ansys圆柱面和圆柱体的网格划分
ANSYS网格划分

Plane stress---(平面应力) 平面应力) 平面应力 Axisymmetric--(轴对称) 轴对称) 轴对称 Plane strain---(平面应变) 平面应变) 平面应变 Plane strs w/thk---(带厚度的平面应力) 带厚度的平面应力) 带厚度的平面应力
5
2.3 定义实常数 Main Menu > Preprocessor >Real Constant >Add/Edit/Delete
拖拉
27
设置拖拉选项
MainMenu>Preprocessor>-ModelingOperate>Extrude>ElemExtOpts 拖拉后的单元 材料号, 号,材料号, 实行拖拉操作
MainMenu>Preprocessor>-ModelingOperate>Extrude>-Areas-By XYZ Offset
22
六面体网格
过渡网格
四面体网格
二次 到 二次 2020-节点六面体 1313-节点金字塔 1010-节点四面体
线性 到 二次 8-节点六面体 9-节点金字塔 10-节点四面体
23
3)扫掠网格划分Sweep )扫掠网格划分 要求几何体有一对 拓扑结构相同的源 面和目标面
24
在不可采用扫掠划分的体中生成四面体网格是一个十分有用的扫 掠选项. 掠选项
弹簧单元——刚度系数 刚度系数 弹簧单元 杆单元——面积 面积 杆单元 梁单元——面积、惯性矩、高度 面积、惯性矩、 梁单元 面积 平面应力单元——厚度 厚度 平面应力单元 板壳单元——厚度 板壳单元 厚度 三维实体单元——一般不输入实常数 一般不输入实常数 三维实体单元
ANSYS网格划分简介

Lplot
改变单元尺寸:
Desize…..
Lesize,all,,,,,1
Lplot
(3)局部网格控制
I.esize(整体尺寸控制),可以采用面或体中最短线之间的距离(一般划分2~3个单元),来控制整体单元尺寸
II.kesize(指定点控制)
◎中间节点设置的控制(controling placement of midside nodes)ANSYS默认情况下,将具有中节点的单元的中节点设置在边界线上或边界的面上。
◎单元尺寸的设置
(1)对于采用free方式的smart element sizing(smrtsize)方法:该方法具有如下优点:首先计算面或体中线的单元边的尺寸;其次,若采用四边形单元,所有边的划分为偶数。smrtsize控制方法:basic,简单的设置划分等级(level),1(fine mesh)~10(coarse mesh)。Advaced control,可以控制划分的质量,使网格尽可能的满足要求。
(2)用sweeping方法划分体网格的步骤
[1]首先确定有多少个体sweeping
[2]确定该几何体的拓扑是否可以用该方法,满足下列条件之一是不可以采用的。
I.若命令lesize采用“hard”选项(不可改变),并且source area和target area对应的线等分数目不相等。
◎ Sweeping划分网格:
(1)优点:
①可从其它软件中引入模型,用ANSYS划分网格
②对于不规则体产生六面体网格,可以考虑把体分成一系列的可以sweeping的区域。
③可以用不同的方法划分网格
④在sweeing以前,若没有对source area进行网格划分,ANSYS会自动划分它,extrusion方法则需要用户自己划分。
ANSYS网格划分技巧

