参数方程题型归纳
参数方程题型大全
参数方程1.直线、圆、椭圆的参数方程(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ (φ为参数).(4)双曲线x 2a 2-y 2b2=1(a >0,b >0)的参数方程为⎩⎪⎨⎪⎧x =a 1cos θ,y =b tan θ(θ为参数).(5)抛物线px y 22=的参数方程可表示为)(.2,22为参数t pt y pt x ⎩⎨⎧==.基础练习1.在平面直角坐标系中,若曲线C 的参数方程为⎩⎨⎧x =2+22t ,y =1+22t (t 为参数),则其普通方程为____________.2.椭圆C 的参数方程为⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数),过左焦点F 1的直线l 与C 相交于A ,B 两点,则|AB |min =________.3.曲线C 的参数方程为⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ+1(θ为参数),则曲线C 的普通方程为____________.4.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1+12t ,y =32t(t 为参数),椭圆C 的方程为x 2+y 24=1,设直线l 与椭圆C 相交于A ,B 两点,则线段AB 的长为_______________考点一 参数方程与普通方程的互化(基础送分型考点——自主练透)[考什么·怎么考](1)⎩⎨⎧x =1t ,y =1t t 2-1(t 为参数);(2)⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数).(3)⎩⎪⎨⎪⎧x =1cos θ,y =tan θ2.求直线⎩⎪⎨⎪⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数.考点二 参数方程的应用(重点保分型考点——师生共研)角度一:t 的几何意义例.(2018·湖南五市十校联考)在直角坐标系xOy 中,设倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =t sin α(t 为参数),直线l 与曲线C :⎩⎪⎨⎪⎧x =1cos θ,y =tan θ(θ为参数)相交于不同的两点A ,B .(1)若α=π3,求线段AB 的中点的直角坐标;(2)若直线l 的斜率为2,且过已知点P (3,0),求|P A |·|PB |的值.1.方法要熟(1)对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt(t 为参数)的参数方程,当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.(2)直线参数方程的应用:直线的标准参数方程主要用来解决过定点的直线与圆锥曲线相交时的弦长或距离问题.它可以避免求交点时解方程组的繁琐运算,但应用直线的参数方程时,需先判断是否是标准形式再考虑参数的几何意义.1.已知P 为半圆C :⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3.(1)以O 为极点,x 轴的正半轴为极轴,建立极坐标系,求点M 的极坐标; (2)求直线AM 的参数方程.2.(2016·河南二模)在直角坐标系xOy 中,过点P ⎝ ⎛⎭⎪⎫0,32且倾斜角为α的直线l 与曲线(x -1)2+(y -2)2=1相交于不同的两点M ,N .求1|PM |+1|PN |的取值范围.3.在平面直角坐标系xOy 中,曲线C 1过点P (a,1),其参数方程为⎩⎨⎧x =a +2t ,y =1+2t(t 为参数,a ∈R).以O 为极点,x 轴非负半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知曲线C 1与曲线C 2交于A ,B 两点,且|P A |=2|PB |,求实数a 的值.角度二:用参数来表示点的坐标[典题领悟]例. 在平面直角坐标系xOy 中,以O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点P 的极坐标为⎝⎛⎭⎫23,π6,曲线C 的参数方程为⎩⎨⎧x =2cos α,y =-3+2sin α(α为参数). (1)写出点P 的直角坐标及曲线C 的直角坐标方程;(2)若Q 为曲线C 上的动点,求PQ 中点M 到直线l :ρcos θ+2ρsin θ+1=0距离的最小值.1.已知直线L 的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数),以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ=21+3cos 2 θ.(1)求直线L 的极坐标方程和曲线C 的直角坐标方程;(2)过曲线C 上任意一点P 作与直线L 夹角为π3的直线l ,设直线l 与直线L 的交点为A ,求|P A |的最大值.2.(2018·石家庄一模)在平面直角坐标系中,将曲线C 1上的每一个点的横坐标保持不变,纵坐标缩短为原来的12,得到曲线C 2.以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,已知曲线C 1的极坐标方程为ρ=2.(1)求曲线C 2的参数方程;(2)过坐标原点O 且关于y 轴对称的两条直线l 1与l 2分别交曲线C 2于A ,C 和B ,D ,且点A 在第一象限,当四边形ABCD 的周长最大时,求直线l 1的普通方程.3.(2017·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a .考点三 极坐标、参数方程的综合应用1.(2017·全国卷Ⅲ)在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt (t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =m k(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.、2.(2018·武昌调研)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =2sin t (t 为参数,a >0).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ+π4=-2 2. (1)设P 是曲线C 上的一个动点,当a =2时,求点P 到直线l 的距离的最小值; (2)若曲线C 上的所有点均在直线l 的右下方,求a 的取值范围.1.(2018·石家庄质检)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =-5+2cos t ,y =3+2sin t(t 为参数),在以原点O 为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ+π4=- 2.(1)求圆C 的普通方程和直线l 的直角坐标方程;(2)设直线l 与x 轴,y 轴分别交于A ,B 两点,点P 是圆C 上任意一点,求A ,B 两点的极坐标和△P AB 面积的最小值.2.(2018·贵阳模拟)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+3cos t ,y =5+3sin t (t 为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)求曲线C 1的普通方程和C 2的直角坐标方程;(2)若A ,B 分别为曲线C 1,C 2上的动点,求当AB 取最小值时△AOB 的面积.3.(2018·广州综合测试)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-t ,y =1+t (t 为参数).在以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C :ρ=22cos ⎝⎛⎭⎫θ-π4. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)求曲线C 上的点到直线l 的距离的最大值.4.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.5.(2018·成都诊断)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),直线l的参数方程为⎩⎨⎧x =3-32t ,y =3+12t (t 为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,过极点O 的射线与曲线C 相交于不同于极点的点A ,且点A 的极坐标为(23,θ),其中θ∈⎝⎛⎭⎫π2,π.(1)求θ的值;(2)若射线OA 与直线l 相交于点B ,求|AB |的值.6.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1-32t ,y =3+12t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6.(1)求圆C 的直角坐标方程;(2)若P (x ,y )是直线l 与圆面ρ≤4sin ⎝⎛⎭⎫θ-π6的公共点,求3x +y 的取值范围.7.(2015·太原校级二模)在直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =5cos θ,y =5sin θ(θ为参数),直线l 经过点P (3,2),且倾斜角为π3.(1)写出直线l 的参数方程和圆C 的标准方程;(2)设直线l 与圆C 相交于A ,B 两点,求|P A |·|PB |的值.8.(2016·厦门一模)已知曲线C 的极坐标方程是ρ-4sin θ=0,以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 过点M (1,0),倾斜角为3π4.(1)求曲线C 的直角坐标方程与直线l 的参数方程;(2)设直线l 与曲线C 交于A ,B 两点,求 |MA |+|MB |.9.已知直线l 的参数方程为{⎩⎨⎧+=+=t32y t 3x (t 为参数),曲线C 的参数方程为⎩⎨⎧==θθsin 4cos 4y x (θ为参数)。
参数方程题型大全
参数方程1.直线、圆、椭圆的参数方程(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ (φ为参数).(4)双曲线x 2a 2-y 2b2=1(a >0,b >0)的参数方程为⎩⎪⎨⎪⎧x =a 1cos θ,y =b tan θ(θ为参数).(5)抛物线px y 22=的参数方程可表示为)(.2,22为参数t pt y pt x ⎩⎨⎧==.基础练习1.在平面直角坐标系中,若曲线C 的参数方程为⎩⎨⎧x =2+22t ,y =1+22t (t 为参数),则其普通方程为____________.2.椭圆C 的参数方程为⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数),过左焦点F 1的直线l 与C 相交于A ,B 两点,则|AB |min =________.3.曲线C 的参数方程为⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ+1(θ为参数),则曲线C 的普通方程为____________.4.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1+12t ,y =32t(t 为参数),椭圆C 的方程为x 2+y 24=1,设直线l 与椭圆C 相交于A ,B 两点,则线段AB 的长为_______________考点一 参数方程与普通方程的互化(基础送分型考点——自主练透)[考什么·怎么考](1)⎩⎨⎧x =1t ,y =1t t 2-1(t 为参数);(2)⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数).(3)⎩⎪⎨⎪⎧x =1cos θ,y =tan θ2.求直线⎩⎪⎨⎪⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数.考点二 参数方程的应用(重点保分型考点——师生共研)角度一:t 的几何意义例.(2018·湖南五市十校联考)在直角坐标系xOy 中,设倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =t sin α(t 为参数),直线l 与曲线C :⎩⎪⎨⎪⎧x =1cos θ,y =tan θ(θ为参数)相交于不同的两点A ,B .(1)若α=π3,求线段AB 的中点的直角坐标;(2)若直线l 的斜率为2,且过已知点P (3,0),求|P A |·|PB |的值.1.方法要熟(1)对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt(t 为参数)的参数方程,当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.(2)直线参数方程的应用:直线的标准参数方程主要用来解决过定点的直线与圆锥曲线相交时的弦长或距离问题.它可以避免求交点时解方程组的繁琐运算,但应用直线的参数方程时,需先判断是否是标准形式再考虑参数的几何意义.1.