个动量大? 解:人 子弹 即:人的动量大. 课本例题分析与设疑 例7 一个质量是的钢球,以6 m/s的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动(如图).碰撞前后钢球的动量有没有变化?变化了多少?

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

动量与能量经典例题详解

动量与能量经典题型详解 动量与功能问题可以与高中物理所有的知识点综合,是高考的重点,试题难度大,需要多训练、多总结归纳. 1.如图所示,一轻绳的一端系在固定粗糙斜面上的O 点,另一端系一小球,给小球一足够大的初速度,使小球在斜面上做圆周运动,在此过程中( ) A .小球的机械能守恒 B .重力对小球不做功 C .绳的张力对小球不做功 D .在任何一段时间内,小球克服摩擦力所做的功是等于小球动能的减少 【解析】小球与斜面之间的摩擦力对小球做功使小球的机械能减小,选项A 错误;在小球运动的过程中,重力、摩擦力对小球做功,绳的张力对小球不做功.小球动能的变化等于重力、摩擦力做功之和,故选项B 、D 错误,C 正确. [答案] C 2.质量为M 的物块以速度v 运动,与质量为m 的静止物块发生正碰,碰撞后两者的 动量正好相等.两者质量之比M m 可能为( ) A .2 B .3 C .4 D .5 【解析】由题意知,碰后两球动量相等,即p 1=p 2=12 M v 故v 1=v 2,v 2=M v 2m 由两物块的位置关系知:M v 2m ≥v 2 ,得M ≥m 又由能量的转化和守恒定律有: 12M v 2≥12M (v 2)2+12m (M v 2m )2 解得:M ≤3m ,故选项A 、B 正确. [答案] AB 【点评】碰撞问题是高考对动量守恒定律考查的主流题型,这类问题一般都要考虑动量守恒、动能不增加、位置不超越这三方面. 3.图示为某探究活动小组设计的节能运输系统.斜面轨道的倾角为30°,质量为M 的 木箱与轨道间的动摩擦因数为36 .木箱在轨道顶端时,自动装货装置将质量为m 的货物装入木箱,然后木箱载着货物沿轨道无初速度滑下,当轻弹簧被压缩至最短时,自动卸货装置立刻将货物卸下,然后木箱恰好被弹回到轨道顶端,再重复上述过程.下列选项正确的是 ( ) A .m =M B .m =2M C .木箱不与弹簧接触时,上滑的加速度大于下滑的加速度 D .在木箱与货物从顶端滑到最低点的过程中,减少的重力势能全部转化为弹簧的弹性势能

高中物理动量定理试题经典及解析

高中物理动量定理试题经典及解析 一、高考物理精讲专题动量定理 1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。 【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】 (1)设运动过程中摩擦阻力做的总功为W ,则 W =-kmgL -2kmgL =-3kmgL 即整个过程中摩擦阻力所做的总功为-3kmgL 。 (2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得 mv 1=2mv 2 22101122 kmgL mv mv -= - 2 21(2)0(2)2 k m gL m v -=- 由以上各式得 010v kgL = 所以人给第一辆车水平冲量的大小 010I mv m kgL == 2.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略

勾股定理练习题及问题详解(共6套)

勾股定理课时练(1) 1. 在直角三角形ABC中,斜边AB=1,则AB2 2 2AC BC+ +的值是() A.2 B.4 C.6 D.8 2.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是______ cm(结果不取近似值). 3. 直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m? 5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米. 6. 飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米? 7. 如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度. 8. 一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。求CD的长. 9. 如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长. 10. 如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北 7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少? 11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱? 12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?

高中物理动量守恒定律题20套(带答案)

高中物理动量守恒定律题20套(带答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以0 2 v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ; (4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能. 【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)20 1532 mv E ?= 【解析】 【详解】 (1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有: mv 0=m 2 v +2mv B 解得v B = 4 v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量 2 220001 11()2()22224 v v mgL mv m m μ?=-- 解得20 516v gL μ= (3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有: 2 mv +mv B =2mv A 、C 系统机械能守恒: 22200111 ()()222242 v v mgR m m mv +-?= 解得2 64v R g = (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒

