管理运筹学实验报告

合集下载

管理运筹学上机实验

管理运筹学上机实验

实验报告2:P153习题1某公司在三个地方有三个分厂,生产同一种产品,其产量分别为300箱、600箱、500箱。

需要供应四个地方的销售,这四地的产品需求分别为400箱、250箱、350箱、200箱。

三个分厂到四个产地的单位运价如表所示。

应如何安排运输方案,使得总运费为最小。

在此问题中,三个分厂的总产量为1400单位,而总需求量为1200单位。

因此此问题为供求不相等的运输问题,且供大于求。

为此,除已有的四个销地外,可假设一销地,且三个分厂运往此销地的单位运费均为0。

即将假设的销地看为存储的仓库。

求解过程最优解如下********************************************起至销点发点 1 2 3 4-------- ---- ----- ----- -----1 0 250 0 502 400 0 0 03 0 0 350 150此运输问题的成本或收益为: 19800此问题的另外的解如下:起至销点发点 1 2 3 4-------- ----- ----- ----- -----1 0 250 50 02 400 0 0 03 0 0 300 200此运输问题的成本或收益为: 19800(2)如果2 分厂产量提高到600,则为产销不平衡问题最优解如下******************************************** 起至销点发点 1 2 3 4-------- ----- ----- ----- -----1 0 250 0 02 400 0 0 2003 0 0 350 0此运输问题的成本或收益为: 19050注释:总供应量多出总需求量200第1 个产地剩余50第3 个产地剩余150(3)销地甲的需求提高后,也变为产销不平衡问题最优解如下******************************************** 起至销点发点 1 2 3 4-------- ----- ----- ----- -----1 50 250 0 02 400 0 0 03 0 0 350 150此运输问题的成本或收益为: 19600总需求量多出总供应量150第1 个销地未被满足,缺少100第4 个销地未被满足,缺少50P255 习题1这是一个最短路问题,要求我们求出从v1 到v7 配送的最短距离。

管理运筹学实验报告

管理运筹学实验报告

课程实验报告管理运筹学实验(二)专业年级课程名称指导教师学生姓名学号实验日期实验地点实验成绩教务处制2011年11月日所示.一种规格,问如何下料,才能使总的用料根数最少已知一名正式职工11点开始上班,工作4个小时后,休息1个小时,而后再工作4个小时;另一名正式职点开始上班,工作4个小时后,休息1个小时,而后再工作4个小时.又知临时工每小时的工资为在满足对职工需求的条件下,如何安排临时工的班次,使得使用临时工的成本最小?设按 14 种方案下料的原材料的根数分别为 x1,x2,x3,x4,x5,x6,x7x9,x10,x11,x12,x13,x14,则可列出下面的数学模型:min f=x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11+x12+x13+x14用管理运筹学软件我们可以求得此问题的解为x1=40,x2=0,x3=0,x4=0,x5=116.667,x6=0,x7=0,x8=0,x9=0,x10=0,x11=140用管理运筹学软件我们可以求得此问题的解如下。

x1=8,x2=0,x3=1,x4=1,x5=0,x6=4,x7=0,x8=6,x9=0,x10=0,x11=0最优值为 320。

(1)在满足对职工需求的条件下,在 11 时安排 8 个临时工,13 时新安排 1 临时工,14时新安排 1 个临时工,16 时新安排 4 个临时工,18 时新安排 6 个临时工可使临时工的总成本用管理运筹学软件我们可以求得此问题的解如下。

x1=200,x2=250,x3=100,最优值为 6 400。

(1)在资源数量及市场容量允许的条件下,生产 A 200 件,B 250 件,C可使生产获利最多。

(2)A、B、C 的市场容量的对偶价格分别为 10元,12 元,14 元。

材料、台。

四川师大--管理系统运筹学实验报告材料

四川师大--管理系统运筹学实验报告材料

四川师范大学实验报告册院系名称:计算机科学学院课程名称:管理运筹学实验学期 2016 年至 2017 年第 1 学期专业班级: XXXX 姓名: XXX 学号: XXX指导教师: XX老师实验最终成绩:实验报告(1)点击【线性规划】,进入线性规划页面,单击【新建】,然后录入方程不等式,录入完成后,单击【解决】,一直进行下一步,直到输出结果。

结果输出:可以看出,当生产甲型组合柜4个,乙型组合柜8个时,获得最大利润2720元结果输出:当租用大卡车10辆,农用车8辆时,运费最低为输出结果:(1)由输出信息可知,白天调查有孩子的家庭户数为700,白天调查无孩子的家庭户数为300,晚上调查有孩子的家庭户数为0,晚上调查无孩子的家庭户数为1000时费用最少。

即白天和晚上都调查1000户时,费实验报告(2)其中X12-X22分别表示Y1-Y11 结果输出:故在11:00—12:00时间段安排8个人,在排1个人,在15:00—16:00时间段安间段安排4个人都是上3个小时的班,可使成本最小,为了56元的费用P62 第四章NO:8解:设Xij为第i个月签订的合同期限为从结果可以看出,当一月份租用500平方米的仓库1个月,一月份租用1000平方米的仓库4个月,三月份租用800平方米的仓库1个月,三月份租用200平方米的仓库2个月,可以使所付费用最少。