已知P 为半圆C :⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3.(1)以O 为极点,x 轴的正半轴为极轴,建立极坐标系,求点M 的极坐标; (2)求直线AM 的参数方程.2.(2016·河南二模)在直角坐标系xOy 中,过点P ⎝ ⎛⎭⎪⎫0,32且倾斜角为α的直线l 与曲线(x -1)2+(y -2)2=1相交于不同的两点M ,N .求1|PM |+1|PN |的取值范围.3.在平面直角坐标系xOy 中,曲线C 1过点P (a,1),其参数方程为⎩⎨⎧x =a +2t ,y =1+2t(t 为参数,a ∈R).以O 为极点,x 轴非负半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知曲线C 1与曲线C 2交于A ,B 两点,且|P A |=2|PB |,求实数a 的值.角度二:用参数来表示点的坐标[典题领悟]例. 在平面直角坐标系xOy 中,以O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点P 的极坐标为⎝⎛⎭⎫23,π6,曲线C 的参数方程为⎩⎨⎧x =2cos α,y =-3+2sin α(α为参数). (1)写出点P 的直角坐标及曲线C 的直角坐标方程;(2)若Q 为曲线C 上的动点,求PQ 中点M 到直线l :ρcos θ+2ρsin θ+1=0距离的最小值.1.已知直线L 的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数),以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ=21+3cos 2 θ.(1)求直线L 的极坐标方程和曲线C 的直角坐标方程;(2)过曲线C 上任意一点P 作与直线L 夹角为π3的直线l ,设直线l 与直线L 的交点为A ,求|P A |的最大值.2.(2018·石家庄一模)在平面直角坐标系中,将曲线C 1上的每一个点的横坐标保持不变,纵坐标缩短为原来的12,得到曲线C 2.以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,已知曲线C 1的极坐标方程为ρ=2.(1)求曲线C 2的参数方程;(2)过坐标原点O 且关于y 轴对称的两条直线l 1与l 2分别交曲线C 2于A ,C 和B ,D ,且点A 在第一象限,当四边形ABCD 的周长最大时,求直线l 1的普通方程.3.(2017·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a .考点三 极坐标、参数方程的综合应用1.(2017·全国卷Ⅲ)在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt (t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =m k(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.、2.(2018·武昌调研)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =2sin t (t 为参数,a >0).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ+π4=-2 2. (1)设P 是曲线C 上的一个动点,当a =2时,求点P 到直线l 的距离的最小值; (2)若曲线C 上的所有点均在直线l 的右下方,求a 的取值范围.1.(2018·石家庄质检)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =-5+2cos t ,y =3+2sin t(t 为参数),在以原点O 为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ+π4=- 2.(1)求圆C 的普通方程和直线l 的直角坐标方程;(2)设直线l 与x 轴,y 轴分别交于A ,B 两点,点P 是圆C 上任意一点,求A ,B 两点的极坐标和△P AB 面积的最小值.2.(2018·贵阳模拟)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+3cos t ,y =5+3sin t (t 为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)求曲线C 1的普通方程和C 2的直角坐标方程;(2)若A ,B 分别为曲线C 1,C 2上的动点,求当AB 取最小值时△AOB 的面积.3.(2018·广州综合测试)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-t ,y =1+t (t 为参数).在以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C :ρ=22cos ⎝⎛⎭⎫θ-π4. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)求曲线C 上的点到直线l 的距离的最大值.4.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.5.(2018·成都诊断)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),直线l的参数方程为⎩⎨⎧x =3-32t ,y =3+12t (t 为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,过极点O 的射线与曲线C 相交于不同于极点的点A ,且点A 的极坐标为(23,θ),其中θ∈⎝⎛⎭⎫π2,π.(1)求θ的值;(2)若射线OA 与直线l 相交于点B ,求|AB |的值.6.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1-32t ,y =3+12t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6.(1)求圆C 的直角坐标方程;(2)若P (x ,y )是直线l 与圆面ρ≤4sin ⎝⎛⎭⎫θ-π6的公共点,求3x +y 的取值范围.7.(2015·太原校级二模)在直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =5cos θ,y =5sin θ(θ为参数),直线l 经过点P (3,2),且倾斜角为π3.(1)写出直线l 的参数方程和圆C 的标准方程;(2)设直线l 与圆C 相交于A ,B 两点,求|P A |·|PB |的值.8.(2016·厦门一模)已知曲线C 的极坐标方程是ρ-4sin θ=0,以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 过点M (1,0),倾斜角为3π4.(1)求曲线C 的直角坐标方程与直线l 的参数方程;(2)设直线l 与曲线C 交于A ,B 两点,求 |MA |+|MB |.9.已知直线l 的参数方程为{⎩⎨⎧+=+=t32y t 3x (t 为参数),曲线C 的参数方程为⎩⎨⎧==θθsin 4cos 4y x (θ为参数)。
高中体育常见题型解法归纳:参数方程常见题型的解法
高中体育常见题型解法归纳:参数方程常见题型的解法本文将对高中体育中参数方程常见题型的解法进行归纳和总结。
参数方程是描述运动物体在平面上位置的一种数学表示方法,常用于解决运动轨迹、速度与加速度等问题。
1. 参数方程表示运动轨迹在参数方程问题中,我们通常需要根据给定的参数方程,确定物体的运动轨迹。
一般来说,参数方程都分为x方向和y方向的表达式,通过将参数代入表达式中,即可确定物体在平面上的位置。
示例题型:给定参数方程:x = 2ty = t^2 - 3t + 1求物体的运动轨迹。
解答方法:根据给定的参数方程,将t的取值代入x和y的表达式中,得到一系列的坐标点。
连接这些坐标点,即可得到物体的运动轨迹。
2. 参数方程求速度与加速度在参数方程问题中,我们常常需要求解物体的速度和加速度。
速度是描述物体运动变化率的量,而加速度是描述物体速度变化率的量。
通过参数方程,我们可以计算出物体在任意时刻的速度和加速度。
示例题型:给定参数方程:x = 2ty = t^2 - 3t + 1求物体在t = 1时刻的速度和加速度。
解答方法:首先,求出物体在t = 1时刻的位置坐标,将t = 1代入参数方程中,得到物体的位置坐标。
然后,分别对x和y方向的参数方程求导,即可得到物体在t = 1时刻的速度和加速度。
3. 参数方程的应用参数方程在实际问题中有广泛的应用,例如描述物体的运动轨迹、分析物体的速度与加速度等。
掌握参数方程的解法,可以帮助我们更好地理解和解答相关问题。
示例题型:某物体沿着参数方程给出的运动轨迹,速度大小为常数,求物体的运动方程。
解答方法:由于速度大小为常数,说明物体以等速运动。
根据等速运动的性质,我们可以知道物体的位移和时间成正比。
通过观察参数方程中的x和y方向的表达式,我们可以发现物体在x和y方向上的位移与t成正比关系。
通过进一步推导,可以得到物体的运动方程。
综上所述,参数方程在高中体育中是一种常见的数学方法,用于解决运动轨迹、速度与加速度等问题。
总结参数方程的题型
总结参数方程的题型在高等数学中,我们经常会遇到参数方程的题型。
参数方程由多个参数联立起来,通过给定的参数值,我们可以确定曲线或曲面上的点的位置。
在本文中,我们将总结几种常见的参数方程题型,包括直线、圆、椭圆和抛物线等。
直线的参数方程直线的参数方程可以通过已知的点和方向向量来确定。
我们以直线过点A(x₁,y₁)和B(x₂, y₂)为例。
设直线的参数为t,则参数方程可以表示为:x = (1-t)x₁ + tx₂ y = (1-t)y₁ + ty₂其中,t的范围取决于所给的参数范围。
在数学的几何应用中,参数t通常取值于[0, 1],表示直线上从点A到点B的过程。
圆的参数方程圆的参数方程可以通过给定的圆心坐标和半径来确定。
设圆的圆心为C(a, b),半径为r,则参数方程可以表示为:x = a + rcosθ y = b + rsinθ其中,θ为参数,表示角度的变化,范围一般取[0, 2π)。
当θ取遍这个范围时,参数方程描述了圆上所有的点。
椭圆的参数方程椭圆是一个类似于圆的曲线,其形状更加扁平或拉长。
椭圆的参数方程可以通过给定的椭圆中心坐标、长半轴a和短半轴b来确定。
设椭圆的中心为C(h, k),则参数方程可以表示为:x = h + acosθ y = k + bsinθ其中,θ为参数,表示角度的变化,范围一般取[0, 2π)。
当θ取遍这个范围时,参数方程描述了椭圆上所有的点。
抛物线的参数方程抛物线是一个常见的曲线形状,其参数方程可以通过给定的抛物线的顶点坐标和焦点坐标来确定。
设抛物线的顶点为V(h, k),焦点为F(a, b),则参数方程可以表示为:x = h + pt² y = k + 2pt其中,p为参数,表示抛物线的形状和方向。
当p>0时,抛物线开口向上;当p<0时,抛物线开口向下。
参数t的取值范围可以是全体实数。
总结通过以上几种常见的参数方程题型的总结,我们了解到参数方程在数学中的广泛应用。
中职参数方程题型归纳总结
中职参数方程题型归纳总结参数方程是解析几何中常见的一种表示方法,用来描述曲线或曲面上的点的坐标。
在中职数学课程中,参数方程题型属于数学分析的范畴,也是学生们经常遇到的一个重点知识点。
本文通过对中职参数方程题型的归纳总结,旨在帮助学生更好地理解和掌握该知识点。
一、直线的参数方程题型直线的参数方程常用于描述直线上的点。
设直线L上的一个点为P,L的方向向量为d,则某一点P在直线L上的参数方程可以表示为:x = x1 + tdy = y1 + tdz = z1 + td其中,(x1, y1, z1)是直线L上的已知点坐标,d是L的方向向量,t为参数。
二、曲线的参数方程题型曲线的参数方程常用于描述曲线上的点。
设曲线C上的一点为P,C的参数方程可以表示为:x = f(t)y = g(t)z = h(t)其中,x、y、z分别代表点P在X轴、Y轴和Z轴上的坐标,f(t)、g(t)和h(t)是曲线C在参数t下的坐标方程。
常见的曲线参数方程包括直线、抛物线、圆、椭圆等,通过求解这些曲线的参数方程题目,可以更好地理解参数方程的应用。
三、曲面的参数方程题型曲面的参数方程常用于描述曲面上的点。
设曲面S上的一个点为P,S的参数方程可以表示为:x = f(u, v)y = g(u, v)z = h(u, v)其中,x、y、z分别代表点P在X轴、Y轴和Z轴上的坐标,f(u, v)、g(u, v)和h(u, v)是曲面S在参数u, v下的坐标方程。
常见的曲面参数方程包括平面、球面、柱面、锥面等,通过求解这些曲面的参数方程题目,可以更好地理解参数方程在解析几何中的应用。
四、参数方程的应用题型参数方程的应用广泛存在于数学、物理等领域。
在中职数学课程中,常见的参数方程应用题型包括运动学问题、力学问题、电路问题等。
例如,求解运动学问题时,通过给定物体在不同时刻的位置信息,可以利用参数方程推导出物体的运动轨迹;求解力学问题时,通过给定力的大小和方向信息,可以利用参数方程计算物体的受力情况;求解电路问题时,通过给定电流和电压的关系,可以利用参数方程分析电路的特性。
参数方程题型大全
参数方程题型大全1在极坐标系中,点(ρ,θ)与(-ρ, π-θ)的位置关系( )。
A .关于极轴所在直线对称 B .关于极点对称 C .关于直线θ=2π (ρ∈R) 对称 D .重合2.极坐标方程 4ρsin 22θ=5 表示的曲线是( )。