【分享】复杂几何模型的系列网格划分技术众所周知,对于有限元分析来说,网格划分是其中最关键的一个步骤,网格划分的好坏直接影响到解算的精度和速度。
在ANSYS中,大家知道,网格划分有三个步骤:定义单元属性(包括实常数)、在几何模型上定义网格属性、划分网格。
在这里,我们仅对网格划分这个步骤所涉及到的一些问题,尤其是与复杂模型相关的一些问题作简要阐述。
一、自由网格划分自由网格划分是自动化程度最高的网格划分技术之一,它在面上(平面、曲面)可以自动生成三角形或四边形网格,在体上自动生成四面体网格。
通常情况下,可利用ANSYS的智能尺寸控制技术(SMARTSIZE命令)来自动控制网格的大小和疏密分布,也可进行人工设置网格的大小(AESIZE、LESIZE、KESIZE、ESIZE等系列命令)并控制疏密分布以及选择分网算法等(MOPT命令)。
对于复杂几何模型而言,这种分网方法省时省力,但缺点是单元数量通常会很大,计算效率降低。
同时,由于这种方法对于三维复杂模型只能生成四面体单元,为了获得较好的计算精度,建议采用二次四面体单元(92号单元)。
如果选用的是六面体单元,则此方法自动将六面体单元退化为阶次一致的四面体单元,因此,最好不要选用线性的六面体单元(没有中间节点,比如45号单元),因为该单元退化后为线性的四面体单元,具有过刚的刚度,计算精度较差;如果选用二次的六面体单元(比如95号单元),由于其是退化形式,节点数与其六面体原型单元一致,只是有多个节点在同一位置而已,因此,可以利用TCHG命令将模型中的退化形式的四面体单元变化为非退化的四面体单元,减少每个单元的节点数量,提高求解效率。
在有些情况下,必须要用六面体单元的退化形式来进行自由网格划分,比如,在进行混合网格划分(后面详述)时,只有用六面体单元才能形成金字塔过渡单元。
对于计算流体力学和考虑集肤效应的电磁场分析而言,自由网格划分中的层网格功能(由LESIZE命令的LAYER1和LAYER2域控制)是非常有用的。
Ansys Icepak网格划分原则

Ansys Icepak网格划分原则(-)网格类型网格划分是仿真的第二步,是所有仿真求解的基础,网格质量的好坏直接决定了求解计算的精度和收敛性。
优质的网格可以保证CFD计算的精度,其主要表现在以下几个方面:(1)网格必须贴体,即划分的网格必须将模型本身的几何形状描述出来,以保证模型的几何形状不失真;(2)可以对固体壁面附近的网格进行局部加密,这是因为任何物理变量在固体壁面附近的梯度都比较大,壁面附近网格由密到疏,才能够将不同物理量的梯度进行合理的捕捉;(3)网格的各种质量指标需满足Icepak的要求。
为了得到更优质的网格,Icepak提供了包括Mesher-HD(六面体占优)、Hexa Unstructured(非结构化网格)、Hexa Cartesian(结构化网格)在内的多种网格划分形式。
Mesher-HD即六面体占优网格,包含六面体、四面体及多面体网格类型,可以对Icepak的原始几何体及导入的异形CAD体进行网格划分;如果选择Mesher-HD方法,在网格控制面板下会出现Multi-Level多级网格的选项;如果模型中包含了异形CAD几何体,则必须使用Mesher-HD方法进行网格划分。
图1异形CAD体的贴体网格——六面体占优Hexa Unstructured即非结构化网格,全部为六面体网格,且网格不垂直相交,适用于所有的Icepak原始几何体(立方体、圆柱、多边形等)进行网格划分;非结构化网格可以对规则的几何体进行贴体划分;非结构化网格可以使用O-grid网格对具有圆弧特征的几何体进行贴体的网格划分,因此非结构化网格在Icepak电子热模拟中应用的非常广泛。
Hexa Cartesian即结构化网格,所有的网格均为垂直正交,三维的实体网格可以在坐标系方向进行编号标注。
由于这种网格在模型的弧线边界会出现stair-stepped阶梯状网格,因此只适用于对类似于方体的几何模型记性贴体网格划分,而对具有弧线和斜面等特征的几何体则无法得到贴体网格。
ansysworkbenchmeshing网格划分总结(1)