结果输出:15t,肉鸡饲料10t。

j车间生产的数量*25+ (X21+X23+X24+ X25)*20+( X31+X32+X34+实验报告(3)输出结果:有四种方案,最终最小的生产费用为9665万元。

这四种方案分别为X1=X11 X2=X12 X3=X13 X4=X14 X5=X21 X6=X22 X7=X23 X8=X24X11=X1 X12=X2 X13=X3 X21=X4 X22=X5 X23=X6 X31 =X7 X32=X8 X33=X9则最优解为214000元,此时总邮费最小,运输方案为中文书刊出口部向日本运输7500册书,向中国香港特别行政区运输2500册书,实验报告(4)点击【整数规划】,进入整数规划页面,单击【新建】,然后录入方程不等式,录入完成后,单击【解决】,一直进行下一步,直到输出结果。

运筹学实践教学报告范文(3篇)

运筹学实践教学报告范文(3篇)

第1篇一、引言运筹学作为一门应用数学分支,广泛应用于经济管理、工程技术、军事决策等领域。

本报告旨在通过运筹学实践教学,验证理论知识在实际问题中的应用效果,提高学生的实践能力和创新能力。

以下是对本次实践教学的总结和反思。

二、实践教学内容1. 线性规划问题本次实践教学选择了线性规划问题作为研究对象。

通过建立线性规划模型,我们尝试解决生产计划、资源分配等实际问题。

- 案例一:生产计划问题某公司生产A、B两种产品,每单位A产品需消耗2小时机器时间和3小时人工时间,每单位B产品需消耗1小时机器时间和2小时人工时间。

公司每天可利用机器时间为8小时,人工时间为10小时。

假设A、B产品的利润分别为50元和30元,请问如何安排生产计划以获得最大利润?- 建模:设A产品生产量为x,B产品生产量为y,目标函数为最大化利润Z = 50x + 30y,约束条件为:\[\begin{cases}2x + y \leq 8 \\3x + 2y \leq 10 \\x, y \geq 0\end{cases}\]- 求解:利用单纯形法求解该线性规划问题,得到最优解为x = 3,y = 2,最大利润为240元。

- 案例二:资源分配问题某项目需要分配三种资源:人力、物力和财力。

人力为50人,物力为100台设备,财力为500万元。

根据项目需求,每种资源的需求量如下:- 人力:研发阶段需20人,生产阶段需30人;- 物力:研发阶段需30台设备,生产阶段需50台设备;- 财力:研发阶段需100万元,生产阶段需200万元。

请问如何合理分配资源以满足项目需求?- 建模:设人力分配量为x,物力分配量为y,财力分配量为z,目标函数为最大化总效用U = x + y + z,约束条件为:\[\begin{cases}x \leq 20 \\y \leq 30 \\z \leq 100 \\x + y + z \leq 500\end{cases}\]- 求解:利用线性规划软件求解该问题,得到最优解为x = 20,y = 30,z = 100,总效用为150。

管理运筹学实验报告(三次实验)

管理运筹学实验报告(三次实验)

湖北科技学院管理运筹学实验报告年级 10级专业工商管理学生姓名学号指导教师吴睿经济与管理学院工商管理系2012年3月《管理运筹学》实验报告(一)实验时间:实验地点:经管院实验室专业班级:10工管姓名:学号:成绩:【实验内容】线性规划问题的计算机求解【实验目的】1、掌握线性规划问题的计算机求解方法;2、通过“管理运筹学”软件(2.5版)等教学软件的应用,深化和拓展学生对线性规划理论知识的认识,提高学生的科学素养,培养学生利用计算机技术解决实际问题的能力。

【实验要求】1、记录实验结果、填写实验结论、保存实验输出结果,课后打印上交;2、填写实验报告按时保质保量上交。

【实验过程】(一)安装并了解“管理运筹学”2.0版软件(参阅教材P434的附录说明);(二)实验分组及内容安排A组(学号为单号者用):1、第二章例1中(P10、28)若单位产品Ⅰ可获利80元,单位产品Ⅱ可获利20元,其他条件不变,则用计算机软件求得目标函数最优值为,最优解为X1= ,X2= 。

2、第二章例2中(P16、32)若A,B两种原料至少为450吨,而公司共有650个加工工时,其他条件不变,则用计算机软件求得目标函数最优值为,最优解为X1= ,X2= ;约束条件1、2、3的对偶价格分别为、、。

3、第二章习题第8题(1)中(参见P26、35)若某公司准备把160万元投资到基金A和B,而其他条件不变,则用计算机软件求得此时总的投资风险指数为,购买基金A和B的数量分别为和。