A .圆B .椭圆C .双曲线的一支D .抛物线 3.点 P 1(ρ1,θ1) 与 P 2(ρ2,θ2) 满足ρ1 +ρ2=0,θ1 +θ2 = 2π,则 P 1、P 2 两点的位置关系是( )。
A .关于极轴所在直线对称 B .关于极点对称 C .关于θ=2π所在直线对称 D .重合 4.椭圆⎩⎨⎧Φ+-=Φ+=sin 51cos 33y x 的两个焦点坐标是( )。
A .(-3, 5),(-3, -3)B .(3, 3),(3, -5)C .(1, 1),(-7, 1)D .(7, -1),(-1, -1) 5.若直线的参数方程为12()23x tt y t=+⎧⎨=-⎩为参数,则直线的斜率为( )A .23B .23-C .32D .32-6.下列在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是( )A .1(,2)2- B .31(,)42- C .(2,3) D .(1,3)7.将参数方程222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤ 8.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )A .201y y +==2x 或B .1x =C .201y +==2x 或xD .1y = 9.点M 的直角坐标是(1,3)-,则点M 的极坐标为( )A .(2,)3π B .(2,)3π- C .2(2,)3π D .(2,2),()3k k Z ππ+∈ 10.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A 一条射线和一个圆B 两条直线C 一条直线和一个圆D 一个圆 11.直线l 的参数方程为()x a tt y b t =+⎧⎨=+⎩为参数,l 上的点1P 对应的参数是1t ,则点1P 与(,)P a b 之间的距离是( )A .1tB .12tC .12tD .122t 12.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( )A .一条直线B .两条直线C .一条射线D .两条射线13.直线112()3332x t t y t ⎧=+⎪⎪⎨⎪=-+⎪⎩为参数和圆2216x y +=交于,A B 两点,则AB 的中点坐标为( )A .(3,3)-B .(3,3)-C .(3,3)-D .(3,3)- 14.圆5cos 53sin ρθθ=-的圆心坐标是( )A .4(5,)3π--B .(5,)3π-C .(5,)3πD .5(5,)3π-15.与参数方程为()21x tt y t⎧=⎪⎨=-⎪⎩为参数等价的普通方程为( ) A .214y +=2x B .21(01)4y x +=≤≤2xC .21(02)4y y +=≤≤2x D .21(01,02)4y x y +=≤≤≤≤2x16.直线2()1x tt y t=-+⎧⎨=-⎩为参数被圆22(3)(1)25x y -++=所截得的弦长为( )A .98B .1404C .82D .9343+ 17.1.把方程1xy =化为以t 参数的参数方程是( )A .1212x t y t -⎧=⎪⎨⎪=⎩B .sin 1sin x t y t =⎧⎪⎨=⎪⎩C .cos 1cos x t y t =⎧⎪⎨=⎪⎩D .tan 1tan x t y t =⎧⎪⎨=⎪⎩ 18.曲线25()12x tt y t=-+⎧⎨=-⎩为参数与坐标轴的交点是( )A .21(0,)(,0)52、B .11(0,)(,0)52、 C .(0,4)(8,0)-、 D .5(0,)(8,0)9、 19.直线12()2x tt y t=+⎧⎨=+⎩为参数被圆229x y +=截得的弦长为( )A .125 B .1255 C .955 D .910520.若点(3,)P m 在以点F 为焦点的抛物线24()4x t t y t ⎧=⎨=⎩为参数上,则PF 等于( )A .2B .3C .4D .521.极坐标方程cos 20ρθ=表示的曲线为( )A .极点B .极轴C .一条直线D .两条相交直线 22.在极坐标系中与圆4sin ρθ=相切的一条直线的方程为( )A .cos 2ρθ= B .sin 2ρθ= C .4sin()3πρθ=+ D .4sin()3πρθ=- 23.参数方程()2()t tt tx e et y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为_______________24.已知直线113:()24x tl t y t=+⎧⎨=-⎩为参数与直线2:245l x y -=相交于点B ,又点(1,2)A ,则AB =_______________。
总结参数方程的题型
总结参数方程的题型参数方程是数学中常见的一种表示方法,它使用一个独立变量参数来描述一个曲线或者曲面。
参数方程的应用非常广泛,涉及到几何、物理、统计等多个领域。
下面我们来总结一些常见的参数方程的题型。
一、参数方程表示平面曲线1. 直线的参数方程表示:对于直线来说,可以使用一个参数t 来表示直线上各个点的位置。
直线的参数方程可以根据已知的直线上两个点的坐标来确定,或者通过给定直线上的一个点和直线的方向向量来确定。
2. 抛物线的参数方程表示:抛物线是一种常见的二次曲线,它可以使用参数方程来表示。
对于给定的抛物线,可以使用一个参数来表示抛物线上各个点的位置。
抛物线的参数方程可以根据已知的顶点坐标和一个方向向量来确定。
3. 椭圆的参数方程表示:椭圆是一种常见的闭合曲线,它可以使用两个参数来表示。
椭圆的参数方程可以根据已知的椭圆上某个点的坐标和椭圆的长轴、短轴长度来确定。
4. 双曲线的参数方程表示:双曲线是一种以两个分离的曲线组成的平面曲线。
它可以使用两个参数来表示。
双曲线的参数方程可以根据已知的双曲线上某个点的坐标和双曲线的焦点、离心率来确定。
二、参数方程表示空间曲线1. 直线的参数方程表示:在三维空间中,直线可以使用一个参数t来表示。
直线的参数方程可以根据已知的直线上两个点的坐标来确定,或者通过给定直线上的一个点和直线的方向向量来确定。
2. 高斯曲线的参数方程表示:高斯曲线是一种常见的二次曲线,它可以在三维空间中使用参数方程来表示。
高斯曲线的参数方程可以根据已知的曲线的顶点坐标和一个方向向量来确定。
3. 圆柱曲线的参数方程表示:圆柱曲线是一种位于圆柱体表面上的曲线,它可以在三维空间中使用参数方程来表示。
圆柱曲线的参数方程可以根据已知的圆柱曲线上某个点的坐标和圆柱曲线的半径来确定。
三、参数方程表示空间曲面1. 平面的参数方程表示:平面是一种常见的二次曲面,它可以使用两个参数来表示。
平面的参数方程可以根据已知的平面上某个点的坐标和平面的法向量来确定。
【高中数学】参数方程和极坐标方程常考题型及解题方法归纳
参数方程和极坐标方程常考题型及解题方法归纳一、根据直线参数方程中t的几何意义求与距离有关的问题经过点P(x0,y0),倾斜角为α的直线l的参数方程为x=x0+tcosαy=y0+tsin烅烄烆α(t为参数),参数t的几何意义是:直线上定点P到动点M的有向线段,t表示参数t对应的点M到定点P的距离,即|t|=|PM|.若A,B为直线l上两点,其对应的参数分别为t1与t2,则有:①AB=|t1-t2|;②当A,B在点P的同侧时,t1与t2同号;当A,B分别在点P的两侧时,t1与t2异号.需要注意的是:有时候直线的参数方程也可写为x=x0+aty=y0+烅烄烆bt(t为参数),如果a2+b2≠1,则参数t没有上述几何意义.例1 在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρll与l的普通方程;(2)若PM,MN,PN成等比数列,求a的值.分析 (1)利用x=ρcosθ,y=ρsinθ即可将曲线C的极坐标方程转化为直角坐标方程,在直线l的参数方程中消去参数t即可得直线l的普通方程;(2)将直线l的参数方程代入曲线C的直角坐标方程,利用参数的几何意义结合韦达定理即可建立关于a的方程求解.解 (1)由ρsin2θ=acosθ得ρ2 sin2θ=aρcosθ,可得曲线C的平面直角坐标方程y2=ax(a>0).由直线l的参数方程消去参数t,可得直线l的普通方程为x-y-1=0.(2)设点M,N对应的参数分别为t1,t2,则PM=t1,PN=t2,MN=t1-t2.将x=-1+槡22t,y=-2 +槡22t代入y2=ax,得t2-(槡4 2 +槡2a)t+8+2a=0.所以Δ=(槡4 2 +槡2a)2-4(8+2a)=2a2+8a>0,t1+t2=槡4 2 +槡2a,t1t2=8+2a.由PM,MN,PN成等比数列,可以得到t1-t22=t1t2,所以(t1+t2)2-4t1t2=t1t2,即(槡4 2 +槡2a)2-5(8+2a)=0,解得a=1(a=-4舍去).例2 (2015年高考湖南卷)已知直线l:x=5 +槡32ty =槡3+12烅烄烆t(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;(Ⅱ)设点M的直角坐标为(5,槡3),直线l与曲线C的交点为A,B,求|MA|·|MB|的值.分析 (Ⅰ)利用ρ2=x2+y2,x=ρcosθ即可将已知条件中的极坐标方程转化为直角坐标方程;(Ⅱ)注意到点M在直线l上,将直线l的参数方程代入圆的直角坐标方程,利用参数的几何意义结合韦达定理即可求解.解 (Ⅰ)ρ=2cosθ等价于ρ2=2ρcosθ,将ρ2=x2+y2,ρcosθ=x代入即得曲线C的直角坐标方程为x2+y2-2x=0.(Ⅱ)结合直线l的参数方程,注意到点M在直线l上,且(槡32)2+(12)2=1,可设点M,N对应的参数分别为t1,t2,则MA=|t1|,MB=|t2|,所以MA·MB=t1t2. 将直线l的参数方程代入曲线C的直角坐标方程,整理得t2 +槡5 3t+18=0,则MA·MB=t1t2=18.例3 已知圆锥曲线C:x=2cosαy=sin{α(α为参数)和定点A(0,,槡3),F1,F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的极坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M,N两点,求MF1-NF1的值.解 (1)消去参数α即可将曲线C的方程化为普通方程x24+y2=1,从而可求得F1(-槡3,0),F2(槡3,0),于是可得直线AF2的普通方程为x+y-槡3=0,利用互化公式化为极坐标方程为ρcosθ+ρsinθ=槡3.(2)由(1)可得kAF2=-1,所以直线l的倾斜角为45°,从而可得直线l的参数方程为x=-槡3 +槡22ty =槡22烅烄烆t(t为参数),代入椭圆C的直角坐标方程:x24+y2=1,得5t2-槡2 6t-2=0,设点M,N对应的参数分别为t1,t2,注意到点M,N,F1都在直线l上且点M,N在点F1两侧,所以|MF1|-|NF1|=|t1+t2|=槡2 65.评注 对于直线上与定点距离有关的问题,利用直线参数方程中参数t的几何意义,能避免通过解方程组求交点坐标的繁琐运算,使解题过程得到简化.二、利用参数方程求最值和取值范围利用曲线的参数方程求解两曲线间的最值问题,是解决这类问题的常用方法,优点是解题过程比较简洁.为此,需要熟悉常见曲线的参数方程、参数方程与普通方程的互化以及参数方程的简单应用.例4 已知曲线C1:x=8costy=2sin{t(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ=7cosθ-sinθ.(1)将曲线C1的参数方程化为普通方程,将曲线C2的极坐标方程化为直角坐标方程.(2)设P为曲线C1上的点,点Q极坐标为(2槡2,π4),求PQ的中点与曲线C2上的点的距离的最小值.分析 (1)利用参数方程和普通方程之间的关系进行互化即可,(2)先把点Q的极坐标化为直角坐标,设出点P的参数形式的直角坐标(t为参数),进而得到PQ的中点M的直角坐标,可用公式得到点M到直线C2的距离d的表达式(用参数t表示),再求最值即可.解 (1)由曲线C1的参数方程消去参数t得曲线C1的普通方程x264+y24=1.由曲线C2的极坐标方程得ρcosθ-ρsinθ=7,于是可得它的直角坐标方程为x-y-7=0.(2)由点Q的极坐标(槡2 2,π4)可得它的直角坐标为(2,2),设P(8cost,2sint),则PQ的中点M的直角坐标为(4cost+1,sint+1),所以,点M到直线C2的距离d=4cost-sint-7槡2=槡17cos(t+φ)-7槡2,其中φ为锐角,且tanφ=14.当cos(t+φ)=1时,d取得最小值dmin=槡7 2 -槡342.所以,PQ的中点M与曲线C2上的点的距离的最小值为槡7 2 -槡342.例5 (2014年全国卷Ⅰ)已知曲线C:x24+y29=1,直线l:x=2+ty=2-2{t(t为参数).(Ⅰ)写出曲线C的参数方程和直线l的普通方程;(Ⅱ)过曲线C上任一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.分析 (Ⅰ)利用椭圆的普通方程及直线的参数的特征进行互化即可;(Ⅱ)由椭圆的参数方程建立|PA|的三角函数表达式,再求最值.图1解 (Ⅰ)曲线C的参数方程为x=2cosθy=3sin{θ(θ为参数),直线l的普通方程为2x+y-6=0.(Ⅱ)如图1,在曲线C上任意取一点P(2cosθ,3sinθ),它到直线l的距离为:d=槡554cosθ+3sinθ-6,则|PA|=dsin30°=槡2 55|5sin(θ+α)-6|,其中α为锐角,且tanα=43.