ansysworkbenchmeshing⽹格划分总结(1)Base point and delta创建出的点重合时看不到⼤部分可划分为四⾯体⽹格,但六⾯体⽹格仍是⾸选,四⾯体⽹格是最后的选择,使⽤复杂结构。
六⾯体(梯形)在中⼼质量差,四⾯体在边界层处质量差,边界层处⽤棱柱⽹格prism。
棱锥为四⾯体和六⾯体之间的过渡棱柱由四⾯体⽹格被拉伸时⽣成3DSweep扫掠⽹格划:只有单⼀的源⾯和⽬标⾯,膨胀层可⽣成纯六⾯体或棱柱⽹格Multizone多域扫掠⽹格:对象是多个简单的规则体组成时(六⾯体)——mapped mesh type映射⽹格类型:包括hexa、hexa/prism——free mesh type⾃由⽹格类型:包括not allowed、tetra、hexa dominant、hexa core(六⾯体核⼼)——src/trg selection源⾯/⽬标⾯选择,包括automatic、manual source⼿动源⾯选择patch conforming:考虑⼀些⼩细节(四⾯体),包括CFD的膨胀层或边界层识别patch independent:忽略⼀些⼩细节,如倒⾓,⼩孔等(四⾯体),包括CFD 的膨胀层或边界层识别——max element size 最⼤⽹格尺⼨——approx number of elements⼤约⽹格数量mesh based defeaturing 清除⽹格特征——defeaturing tolerance 设置某⼀数值时,程序会根据⼤⼩和⾓度过滤掉⼏何边Use advanced size function ⾼级尺⼨功能——curvature['k??v?t??]曲率:有曲率变化的地⽅⽹格⾃动加密,如螺钉孔,作⽤于边和⾯。
——proximity[pr?k's?m?t?]邻近:窄薄处、狭长的⼏何体处⽹格⾃动加密,如薄壁,但花费时间较多,⽹格数量增加较多,配合min size使⽤。
ANSYS第3章 网格划分技术及技巧(完全版)

ANSYS 入门教程(5) - 网格划分技术及技巧之网格划分技术及技巧、网格划分控制及网格划分高级技术第 3 章网格划分技术及技巧3。
1 定义单元属性单元类型 / 实常数 / 材料属性 / 梁截面 / 设置几何模型的单元属性3。
2 网格划分控制单元形状控制及网格类型选择 / 单元尺寸控制 / 内部网格划分控制 / 划分网格3。
3 网格划分高级技术面映射网格划分 / 体映射网格划分 / 扫掠生成体网格 / 单元有效性检查 / 网格修改3.4 网格划分实例基本模型的网格划分 / 复杂面模型的网格划分 / 复杂体模型的网格划分创建几何模型后,必须生成有限元模型才能分析计算,生成有限元模型的方法就是对几何模型进行网格划分,网格划分主要过程包括三个步骤:⑴定义单元属性单元属性包括:单元类型、实常数、材料特性、单元坐标系和截面号等。
⑵定义网格控制选项★对几何图素边界划分网格的大小和数目进行设置;★没有固定的网格密度可供参考;★可通过评估结果来评价网格的密度是否合理。
⑶生成网格★执行网格划分,生成有限元模型;★可清除已经生成的网格并重新划分;★局部进行细化。
3。
1 定义单元属性一、定义单元类型1。
定义单元类型命令:ET, ITYPE, Ename, KOP1, KOP2, KOP3, KOP4, KOP5, KOP6, INOPR ITYPE —用户定义的单元类型的参考号。
Ename —ANSYS 单元库中给定的单元名或编号,它由一个类别前缀和惟一的编号组成,类别前缀可以省略,而仅使用单元编号。
KOP1~KOP6 - 单元描述选项,此值在单元库中有明确的定义,可参考单元手册。
也可通过命令KEYOPT进行设置。
INOPR —如果此值为 1 则不输出该类单元的所有结果。
例如:et,1,link8 !定义 LINK8 单元,其参考号为 1;也可用 ET,1,8 定义et,3,beam4 ! 定义 BEAM4 单元,其参考号为 3;也可用 ET,3,4 定义2. 单元类型的 KEYOPT命令:KEYOPT, ITYPE, KNUM, VALUEITYPE - 由ET命令定义的单元类型参考号。
Ansys建模与网格划分指南

