【精品】PPT课件 LED热学参数测试研究共37页文档

合集下载

LED主要参数及电学光学热学特性

LED主要参数及电学光学热学特性

LED主要参数及电学、光学、热学特性LED电子显示屏是利用化合物材料制成pn结的光电器件。

它具备pn结结型器件的电学特性:I-V特性、C-V特性和光学特性:光谱响应特性、发光光强指向特性、时间特性以及热学特性。

1、LED电学特性1.1 I-V特性表征LED芯片pn结制备性能主要参数。

LED的I-V特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触电阻,反之为高接触电阻。

如左图:(1) 正向死区:(图oa或oa′段)a点对于V0 为开启电压,当V<Va,外加电场尚克服不少因载流子扩散而形成势垒电场,此时R很大;开启电压对于不同LED其值不同,GaAs为1V,红色GaAsP为1.2V,GaP为1.8V,GaN为2.5V。

(2)正向工作区:电流IF与外加电压呈指数关系IF = IS (e qVF/KT –1) -------------------------IS 为反向饱和电流。

V>0时,V>VF的正向工作区IF 随VF指数上升IF = IS e qVF/KT(3)反向死区:V<0时pn结加反偏压V= - VR 时,反向漏电流IR(V= -5V)时,GaP为0V,GaN为10uA。

(4)反向击穿区V<- VR ,VR 称为反向击穿电压;VR 电压对应IR为反向漏电流。

当反向偏压一直增加使V<- VR时,则出现IR突然增加而出现击穿现象。

由于所用化合物材料种类不同,各种LED的反向击穿电压VR也不同。

1.2 C-V特性鉴于LED的芯片有9×9mil (250×250um),10×10mil,11×11mil (280×280um),12×12mil (300×300um),故pn结面积大小不一,使其结电容(零偏压)C≈n+pf左右。

C-V特性呈二次函数关系(如图2)。

由1MHZ交流信号用C-V特性测试仪测得。

1.3 最大允许功耗PF m当流过LED的电流为IF、管压降为UF则功率消耗为P=UF×IFLED工作时,外加偏压、偏流一定促使载流子复合发出光,还有一部分变为热,使结温升高。

LED散热原理与技术简介-PPT精选文档

LED散热原理与技术简介-PPT精选文档
%(深紫色)不等,因此芯片内量子效率为99%(红橙色)~3%(深紫色)
LED散热原理与技术简介
产生热量的原因2
1. 芯片PN结处发出的光子在通过芯片表面的时候,由于芯片的折射 率远大于空气和封装用的硅胶,存在全反射的现象,导致到达表 面的光子被反射回芯片内部,最终转换成了热量。外量子效率的 定义为: ηex =芯片发射出的光子数量/PN结产生的光子数量。 通常外量子效率从3%~30%不等(2019年)
单色LED光谱分布
白炽灯光谱分布
LED散热原理与技术简介
散热的重要性
1.温度对LED的影响 荧光粉 光谱分布 光输出
LED散热原理与技术简介
1.1 温度对黄色荧光粉激发效率的影响
LED散热原理与技术简介
1.2 光谱分布对色温和色坐标影响
LED散热原理与技术简介
测量结果
LED散热原理与技术简介
LED散热原理与技术简介
LED散热原理与技术简介
LED热学特性及散热分析
LED散热原理与技术简介
产生热量的原因1
图 (a)电子与空穴结合产生辐射复合,辐射光子能量为hv≈Eg。 图(b)在非辐射复合中,电子与空穴结合后转化为晶格振动(以热量的形式表现) 在目前的技术条件下,不同波长的LED芯片中,非辐射复合百分比从1%(红橙色)~97
A代表传热的面积(或是两物体的接触面的温度差,单位:℃;
因此,从公式我们就可以发现,热量传递的大小与热传导系数、热传
热面积成正比,同距离成反比。
LED散热原理与技术简介 几种常见金属材料的热传导系数(20℃)
LED散热原理与技术简介
对流 : 对流指的是流体(气体或液体)与固体表面接触,造成流体从固 体表面将热带走的热传递方式。

LED主要参数及电学、光学、热学特性

LED主要参数及电学、光学、热学特性

LED主要参数及电学、光学、热学特性LED电子显示屏是利用化合物材料制成pn结的光电器件。

它具备pn结结型器件的电学特性:I-V特性、C-V特性和光学特性:光谱响应特性、发光光强指向特性、时间特性以及热学特性。

1、LED电学特性1.1I-V特性表征LED芯片pn结制备性能主要参数。

LED的I-V特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触电阻,反之为高接触电阻。

如左图:(1)正向死区:(图oa或oa′段)a点对于V0为开启电压,当V<Va,外加电场尚克服不少因载流子扩散而形成势垒电场,此时R很大;开启电压对于不同LED其值不同,GaAs为1V,红色GaAsP为1.2V,GaP为1.8V,GaN为2.5V。