当sin(θ+α)=-1时,|PA|取得最大值,最大值为槡22 55;当sin(θ+α)=1时,|PA|取得最小值,最小值为槡2 55.例6 (2015年高考陕西卷)在直角坐标系xΟy中,直线l的参数方程为x=3+12ty =槡32烅烄烆t(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=槡2 3sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)Ρ为直线l上一动点,当Ρ到圆心C的距离最小时,求Ρ的直角坐标.分析 (Ⅰ)利用x=ρcosθ,y=ρsinθ,由⊙C的极坐标方程可得它的直角坐标方程;(Ⅱ)先设点Ρ的参数坐标,可得ΡC的函数表达式,再利用函数的性质可得ΡC的最小值,进而可得Ρ的直角坐标;或将直线l的方程化为普通方程,再求过圆心且垂直于直线l的直线方程,联立两方程可解得点P的直角坐标.解 (Ⅰ)由ρ=槡2 3sinθ,得ρ2 =槡2 3ρsinθ,从而,⊙C的直角坐标方程为x2+y2 =槡2 3y,即x2+(y-槡3)2=3.(Ⅱ)设P(3+12t,槡32t),又C(0,槡3),则|PC|=(3+12t)2+(槡32t -槡3)槡2=t2+槡12,易知:当t=0时,ΡC取得最小值,此时Ρ点的直角坐标为(3,0).评注 将曲线的参数方程化为普通方程的关键是消去其中的参数,常用的技巧有:代入消参、加减消参、整体消参、平方后加减消参等.如果题目中涉及圆、椭圆上的动点求相关最值(范围)问题时,可考虑用其参数方程设出点的坐标,将问题转化为函数问题来解决,可以使解题的过程更简洁.例7 (2016年全国卷Ⅱ理科第20题)已知椭圆E:x2t+y23=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,AM=AN时,求△AMN的面积;(Ⅱ)当2 AM=AN时,求k的取值范围.分析 (Ⅰ)先结合已知条件设出直线AM的参数方程,代入椭圆方程,可求得AM,进而求得△AMN的面积;(Ⅱ)设出直线AM、AN的参数方程(以直线AM的倾斜角α为参数),代入椭圆方程,用t和α表示|AM|和|AN|,再利用2 AM=AN将t表示为k的函数,结合t>3,可求得k的取值范围.解 (Ⅰ)当t=4,AM=AN时,可得点A(-2,0),k=1.设直线AM的参数方程为x=-2+槡22my =槡22烅烄烆m(m为参数),代入椭圆方程,整理得72m2-槡6 2 m=0,故AM =槡12 27,所以S△AMN=12AM·AN=14449.(Ⅱ)设直线AM的倾斜角为α,又点A(-槡t,0),可设直线AM的参数方程为x=-槡t+mcosαy=msin烅烄烆α(m为参数),代入椭圆方程,整理得(3cos2α+t sin2α)m2-6tcosα·m=0,所以AM=6tcosα3cos2α+t sin2α.因为MA⊥NA,故直线AN的倾斜角为α+π2,同理可得:AN=6tcos(α+π2)3cos2(α+π2)+t sin2(α+π2)=6tsinα3sin2α+t cos2α.由2 AM=AN,k=tanα,代入化简得t=6k2-3kk3-2.又因为椭圆E:x2t+y23=1的焦点在x轴上,所以t>3,即6k2-3kk3-2>3,解得3槡2<k<2.所以,k的取值范围是(3槡2,2).评注 本题属于圆锥曲线试题,常规思路是利用直角坐标直接求解,过程比较复杂.利用直线的参数方程来求解本题,使问题的求解过程变得简洁.三、利用极坐标中ρ的几何意义求有关距离或相关问题我们知道,极坐标中的ρ为极径,表示曲线上一点与原点O之间的距离,因此,与原点O有关的距离、面积等问题都可考虑运用极坐标中ρ的几何意义来解决,这是一种有效的解题策略,很多时候比化为直角坐标运算更简便.例8 (2015年高考全国卷Ⅱ)在直角坐标系xOy中,曲线C1:x=tcosα,y=tsinα{,(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2 槡3cosθ.(Ⅰ)求C2与C1的交点的直角坐标;(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求AB的最大值.分析 (Ⅰ)可将曲线C2与C1的极坐标方程化为直角坐标方程后联立求交点的直角坐标,也可以直接联立极坐标方程求得交点的极坐标,再化为直角坐标;(Ⅱ)分别联立C2与C1、C3与C1的极坐标方程,求得A,B的极坐标,由极径的概念用α表示出AB,转化为求关于α的三角函数的最大值.解 (Ⅰ)曲线C2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2 -槡2 3x=0.联立两方程解得:x1=0,y1=0烅烄烆,x2=槡32,y2=32烅烄烆,所以,C2与C1的交点的直角坐标为(0,0)和(槡32,32).(Ⅱ)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.于是可得:点A的极坐标为(2sinα,α),点B的极坐标为(槡2 3cosα,α).所以AB=2sinα-槡2 3cosα=4|sin(α-π3)|,又0≤α<π,所以,当α=5π6时,AB取得最大值,最大值为4.评注 如果用直角坐标来处理本题,计算量较大.例9 (2016年全国卷Ⅱ理科第23题)在直线坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是x=tcosα,y=tsinα{,(t为参数),l与C交于A,B两点,|AB|=槡10,求l的斜率.分析 (Ⅰ)利用ρ2=x2+y2,x=ρcosθ可得C的极坐标方程;(Ⅱ)先将直线l的参数方程化为极坐标方程,再利用弦长公式可求得l的斜率.解 (Ⅰ)由x=ρcosθ,y=ρsinθ可得C的极坐标方程ρ2+12ρcosθ+11=0.(Ⅱ)在(Ⅰ)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R),与C的极坐标方程联立得ρ2+12ρcosα+11=0.设点A,B所对应的极径分别为ρ1,ρ2,则ρ1+ρ2=-12cosα,ρ1ρ2=11,所以|AB|=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ槡2=144cos2α-槡44.又|AB|=槡10,所以144cos2α-槡44 =槡10,解得cos2α=38,故tanα=±槡153,所以,直线l的斜率为槡153或-槡153.例10 (2015年高考全国卷Ⅰ理科第23题)在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=π4(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.分析 (Ⅰ)根据公式x=ρcosθ,y=ρsinθ,x2+y2=ρ2即可求得C1,C2的极坐标方程;(Ⅱ)联立直线C3和圆C2的极坐标方程得到关于ρ的方程,可求得MN,进而可求出△C2MN的面积.解 (Ⅰ)因为x=ρcosθ,y=ρsinθ,所以,可求得:C1的极坐标方程为ρcosθ=-2,C2的极坐标方程为ρ2-2ρcosθ-4ρsinθ+4=0.(Ⅱ)将C3的极坐标方程θ=π4代入C2的极坐标方程ρ2-2ρcosθ-4ρsinθ+4=0,得ρ2 -槡3 2ρ+4=0,解得ρ1=槡2 2,ρ2=槡2,所以,MN=ρ1-ρ2=槡2.又因为C2的半径为1,∠C2MN=π4,所以△C2MN的面积为S=12×槡2×1×sinπ4=12.评注 过坐标原点、倾斜角为θ0的直线的极坐标方程为θ=θ0,其上两点P(ρ1,θ0),Q(ρ2,θ0)间的距离为PQ=ρ1-ρ2.【一点感悟】参数方程和极坐标虽然是选考内容,也应得到充分的重视,如果能够将它们和普通方程有机联系,相互补充,可以优化解题思路,简化计算过程,减少运算量,提高解题的效率.。
最新参数方程知识点整理
参数方程知识点梳理和题型归纳【题型1:参数方程的定义】【例1】与参数方程()R t t ty tx ∈⎩⎨⎧-==,1为参数表示同一曲线的方程是( )A 、()R t t t y t x ∈⎩⎨⎧=-=,1为参数B 、()R t t ty tx ∈⎪⎩⎪⎨⎧-==,122为参数 C 、()R t t y x ∈⎩⎨⎧-==,sin 1sin 为参数θθD 、()R t t ty t x ∈⎩⎨⎧==,sin 2cos 2为参数变式:参数方程()πθθθ20sin 2cos 2<≤⎪⎩⎪⎨⎧==y x 与⎪⎭⎫ ⎝⎛<<⎪⎩⎪⎨⎧==20sin 2cos 2πθθθy x 是否表示同一曲线?【例2】曲线()为参数t t y t x ⎩⎨⎧-=+=3412与x 轴焦点的坐标是( )A 、()4,1B 、⎪⎭⎫⎝⎛0,1625 C 、()3,1- D 、⎪⎭⎫⎝⎛±0,1625 变式:在曲线()为参数t t t y tt x ⎪⎩⎪⎨⎧+-=++=231342上的点是( ) A 、()2,0 B 、()6,1- C 、()2,1 D 、()4,3 【题型2:求曲线的参数方程和轨迹方程】【例1】根据下列要求,分别写出圆心在原点、半径为r 的圆的部分圆弧的普通方程和参数方程: (1)在x 轴上方的半圆(不包括x 轴上的点);(2)在第三象限内的圆弧;变式1:一木棒AB 的两端B A 、各在相互垂直的两固定杆上滑动,且cm AB 8=,求AB 的中点P 的轨迹;变式2:已知圆C 的方程为()1222=+-y x ,过点()0,11P 作圆C 的任意弦,交圆C 于另一点2P ,求21P P 的中点M 的轨迹方程;变式2:如图,在△ABC 中,∠ABC=90°,|AB|=|BC|=4,顶点A 、B 分别在y 轴、x 轴的正半轴(包括坐标原点)上移动,求顶点C 的轨迹的参数方程(A 、B 、C 按逆时针方向排列)【类型3:参数方程与普通方程的互化】【例1】分别根据下列条件,将曲线的参数方程⎩⎨⎧-=+=t y tx 221化为普通方程:(1)R t ∈;(2)11≤≤-t ;变式1:参数方程()23343<≤-⎩⎨⎧+=+=t t y t x 化为普遍方程是_________________;变式2:分别根据下列条件,将曲线的参数方程⎩⎨⎧+=⋅=θθθθsin cos sin cos y x 化为普通方程:(2)R ∈θ;(2)434πθπ≤≤; 【例2】将下列曲线的参数方程化为普通方程:(1) ()R y x ∈⎪⎩⎪⎨⎧==θθθ22sin cos ; (2)()R y t x ∈⎩⎨⎧==θθθsin 3cos 变式1:作下列参数方程所表示的图形:(1)()0121≥⎪⎩⎪⎨⎧-=+-=t t y t x ; (2)()R t t y t x ∈⎩⎨⎧=+=2cos sin 1 变式2:参数方程[]()πϕϕϕ,0cos 2sin 21∈⎩⎨⎧=-=y x 所表示的曲线普通方程为________________;变式3:参数方程()()为参数t ee y ee x tt tt ⎪⎩⎪⎨⎧-=+=--2的普通方程为_________________; 变式4:参数方程()()()为参数θθθθθθθ⎩⎨⎧+=+=cos sin sin cos sin cos y x 表示什么曲线?【例3】倾斜角为150°,且经过点()2,1-的直线的参数方程为________________; 变式练习:1、若直线l 的参数方程为⎩⎨⎧︒--=︒+=78cos 178sin 2t y t x ,则直线l 的倾斜角为_______;普通方程为__________;2、直线⎪⎪⎩⎪⎪⎨⎧+=--=t y t x 232211上到点()2,1-P 的距离等于2的点的坐标为_________________;3、椭圆()为参数θθθ⎩⎨⎧==sin 5cos 3y x 的两个焦点的坐标为______________;4、椭圆⎩⎨⎧+=+=θθsin 32cos 41y x 的长轴上两个顶点的坐标是___________________;5、若t 是参数,则直线⎩⎨⎧+=-=11:1bt y at x l 和直线⎩⎨⎧+-=-=11:2at y bt x l 的位置关系是_________________;6、圆⎩⎨⎧=-=θθsin 1cos y x 的圆心的坐标是_____________,半径是_______________;7、直线l 的参数方程()为参数t tb y ta x ⎩⎨⎧+=+=,l 上的点1P 对应的参数是1t ,则点1P 与()b a P ,之间的距离为_______;【例4】参数方程()为参数t y t t x ⎪⎩⎪⎨⎧=+=21表示的曲线是( )A 、一条直线B 、两条直线C 、一条射线D 、两条射线变式1:参数方程()为参数t ty t x ⎪⎩⎪⎨⎧-=+=211表示的曲线是( ) B 、一条直线 B 、一个半圆 C 、一条射线 D 、一个圆变式2:参数方程()为参数θθθ⎩⎨⎧+==cot tan 2y x 表示的曲线是( )C 、直线 B 、线段 C 、两条射线D 、圆 【类型4:参数方程求最值问题】【例1】已知点()y x A ,在圆422=+y x C :上运动,求y x +的最大值;变式:在圆0222=-+x y x 上求一点P ,使点P 到直线01=++y x 的距离最大;【例2】已知()y x P ,是椭圆1162522=+y x 上的一个动点,求y x 4354+的最大值;变式1:已知椭圆14922=+y x ,直线0182=++y x ,试在椭圆上求一点P ,使点P 到这条直线的距离最短;变式2:已知B A 、为椭圆()012222>>=+b a by a x 上的两点,且OB OA ⊥,求△AOB 的面积的最大值和最小值;【类型5:参数方程的综合应用】【例1】已知直线l 的参数方程是()R t ty t x ∈⎪⎪⎩⎪⎪⎨⎧+-=+=532543,求过点()1,4-且与l 平行的直线m 在y 轴上的截距;【例2】已知直线l 的参数方程为()为参数t t y t a x ⎩⎨⎧-=-=42,圆C 的参数方程为()为参数θθθ⎩⎨⎧==sin 4cos 4y x ;(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围;【例3】曲线C 的方程为()为参数t p pty pt x ,0222>⎩⎨⎧==,当[]2,1-∈t 时,曲线C 的端点为B A ,,设F 是曲线C 的焦点,且14=AFB S △,求p 的值;【例4】已知过点()2,1-P ,倾斜角为6π的直线l 和抛物线m y x +=2, (1)当m 取何值时,直线l 和抛物线交于两点?(2)当m 取何值时,直线l 被抛物线截下的线段长为3234-?【例5】已知点()y x P ,是圆y y x 222=+上的动点;(1)求y x +2的取值范围;(2)若0≥++a y x 恒成立,求实数a 的取值范围;【例6】圆M 的方程为()003sin 4cos 4222>=+--+R R Ry Rx y x θθ,(1)求该圆圆心M 的坐标及圆M 的半径;当R 固定、θ变化时,求圆心M 的轨迹方程,并求与圆M 内切和外切的圆的方程; 2010年报检员资格考试模拟试题及参考答案二一、单选题1、 通过报检员资格考试合格的人员,取得《报检员资格证》后,( )内未从事报检业务的,《报检员资格证》自动失效。