·对于庞大或复杂的模型,特别是对三维实体模型更合适。 ·相对而言需处理的数据少一些。 ·容许对节点和单元不能进行的几何操作(如拖拉和旋转)。 ·支持使用面和体体素(如多边形面和圆柱体)及布尔运算(相交、相减等)以顺序建立模 型。 ·便于使用 ANSYS 程序的优化设计功能。 ·是自适应网格划分所需的。 ·为便于施加载荷之后进行局部网格细化所要求的。(实体模型加载也需要如此)。 ·便于几何上的改进。 ·便于改变单元类型,不受分析模型的限制。 实体建模的缺点: ·有时需要大量的 CPU 处理时间 ·对小型、简单的模型有时很繁琐,比直接生成需要更多的数据。 2.1.2 直接生成 直接生成的优点 ·对小型或简单模型的生成较方便。 ·使用户对几何形状及每个节点和单元的编号有完全的控制。 直接生成的缺点 ·除最简单的模型外往往比较耗时,大量需要处理的数据可能令人难以忍受。 ·不能用于自适应网格划分。 ·使优化设计变得不方便。 ·改进网格划分十分困难(诸如面网格细化,SmartSizing 等工具均不能使用)。 ·可能是十分乏味的,需要用户留意网格划分的每一个细节;更容易出错。 1.3 从 CAD 系统中输入实体模型。 代替在 ANSYS 中建模,可在用户擅长的 CAD 系统中建模,存成 IGES 文件格式或其他 ANSYS 接口产品之一的文件格式,并把它输入 ANSYS 中进行分析。 利用 CAD 软件包建模有如下优点: ·避免了重复对现有 CAD 模型的劳动而生成待分析的实体模型。 ·工程师可利用熟悉的工具去建模。 但是,从 CAD 系统中输入的模型如果不适于网格划分则需要大量的修补工作。 关于从 IGES 文件输入实体模型的更多信息,参见§6。对于从其他类型文件输入实体模型, 参见《ANSYS Connection Users Guide》。
ANSYS网格划分原则

ANSYS有限元网格划分的基本原则默认分类 2009-05-20 13:56:46 阅读508 评论0 字号:大中小订阅1 引言ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。
网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。
从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。
同理,平面应力和平面应变情况设计的单元求解方程也不相同。
在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。
辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。
由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。
2 ANSYS网格划分的指导思想ANSYS网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。
在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D单元合理搭配使用。
为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。
利用轴对称或子结构时要注意场合,如在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。
有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。
在网格重划分过程中常采用曲率控制、单元尺寸与数量控制、穿透控制等控制准则。
在选用单元时要注意剪力自锁、沙漏和网格扭曲、不可压缩材料的体积自锁等问题ANSYS软件平台提供了网格映射划分和自由适应划分的策略。
Ansys建模与网格划分指南

第二章 规划分析方案 2.1 规划的重要性 当开始建模时,用户将(有意地或无意地)作许多决定以确定如何来对物理系统进行数值模 拟;分析的目标是什么?模型是全部或仅是物理系统的部分?模型将包含多少细节?选用什 么样的单元?有限元网格用多大的密度?总之,你将对要回答的问题的计算费用(CPU 时 间等)及结果的精度进行平衡考虑。你在规划阶段作出的这些决定将大体上控制你分析的成 功与否。 2.2 确定分析目标 确定分析目标的工作与 ANSYS 程序的功能无关,完全取决于用户的知识、经验及职业技能, 只有用户才能确定自己的分析目标,开始时建立的目标将影响用户生成模型时的其它选择。 2.3 选择模型类型(二维、三维等) 有限元模型可分为二维和三维两种。可以由点单元、线单元、面单元或实体单元组成,当然, 也可以将不同类型的单元混合使用(注意要保证自由度的相容性)。例如,带筋的薄壳结构 可用三维壳单元离散蒙皮,用三维梁单元来离散蒙皮下的筋。对模型的尺寸和单元类型的选 择也就决定生成模型的方法。 线模型代表二维和三维梁或管结构,及三维轴对称壳结构的二维模型。实体建模通常不便于 生成线模型,而通常由直接生成方法创建。 二维实体模型在薄平板结构(平面应力),等截面的“无限长”结构(平面应变)或轴对称实 体结构。尽管许多二维分析模型用直接生成方法并不困难,但通常用实体建模更容易。 三维壳模型用于描述三维空间中的薄壁结构,尽管某些三维壳模型用直接生成方法创建并不 困难,但用实体建模方法通常会更容易。 三维实体分析模型用于描述三维空间中截面积不等,也不是轴对称的厚结构。用直接生成的 方法建立三维实体模型较复杂,实体建模会使其变得容易些。 2.4 线性和高次单元的选择 ANSYS 程序的单元库包括两种基本类型的面和体单元:线性单元(有或无特殊形状的)和 二次单元。这些基本单元类型如图 2-1 所示,下面来探讨这两种基本类型单元的选择。
ansysworkbench中划分网格的几种方法