4、请用计算机软件求解第四章习题6(P59)中的问题。

可求得应该每天安排生产雏鸡饲料、蛋鸡饲料、肉鸡饲料各吨、吨、吨,所获最大利润为百元。

B组(学号为双号者用):1、第二章例1中(P10、28)若原料A的资源限制为500kg,原料B的资源限制为200kg,其他条件不变,则用计算机软件求得目标函数最优值为,最优解为X1= ,X2= 。

2、第二章例2中(P16、32)若每吨原料A的价格为1万元,每吨原料B的价格为4万元,其他条件不变,则用计算机软件求得目标函数最优值为,最优解为X1= ,X2= ;约束条件1、2、3的对偶价格分别为、、。

运筹学线性规划实验报告材料

运筹学线性规划实验报告材料

《管理运筹学》实验报告5.输出结果如下5.课后习题: 一、P31习题1某家具公司生产甲、乙两种型号的组合柜,每种组合柜需要两种工艺(制白坯和油漆).甲型号组合柜需要制白坯6工时,油漆8工时:乙型号组合柜需要制白坯12工时,油漆4工时.已知制白坯工艺的生产能力为120工时/天,油漆工艺的生产能力为64工时/天,甲型号组合柜单位利润200元,乙型号组合柜单位利润为240元.约束条件:问题:(1)甲、乙两种柜的日产量是多少?这时最大利润是多少?答:由实验过程中的输出结果得甲组合柜的日产量是4个,乙的事8个。

.0,0,6448,120126;240200 z max ≥≥≤+≤++=y x y x y x y x(2)图中的对偶价格13.333的含义是什么?答: 对偶价格13.333的含义是约束条件2中,每增加一个工时的油漆工作,利润会增加13.33元。

(3)对图中的常数项范围的上、下限的含义给予具体说明,并阐述如何使用这些信息。

答:当约束条件1的常数项在48~192范围内变化,且其他约束条件不变时,约束条件1的对偶价格不变,仍为15.56;当约束条件2的常数项在40~180范围内变化,而其他约束条件的常数项不变时,约束条件2的对偶价格不然,仍为13.333。

(4)若甲组合柜的利润变为300,最优解不变?为什么?答:目标函数的最优值会变,因为甲组合柜的利润增加,所以总利润和对偶价格增加;甲、乙的工艺耗时不变,所以甲、乙的生产安排不变。

二、学号题约束条件:学号尾数:56 则:约束条件:无约束条件(学号)学号43214321432143214321 0 0,309991285376)(53432max x x x x x x x x x x x x x x x x x x x x z ≤≥≤-+-+≥-+-+=-++-+++=无约束条件43214321432143214321 0 0,3099912445376413432max x x x x x x x x x x x x x x x x x x x x z ≤≥≤-+-≥-+-=-++-+++=⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⨯-≥⨯-⨯-⨯-⨯-⨯-7606165060~5154050~414)30(40~313)20(30~21210 20~11 10~1)(学号)(学号)(学号学号学号)(学号不变学号规则3.运算过程实验结果报告与实验总结:输出结果分析:答:由输出结果可得:最优解为352元,具体排班情况为:11点到12点的时段安排8个临时工;13点到14点的时段再安排1个临时工;14点到15点的时段安排1个临时工;16点到17点时段安排5个临时工;18点到19点安排7个临时工。

管理运筹学实验报告

管理运筹学实验报告

实验报告课程管理运筹学班级学号姓名实验项目数 52013年12月说明:1.实验预习:通过实验预习,明确实验目的要求、实验原理及相关知识点、实验方法、步骤以及操作注意事项等;对设计性实验要事先设计实验方案;根据需要合理设计实验数据记录表格。

2.实验过程:实际采用的实验方法、步骤、操作过程或实验设计方案(设计型实验)的描述。

对于实验结果的表述一般有以下两种方法,在撰写实验报告时,可任选其中一种或两种方法并用,以获得最佳效果。

(1)文字表述: 根据实验目的将原始资料系统化、条理化,用准确的专业语言客观地描述实验现象和结果,要体现时间顺序以及各项指标在时间上的关系。

(2)图表或图形表示: 利用表格、坐标图、绘画或利用记录仪器描绘出的曲线图,使实验结果突出、清晰、形象、直观。

3.数据分析、实验结论(1)根据相关的理论知识对所得到的实验结果进行解释和分析,包括实验成功或失败的原因。

(2)不能因实验结果与预期的结果或理论不符而随意取舍甚至修改实验原始数据和伪造实验结果。

如果实验失败,应找出原因及今后应注意的事项。

4. 任课老师可结合学科和专业课程特点,对实验报告容作科学合理的调整。

5.学生在课程结束后将本门课程所有实验报告装订成册,任课教师负责收齐交实验室存档. . .. . .实验1 (实验项目序号)运筹学课程实验报告实验地点:二教501实验线性规划问题指导教师实验时间名称姓名学号成绩一、实验、训练目的1.通过“管理运筹学软件”建模及求解的方法应用。