【高中数学】参数方程和极坐标方程常考题型及解题方法归纳
参数方程和极坐标方程常考题型及解题方法归纳一、根据直线参数方程中t的几何意义求与距离有关的问题经过点P(x0,y0),倾斜角为α的直线l的参数方程为x=x0+tcosαy=y0+tsin烅烄烆α(t为参数),参数t的几何意义是:直线上定点P到动点M的有向线段,t表示参数t对应的点M到定点P的距离,即|t|=|PM|.若A,B为直线l上两点,其对应的参数分别为t1与t2,则有:①AB=|t1-t2|;②当A,B在点P的同侧时,t1与t2同号;当A,B分别在点P的两侧时,t1与t2异号.需要注意的是:有时候直线的参数方程也可写为x=x0+aty=y0+烅烄烆bt(t为参数),如果a2+b2≠1,则参数t没有上述几何意义.例1 在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρll与l的普通方程;(2)若PM,MN,PN成等比数列,求a的值.分析 (1)利用x=ρcosθ,y=ρsinθ即可将曲线C的极坐标方程转化为直角坐标方程,在直线l的参数方程中消去参数t即可得直线l的普通方程;(2)将直线l的参数方程代入曲线C的直角坐标方程,利用参数的几何意义结合韦达定理即可建立关于a的方程求解.解 (1)由ρsin2θ=acosθ得ρ2 sin2θ=aρcosθ,可得曲线C的平面直角坐标方程y2=ax(a>0).由直线l的参数方程消去参数t,可得直线l的普通方程为x-y-1=0.(2)设点M,N对应的参数分别为t1,t2,则PM=t1,PN=t2,MN=t1-t2.将x=-1+槡22t,y=-2 +槡22t代入y2=ax,得t2-(槡4 2 +槡2a)t+8+2a=0.所以Δ=(槡4 2 +槡2a)2-4(8+2a)=2a2+8a>0,t1+t2=槡4 2 +槡2a,t1t2=8+2a.由PM,MN,PN成等比数列,可以得到t1-t22=t1t2,所以(t1+t2)2-4t1t2=t1t2,即(槡4 2 +槡2a)2-5(8+2a)=0,解得a=1(a=-4舍去).例2 (2015年高考湖南卷)已知直线l:x=5 +槡32ty =槡3+12烅烄烆t(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;(Ⅱ)设点M的直角坐标为(5,槡3),直线l与曲线C的交点为A,B,求|MA|·|MB|的值.分析 (Ⅰ)利用ρ2=x2+y2,x=ρcosθ即可将已知条件中的极坐标方程转化为直角坐标方程;(Ⅱ)注意到点M在直线l上,将直线l的参数方程代入圆的直角坐标方程,利用参数的几何意义结合韦达定理即可求解.解 (Ⅰ)ρ=2cosθ等价于ρ2=2ρcosθ,将ρ2=x2+y2,ρcosθ=x代入即得曲线C的直角坐标方程为x2+y2-2x=0.(Ⅱ)结合直线l的参数方程,注意到点M在直线l上,且(槡32)2+(12)2=1,可设点M,N对应的参数分别为t1,t2,则MA=|t1|,MB=|t2|,所以MA·MB=t1t2. 将直线l的参数方程代入曲线C的直角坐标方程,整理得t2 +槡5 3t+18=0,则MA·MB=t1t2=18.例3 已知圆锥曲线C:x=2cosαy=sin{α(α为参数)和定点A(0,,槡3),F1,F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的极坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M,N两点,求MF1-NF1的值.解 (1)消去参数α即可将曲线C的方程化为普通方程x24+y2=1,从而可求得F1(-槡3,0),F2(槡3,0),于是可得直线AF2的普通方程为x+y-槡3=0,利用互化公式化为极坐标方程为ρcosθ+ρsinθ=槡3.(2)由(1)可得kAF2=-1,所以直线l的倾斜角为45°,从而可得直线l的参数方程为x=-槡3 +槡22ty =槡22烅烄烆t(t为参数),代入椭圆C的直角坐标方程:x24+y2=1,得5t2-槡2 6t-2=0,设点M,N对应的参数分别为t1,t2,注意到点M,N,F1都在直线l上且点M,N在点F1两侧,所以|MF1|-|NF1|=|t1+t2|=槡2 65.评注 对于直线上与定点距离有关的问题,利用直线参数方程中参数t的几何意义,能避免通过解方程组求交点坐标的繁琐运算,使解题过程得到简化.二、利用参数方程求最值和取值范围利用曲线的参数方程求解两曲线间的最值问题,是解决这类问题的常用方法,优点是解题过程比较简洁.为此,需要熟悉常见曲线的参数方程、参数方程与普通方程的互化以及参数方程的简单应用.例4 已知曲线C1:x=8costy=2sin{t(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ=7cosθ-sinθ.(1)将曲线C1的参数方程化为普通方程,将曲线C2的极坐标方程化为直角坐标方程.(2)设P为曲线C1上的点,点Q极坐标为(2槡2,π4),求PQ的中点与曲线C2上的点的距离的最小值.分析 (1)利用参数方程和普通方程之间的关系进行互化即可,(2)先把点Q的极坐标化为直角坐标,设出点P的参数形式的直角坐标(t为参数),进而得到PQ的中点M的直角坐标,可用公式得到点M到直线C2的距离d的表达式(用参数t表示),再求最值即可.解 (1)由曲线C1的参数方程消去参数t得曲线C1的普通方程x264+y24=1.由曲线C2的极坐标方程得ρcosθ-ρsinθ=7,于是可得它的直角坐标方程为x-y-7=0.(2)由点Q的极坐标(槡2 2,π4)可得它的直角坐标为(2,2),设P(8cost,2sint),则PQ的中点M的直角坐标为(4cost+1,sint+1),所以,点M到直线C2的距离d=4cost-sint-7槡2=槡17cos(t+φ)-7槡2,其中φ为锐角,且tanφ=14.当cos(t+φ)=1时,d取得最小值dmin=槡7 2 -槡342.所以,PQ的中点M与曲线C2上的点的距离的最小值为槡7 2 -槡342.例5 (2014年全国卷Ⅰ)已知曲线C:x24+y29=1,直线l:x=2+ty=2-2{t(t为参数).(Ⅰ)写出曲线C的参数方程和直线l的普通方程;(Ⅱ)过曲线C上任一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.分析 (Ⅰ)利用椭圆的普通方程及直线的参数的特征进行互化即可;(Ⅱ)由椭圆的参数方程建立|PA|的三角函数表达式,再求最值.图1解 (Ⅰ)曲线C的参数方程为x=2cosθy=3sin{θ(θ为参数),直线l的普通方程为2x+y-6=0.(Ⅱ)如图1,在曲线C上任意取一点P(2cosθ,3sinθ),它到直线l的距离为:d=槡554cosθ+3sinθ-6,则|PA|=dsin30°=槡2 55|5sin(θ+α)-6|,其中α为锐角,且tanα=43.当sin(θ+α)=-1时,|PA|取得最大值,最大值为槡22 55;当sin(θ+α)=1时,|PA|取得最小值,最小值为槡2 55.例6 (2015年高考陕西卷)在直角坐标系xΟy中,直线l的参数方程为x=3+12ty =槡32烅烄烆t(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=槡2 3sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)Ρ为直线l上一动点,当Ρ到圆心C的距离最小时,求Ρ的直角坐标.分析 (Ⅰ)利用x=ρcosθ,y=ρsinθ,由⊙C的极坐标方程可得它的直角坐标方程;(Ⅱ)先设点Ρ的参数坐标,可得ΡC的函数表达式,再利用函数的性质可得ΡC的最小值,进而可得Ρ的直角坐标;或将直线l的方程化为普通方程,再求过圆心且垂直于直线l的直线方程,联立两方程可解得点P的直角坐标.解 (Ⅰ)由ρ=槡2 3sinθ,得ρ2 =槡2 3ρsinθ,从而,⊙C的直角坐标方程为x2+y2 =槡2 3y,即x2+(y-槡3)2=3.(Ⅱ)设P(3+12t,槡32t),又C(0,槡3),则|PC|=(3+12t)2+(槡32t -槡3)槡2=t2+槡12,易知:当t=0时,ΡC取得最小值,此时Ρ点的直角坐标为(3,0).评注 将曲线的参数方程化为普通方程的关键是消去其中的参数,常用的技巧有:代入消参、加减消参、整体消参、平方后加减消参等.如果题目中涉及圆、椭圆上的动点求相关最值(范围)问题时,可考虑用其参数方程设出点的坐标,将问题转化为函数问题来解决,可以使解题的过程更简洁.例7 (2016年全国卷Ⅱ理科第20题)已知椭圆E:x2t+y23=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,AM=AN时,求△AMN的面积;(Ⅱ)当2 AM=AN时,求k的取值范围.分析 (Ⅰ)先结合已知条件设出直线AM的参数方程,代入椭圆方程,可求得AM,进而求得△AMN的面积;(Ⅱ)设出直线AM、AN的参数方程(以直线AM的倾斜角α为参数),代入椭圆方程,用t和α表示|AM|和|AN|,再利用2 AM=AN将t表示为k的函数,结合t>3,可求得k的取值范围.解 (Ⅰ)当t=4,AM=AN时,可得点A(-2,0),k=1.设直线AM的参数方程为x=-2+槡22my =槡22烅烄烆m(m为参数),代入椭圆方程,整理得72m2-槡6 2 m=0,故AM =槡12 27,所以S△AMN=12AM·AN=14449.(Ⅱ)设直线AM的倾斜角为α,又点A(-槡t,0),可设直线AM的参数方程为x=-槡t+mcosαy=msin烅烄烆α(m为参数),代入椭圆方程,整理得(3cos2α+t sin2α)m2-6tcosα·m=0,所以AM=6tcosα3cos2α+t sin2α.因为MA⊥NA,故直线AN的倾斜角为α+π2,同理可得:AN=6tcos(α+π2)3cos2(α+π2)+t sin2(α+π2)=6tsinα3sin2α+t cos2α.由2 AM=AN,k=tanα,代入化简得t=6k2-3kk3-2.又因为椭圆E:x2t+y23=1的焦点在x轴上,所以t>3,即6k2-3kk3-2>3,解得3槡2<k<2.所以,k的取值范围是(3槡2,2).评注 本题属于圆锥曲线试题,常规思路是利用直角坐标直接求解,过程比较复杂.利用直线的参数方程来求解本题,使问题的求解过程变得简洁.三、利用极坐标中ρ的几何意义求有关距离或相关问题我们知道,极坐标中的ρ为极径,表示曲线上一点与原点O之间的距离,因此,与原点O有关的距离、面积等问题都可考虑运用极坐标中ρ的几何意义来解决,这是一种有效的解题策略,很多时候比化为直角坐标运算更简便.例8 (2015年高考全国卷Ⅱ)在直角坐标系xOy中,曲线C1:x=tcosα,y=tsinα{,(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2 槡3cosθ.(Ⅰ)求C2与C1的交点的直角坐标;(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求AB的最大值.分析 (Ⅰ)可将曲线C2与C1的极坐标方程化为直角坐标方程后联立求交点的直角坐标,也可以直接联立极坐标方程求得交点的极坐标,再化为直角坐标;(Ⅱ)分别联立C2与C1、C3与C1的极坐标方程,求得A,B的极坐标,由极径的概念用α表示出AB,转化为求关于α的三角函数的最大值.解 (Ⅰ)曲线C2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2 -槡2 3x=0.联立两方程解得:x1=0,y1=0烅烄烆,x2=槡32,y2=32烅烄烆,所以,C2与C1的交点的直角坐标为(0,0)和(槡32,32).(Ⅱ)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.于是可得:点A的极坐标为(2sinα,α),点B的极坐标为(槡2 3cosα,α).所以AB=2sinα-槡2 3cosα=4|sin(α-π3)|,又0≤α<π,所以,当α=5π6时,AB取得最大值,最大值为4.评注 如果用直角坐标来处理本题,计算量较大.例9 (2016年全国卷Ⅱ理科第23题)在直线坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是x=tcosα,y=tsinα{,(t为参数),l与C交于A,B两点,|AB|=槡10,求l的斜率.