(2)正向工作区:电流IF与外加电压呈指数关系IF=IS(eqVF/KT–1)---IS 为反向饱和电流。

V>0时,V>VF的正向工作区IF随VF指数上升IF=ISeqVF/KT(3)反向死区:V<0时pn结加反偏压V=-VR时,反向漏电流IR(V=-5V)时,GaP为0V,GaN为10uA。

(4)反向击穿区V<-VR,VR称为反向击穿电压;VR电压对应IR为反向漏电流。

当反向偏压一直增加使V<-VR时,则出现IR突然增加而出现击穿现象。

由于所用化合物材料种类不同,各种LED的反向击穿电压VR也不同。

1.2C-V特性鉴于LED的芯片有9×9mil(250×250um),10×10mil,11×11mil(280×280um),12×12mil(300×300um),故pn结面积大小不一,使其结电容(零偏压)C≈n+pf左右。

C-V特性呈二次函数关系(如图2)。

由1MHZ 交流信号用C-V特性测试仪测得。

1.3最大允许功耗PFm当流过LED的电流为IF、管压降为UF则功率消耗为P=UF×IFLED工作时,外加偏压、偏流一定促使载流子复合发出光,还有一部分变为热,使结温升高。

LED主要参数及电学光学热学特性

LED主要参数及电学光学热学特性

LED主要参数及电学、光学、热学特性LED电子显示屏是利用化合物材料制成pn结的光电器件。

它具备pn结结型器件的电学特性:I-V特性、C-V特性和光学特性:光谱响应特性、发光光强指向特性、时间特性以及热学特性。

1、LED电学特性1.1 I-V特性表征LED芯片pn结制备性能主要参数。

LED的I-V特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触电阻,反之为高接触电阻。

如左图:(1) 正向死区:(图oa或oa′段)a点对于V0 为开启电压,当V<Va,外加电场尚克服不少因载流子扩散而形成势垒电场,此时R很大;开启电压对于不同LED其值不同,GaAs为1V,红色GaAsP为1.2V,GaP为1.8V,GaN为2.5V。

(2)正向工作区:电流IF与外加电压呈指数关系IF = IS (e qVF/KT –1) -------------------------IS 为反向饱和电流。

V>0时,V>VF的正向工作区IF 随VF指数上升IF = IS e qVF/KT(3)反向死区:V<0时pn结加反偏压V= - VR 时,反向漏电流IR(V= -5V)时,GaP为0V,GaN为10uA。

(4)反向击穿区V<- VR ,VR 称为反向击穿电压;VR 电压对应IR为反向漏电流。

当反向偏压一直增加使V<- VR时,则出现IR突然增加而出现击穿现象。

由于所用化合物材料种类不同,各种LED的反向击穿电压VR也不同。

1.2 C-V特性鉴于LED的芯片有9×9mil (250×250um),10×10mil,11×11mil (280×280um),12×12mil (300×300um),故pn结面积大小不一,使其结电容(零偏压)C≈n+pf左右。

C-V特性呈二次函数关系(如图2)。

由1MHZ交流信号用C-V特性测试仪测得。

1.3 最大允许功耗PF m当流过LED的电流为IF、管压降为UF则功率消耗为P=UF×IFLED工作时,外加偏压、偏流一定促使载流子复合发出光,还有一部分变为热,使结温升高。