2.通过实验进一步掌握运筹学有关方法原理、求解过程,提高学生分析问题和解决问题的能力。

二、实验预习(含实验原理及设计过程等)第三章线性规划问题的计算机求解三、实验、训练容某工厂在有限的资源情况下,怎样生产I、II两种产品才能获利最多。

四、实验、训练过程(含实验步骤、测试数据、实验结果等)1.安装“运筹学”软件。

2.打开“运筹学”软件,点击线性规划,然后根据要求输入数据。

运筹学实验报告(14p)

运筹学实验报告(14p)

工商管理学院2019-2020学年第二学期《管理运筹学》课程实验报告专业班级:工商管理1402学号:2019年6月30日【实验1:线性规划】(1) 对以下问题进行求解:12121212212max 32262+812,0z x x x x x x x x x x x =++≤⎧⎪≤⎪⎪-+≤⎨⎪≤⎪≥⎪⎩************************************************************************求解结果:结果分析:(1) 该问题的最优解为: 当x1=3.3333,x2=1.3333时, 此问题有最有解,max z=12.6667(2) 4个约束条件的右端项分别在什么范围变化,问题最优基不变: 当问题最优基不变时,4.0000>=b1<=7.0000 6.0000>=b2<=12.0000 -2.0000>=b3<=M1.3333>=b4<=M完成时间:2020/6/30 8:30:39************************************************************************(2)通过对以下问题的分析,建立线性规划模型,并求解:某工厂要用三种原材料C、P、H混合调配出三种不同规格的产品A、B、D。

已知产品的规格要求,产品单价,每天能供应的原材料数量及原材料单价分别见下表1和2。

该厂应如何安排生产,使利润收入为最大?************************************************************************建立的线性规划模型为:用i=1,2,3分别代表原材料C,P,H,用j=1,2,3分别代表A,B,C三种产品,设xij为生产第j 种产品使用的第i种原材料的质量。

Maxz=50*(x11+x21+x31)+35*(x12+x22+x32)+25*(x13+x23+x33)-65*(x11+x12+x13)-25*(x21+x22+x23)-35*(x31+x32+x33)x11>=0.5*(x11+x21+x31)x21<=0.25*(x11+x21+x31)x12>=0.25*(x12+x22+x32)x22<=0.5*(x12+x22+x32)xij>=0(i=1,2,3,j=1,2,3)生产A 种产品用C 0.5千克,P 0.25千克,H为60千克,B种产品用C 0. 25千克,P 0.5千克,H 0千克,不生产C产品时利润最大为903.7500元完成时间:2020/6/30 09:11************************************************************************【实验2:运输问题与指派问题】(1)对以下运输问题进行求解:************************************************************************ 求解结果与分析:完成时间:2020/6/30************************************************************************(2)对以下运输问题进行求解:设有三个化肥厂(A, B, C)供应四个地区(I, II, III, IV)的农用化肥。

运筹学实验报告

运筹学实验报告

实验一:线性规划问题1、实验目的:(1)学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。

(2)掌握利用计算机软件求解线性规划最优解的方法。

2、实验任务:(1)结合已学过的理论知识,建立正确的数学模型;(2)应用运筹学软件求解数学模型的最优解(3)解读计算机运行结果,结合所学知识给出文字定性结论3、实验仪器设备:计算机4、实验步骤:步骤一:打开管理运筹学软件,并选择线性规划,显示如下界面:步骤二:求目标函数值为最小值的唯一最优解,题目为课本上P47习题一1.1(a):步骤三:求目标函数值为最大值的唯一最优解,此题为P47习题一1.1(c):步骤四:求目标函数值为最大值有无穷多最优解:步骤五:求目标函数值为最大值无可行解,题目为课本P47习题一1.1(a):步骤六:求目标函数值为最大值无界解,此题为课本P47习题一1.1(d)5、实验心得:线性规划问题主要要确定决策变量,约束条件,目标函数。

其中,决策变量为可控的连续变量,目标函数和约束条件都是线性的,这类模型为线性规划问题的数学模型。

通过实验,我们学会了除了用笔算的方式求线性规划问题,懂得了用借助计算机求得问题,可以检验我们的计算结果。

应该开说,这个试验比较简单,计算过程不复杂,结果简略的可分为五种:最小值的唯一最优解,最大值的唯一最优解,最大值的无界解,最大值的无可行解,最大值的无穷多最优解。

应该来说,线性规划问题是整个运筹学最基本、最简单的问题。

实验二:整数规划与运输问题1、实验目的:(1)学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。

(2)掌握利用计算机软件求解最优物资调运方案的方法。

(3)掌握利用计算机软件求解整数规划的方法。

2、实验任务(1)结合已学过的理论知识,建立正确的数学模型;(2)应用运筹学软件求解数学模型的最优解(3)解读计算机运行结果,结合所学知识给出文字定性结论3、实验仪器设备:计算机4、实验步骤:(1)运输问题:步骤一:打开管理运筹学软件,并选择运输问题,显示如下界面:步骤二:根据产销平衡表与单位运价表,求出产销平衡运输问题的最佳运输方案,此题为课本运输问题的例题:步骤三:根据产销平衡表与单位运价表,求出产销不平衡(产量大于销量)运输问题的最佳运输方案,此题为课本P101习题三3.1表3-36:步骤四:根据产销平衡表与单位运价表,求出产销不平衡(销量大于产量)运输问题的最佳运输方案,此题为课本P101习题三3.1表3-37:(2)整数规划问题:步骤一:打开管理运筹学软件,并选择整数规划,显示如下界面:步骤二:根据整数规划模型,求出0-1整数规划问题的最优解:步骤三:根据整数规划模型,求出纯整数规划的最优值,此题为课本P107整数规划与分配问题的例题:步骤四:根据整数规划模型,求出混合整数规划的最优值:5、实验心得:整数规划与分配问题主要包括二个部分:运输问题,整数规划问题。