转自宋博士的博客如何在ANSYS WORKBENCH中划分网格经常有朋友问到这个问题。
我整理了一下,先给出第一个入门篇,说明最基本的划分思路。
以后再对某些专题问题进行细致阐述。
ANSYS WORKBENCH中提供了对于网格划分的几种方法,为了便于说明问题,我们首先创建一个简单的模型,然后分别使用几种网格划分方法对之划分网格,从而考察各种划分方法的特点。
1. 创建一个网格划分系统。
2. 创建一个变截面轴。
先把一个直径为20mm的圆拉伸30mm成为一个圆柱体再以上述圆柱体的右端面为基础,创建一个直径为26mm的圆,拉伸30mm得到第二个圆柱体。
对小圆柱的端面倒角2mm。
退出DM.3.进入网格划分程序,并设定网格划分方法。
双击mesh进入到网格划分程序。
下面分别考察各种网格划分方法的特点。
(1)用扫掠网格划分。
对整个构件使用sweep方式划分网格。
结果失败。
该方法只能针对规则的形体(只有单一的源面和目标面)进行网格划分。
(2)使用多域扫掠型网格划分。
结果如下可见ANSYS把该构件自动分成了多个规则区域,而对每一个区域使用扫略网格划分,得到了很规则的六面体网格。
这是最合适的网格划分方法。
(3)使用四面体网格划分方法。
使用四面体网格划分,且使用patch conforming算法。
可见,该方式得到的网格都是四面体网格。
且在倒角处网格比较细密。
其内部单元如下图(这里剖开了一个截面)使用四面体网格划分,但是使用patch independent算法。
忽略细节。
、网格划分结果如下图此时得到的仍旧是四面体网格,但是倒角处并没有特别处理。
(4)使用自动网格划分方法。
得到的结果如下图该方法实际上是在四面体网格和扫掠网格之间自动切换。
当能够扫掠时,就用扫掠网格划分;当不能用扫掠网格划分时,就用四面体。
这里不能用扫掠网格,所以使用了四面体网格。
(5)使用六面体主导的网格划分方法。
得到的结果如下该方法在表面用六面体单元,而在内部也尽量用六面体单元,当无法用六面体单元时,就用四面体单元填充。
Ansys_workbench网格划分相关

Ansys_workbench网格划分相关Mesh 网格划分方法—四面体(Patch Conforming和Patch Independent)、扫掠、自动、多区、CFX划分1.四面体网格优点—适用于任意体、快速自动生成、关键区域使用曲度和近似尺寸功能细化网格、可使用边界层膨胀细化实体边界。
缺点—在近似网格密度下,单元和节点数高于六面体网格、不可能使网格在一个方向排列、由于几何和单元性能的非均质性,不适用于薄实体或环形体常用参数—最小和最大尺寸、面和体的尺寸、Advanced尺寸功能、增长比(Growth—对CFD逐渐变化,避免突变)、平滑(smooth—有助于获得更加均匀尺寸的网格)、统计学(Statistics)、Mesh MetricsPathch Conforming—默认考虑几何面和体生成表面网格,会考虑小的边和面,然后基于TGRID Tetra算法由表面网格生成体网格。
作用—多体部件可混合使用Patch Conforming四面体和扫掠方法共同生成网格,可联合Pinch Control 功能有助于移除短边,基于最小尺寸具有内在网格缺陷Patch Independent—基于ICEM CFD T etra算法,先生成体网格并映射到表面产生表面网格。
如果没有载荷或命名,就不考虑面和边界(顶点和边),此法容许质量差的CAD几何。
作用—可修补碎面、短边、差的面差数,如果面上没有载荷或者命名,就不考虑面和边了,直接将网格跟其它面作一体划。
如果有命名则要单独划分该区域网格体膨胀—直接选择要膨胀的面,就可使面向内径向生成边界层面膨胀—选择要膨胀的面,在选择面的边,就可以向面内膨胀2.扫掠网格体须是可扫掠的、膨胀可产生纯六面体或棱柱网格,手动设置源和目标面,通常一对一,薄壁模型(Src/Trg选择Manual Thin)可自动划分多个面,在厚度方向上划分多个单元。
3.自动化分网格—应该划分成四面体,其与扫掠取决于体是否可扫掠,同一部件的体有一致网格,可程序化控制膨胀4.多区扫掠网格划分—基于ICEM CFD六面体模块,多区划分完后,可给多区添加膨胀5.CFX网格—使用四面体和棱柱网格对循环对称或旋转对称几何划分网格,不考虑网格尺寸或没有网格应用尺寸可使用CFX网格全局网格控制1.Physics Preference 物理设置包括力学(Mechanical)、CFD、电磁(Electromagnetic)、显示(Explicit)分析2.结构分析—使用哪个高阶单元划分较为粗糙的网格。
ansys有限元网格划分技巧与基本原理