2024版大学物理热学完整ppt课件

2024版大学物理热学完整ppt课件
制冷技术分类
介绍根据制冷原理和应用领域划分的不同类型制冷技术,如压缩 式制冷、吸收式制冷、热电制冷等。
新型制冷技术介绍
简要介绍一些新兴的制冷技术,如磁制冷、声制冷等,并分析其 优缺点及发展前景。
25
常见制冷设备工作原理介绍
1 2
家用冰箱
详细介绍家用冰箱的结构、工作原理及性能指标, 包括压缩式制冷系统和吸收式制冷系统等。
分析制冷技术在环境保护(如 减少温室气体排放)和可持续 发展方面的应用前景,讨论其 在实现绿色低碳发展中的重要 作用。
2024/1/30
27
06
热学实验方法与技巧分享
2024/1/30
28
温度测量方法及误差分析
接触式测温法
利用热平衡原理,使测温元件与被测物体接触,达到热平衡后测量测温元件的物理量。
2024/1/30
5
热力学第一定律
2024/1/30
内容
热量可以从一个物体传递到另一个物体,也可以与机械能或其 他能量互相转换,但是在转换过程中,能量的总值保持不变。
数学表达式
ΔU=Q+W,其中ΔU表示系统内能的增量,Q表示系统吸收的 热量,W表示外界对系统做的功。
6
热力学第二定律
内容
不可能把热从低温物体传到高温物体而不产生其他影响,或不可能从单一热源 取热使之完全转换为有用的功而不产生其他影响,或不可逆热力过程中熵的微 增量总是大于零。
大学物理热学完整ppt课件
2024/1/30
1
contents
目录
2024/1/30
• 热学基本概念与原理 • 气体动理论与统计规律 • 热传导、对流与辐射传热方式 • 相变与相平衡原理及应用 • 热力学循环与制冷技术基础 • 热学实验方法与技巧分享

东南大学物理学院-LED热学特性研究实验讲义

东南大学物理学院-LED热学特性研究实验讲义

大功率LED热学特性研究(课题实验)发光二极管(Light Emitting Diode, LED)在过去十几年里有了飞速的发展,逐渐突破了仅能作为低功率指示灯光源的限制,被广泛应用于日常照明和显示等领域[1-2]。

LED是通过外电流注入的电子和空穴在耗尽层中复合,以辐射复合产生光子而发光,同时也会有部分复合能量传递给晶格原子或离子,发生非辐射跃迁,这部分能量转换成热能损耗在PN结内。

对于小功率LED来说这部分热量很小可以不作考虑。

然而,对于大功率照明用LED而言,其发热量大幅提高,直接影响到了LED的发光效率和器件的使用寿命,以及引起波长的漂移,造成颜色不纯等一系列问题。

因此,研究功率型LED的热学与发光特性不仅涉及半导体物理的基础问题,也是目前光电工程领域的开发热点[3-4]。

一、实验原理简介1. 脉冲法测量结温准确测量LED的结温是研究LED热学特性的基础。

LED灯的基本结构如图1所示,其芯片的核心结构是一个半导体的PN结,所谓LED的结温指的就是PN结的温度。

由于PN 结的尺寸很小,又被荧光材料和树脂胶包裹,无法直接测量其温度,因此常用间接法来测量结温。

本实验仪器采用一种较为新颖的脉冲法测量结温,该方法于2008年由美国NIST实验室提出[7]。

其核心思想是通过脉冲电流来限制结温TJ的上升,使之与器件表面可测量温度TB接近一致。

当给待测LED灯通入一个幅值为额定值的脉冲电流时,芯片在脉冲内正常发光并升温,但由于电流占空比很小,芯片温度会在一个较长的电流截止状态下降低到和表面温度一致。

从整体效果来看,只要脉冲占空比足够小,LED的芯片温度能维持和表面温度一致,如图2所示。

这样,只要借助温控仪就能在脉冲电流下定标出芯片两端的电压‒温度曲线。

由于在电流一定时,特定PN结的压降仅和结温有关,所以在有了LED的电压‒温度曲线后,只需测量正常工作时LED两端的电压就可以得到其实际的结温。

图1 功率型LED 基本结构示意图图2 (a )LED 在不同占空比的脉冲电流下结温随时间的变化示意图;(b )待测LED 灯珠在脉冲电流和稳流状态下点亮时,器件表面温度随时间的变化曲线。

LED热学参数测试研究PPT课件

LED热学参数测试研究PPT课件

GaAs devices) (激活能)
-5
第33页/共36页
MTTF和结温
第34页/共36页
结束语
• 以上主要讨论了稳态热阻测试的标准方法及有关问题。 • 三种不同概念的热阻对产品生产和检验都有用。
• 讨论了结温和LED寿命,平均无故障时间关系。
• 对于各种LED器件而言,精确测量瞬态热阻抗值和如何估算半导体结的最大温 升,需要做许多研究,才能制定瞬态热阻抗测试标准。
热阻测试波形
第15页/共36页
校准测量数据的冷却曲线
JX
K VF IH VH
K a K b
被测器件撤除加热电流的 瞬间,结温立即下降,但 是电压测K量 a和 K读数需要一 定时间,因此 b 所获得的测 量数据有误差。通常要作 出被测器件的冷却曲线从 而对测量数据进行修正。
JX
热阻基本概念
LED热学设计的目的在于预 言LED芯片的结温,所谓结 温是指LED芯片PN结的温 度。
热阻定义为热流通道上的温度差与通道上耗散功率 之比
第1页/共36页
Thermal Resisitance & Thermal Impedance
第2页/共36页
瞬态和稳态热阻
• 半导体结与壳体或环境温度之间的 稳态条件需数秒或数分钟才能达到。 为提高效率,可以采用测量瞬态热阻 抗的方法。
LED(N ) _ RJ B
R R R
J B
J S
SB
1 Total _ Array _ RJ B
1 LED(1) _
RJ B
1 LED(N ) _
Total
RJ B
_
Array
_
R J B
LED_ Emitter _ RJ B N