动量典型例题

1 如图所示,已知A,B之间的质量关系是m B=1.5m A,拍摄共进行了4次,第一次是在两滑块相撞之前,以后的三次是在碰撞之后,A原来处于静止状态,设A、B滑块在拍摄闪光照片的这段时间内是在10 cm至105 cm这段范围内运动(以滑块上的箭头位置为准),试根据闪光照片(闪光时间间隔为0.4s),求出: (1)A、B两滑块碰撞前后的速度各为多少? (2)根据闪光照片分析说明:两滑块碰撞前后,两个物体各自的质量与自己的速度的乘积之和是不是不变量? 2 气垫导轨(如图)工作时,空气从导轨表面的小孔喷出,在导轨表面和滑块内表面之间形成一层薄薄的空气层,使滑块不与导轨表面直接接触,大大减小了滑块运动时的阻力.为了探究碰撞中的守恒量,在水平气垫导轨上放置两个质量均为a的滑块,每个滑块的一端分别与穿过打点计时器的纸带相连,两个打点计时器所用电源的频率均为b.气垫导轨正常工作后,接通两个打点计时器的电源,并让两滑块以不同的速度相向运动,两滑块相碰后粘在一起继续运动.右下图为某次实验打出的、点迹清晰的纸带的一部分, 在纸带上以同间距的6个连续点为一段划分纸带,用刻度尺分别量出其长度s1、s2和s3.若题中各物理量的单位均为国际单位,那么,碰撞前两滑块的质量和速度大小的乘积分别为 _______ 、_______ ,碰撞前两滑块的质量和速度乘积的矢量和为;碰撞后两滑块的总质量和速度大小的乘积为________.重复上述实验,多做几次寻找碰撞中的守恒量. 3 碰撞的恢复系数的定义为,其中v10和v20分别是碰撞前两物体的速度,v1和 v2分别是碰撞后两物体的速度。弹性碰撞的恢复系数e=1,非弹性碰撞的e<1。某同学借用验证动量守恒定律的实验装置(如图所示)验证弹性碰撞的恢复系数是否为1,实验中使用半径相等的钢质小球1和2,(它们之间的碰撞可近似视为弹性碰撞),且小球1的质量大于小球2的质量。 实验步骤如下:安装好实验装置,做好测量前的准备,并记下重垂线所指的位置O。 第一步:不放小球2,让小球1从斜槽上A点由静止滚下,并落在地面上。重复多次,用尽可

高二物理动量定理的应用

动量定理的应用(2)·典型例题解析 【例1】 500g 的足球从1.8m 的高处自由下落碰地后能弹回到1.25m 高,不计空气阻力,这一过程经历的时间为1.2s ,g 取10m/s 2,求足球对地面的作用力. 解析:对足球与地面相互作用的过程应用动量定理,取竖直向下为 正,有-Δ=′-其中Δ=--=-×-×=--=,′=-=-××=(mg N)t mv mv t 1.2 1.21.20.60.50.1(s)v 2gh 210 1.2522221810 21251012h g h g .. -,==××=,解得足球受到向上的 弹力='+=+×=+=5(m /s)v 2gh 210 1.86(m /s)N mg 0.51055560(N)1v v v t ().(). -+?056501 由牛顿第三定律得足球对地面的作用力大小为60N ,方向向下. 点拨:本例也可以对足球从开始下落至弹跳到最高点的整个过程应用动量定理:mgt 总-N Δt =0-0,这样处理更为简便. 从解题过程可看出,当Δt 很短时,N 与mg 相比较显得很大,这时可略去重力. 【例2】如图51-1所示,在光滑的水平面上有两块前后并排且靠在一起的木块A 和B ,它们的质量分别为m 1和m 2,今有一颗子弹水平射向A 木块,已知子弹依次穿过A 、B 所用的时间分别是Δt 1和Δt 2,设子弹所受木块的阻力恒为f ,试求子弹穿过两木块后,两木块的速度各为多少? 解析:取向右为正,子弹穿过A 的过程,以A 和B 作为一个整体, 由动量定理得=+,=,此后,物体就以向右匀速运动,接着子弹要穿透物体. f t (m m )v v A v B 112A A A ??f t m m 1 12+ 子弹穿过B 的过程,对B 应用动量定理得f Δt 2=m 2v B -m 2v A , 解得子弹穿出后的运动速度=+.B B v B f t m m f t m ??11222 + 点拨:子弹穿过A 的过程中,如果只将A 作为研究对象,A 所受的冲量

物理动量守恒定律题20套(带答案)

物理动量守恒定律题20套(带答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上) 【答案】25m/s 【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒: ()20120M v M m M v +=++共,解得5m /s v =共 以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得 25m /s v = 考点:考查了动量守恒定律的应用 【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系统,由系统动量守恒列出等式,联立求解 2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧 被压缩瞬间 的速度 ,木块 、 的质量均为 .求: ?子弹射入木块 时的速度; ?弹簧被压缩到最短时弹簧的弹性势能. 【答案】22()(2) Mm a M m M m ++b 【解析】 试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A 正确;爱因斯坦通过光电效应现象,提出了光子说,B 正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D 错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E 错.(2)1以子弹与木块A 组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得: 解得:

动量守恒定律典型例题报告.doc

班级: 学号: 姓名: 动量守恒定律习题课 一、动量守恒定律知识点 1.动量守恒定律的条件⑴系统不受外力或者所受外力之和为零; ⑵系统受外力,但外力远小于内力,可以忽略不计; ⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。 ⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。 2.动量守恒定律的表达形式 (1) ,即p 1 +p 2=p 1+p 2, (2)Δp 1 +Δp 2=0,Δp 1= -Δp 2 。 3.应用动量守恒定律解决问题的基本思路和一般方法 (1)分析题意,明确研究对象。 (2)对各阶段所选系统内的物体进行受力分析,判定能否应用动量守恒。 (3)确定过程的始、末状态,写出初动量和末动量表达式。 注重:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。 (4)建立动量守恒方程求解。 二、碰撞 1.弹性碰撞 特点:系统动量守恒,机械能守恒。 设质量m 1的物体以速度v 0与质量为m 2的在水平面上静止的物体发生弹性正碰,则 由动量守恒定律可得:221101v m v m v m +=① 碰撞前后能量守恒、动能不变:2 22 212111210 121 v m v m v m +=② 联立①②得:01 2 12 1v v m m m m +-= 0222 11v v m m m += (注:在同一水平面上发生弹性正碰,机械能守恒即为动能守恒) [讨论] ①当m l =m 2时,v 1=0,v 2=v 0(速度互换) ②当m l <m 2时,v 1>0,v 2>0(同向运动) ④当m l 0(反向运动) ⑤当m l >>m 2时,v 1≈v,v 2≈2v 0 (同向运动) 2.非弹性碰撞:部分机械能转化成物体的内能,系统损失了机械能,两物体仍能分离。 特点:动量守恒,能量不守恒。 用公式表示为:m 1v 1+m 2v 2= m 1v 1′+m 2v 2′ 机械能/动能的损失:2 2 22 1111 12112211222222()()k k k E E E m v m v m v m v ''?=-=+-+ 3.完全非弹性碰撞:碰撞后两物体粘在一起运动,此时动能损失最大。 特点:动量守恒,能量不守恒。 用公式表示为: m 1v 1+m 2v 2=(m 1+m 2)v 动能损失:22 2 2 111 1112212222()()k k k E E E m v m v m m v ?=-=+-+ 解决碰撞问题须同时遵守的三个原则: ①系统动量守恒原则 ②能量不增加的原则 ③物理情景可行性原则:(例如:追赶碰撞: 碰撞前: 碰撞后:在前面运动的物体的速度一定不小于在后面运动的物体的速度) 【例题】甲、乙两球在光滑水平轨道上同向运动,已知它们的动量分别是p 甲=5 kg ·m/s,p 乙= 7 kg ·m/s ,甲追乙并发生碰撞,碰后乙球的动量变为p 乙′=10 kg ·m/s ,则两球质量m 甲与m 乙的关系可能是( ) A .m 甲=m 乙 B.m 乙=2m 甲 C.m 乙=4m 甲 D.m 乙=6m 甲 解析:由碰撞中动量守恒可求得pA ′=2 kg ·m/s 要使A 追上 B , 则必有:vA >vB , 即 mB >1.4mA ① 碰后pA ′、pB ′均大于零,表示同向运动,则应有:vB ′≥vA ′ 被追追赶V ?V

高考物理动量定理试题经典含解析

高考物理动量定理试题经典含解析 一、高考物理精讲专题动量定理 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 22 02v v aL -= 可解得:22 1002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv = -

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.半径均为52m R =的四分之一圆弧轨道1和2如图所示固定,两圆弧轨道的最低端切线水平,两圆心在同一竖直线上且相距R ,让质量为1kg 的小球从圆弧轨道1的圆弧面上某处由静止释放,小球在圆弧轨道1上滚动过程中,合力对小球的冲量大小为5N s ?,重力加速度g 取210m /s ,求: (1)小球运动到圆弧轨道1最低端时,对轨道的压力大小; (2)小球落到圆弧轨道2上时的动能大小。 【答案】(1)2 5(22 +(2)62.5J 【解析】 【详解】 (1)设小球在圆弧轨道1最低点时速度大小为0v ,根据动量定理有 0I mv = 解得05m /s v = 在轨道最低端,根据牛顿第二定律, 20 v F mg m R -= 解得252N 2F ??=+ ? ?? ? 根据牛顿第三定律知,小球对轨道的压力大小为252N F ' ?=+ ?? (2)设小球从轨道1抛出到达轨道2曲面经历的时间为t , 水平位移: 0x v t = 竖直位移: 2 12 y gt =