一、前言有限元网格划分是进行有限元数值模拟分析至关重要的一步,它直接影响着后续数值汁算分析结果的精确性。
网格划分涉及单元的形状及英拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。
从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。
同理,平而应力和平面应变情况设计的单元求解方程也不相同。
在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的而内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。
辛普生积分点的间隔是一泄的,沿厚度分成奇数积分点。
由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。
CAD软件中流行的实体建模包括基于特征的参数化建模和空间自由曲而混合造型两种方法。
Pro/E和SoildWorks是特征参数化造型的代表,而CATIA与Unigraphics等则将特征参数化和空间自由曲面混合造型有机的结合起来。
现有CAD软件对表而形态的表示法已经大大超过了CAE 软件,因此,在将CAD实体模型导入CAE软件的过程中,必须将CAD 模型中苴他表示法的表面形态转换到CAE软件的表示法上,转换精度的髙低取决于接口程序的好坏。
在转换过程中,程序需要解决好几何图形(曲线与曲而的空间位苣)和拓扑关系(各图形数据的逻借关系)两个关键问题。
英中几何图形的传递相对容易实现,而图形间的拓扑关系容易岀现传递失败的情况。
数据传递而临的一个重大挑战是,将导入CAE程序的CAD模型改造成适合有限元分析的网格模型。
在很多情况下,导入CAE程序的模型可能包含许多设计细节,如细小的孔、狭窄的槽,甚至是建模过程中形成的小曲而等。
这些细肖往往不是基于结构的考虑,保留这些细肖,单元数量势必增加,甚至会掩盖问题的主要矛盾,对分析结果造成负而影响。
CAD模型的“完整性”问题是困扰网格剖分的障碍之一。
ANSYS Workbench Mesh网格划分

Workbench Mesh 网格划分分析步骤网格划分工具平台就是为ANSYS 软件的不同物理场和求解器提供相应的网格文件,Workbench 中集成了很多网格划分软件/应用程序,有ICEM CFD,TGrid,CFX,GAMBIT,ANSYS Prep/Post 等。
网格文件有两类:①有限元分析(FEM)的结构网格:结构动力学分析,电磁场仿真,显示动力学分析(AUTODYN,ANSYS LS DYNA);②计算流体力学(CFD 分析)分析的网格:用于ANSYS CFX,ANSYS FLUENT,Polyflow;这两类网格的具体要求如下:(1)结构网格:①细化网格来捕捉关心部位的梯度,例如温度、应变能、应力能、位移等;②大部分可划分为四面体网格,但六面体单元仍然是首选;③有些显示有限元求解器需要六面体网格;④结构网格的四面体单元通常是二阶的(单元边上包含中节点);(2)CFD 网格:①细化网格来捕捉关心的梯度,例如速度、压力、温度等;②由于是流体分析,网格的质量和平滑度对结果的精确度至关重要,这导致较大的网格数量,经常数百万的单元;③大部分可划分为四面体网格,但六面体单元仍然是首选,流体分析中,同样的求解精度,六面体节点数少于四面体网格的一半。
④CFD 网格的四面体单元通常是一阶的(单元边上不包含中节点)一般而言,针对不同分析类型有不同的网格划分要求:①结构分析:使用高阶单元划分较为粗糙的网格;②CFD:好的,平滑过渡的网格,边界层转化(不同CFD 求解器也有不同的要求);③显示动力学分析:需要均匀尺寸的网格;物理选项实体单元默认中结点关联中心缺省值Coarse Coarse Medium Coarse平滑度过渡Mechanical CFD Electromagnetic ExplicitKept Dropped Kept DroppedMedium Medium Medium FineFast Slow Fast Slow注:上面的几项分别对应Advanced 中的Element Midside Nodes,以及Sizeing 中的Relevance Center,Smoothing,Transition。
ANSYS网格划分的基本原则