运筹学线性规划实验报告

运筹学线性规划实验报告

《管理运筹学》实验报告班级2014级04班姓名杨艺玲学号2014190456实验名称管理运筹学问题的计算机求解实验目的:通过实验学生应该熟练掌握“管理运筹学3.0”软件的使用,并能利用“管理运筹学3.0”对具体问题进行问题处理,且能对软件处理结果进行解释和说明。

实验所用软件及版本:管理运筹学3.0实验过程:(含基本步骤及异常情况记录等)一、实验步骤(以P31页习题1 为例)1.打开软件“管理运筹学3.0”2.在主菜单中选择线性规划模型,屏幕中会出现线性规划页面3.在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条件个数,输入目标函数级约束条件的歌变量的系数和b值,并选择好“≤”、“≥”或“=”,如图二所示,最后点击解决4.注意事项:(1)输入的系数可以是整数、小数,但不能是分数,要把分数化为小数再输入。

(2)输入前要合并同类项。

当约束条件输入完毕后,请点击“解决”按钮,屏幕上讲显现线性规划问题的结果,如图所示5.输出结果如下5.课后习题: 一、P31习题1某家具公司生产甲、乙两种型号的组合柜,每种组合柜需要两种工艺(制白坯和油漆).甲型号组合柜需要制白坯6工时,油漆8工时:乙型号组合柜需要制白坯12工时,油漆4工时.已知制白坯工艺的生产能力为120工时/天,油漆工艺的生产能力为64工时/天,甲型号组合柜单位利润200元,乙型号组合柜单位利润为240元.约束条件:问题:(1)甲、乙两种柜的日产量是多少?这时最大利润是多少?答:由实验过程中的输出结果得甲组合柜的日产量是4个,乙的事8个。

(2)图中的对偶价格13.333的含义是什么?答: 对偶价格13.333的含义是约束条件2中,每增加一个工时的油漆工作,利润会增加13.33元。

(3)对图中的常数项范围的上、下限的含义给予具体说明,并阐述如何使用这些信息。

答:当约束条件1的常数项在48~192范围内变化,且其他约束条件不变时,约束条件1的对偶价格不变,仍为15.56;当约束条件2的常数项在40~180范围内变化,而其他约束条件的常数项不变时,约束条件2的对偶价格不然,仍为13.333。

运筹学线性规划实验报告

运筹学线性规划实验报告

《管理运筹学》实验报告班级2014级04班姓名杨艺玲学号2014190456 实验管理运筹学问题的计算机求解名称实验目的:通过实验学生应该熟练掌握“管理运筹学3.0”软件的使用,并能利用“管理运筹学3.0”对具体问题进行问题处理,且能对软件处理结果进行解释和说明。

实验所用软件及版本:管理运筹学3.0实验过程:(含基本步骤及异常情况记录等)一、实验步骤(以P31页习题1 为例)1.打开软件“管理运筹学3.0”2.在主菜单中选择线性规划模型,屏幕中会出现线性规划页面3.在点击“新建”按钮以后,按软件的要求输入目标函数个数和约束条件个数,输入目标函数级约束条件的歌变量的系数和b值,并选择好“≤”、“≥”或“=”,如图二所示,最后点击解决4.注意事项:(1)输入的系数可以是整数、小数,但不能是分数,要把分数化为小数再输入。

(2)输入前要合并同类项。

当约束条件输入完毕后,请点击“解决”按钮,屏幕上讲显现线性规划问题的结果,如图所示5.输出结果如下5.课后习题: 一、P31习题1某家具公司生产甲、乙两种型号的组合柜,每种组合柜需要两种工艺(制白坯和油漆).甲型号组合柜需要制白坯6工时,油漆8工时:乙型号组合柜需要制白坯12工时,油漆4工时.已知制白坯工艺的生产能力为120工时/天,油漆工艺的生产能力为64工时/天,甲型号组合柜单位利润200元,乙型号组合柜单位利润为240元.约束条件:问题:(1)甲、乙两种柜的日产量是多少?这时最大利润是多少?答:由实验过程中的输出结果得甲组合柜的日产量是4个,乙的事8个。

.0,0,6448,120126;240200 z max ≥≥≤+≤++=y x y x y x y x(2)图中的对偶价格13.333的含义是什么?答: 对偶价格13.333的含义是约束条件2中,每增加一个工时的油漆工作,利润会增加13.33元。