分析 (Ⅰ)利用ρ2=x2+y2,x=ρcosθ可得C的极坐标方程;(Ⅱ)先将直线l的参数方程化为极坐标方程,再利用弦长公式可求得l的斜率.解 (Ⅰ)由x=ρcosθ,y=ρsinθ可得C的极坐标方程ρ2+12ρcosθ+11=0.(Ⅱ)在(Ⅰ)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R),与C的极坐标方程联立得ρ2+12ρcosα+11=0.设点A,B所对应的极径分别为ρ1,ρ2,则ρ1+ρ2=-12cosα,ρ1ρ2=11,所以|AB|=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ槡2=144cos2α-槡44.又|AB|=槡10,所以144cos2α-槡44 =槡10,解得cos2α=38,故tanα=±槡153,所以,直线l的斜率为槡153或-槡153.例10 (2015年高考全国卷Ⅰ理科第23题)在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=π4(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.分析 (Ⅰ)根据公式x=ρcosθ,y=ρsinθ,x2+y2=ρ2即可求得C1,C2的极坐标方程;(Ⅱ)联立直线C3和圆C2的极坐标方程得到关于ρ的方程,可求得MN,进而可求出△C2MN的面积.解 (Ⅰ)因为x=ρcosθ,y=ρsinθ,所以,可求得:C1的极坐标方程为ρcosθ=-2,C2的极坐标方程为ρ2-2ρcosθ-4ρsinθ+4=0.(Ⅱ)将C3的极坐标方程θ=π4代入C2的极坐标方程ρ2-2ρcosθ-4ρsinθ+4=0,得ρ2 -槡3 2ρ+4=0,解得ρ1=槡2 2,ρ2=槡2,所以,MN=ρ1-ρ2=槡2.又因为C2的半径为1,∠C2MN=π4,所以△C2MN的面积为S=12×槡2×1×sinπ4=12.评注 过坐标原点、倾斜角为θ0的直线的极坐标方程为θ=θ0,其上两点P(ρ1,θ0),Q(ρ2,θ0)间的距离为PQ=ρ1-ρ2.【一点感悟】参数方程和极坐标虽然是选考内容,也应得到充分的重视,如果能够将它们和普通方程有机联系,相互补充,可以优化解题思路,简化计算过程,减少运算量,提高解题的效率.。
高考参数方程常见题型及解题技巧
高考参数方程常见题型及解题技巧
1.参数方程概念
一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y 都是某个变数t的函数:[1]
并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。
相对而言,直接给出点坐标间关系的方程即称为普通方程。
2.直线和圆锥曲线的参数方程和普通方程
1.当求两动点取值范围
方法:先在任意一个曲线上取一个定点,再有定点到动点距离结合,加减半径长度可得,详情看下面例题第二问。
2.求两曲线相交两点的中点的轨迹参数方程
方法:先求直线的标准参数方程,并带入圆锥曲线中,得出一等式,根据韦达定理,得tp=1/2(t1+t2),最后结合定点求出直线标准参数方程,详情看下面例题第二问。
3.直线与抛物线上两点,求最小值
方法1:设与直线Ax+By+C1=0平行的直线方程Ax+ByC2=0,再联立抛物线与直线直角坐标方程,由b2-4ac=0可得C2,最后线线距离可得
方法2:由抛物线参数方程x,y为抛物线上的点,最后可由点线距离式可得
19年一卷参数方程。
参数方程题型大全
参数方程题型大全1.直线、圆、椭圆、双曲线和抛物线都可以用参数方程表示。
对于过点M(x,y),倾斜角为α的直线l,其参数方程为:x = x + tcosαy = y + tsinα其中t为参数。
对于圆心在点M(x,y),半径为r的圆,其参数方程为:x = x + rcosθy = y + rsinθ其中θ为参数。
对于椭圆x^2/a^2 + y^2/b^2 = 1(a>b>0),其参数方程为:x = a cosφy = b sinφ其中φ为参数。
对于双曲线x^2/a^2 - y^2/b^2 = 1(a>0,b>0),其参数方程为:x = a secθy = b tanθ其中θ为参数。
对于抛物线y = 2px,其参数方程为:x = 2pt^2y = 2pt其中t为参数。
2.给定曲线的参数方程,求其普通方程。
对于曲线C的参数方程,设其参数为t,则其普通方程为:y = f(x)其中x和y是曲线上的点,f是关于t的函数。
将参数方程中的t用x或y表示,代入另一个方程中消去t,得到关于x 和y的方程即为普通方程。
3.给定曲线的参数方程,求其与直线或另一曲线的交点。
对于曲线C的参数方程,设其参数为t,则曲线上的点可以表示为(x(t)。
y(t))。
如果要求曲线C与直线l的交点,则将直线l的方程代入曲线C的参数方程中,解出参数t,再代入参数方程中求出交点的坐标。
如果要求曲线C与另一曲线D的交点,则将曲线D的参数方程代入曲线C的参数方程中,解出参数t,再代入参数方程中求出交点的坐标。
4.求椭圆上两点间的最短距离。
设椭圆的参数方程为:x = a cosφy = b sinφ其中φ为参数。
设椭圆上两点分别为A(x1.y1)和B(x2.y2),则两点间的距离为:A B = √[(x2 - x1)^2 + (y2 - y1)^2]将x和y用φ表示,代入上式,得到AB的函数,求导后令其为0,解出φ的值,再代入AB的函数中求得最小值即为最短距离。
高考数学极坐标与参数方程题型归纳
高考数学极坐标与参数方程题型归纳一、极坐标题型1.圆的极坐标方程圆的极坐标方程为r=a,其中a为常数。
题目中常常给出一个圆的直角坐标方程,要求将其转化为极坐标方程。
2.同一直线与圆的极坐标方程给定一条直线的极坐标方程,如$r=k\\theta$,同时给出一个与该直线相交于两点的圆的极坐标方程,求该圆的半径和圆心的极坐标。
3.圆内切于另一圆与直线的极坐标方程给定一个圆的极坐标方程,要求找出与该圆相切的另一个圆和直线的极坐标方程。
4.线段与圆的极坐标方程给定一段线段的两个端点的极坐标和长度,要求求出与该线段相切的圆的极坐标方程。
二、参数方程题型1.直线的参数方程给定一条直线的直角坐标方程,要求将其转化为参数方程形式。
2.圆的参数方程给定一个圆的直角坐标方程,要求将其转化为参数方程形式。
3.曲线方程的参数化表示给定一个曲线的直角坐标方程,要求将其转化为参数方程形式。
三、极坐标与参数方程的转换题型1.极坐标转换为参数方程给定一个极坐标方程,要求将其转化为参数方程形式。
2.参数方程转换为极坐标给定一个参数方程,要求将其转化为极坐标方程形式。
四、解析法求参数方程的题型1.螺线的参数方程给定一个螺线的解析方程,要求求出其对应的参数方程。
2.抛物线的参数方程给定一个抛物线的解析方程,要求求出其对应的参数方程。
3.椭圆的参数方程给定一个椭圆的解析方程,要求求出其对应的参数方程。
五、参数方程与直角坐标系之间的关系1.参数方程的直角坐标系方程给定一个参数方程,要求将其转化为直角坐标系方程。
2.直角坐标系方程的参数方程给定一个直角坐标系方程,要求将其转化为参数方程。
以上是高考数学中关于极坐标与参数方程的常见题型归纳。
掌握了这些题型的解题方法和转换技巧,就能够更好地应对高考数学中的相关题目。
在解题时,可以根据题目给出的信息选择合适的坐标系,利用相应的公式和性质进行计算,从而得出准确的答案。
希望同学们通过对这些题型的学习和练习,能够在高考中取得优异的成绩!。
极坐标与参数方程题型归纳
极坐标与参数方程一、极坐标与参数方程的题型框架二、极坐标与参数方程的知识点1.参数方程的概念:设在平面上取定一个直角坐标系xOy ,把坐标y x ,表示为第三个变量t 的函数:⎩⎨⎧==)()(t g y t f x ,b t a ≤≤……………………①如果对于t 的每一个值(b t a ≤≤),①式所确定的点),(y x M 都在一条曲线上;而这条曲线上任意一点),(y x M ,都可由t 的某个值通过①式得到,则称①式为该曲线的参数方程,其中t 称为参数.2.参数方程与普通方程的互化:把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法.常见的消参方法有:代入消元法;加减消参法;平方和(差)消参法;乘法消参法等.把曲线C 的普通方程0),(=y x F 化为参数方程的关键:一是适当选取参数;二是确保互化前后方程的等价性.要注意方程中的参数的变化范围.3.直线、圆、椭圆的参数方程:(1)经过一定点),(000y x P ,倾斜角为α 的直线l 的参数方程为:⎩⎨⎧+=+=ααsin ,cos 00t y y t x x (t 为参数);(2)直线参数方程的一般形式为⎩⎨⎧+=+=bt y y at x x 00,(t 为参数);(3)圆的参数方程为⎩⎨⎧+=+=θθsin ,cos 00r y y r x x (θ为参数);(5)椭圆)0(12222>>=+b a b y a x 的参数方程为⎩⎨⎧==θθsin ,cos b y a x (θ,ρ为参数).4.极坐标系的概念:在平面内取一个定点O ,O 点出发的一条射线Ox ,一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系.O 称为极点,Ox 称为极轴.设M 是平面内任意一点,极点O 与点M 的距离OM 叫做点M 的极径,记作ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记作θ ,有序数对),(θρ叫做点M 的极坐标.一般情况下,约定0≥ρ.5.极坐标系与直角坐标系的互化:直角坐标化极坐标:θρcos =x ,θρsin =y ;极坐标化直角坐标:222y x +=ρ,).0(tan =/=x xyθ三、轨迹问题1.圆的极坐标方程若圆心为M (ρ0,θ0),半径为r 的圆方程为ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0.几个特殊位置的圆的极坐标方程(1)当圆心位于极点,半径为r :ρ=r ;(2)当圆心位于M (a,0),半径为a :ρ=2a cos θ;(3)当圆心位于π(,)2M a ,半径为a :ρ=2a sin θ.2.直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin (θ0-α).几个特殊位置的直线的极坐标方程(1)直线过极点:θ=θ0和θ=π-θ0;(2)直线过点M (a,0)且垂直于极轴:ρcos θ=a ;(3)直线过π(,)2M b 且平行于极轴:ρsin θ=b .例题【例1】在极坐标系中,已知圆的圆心(6,)3C π,半径3r =,Q 点在圆C 上运动.以极点为直角坐标系原点,极轴为x 轴正半轴建立直角坐标系.(1)求圆C 的参数方程;(2)若P 点在线段OQ 上,且:2:3OP PQ =,求动点P 轨迹的极坐标方程.【解析】(1)由已知得,圆心(6,)3C π的直角坐标为C ,3r =,所以C的直角坐标方程为22(3)(9x y -+-=,所以圆C的参数方程为33cos 3sin x y θθ=+⎧⎪⎨=⎪⎩(θ为参数).(2)由(1)得,圆C的极坐标方程为26(cos )270ρρθθ-++=,即212sin(276ρρθπ=+-,设(),P ρθ,()1,Q ρθ,根据:2:3OP PQ =,可得1:2:5ρρ=,将152ρρ=代入C 的极坐标方程,得225120sin()10806ρρθπ-++=,即动点p 轨迹的极坐标方程为225120sin()10806ρρθπ-++=.【例2】在平面直角坐标系xOy 中,圆C 的参数方程为22cos ,2sin x y αα=+⎧⎨=⎩(α为参数),以点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)过极点O 作直线与圆C 交于点A ,求OA 的中点所在曲线的极坐标方程.【解析】(1)圆C 的参数方程为22cos ,2sin x y αα=+⎧⎨=⎩(α为参数),转换为直角坐标方程为:()2224x y -+=,转换为极坐标方程为:4cos ρθ=.(2)过极点O 作直线与圆C 交于点A ,设OA 的中点坐标为()00,ρθ,所以()00,2A ρθ,所以0024cos ρθ=,即002cos ρθ=,所以OA 中点所在的曲线的极坐标方程为2cos ρθ=.【例3】已知圆C 经过点P )3,2(π,圆心C 为直线ρsin )3(πθ-=-3与极轴的交点,求圆C 的极坐标方程.【解析】解法1在直线的极坐标方程ρsin )3(πθ-=-3中,令θ=0,得ρ=2,所以C(2,0).因为△POC 是边长为2的正三角形,所以圆C 的半径r =2.因为圆C 经过极点O ,所以圆C 极坐标方程为ρ=4cos θ.解法2以极点为坐标原点,极轴为x 轴建立平面直角坐标系,则直线方程为y =3x -23,P 的直角坐标为(1,3),令y =0,得x =2,所以C(2,0),所以圆C 的半径PC =(2-1)2+(0-3)2=2,所以圆C 的方程为(x -2)2+(y -0)2=4,即x 2+y 2-4x =0,所以圆C 的极坐标方程为ρ=4cos θ.变式训练【练习1】(2019年高考全国Ⅱ卷理数)在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P .(1)当0=3θπ时,求0ρ及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.【解析】(1)因为()00,M ρθ在C 上,当03θπ=时,04sin 3ρπ==.由已知得||||cos23OP OA π==.