ANSYS网格划分的基本原则2009-09-24 20:29ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。
网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。
从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。
同理,平面应力和平面应变情况设计的单元求解方程也不相同。
在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。
辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。
由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。
2 ANSYS网格划分的指导思想ANSYS网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。
在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D单元合理搭配使用。
为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。
利用轴对称或子结构时要注意场合,如在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。
有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。
在网格重划分过程中常采用曲率控制、单元尺寸与数量控制、穿透控制等控制准则。
在选用单元时要注意剪力自锁、沙漏和网格扭曲、不可压缩材料的体积自锁等问题。
ANSYS软件平台提供了网格映射划分和自由适应划分的策略。
映射划分用于曲线、曲面、实体的网格划分方法,可使用三角形、四边形、四面体、五面体和六面体,通过指定单元边长、网格数量等参数对网格进行严格控制,映射划分只用于规则的几何图素,对于裁剪曲面或者空间自由曲面等复杂几何体则难以控制。
ANSYS网格划分详细介绍

ANSYS网格划分详细介绍ANSYS网格划分详细介绍众所周知,对于有限元分析来说,网格划分是其中最关键的一个步骤,网格划分的好坏直接影响到解算的精度和速度。
在ANSYS中,大家知道,网格划分有三个步骤:定义单元属性(包括实常数)、在几何模型上定义网格属性、划分网格。
在这里,我们仅对网格划分这个步骤所涉及到的一些问题,尤其是与复杂模型相关的一些问题作简要阐述。
一、自由网格划分自由网格划分是自动化程度最高的网格划分技术之一,它在面上(平面、曲面)可以自动生成三角形或四边形网格,在体上自动生成四面体网格。
通常情况下,可利用ANSYS 的智能尺寸控制技术(SMARTSIZE命令)来自动控制网格的大小和疏密分布,也可进行人工设置网格的大小(AESIZE、LESIZE、KESIZE、ESIZE等系列命令)并控制疏密分布以及选择分网算法等(MOPT命令)。
对于复杂几何模型而言,这种分网方法省时省力,但缺点是单元数量通常会很大,计算效率降低。
同时,由于这种方法对于三维复杂模型只能生成四面体单元,为了获得较好的计算精度,建议采用二次四面体单元(92号单元)。
如果选用的是六面体单元,则此方法自动将六面体单元退化为阶次一致的四面体单元,因此,最好不要选用线性的六面体单元(没有中间节点,比如45号单元),因为该单元退化后为线性的四面体单元,具有过刚的刚度,计算精度较差;如果选用二次的六面体单元(比如95号单元),由于其是退化形式,节点数与其六面体原型单元一致,只是有多个节点在同一位置而已,因此,可以利用TCHG命令将模型中的退化形式的四面体单元变化为非退化的四面体单元,减少每个单元的节点数量,提高求解效率。
在有些情况下,必须要用六面体单元的退化形式来进行自由网格划分,比如,在进行混合网格划分(后面详述)时,只有用六面体单元才能形成金字塔过渡单元。
对于计算流体力学和考虑集肤效应的电磁场分析而言,自由网格划分中的层网格功能(由LESIZE命令的LAYER1和LAYER2域控制)是非常有用的。
ANSYSWorkbenchMesh网格划分(自己总结)