(3)对图中的常数项范围的上、下限的含义给予具体说明,并阐述如何使用这些信息。

管理运筹学实验报告模板

管理运筹学实验报告模板

实验报告——管理运筹学班级会计班姓名学号中国矿业大学徐海学院二○一一年十一月实验一一、实验名称:线性规划问题二、实验目的:用excel求解线性规划问题三、实验内容:假定一个成年人每天需从食物中获取3000卡路里热量,55克蛋白质和800毫克钙。

如果市场上只有四种食品可供选择,它们每千克所含热量和营养成份及市场价格如下表所示。

问如何选择才能满足营养的前提下使购买费用最小。

四、实验步骤1、打开excel,打开菜单栏中“工具”选项卡,若其下拉菜单中无“线性规划”则点击“工具”下的“加载宏”,在弹出来的对话框中选“线性规划”即可。

2、在excel表中输入基本信息,如下:3、在“工具”选项卡中点击“线性规划”,弹出“规划求解参数”对话框,设置“设置目标单元格”为上表中阴影单元格,设置“可变单元格”为四种食物的购买量,选择“最小化”并添加约束。

4、最后在此对话框中点击“选项”按钮,弹出“规划求解选项”对话框。

在“采用线性模型”和“假定非负”前的方框中打钩,点击“确定”,最后在“规划求解参数”对话框中点击“求解”即可。

五、实验结果运算结果报告:敏感性报告:极限值报告:实验二一、实验名称:产销不平衡运输问题二、实验目的:用excel求解线性规划问题三、实验内容:设有三个煤矿供应四个电厂的发电用煤。

假定各个煤矿的年产量、各个电厂的年用煤量以及单位运价如表所示。

试求运费最省的煤炭调拔方案。

四、实验步骤1、打开excel,打开菜单栏中“工具”选项卡,若其下拉菜单中无“线性规划”则点击“工具”下的“加载宏”,在弹出来的对话框中选“线性规划”即可。

2、在excel表中输入运价表,如上表所示。

3、再在excel表中输入调运表,如下表所示:4、在“工具”选项卡中点击“线性规划”,弹出“规划求解参数”对话框,设置“设置目标单元格”为总运价,设置“可变单元格”为上图中的阴影部分,选择“最小化”并添加约束。

4、最后在此对话框中点击“选项”按钮,弹出“规划求解选项”对话框。

管理运筹学实验报告

管理运筹学实验报告

实验题目线性规划建模应用一、实验目的1、掌握线性规划问题的建模与解决。

2、学会使用LINDO软件,并在线性规划的求解中的应用。

二、实验内容假定某医院院周会上正在研究制定一昼夜护士值班安排计划。

在会议上,护理部主任提交了一份全院24小时各时段内需要在岗护士的数量报告,见下表。

如果按照每人每天两小班轮换,中间间隔休息时间8小时,这样安排岗位不但会造成人员冗余,同时护理人员上下班不是很方便。

由于医院护理工作的特殊性,又要求尽量保证护理人员工作的连续性,最终确定每名护士连续工作两个小班次,即24小时内一个大班8小时,即连续上满两个小班。

为了合理的压缩编制,医务部提出一个合理化建议:允许不同护士的大班之间可以合理相互重叠小班,即分成六组轮班开展全天的护理值班(每一个小班时段实际上由两个交替的大班的前段和后段共同承担)。

现在人力部门面临的问题是:如何合理安排岗位,才能满足值班的需要?正在会议结束之前,护理部又提出一个问题:目前全院在编的正式护士只有50人,工资定额为10元/小时;如果人力部门提供的定编超过50人,那么必须以15元/小时的薪酬外聘合同护士。

一但出现这种情况又如何安排上述班次?保卫处后来又补充到,最好在深夜2点的时候避免交班,这样又如何安排班次?三、实验分析报告根据各部门提出的意见,预备提出四种备选方案,各方案分析如下:1、没考虑定编上限和保卫处的建议令2:00-6:00-10:00,6:00-10:00-14:00,10:00-14:00-18:00,14:00-18:00-22:00,18:00-22:00-2:00,22:00-2:00-6:00时段的大班开始上班的人数分别为X1, X2, X3, X4, X5, X6. 由此可得的2:00-6:00,6:00-10:00,10:00-14:00,14:00-18:00,18:00-22:00,22:00-2:00各小班人数为X1+X6, X1+X2 , X2+X3, X3+X4, X4+X5, X5+X6.可得线性规划问题如下:目标函数为要求所需开始上班的人数最小,约束条件为由各大班开始上班人数所得的各小班人数必须大于规定的小班需要护士量.MinZ=X1+X2+X3+X4+X5+X6X1+X6>=10 ,X1+X2>=15X2+X3>=25 ,X3+X4>=20X4+X5>=18 ,X5+X6>=12X1~X6>=0,且X1~X6为整数在不考虑定编上限和保卫处的建议的情况下,在满足正常需要的情况下医院最少需要53名护士。