设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中,cos(||23OP ρθπ-==,经检验,点(2,)3P π在曲线cos(23ρθπ-=上.所以,l 的极坐标方程为cos()23ρθπ-=.(2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ==即 4cos ρθ=.因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是[,42ππ.所以P 点轨迹的极坐标方程为4cos ,[,42ρθθππ=∈.【练习2】在极坐标系中,已知圆C 经过点P )4,22(π,圆心为直线ρsin(θ-π3)=-3与极轴的交点,求圆C 的极坐标方程.【解析】在直线方程ρsin (θ-π3)=-3中,令θ=0,得ρ=2,所以圆心为C(2,0).在△POC 中,由余弦定理,得圆C 的半径r =CP =2.圆C 经过极点,其极坐标方程为ρ=4cos θ.【练习3】(2019年高考全国Ⅲ卷理数)如图,在极坐标系Ox 中,(2,0)A ,4B π,2,4C 3π,(2,)D π,弧 AB , BC , CD 所在圆的圆心分别是(1,0),(1,2π,(1,)π,曲线1M 是弧 AB ,曲线2M 是弧 BC,曲线3M 是弧 CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【解析】(1)由题设可得,弧 ,,AB BCCD 所在圆的极坐标方程分别为2cos ρθ=,2sin ρθ=,2cos ρθ=-.所以1M 的极坐标方程为π2cos (0)4ρθθ=≤≤,2M 的极坐标方程为π3π2sin ()44ρθθ=≤≤,3M 的极坐标方程为3π2cos (π)4ρθθ=-≤≤.(2)设(,)P ρθ,由题设及(1)知若π04θ≤≤,则2cos θ=,解得π6θ=;若π3π44θ≤≤,则2sin θ=,解得π3θ=或2π3θ=;若3ππ4θ≤≤,则2cos θ-=5π6θ=.综上,P 的极坐标为π)6或π3或2π)3或5π6.四、几何意义问题(一)直线参数方程t 的几何意义1、直线参数方程:(1)注意必须是标准形式;(2)直线的参数方程⎩⎨⎧+=+=ααsin ,cos 00t y y t x x (t 为参数)中参数t 的几何意义:t 表示直线上任一点),(y x M 到直线上定点),(000y x M 的距离;2、直线与二次曲线相交问题:将直线的参数方程与曲线的普通方程联立,通过判断∆的符号来确定交点的个数;若0>∆,则有两个交点,此时的1t 、2t 分别表示交点B A 、与直线所过定点),(000y x M 的距离.例题【例1】在平面直角坐标系xOy 中,直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩(t 为参数,0πα≤<),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为222.1sin ρθ=+(1)求曲线C 的直角坐标方程;(2)设点M 的坐标为(1,0),直线l 与曲线C 相交于A ,B 两点,求11MA MB+的值.【解析】(1)曲线2221sin ρθ=+,即222sin 2ρρθ+=,222,sin x y y ρρθ=+= ,∴曲线C 的直角坐标方程为2222x y +=,即2212x y +=.(2)将1cos sin x t y t αα=+⎧⎨=⎩代入2222x y +=并整理得22(1sin )2cos 10t t αα++-=,1212222cos 1,1sin 1sin t t t t ααα-∴+=-=++,121211···MA MB AB t t MA MB MA MB MA MB t t +-∴+===-,122221sin t t α-===+,2222111sin 11sin MA MBαα+∴+==+【例2】在直角坐标系xOy 中,直线l 的参数方程为1cos 1sin x t xy t x =+⎧⎨=-+⎩(t 为参数,0α<<π),以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为(12cos 2)8cos ρθθ-=.(1)判断直线l 与曲线C 的公共点的个数,并说明理由;(2)设直线l 与曲线C 交于不同的两点,A B ,点()1,1P -,若114||3PA PB -=,求tan α的值.【解析】(1)由()1cos 28cos ρθθ-=得2sin 4cos ρθθ=,所以22sin 4cos ρθρθ=,即24y x =,将直线l 的参数方程代入24y x =,得()()21sin 41cos t t αα-+=+,即()22sin2sin 4cos 30t t ααα⋅-+⋅-=,由0α<<π知2sin 0α>,()222sin 4cos 12sin 0∆ααα=++>,故直线l 与曲线C 有两个公共点;(2)由(1)可设方程()22sin 2sin 4cos 30t t ααα⋅-+⋅-=的两根为12t t ,,则1222sin 4cos sin ααα++=t t ,12230sin α-⋅=<t t ,故12121124||sin 2cos 33PA PB t t PA PB PA t t αα-+-===+=⋅,∴22sin 4sin cos 4cos 4αααα++=,即24sin cos 3sin ααα=,∴4tan 3α=.2变式训练【练习1】在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为212cos 110ρρθ++=.(1)求圆C 的直角坐标方程;(2)设(1,0)P ,直线l 的参数方程是1cos sin x t y t αα=+⎧⎨=⎩(t 为参数),已知l 与圆C 交于,A B两点,且34PA PB =,求l 的普通方程.【解析】(1)将222,cos x y x ρρθ=+=代入圆C 的极坐标方程212cos 110ρρθ++=,得2212110x y x +++=,化为圆的标准方程为22(6)25x y ++=.(2)将直线l 的参数方程1cos sin x t y t αα=+⎧⎨=⎩(t 为参数)代入圆C 的直角坐标方程()22625x y ++=中,化简得214cos 240t t α++=,设,A B 两点所对应的参数分别为12,t t ,由根与系数的关系知121214cos ,24t t t t α+=-=,①∴12,t t 同号,又34PA PB =,∴1234t t =,②由①②可知12t t ⎧⎪⎨⎪⎩或12==t t ⎧-⎪⎨-⎪⎩∴14cos α-=或14cos α-=-,解得2cos 2α=±,∴tan 1k α==±,∴l 的普通方程为(1)y x =±-.【练习2】在直角坐标系xOy 中,直线1C的参数方程为3623x t y t ⎧=-⎪⎪⎨⎪=+⎪⎩(其中t 为参数).以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos 3sin ρθθ=.(1)求1C 和2C 的直角坐标方程;(2)设点(0,2)P ,直线1C 交曲线2C 于,M N 两点,求22PMPN +的值.【解析】(1)直线1C 的参数方程为33623x y t ⎧=-⎪⎪⎨⎪=+⎪⎩(其中t 为参数),消去t可得20y +-=;由2cos 3sin ρθθ=,得22cos 3sin ρθρθ=,则曲线2C 的直角坐标方程为23x y =.(2)将直线1C的参数方程3323x t y t ⎧=-⎪⎪⎨⎪=+⎪⎩代入23x y =,得2180t --=,设,M N 对应的参数分别为12,t t,则121218t t t t ⎧+=⎪⎨=-⎪⎩,()2221212290PM PN t t t t +=+-=.(二)极坐标中极径的几何意义极坐标方程中ρ的几何意义:M 是平面内任意一点,极点O 与点M 的距离OM 叫做点M 的极径,记作ρ;即OM=ρ例题【例1】在直角坐标系中,已知曲线的方程为,的方程为,是一条经过原点且斜率大于的直线,以直角坐标系原点为极点,轴正半轴为极轴建立极坐标系.(1)求与的极坐标方程;(2)若与的一个公共点(异于点),与的一个公共点为,求的取值范围.【解析】(1)曲线的方程为,的极坐标方程为,的方程为,其极坐标力程为.(2)是一条过原点且斜率为正值的直线,的极坐标方程为,,,联立与的极坐标方程,得,即,联立与的极坐标方程,得,即,所以,又,所以.【例2】在平面直角坐标系xOy 中,已知椭圆的方程为:2212012x y+=,动点P 在椭圆上,O 为原点,线段OP 的中点为Q .(1)以O 为极点,x 轴的正半轴为极轴,建立极坐标系,求点Q 的轨迹的极坐标方程;(2)设直线l 的参数方程为1,232x t y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),l 与点Q 的轨迹交于M 、N 两点,求弦长MN .【解析】(1)设点Q 的坐标为(,)x y ,Q 为线段OP 的中点,∴点P 的坐标为(2,2)x y .由点P 在椭圆上得22(2)(2)12012x y +=,化简得点Q 的轨迹的直角坐标方程为22153x y+=,①将cos x ρθ=,sin y ρθ=,代入①得2222cos sin 153ρθρθ+=,化简可得点Q 的轨迹的极坐标方程为22(32sin )15ρθ+=.(2)方法1:由直线l 的参数方程1,232x t y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)知,直线l 过极点,倾斜角为π3,∴直线l 的极坐标方程为π()3θρ=∈R .由22π,3(32sin )15,θρθ⎧=⎪⎨⎪+=⎩解得:1π,330,3θρ⎧=⎪⎪⎨⎪=⎪⎩和2π,330.3θρ⎧=⎪⎪⎨⎪=-⎪⎩∴弦长122303MN ρρ=-=.方法2:把直线l 的参数方程1,232x t y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)代入①得22344153t t +=,化简得2103t =,123030,,33t t ∴==-设M 、N 两点对应的参数分别为1t ,2t ,由直线参数方程t 的几何意义得弦长122303MN t t =-=.方法3:由直线l 的参数方程1,232x t y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)知,直线l 的普通方程为3y x =,联立22153y x y ⎧=⎪⎨+=⎪⎩,,解得11306102x y ⎧=⎪⎪⎨⎪=⎪⎩和2230610.2x y ⎧=-⎪⎪⎨⎪=-⎪⎩弦长2303MN ==.变式训练【练习1】在直角坐标系xOy 中,直线1:2C x =-,圆222:(1)(2)1C x y -+-=,以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系.(1)求1C ,2C 的极坐标方程;(2)若直线3C 的极坐标方程θπ=4()ρ∈R ,设2C 与3C 的交点为M ,N ,求2C MN △的面积.【解析】(1)222cos ,sin ,x y x y ρθρθρ==+= 1C ∴的极坐标方程为cos 2ρθ=-.由2C 的直角坐标方程22(1)(2)1x y -+-=,展开得222440x y x y +--+=,2C ∴的极坐标方程为22cos 4sin 40ρρθρθ--+=.(2)将4θπ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1212,,ρρρρ==-=∴即||MN =.由于2C 的半径为1,即221C M C N ==.易知22222||C MC N MN +=,即2C MN ∆为等腰直角三角形,2111122C MN S ∆=⨯⨯=∴.【练习2】在平面直角坐标系中,曲线1C 的参数方程为cos 2sin x r y r ϕϕ=⎧⎨=+⎩,(0r >,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 经过点π(2,)6P ,曲线2C 的极坐标方程为2(2cos 2)6ρθ+=.(1)求曲线1C 的极坐标方程;(2)若1(,)A ρα,2π(,)2B ρα+是曲线2C 上两点,求2211||||OA OB +的值.【解析】(1)将曲线1C 的参数方程cos 2sin x r y r ϕϕ=⎧⎨=+⎩,化为普通方程为222(2)x y r +-=,即222440x y y r +-+-=.由222x y ρ=+,sin y ρθ=,得曲线1C 的极坐标方程为224sin 40r ρρθ-+-=.由曲线1C 经过点π(2,6P ,则22π242sin4026r r -⨯⨯+-=⇒=(2r =-舍去),故曲线1C 的极坐标方程为4sin ρθ=.(2)由题意可知21(2cos 2)6ρα+=,2222π[2cos 2((2cos 2)62ραρα++=-=,所以22221211112cos 22cos 22||||663OA OB ααρρ+-+=+=+=.【练习3】在极坐标系中,曲线1C 的极坐标方程为4cos ρθ=,曲线2C 的极坐标方程为4sin ρθ=,以极点O 为坐标原点,极轴为x 的正半轴建立平面直角坐标系xOy .(1)求1C 和2C 的参数方程;(2)已知射线1:(0)2l πθαα=<<,将1l 逆时针旋转6π得到2:6l πθα=+,且1l 与1C 交于,O P 两点,2l 与2C 交于,O Q 两点,求OP OQ ⋅取得最大值时点P 的极坐标.【解析】(Ⅰ)在直角坐标系中,曲线1C 的直角坐标方程为()2224x y -+=所以1C 参数方程为22(2x cos y sin ααα=+⎧⎨=⎩为参数).