Workbench Mesh网格划分分析步骤网格划分工具平台就是为ANSYS软件的不同物理场和求解器提供相应的网格文件,Workbench中集成了很多网格划分软件/应用程序,有ICEM CFD,TGrid,CFX,GAMBIT,ANSYS Prep/Post等。
网格文件有两类:①有限元分析(FEM)的结构网格:结构动力学分析,电磁场仿真,显示动力学分析(AUTODYN,ANSYS LS DYNA);②计算流体力学(CFD 分析)分析的网格:用于ANSYS CFX,ANSYS FLUENT,Polyflow;这两类网格的具体要求如下:(1)结构网格:①细化网格来捕捉关心部位的梯度,例如温度、应变能、应力能、位移等;②大部分可划分为四面体网格,但六面体单元仍然是首选;③有些显示有限元求解器需要六面体网格;④结构网格的四面体单元通常是二阶的(单元边上包含中节点);(2)CFD网格:①细化网格来捕捉关心的梯度,例如速度、压力、温度等;②由于是流体分析,网格的质量和平滑度对结果的精确度至关重要,这导致较大的网格数量,经常数百万的单元;③大部分可划分为四面体网格,但六面体单元仍然是首选,流体分析中,同样的求解精度,六面体节点数少于四面体网格的一半。
④CFD网格的四面体单元通常是一阶的(单元边上不包含中节点)一般而言,针对不同分析类型有不同的网格划分要求:①结构分析:使用高阶单元划分较为粗糙的网格;②CFD:好的,平滑过渡的网格,边界层转化(不同CFD 求解器也有不同的要求);③显示动力学分析:需要均匀尺寸的网格;注:上面的几项分别对应Advanced中的Element Midside Nodes,以及Sizeing中的Relevance Center,Smoothing,Transition。
网格划分的目的是对CFD (流体) 和FEM (结构) 模型实现离散化,把求解域分解成可得到精确解的适当数量的单元。
有限元分析中圆、圆柱面以及圆柱体的网格划分

有限元分析中圆、圆柱面以及圆柱体的网格划分简介:有限元分析中网格划分质量决定分析准确性,分析用时,甚至分析对错,掌握经典的几何体的划分是学习有限元的必经之路,本文对圆、圆柱体和圆柱面的网格划分方法给与简介,并给出ANSYS LS-DYNA的例题代码。
关键词:有限元分析;ANSYS;LS-DYNA;网格划分;圆柱体网格划分;圆柱面网格划分在网上找到ANSYS的圆、圆柱面以及柱划分方法,做了一点修改,改为ANSYS LS-DYNA的划分方法,进行发布。
1圆圆的划分思路是先将圆切分为四份,然后进行划分,划分结果如图1所示:图1 圆的网格划分结果代码如下:finish $ /clear $ /prep7et,1,plane82 $ r0=10 ! 定义单元类型和圆半径参数cyl4,,,r0 $ cyl4,3*r0,,,,r0 ! 创建两个圆面 A 和 B,拟分别进行不同的网格划分wprota,,90 $ asbw,all ! 将圆面水平切分wprota,,,90 $ asbw,all ! 将圆面 A 竖向切分wpoff,,,3*r0 $ asbw,all ! 移动工作平面,将圆面 B 竖向切分wpcsys,-1 ! 工作平面复位但不改变视图方向asel,s,loc,x,-r0,r0 ! 选择圆面 A 的所有面lsla,s ! 选择与圆面 A 相关的所有线lesize,all,,,8 ! 对上述线设置网格划分个数为 8(三条边时相等且为偶数)mshape,0,2d $ mshkey,1 ! 设置四边形单元、映射网格划分amesh,all ! 圆面 A 划分网格asel,s,loc,x,2*r0,4*r0 ! 选择圆面B的所有面lsla,s ! 选择与圆面 B 相关的所有线lesize,all,,,8 ! 对上述线设置网格划分个数为 8 lsel,r,length,,r0 ! 选择上述线中长度为半径的线lesize,all,,,8,0.1,1 ! 设置这些线的网格划分数和间隔比amesh,all $ allsel ! 圆面 B 划分网格2圆柱面圆柱面的划分结果如图2所示图2 圆柱面的网格划分结果finish/clear/prep7r0=10 !定义圆半径h0=50 !定义圆的高度et,1,shell163 !定义单元类型cyl4,,,r0adele,1 !删除面cm,l1cm,line !将几何元素分组形成组元k,50 !定义关键点k,51,,,h0l,50,51 !利用关键点定义线adrag,l1cm,,,,,,5 !沿线拉伸成面lsel,s,loc,z,0 !选择Z=0线lesize,all,,,6 !对线指定网格尺寸lsel,s,length,,h0 !选择线lesize,all,,,8mshape,0,2d !指定划分单元的形状mshkey,1 !指定映射网格划分amesh,all !在面中划分节点或线单元3圆柱体4圆柱用结构化网格划分的思路是将圆柱切分为四份,如图3所示,然后在进行划分,划分效果如图4所示。