管理运筹学实验报告

管理运筹学实验报告

管理运筹学实验报告中南民族大学管理学院学生实验报告课程名称:管理运筹学年级:2010 级专业:****************** 学号: ******** 姓名: ****** 指导教师: **** 实验地点:管理学院综合实验室2011 学年至 2012 学年度第 2 学期中南民族大学管理学院学生实验报告目录实验一:运筹学软件基本运用及线性规划及灵敏度分析实验二:运输问题实验三:目标规划实验四:线性规划在工商管理中的应用实验五:案例分析..............3 ..............................................................................6 .............................................................................. 9 ........................................11 (14)中南民族大学管理学院学生实验报告实验一:运筹学软件基本运用及线性规划及灵敏度分析实验时间:2012/6/7实验目的:(1)学会管理运筹学软件基本操作及运用;(2)掌握利用软件进行线性规划问题的求解实验内容:(1)进行管理运筹学软件的基本操作和运行;(2)通过基本的线性规划问题进一步认识和操作该软件,并对线性规划问题进行求解;(3)实验举例:例一:线性规划(1)基本运用(p28)中南民族大学管理学院学生实验报告(2)灵敏度分析(p34)中南民族大学管理学院学生实验报告由计算机求解得上表中所述最优解,灵敏度分析如下:1.目标函数中变量系数的灵敏度:C1 [400,+∞);C2 [0,500];2.约束方程常数项的灵敏度:B1[200,440];B2 [210,+∞);B3 [300,460];B4[285,+∞);3.增加一个约束条件的灵敏度分析:由表知该问题不涉及,故暂不予讨论;4.对偶价格问题:由表知,4个约束的对偶价格分别为:50,0,200,0;即:约束1每增加(或减少)一个单位,目标函数值就增加(或减少)50;约束3每增加(或减少)一个单位,目标函数值就增加(或减少)200;约束2,4每增加(或减少)一个单位,目标函数值没有变化;实验结果分析:(1)由上述案例可知实验结果,实验过程和实验内容基本符合要求,初步达到了实验目的;(2)通过以上案例,了解了软件的基本操作要求及线性规划问题的求解和灵敏度分析,实验结果表明,利用管理运筹学软件能够更加方便的进行相关案例的解析,以达到快速准确的在管理实践中应用的目的;指导教师批阅:中南民族大学管理学院学生实验报告实验二:运输问题实验时间:2012/5/7实验目的:(1)了解运输问题及其中的产销平衡、不平衡、生产与储存等问题;(2)掌握利用软件对这些问题进行求解的方法;实验内容:(1)进行运筹学软件的操作以解决上述问题;(2)通过基本的运输问题的求解掌握相关管理实践问题的解决办法;(3)实验举例:例一:运输问题(P129)为了使该运输问题成为产销平衡模型,特增加了一个虚拟销地,即上述B4.中南民族大学管理学院学生实验报告例二:运输问题中的生产与储存问题(P135)注:(1)为了使产销平衡,增加了一个虚拟的销地(需求),即上述B5.(2)上述表中“2000”是一个相对于表中价格足够大的数,用以帮助求解,在列表过程中通常用M表示.中南民族大学管理学院学生实验报告实验结果分析:(1)由上述案例可得到需要的实验结果,实验过程和实验内容基本符合要求,初步达到了实验目的,实验结果解析已在每项实验结果后面详细给出;(2)通过以上案例,了解了利用数学模型和计算机软件进行运输问题求解的方法,实验结果表明,数模在管理运筹学中有着不可替代的作用,是运筹学中各实践问题求解的前提,利用计算机软件能够使操作更加快速、方便、准确;指导教师批阅:中南民族大学管理学院学生实验报告实验三:目标规划实验时间:2012/5/13实验目的:(1)了解多种目标规划问题,及其基本解法;(2)学会利用运筹学软件对目标规划问题进行求解;实验内容:(1)建模、利用计算机软件进行目标规划问题的求解;(2)实验举例:例一:目标规划(P195)中南民族大学管理学院学生实验报告实验结果分析:(1)由上述得出目标规划的最优解,实验过程和实验内容基本符合要求,初步达到了实验目的;(2)通过以上案例,了解了目标规划问题的优先级、绝对约束、目标约束、正负偏差变量等问题,实验结果表明,目标规划问题在管理实践中有着重要的现实意义;指导教师批阅:中南民族大学管理学院学生实验报告实验四:线性规划在工商管理中的应用实验时间:2012/5/13实验目的:(1)了解在工商管理实践中常见的多个运筹问题,例如:生产与库存问题、筹投资问题等等;(2)掌握利用数学模型和计算机软件进行上述问题的线性规划求解方法;实验内容:(1)分析各种管理实践问题,包括:人力资源分配、生产计划、套裁下料、配料、投资等问题,建立正确的数学模型;(2)利用线性规划方法对上述问题进行求解;(3)实验举例:例一:配料问题(P49)中南民族大学管理学院学生实验报告例二:投资问题(P52)中南民族大学管理学院学生实验报告实验结果分析:(1)由上述案例可知各实践问题的求解方法,实验结果已在上述各问题中有了明确的解析,实验过程和实验内容基本符合要求,初步达到了实验目的;(2)通过以上案例,基本上概括了线性规划在实践中的应用情况,实验结果表明,线性规划在工商管理实践中拥有广泛的应用范围,是一种方便快捷高效的解析方法;指导教师批阅:中南民族大学管理学院学生实验报告实验五:案例分析>。