曲线2C 的直角坐标方程为()2224x y +-=.所以2C 参数方程为2(22x cos y sin βββ=⎧⎨=+⎩为参数)(Ⅱ)设点P 极坐标为()1,ρα,即14cos ρα=,点Q 极坐标为2,6πρα⎛⎫+⎪⎝⎭,即24sin 6πρα⎛⎫=+ ⎪⎝⎭.则124cos 4sin 6OP OQ πρραα⎛⎫⋅==⋅+⎪⎝⎭3116cos sin cos 22ααα⎛⎫=⋅+ ⎪ ⎪⎝⎭8sin 246πα⎛⎫=++ ⎪⎝⎭70,.2,2666ππππαα⎛⎫⎛⎫∈∴+∈ ⎪ ⎪⎝⎭⎝⎭ 当2,626πππαα+==时OP OQ ⋅取最大值,此时P 点的极坐标为23,6π⎛⎫ ⎪⎝⎭.五、最值问题1.距离最值(点到点、曲线点到线、)距离的最值:---用“参数法”(1)曲线上的点到直线距离的最值问题(2)点与点的最值问题“参数法”:设点---套公式--三角辅助角①设点:设点的坐标,点的坐标用该点在所在曲线的的参数方程来设②套公式:利用点到线的距离公式③辅助角:利用三角函数辅助角公式进行化一2.面积的最值问题面积最值问题一般转化成弦长问题+点到线的最值问题例题【例1】在直角坐标系xOy 中,已知曲线1C 的方程为221106x y +=,曲线2C 的参数方程为1,2382x t y t ⎧=⎪⎪⎨⎪=--⎪⎩(t 为参数).(1)求1C 的参数方程和2C 的普通方程;(2)设点P 在1C 上,点Q 在2C 上,求PQ 的最小值.【解析】(1)由曲线1C 的方程为221106x y +=,得曲线1C的参数方程为,x y θθ⎧=⎪⎨=⎪⎩(θ为参数),由曲线2C 的参数方程为1,2382x t y t ⎧=⎪⎪⎨⎪=--⎪⎩(t 为参数),得曲线2C的普通方程为80y ++=.(2)设)P θθ,点P 到直线2C 的距离为d ,则PQ 的最小值即为d 的最小值,因为()6sin 82d θϕ++=,其中tan ϕ=当sin()1θϕ+=-时,d 的最小值为1,此时min 1PQ =.【例2】已知直线)(23211:为参数t ty t x l ⎪⎪⎩⎪⎪⎨⎧=+=,曲线)(sin cos :1为参数θθθ⎩⎨⎧==y x C .(1)设l 与1C 相交于B A ,两点,求||AB ;(2)若把曲线1C 上各点的横坐标压缩为原来的21倍,纵坐标压缩为原来的23倍,得到曲线2C ,设点P 是曲线2C 上的一个动点,求它到直线l 的距离的最小值.【解析】(1)l 的普通方程为1),1(3C x y -=的普通方程为.122=+y x联立方程组⎪⎩⎪⎨⎧=+-=,1),1(322y x x y 解得l 与1C 的交点为)0,1(A ,)23,21(-B ,则1||=AB .(2)2C 的参数方程为θθθ(.sin 23,cos 21⎪⎪⎩⎪⎪⎨⎧==y x 为参数).故点P 的坐标是)sin 23,cos 21(θθ,从而点P 到直线 的距离是]2)4sin(2[432|3sin 23cos 23|+-=--=πθθθd ,由此当1)4sin(-=-πθ时,d 取得最小值,且最小值为)12(46-.【例3】已知直线11: x t l y =+⎧⎪⎨⎪⎩(t为参数),曲线1cos : 2sin x C y θθ⎧=+⎪⎨=+⎪⎩(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立直角坐标系.(1)求曲线1C 的极坐标方程,直线1l 的普通方程;(2)把直线1l 向左平移一个单位得到直线2l ,设2l 与曲线1C 的交点为M ,N ,P 为曲线1C 上任意一点,求PMN △面积的最大值.【解析】(1)把曲线1cos : 2sin x C y θθ⎧=⎪⎨=+⎪⎩消去参数可得(()2221x y +-=,令cos x ρθ=,sin y ρθ=,代入可得曲线1C 的极坐标方程为2cos 4sin 60ρθρθ--+=.把直线11: x tl y =+⎧⎪⎨=⎪⎩化为普通方程)1y x -.(2)把直线1l 向左平移一个单位得到直线2l的方程为y =,其极坐标方程为π3θ=.联立2cos 4sin 60π3ρθρθθ⎧--+==⎪⎨⎪⎩所以260ρ-+=,所以12126ρρρρ⎧+=⎪⎨=⎪⎩,故12ρρ-==圆心到直线2l的距离为12d ==,圆上一点到直线2l 的最大距离为13122+=,所以PMN △面积的最大值为1333224S =⨯⨯.变式训练【练习1】已知点(,)P x y 是圆2220x y y +-=上的动点.(1)求2x y +的取值范围;(2)若0x y a ++≥恒成立,求实数a 的取值范围.解析(1)由圆的方程222x y y +=得()2211x y +-=,得[]()cos 0,21sin x y θθθπθ=⎧∈⎨=+⎩为参数,。
参数方程专题搜集
参数方程专题搜集1.已知直线l :1123x t y t⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数), 曲线1:x cos C y sin θθ=⎧⎨=⎩(θ为参数). (1)设l 与C 1相交于AB 两点,求|AB |;(2)若把曲线C 1上各点的横坐标压缩为原来的12倍,纵坐标压缩为原来的3倍,得到曲线2C ,设点P 是曲线2C 上的一个动点,求它到直线l 的距离的最小值.【详解】(1)l 的普通方程为()31y x =-,1C 的普通方程为221x y += 联立方程组)22311y x x y ⎧=-⎪⎨+=⎪⎩解得l 与1C 的交点为()1,0A ,13,22B ⎛⎫- ⎪ ⎪⎝⎭,则1AB =.★注:此问也可以用参数方程法解决。
(2)2C 的参数方程为1232x cos y sin θθ⎧=⎪⎪⎨⎪=⎪⎩(θ为参数).故点P 的坐标是13cos 2θθ⎛⎫ ⎪ ⎪⎝⎭,从而点P 到直线l 的距离是:33cos sin 32232sin 244θθπθ--⎤⎛⎫=-+ ⎪⎥⎝⎭⎦, 由此当sin 14πθ⎛⎫-=- ⎪⎝⎭时, d 取得最小值,且最小值为:)6214.2.在平面直角坐标系中,曲线1C 的参数方程为2cos sin x r y r ϕϕ=+⎧⎨=⎩(0r >,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C经过点6P π⎛⎫ ⎪⎝⎭,曲线2C 的极坐标方程为()22cos26ρθ+=. (1)求曲线1C 的极坐标方程;(2)若1,6A πρα⎛⎫- ⎪⎝⎭,2,3B πρα⎛⎫+ ⎪⎝⎭是曲线2C 上两点,求2211OA OB +的值. 解:(1)将1C 的参数方程化为普通方程得:()2222x y r -+=由cos x ρθ=,sin y ρθ=得1C 的极坐标方程为:224cos 40r ρρθ-+-=将点6P π⎛⎫ ⎪⎝⎭代入1C中得:212406r π-+-=,解得:24r =代入1C 的极坐标方程整理可得:4cos ρθ=1C ∴的极坐标方程为:4cos ρθ=(2)将点1,6A πρα⎛⎫- ⎪⎝⎭,2,3B πρα⎛⎫+ ⎪⎝⎭代入曲线2C 的极坐标方程得: 212cos 263πρα⎡⎤⎛⎫+-= ⎪⎢⎥⎝⎭⎣⎦,222222cos 22cos 2633ππραρα⎡⎤⎡⎤⎛⎫⎛⎫++=--= ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦2222122cos 22cos 2111123363OA OB ππααρρ⎛⎫⎛⎫+-+-- ⎪ ⎪⎝⎭⎝⎭∴+=+==3.在平面直角坐标系xOy 中,直线140C y +-=,曲线2:(1x cos C y sin ϕϕϕ=⎧⎨=+⎩为参数),以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系.(Ⅰ)求12,C C 的极坐标方程; (Ⅱ)若曲线3C 的极坐标方程为3πθ=(0)ρ>,且曲线3C 分别交12,C C 于,A B 两点,求||AB .解: (Ⅰ) cos ,sin x y ρθρθ==Q ,1cos sin 40;C θρθ∴+-=1x cos y sin ϕϕ=⎧⎨=+⎩, ()2211x y ∴+-=, cos ,sin x y ρθρθ==Q , ()()22cos sin 11ρθρθ∴+-=, 22sin 0ρρθ∴-=, 2:2sin C ρθ∴= (Ⅱ)曲线3C 为(0)3πθρ=>,设12,,,33A B ππρρ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则1242sin 3sin 33πρρππ==+12||AB ρρ∴=-=. 4.在平面直角坐标系xOy 中,圆C :22(4)4x y +-=.以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系. (Ⅰ)求圆心C 的极坐标;(Ⅱ)从原点O 作圆C 的弦,求弦的中点轨迹的极坐标方程.【解析】(Ⅰ)先根据圆的标准方程求出其圆心的直角坐标,再将直角坐标化为极坐标。
高考参数方程归纳总结
高考参数方程归纳总结一、参数方程的基本概念参数方程是指使用参数表示自变量和因变量之间的关系。
在数学中,参数方程常用于描述曲线、曲面或其他几何体的运动和变化规律。
在高考中,参数方程也是一道经典的考题类型,要求考生对参数方程的性质和特点进行分析和应用。
二、常见的参数方程类型1. 二维平面曲线的参数方程二维平面曲线的参数方程常用于描述平面上的曲线轨迹。
常见的参数方程类型有:- 抛物线的参数方程:x = t, y = at²- 圆的参数方程:x = rcos(t), y = rsin(t)- 椭圆的参数方程:x = acos(t), y = bsin(t)- 双曲线的参数方程:x = asec(t), y = btan(t)2. 三维空间曲线的参数方程三维空间曲线的参数方程常用于描述空间中的曲线轨迹。
常见的参数方程类型有:- 直线的参数方程:x = x₀ + at, y = y₀ + bt, z = z₀ + ct- 空间曲线的参数方程:x = f(t), y = g(t), z = h(t)3. 二维平面曲面的参数方程二维平面曲面的参数方程常用于描述平面上的曲面形状。
常见的参数方程类型有:- 圆柱面的参数方程:x = acos(t), y = asin(t), z = bt- 双曲抛物面的参数方程:x = at, y = bt², z = ct4. 三维空间曲面的参数方程三维空间曲面的参数方程常用于描述空间中的曲面形状。
常见的参数方程类型有:- 球面的参数方程:x = rsinθcosφ, y = rsinθsinφ, z = rcosθ- 椭球面的参数方程:x = a sinφcosθ, y = b sinφsinθ, z = c cosφ- 椭圆抛物面的参数方程:x = at², y = bt, z = ct三、参数方程的性质和应用1. 曲线的方向性在参数方程中,通过参数的增加方向可以确定曲线的运动方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学解答题分类-----参数方程
(I) 写出曲线 C 的参数方程,直线I 的普通方程;
(n)过曲线C 上任一点P 作与I 夹角为30°的直线,交I 于点A ,求| PA|的最大值与 最小值.
x 1 cos
2.(十模)已知在平面直角坐标系
x0y 内,点P (x,y )在曲线C: (为参数) y sin 上运动,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系,直线 L 的极坐标方程为
cos( ) 0.
4 (1) 写出曲线C 和直线L 的普通方程;
(2) 若直线L 与曲线C 相交于A,B 两点,点M 在曲线C 上运动,求 ABM 面积的最大 值。
x 3cos 已知曲线C: (为参数),在同一直角坐标系中,将曲线C 上的点按 y 2si n
(1)求曲线C 的普通方程。
2 x 1. (2014全国新课标1)已知曲线 C :— 4 2 y
9 1,直线I : t ( t 为参数) 2t 3.(冲刺卷二) x 坐标变换 y
1
x 3得到曲线
(2)若点A在曲线C上,点B(3,0),当点A在曲线C上运动时,求AB中点P的轨迹方程。
4.(2014全国新课标二)在直角坐标系xoy中,以坐标原点为极点,x轴为极轴建立极坐标系,半圆C的极坐标方程为2cos ,O,^ .
(I)求C的参数方程;
(n)设点D在C上,C在D处的切线与直线l : y ,3x 2垂直,根据(I)中你得到的参数方程,确定D的坐标.
5.(白卷)已知曲线 6的极坐标方程为: 2cos 4sin ,曲线C2的参数方程为:
1.2
X —t
3 ( t为参数).(1)在平面直角坐标系中以坐标原点为极点,x轴的正半轴为极轴建
y t
立极坐标系,求曲线C1与曲线C2的公共弦AB的极坐标方程;
⑵在曲线C2上是否恰好存在不同的三点P i,P2,P3,使得这三点到直线AB的距离都等于丄1 2? 若存在,请给出证明;若不存在,请说明理由。
8
6.(重组九)在平面直角坐标系中以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已
知曲线C: sin2=2acos (a 0),已知过点P(-2,-4)的直线L的参数方程为
■■- 2
x 2
2(t为参数),直线L与曲线分别交于M,N.
y 43
2
1 写出曲线C和直线L的普通方程;
2若PM , MN , PN成等比数列,求a的值。
7.(课本38页)(1)写出经过点M (1,5),倾斜角是一的直线的参数方程。
3
.(2)利用这个参数方程,求这条直线与直线x y 2 3 0的交点到点M的距离。
(3)求这条直线与圆x2 y2 16的两个交点到点M的距离的和与积。