(完整版)勾股定理经典例题(教师版)

勾股定理全章知识点和典型例习题 一、基础知识点: 1?勾股定理 内容:____________________________________________________________ 表示方法:如果直角三角形的两直角边分别为 a , b,斜边为c,那么__________________ 2 ?勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 3 ?勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC中,C 90 , 则 __________________________________________ ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定 理解决一些实际问题 4. 勾股定理的逆定理 如果三角形三边长a , b , c满足a2 b2c,那么这个三角形是直角三角形,其中c为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过数转化为形”来确定三角形的可能 形状,在运用这一定理时,可用两小边的平方和a2 b2与较长边的平方c2作比较,若它们相等时,以 a , b , c为三边 的三角形是直角三角形;若 _________ ,时,以a , b , c为三边的三角形是钝角三角形;若__________________ ,时,以a , b , c为三边的三角形是锐角三角形; ②定理中a , b , c及a2 b2 c2只是一种表现形式,不可认为是唯一的,如若三角形三边长 a , b , c满足a2 c2 b2, 那么以a , b , c为三边的三角形是直角三角形,但是b为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 5. 勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即a2 b2 c2中,a , b , c为正整数时,称a , b , c为 一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5 ; 6,8,10 ; 5,12,13; 7,24,25等 ③用含字母的代数式表示n组勾股数: 2 2 n 1,2n,n 1 (n 2, n 为正整数); 2n 1,2n2 2n,2n2 2n 1 (n为正整数)m2 n2,2mn,m2 n2(m n, m , n为正整数)7 .勾股定理的应用

动量守恒定律及其应用·典型例题精析

动量守恒定律及其应用·典型例题精析 [例题1]平静的湖面上浮着一只长l=6m,质量为550 kg的船,船头上站着一质量为m=50 kg的人,开始时,人和船均处于静止.若船行进时阻力很小,问当人从船头走到船尾时,船将行进多远? [思路点拨]以人和船组成的系统为研究对象.因船行进时阻力很小,船及人所受重力与水对船的浮力平衡,可以认为人在船上行走时系统动量守恒,开始时人和船都停止,系统总动量为零,当人在船上走动时,无论人的速度如何,系统的总动量都保持为零不变. [解题过程]取人运动方向为正方向,设人对岸的速度为v,船对岸的速度为V,其方向与v相反,由动量守恒定律有 0=mv+(-MV). 解得两速度大小之比为

此结果对于人在船上行走过程的任一瞬时都成立. 取人在船上行走时任一极短时间Δt i,在此时间内人和船都可视为匀速运动,此时间内人和船相对地面移动的距离分别为ΔS mi=v iΔt i和ΔSM i=V iΔt i,由此有 这样人从船头走到船尾时,人和船相对地面移动的总距离分别为 S m=∑ΔS mi,S M=∑ΔS Mi. 由图中几何关系可知S m+S M=L.这样,人从船头走到船尾时,船行进的距离为 代入数据有 S M=0.5 m.

[小结]本题表明,在动量守恒条件得到满足的过程中,系统任一瞬时的总动量保持不变. [例题2]如图7-9示,物块A、B质量分别为m A、m B,用细绳连接,在水平恒力F的作用下A、B一起沿水平面做匀速直线运动,速度为v,如运动过程中,烧断细绳,仍保持力F大小方向不变,则当物块B停下来时,物块A的速度为多大? [思路点拨]以A和B组成的系统作为研究对象.绳子烧断前,A、B 一起做匀速直线运动,故系统所受外力和为零,水平方向系统所受外力计有拉力F,物块A受到地面的摩擦力f A,物体B受到地面的摩擦力f B,且F=f A +f B.绳烧断后,直到B停止运动前F与f A、f B均保持不变,故在此过程中系统所受外力和仍为零,系统总动量保持不变.所以此题可用动量守恒定律求解. [解题过程]取初速v的方向为正方向,设绳断后A、B的速度大小分别为v′A、v′B,由动量守恒定律有 (m A+m B)v=m A v′A+m B v′B.

相关文档
最新文档