管理运筹学课程实验报告4

管理运筹学课程实验报告4
x1 0 0
x2 300 0
d1- 0 1
d1+ 0 0
d2- 0 0
d2+ 2000 0
step 2
目标函数值为: 2000
变量解相差值
------- -------- --------
x1 0 6
x2 300 0
d1- 0 0
d1+ 0 .08
d2- 0 1
d2+ 2000 0
(2)求解结果如下:
数学模型
分析:在选择方案时,不仅要考虑到怎么去达到不少于15万的盈利目标,同时还有兼顾到工业废液的处理费用不能超过一万远,同时,还要考虑到权重的问题.具体过程和模型如下:
解:设该制造厂生产一般类型的纸张X1吨,生产某种特种纸张X2吨,则:
(1)目标规划模型为:
MinZ=P1d-1+P2d+2
约束条件: 300X1+500X2-d+1+d-1=150000;
管理运筹学课程
实验报告
实验名称:纸张制造厂近期生产目标的分析
实验者:韦松林
实验日期:2012年5月24日
专业年级:10城市管理
指导教师:许娟老师
目的与要求
实验目的:
通过实验掌握以及实际问题建立线性规划模型的方法,并熟练运用运筹学软件求解线性规划问题,以及根据求解结果进行灵敏度分析。
实验要求:
(1)根据所给出的实际问题,建立其相应的数学模型,并利用软件进行求解。
step 1
目标函数值为: 0
变量解相差值
------- -------- --------
x1 0 0
x2 0 0
d1- 10000 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

管理运筹学实验报告
班级:131701
姓名:齐玉桂
学号:20134170113
电子商务与物流管理学院
二○一六年三月
实验三
一、 实验名称:整数规划问题求解
二、 实验目的:
⑴通过本实验使学生能建立一般整数规划模型和0-1规划模型; ⑵通过本实验使学生能用excel 的规划求解功能进行模型求解。

三、 实验相关知识
1.整数线性规划数学模型的一般形式:
2.物流节点单级选址模型:0-1规划
物流节点选址是指在既定的若干供应点及需求点的经济区域内,选择设置物流节点地址。

物流节点选址的步骤:
⑴确定选址目的
⑵明确选址约束
① 需求条件
② 运输条件
③ 服务条件
④ 用地条件
⎪⎩⎪⎨⎧=≥===∑∑==且部分或全部为整数或 n)1.2(j 0)2.1( )min (max 11 j
n j i j ij n j j j x m i b x a x c Z Z
⑤法律制度
⑥流通职能条件
⑦其他条件
⑶选定备选地址
⑷优化备选地址
⑸评价检验结果
⑹确定最终地址
四、实验内容:
1.某工厂准备利用有效面积为600m2的厂房,安装甲、乙两种自动生产线。

已知每条生产线需要占用的有效面积为100m2,购买每条甲、乙两种自动生产线的资金分别需要45万元和90万元。

预计安装后,甲种生产线每天可创造的利润为5000元,乙种生产线每天可创造的利润为8000元.现在该工厂准备用于购买设备的总资金为450万元,问应该如何配置设备,可使工厂获得最多的利润?
2.课本181页第5题
五、实验步骤
1.建立整数线性规划模型
2.点击“工具”下的“加载宏”,在弹出来的对话框中选“规划求解”。

3.在excel表中输入基本数据
4.确定每个决策变量所对应单元格的位置
5.确定规划问题所求结果所对应单元格的位置,并输入目标函数的公式表达式
6.输入约束条件的公式及右边常数项
7. 在“工具”选项卡中点击“规划求解”,弹出“规划求解参数”对话框
⑴输入目标单元格(即步骤5所确定的单元格的位置)和可变单元
格(即步骤4所确定的单元格的位置)。

⑵在“等于”栏中按照规划问题的目标,选择“最大值”或“最小值”
⑶点击“添加”按钮,弹出“添加约束”对话框,进行条件添加;并添加“int”整数约束或“bin”0-1约束。

添加完成后,点击“确定”按钮,弹出“规划求解参数”对话框,点击“选项”按钮,弹出“规划求解参数”对话框,选中“采用线性模型”和“假定非负”复选框
⑷点击“确定”按钮,返回“规划求解参数”对话框,点击“求解”按钮;在弹出“规划求解参数”对话框中,选则“保持规划求解结果”单选框,并点击“确定”按钮。

六、实验结果
运算结果报告:
依照题意,设生产甲为X1,生产乙为X2.有EXCEL求解得购置甲生产线2条,购置乙生产线4条时,利润最大为4.2。

相关文档
最新文档