LED照明基础知识培训教材PPT课件

LED照明基础知识培训教材PPT课件

⑵贴片式
LED灯(LED Lamp) 食人鱼LEd(Piranha LED)
2、按功率大小分
PCB LED
Top View LED
SideView LED
⑴小功率LED:额定工作电流If ≤100mA(单芯片)
⑵大功率LED:大功率LED:额定工作电流If≥100mA(单芯片)
可编辑课件PPT
5
3、按发光颜色分类 ⑴单色光LED
LED照明基本知识及应用
IDV国际电工
可编辑课件PPT
1
目录
一、LED基本知识 二、热学基础知识 三、光学基础知识 四、LED驱动基础知识
可编辑课件PPT
2
1.LED的定义
一、LED基本知识
LED— Light Emitting Diode
:(半导体)发光二极管一种当有
一定正向电流通过时能发射出一定波长的光,即可以将电能转化为光
2、结温对LED的影响
1) 发光强度降低,随着芯片结温的增加,芯片的发光效率 效率也 会随之减少,芯片结温越高,发光强度下降
越快。
2) 发光主波长偏移,当LED 的温度升高时,LED 的波长的
大致变化规律为每升高10 度,波长红移1nm,主波长的变化
将会引起混色效果的变化,还会偏移黄色荧光粉的激发峰值
2、LED芯片由三个基本功能区组成: ①P型半导体,多数载流子是空穴; ②N型半导体,多数载流子是电子; ③P型区与N型区之间的PN结,通常会形成1至5个周期的量子阱。
N型载流子 (电子)
价带
导带
禁带,Eg
P型载流子 (空穴)
能量
能级跃迁—复合模型
可编辑课件PPT
9
3、当电流通过电极作用于芯片时,N型区的电子和P型区的空穴被推向PN 结,在多量子阱内电子跟空穴复合,复合所产生的能量以光(有效复合 )和热(无效复合)的形式释放,这就是LED发光的基本原理。

LED主要参数及电学光学热学特性

LED主要参数及电学光学热学特性

LED主要参数及电学、光学、热学特性LED电子显示屏是利用化合物材料制成pn结的光电器件。

它具备pn结结型器件的电学特性:I-V特性、C-V特性和光学特性:光谱响应特性、发光光强指向特性、时间特性以及热学特性。

1、LED电学特性1.1 I-V特性表征LED芯片pn结制备性能主要参数。

LED的I-V特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触电阻,反之为高接触电阻。

如左图:(1) 正向死区:(图oa或oa′段)a点对于V0 为开启电压,当V<Va,外加电场尚克服不少因载流子扩散而形成势垒电场,此时R很大;开启电压对于不同LED其值不同,GaAs为1V,红色GaAsP为1.2V,GaP为1.8V,GaN为2.5V。

(2)正向工作区:电流IF与外加电压呈指数关系IF = IS (e qVF/KT –1) -------------------------IS 为反向饱和电流。

V>0时,V>VF的正向工作区IF 随VF指数上升IF = IS e qVF/KT(3)反向死区:V<0时pn结加反偏压V= - VR 时,反向漏电流IR(V= -5V)时,GaP为0V,GaN为10uA。

(4)反向击穿区V<- VR ,VR 称为反向击穿电压;VR 电压对应IR为反向漏电流。

当反向偏压一直增加使V<- VR时,则出现IR突然增加而出现击穿现象。

由于所用化合物材料种类不同,各种LED的反向击穿电压VR也不同。

1.2 C-V特性鉴于LED的芯片有9×9mil (250×250um),10×10mil,11×11mil (280×280um),12×12mil (300×300um),故pn结面积大小不一,使其结电容(零偏压)C≈n+pf左右。

C-V特性呈二次函数关系(如图2)。

由1MHZ交流信号用C-V特性测试仪测得。

1.3 最大允许功耗PF m当流过LED的电流为IF、管压降为UF则功率消耗为P=UF×IFLED工作时,外加偏压、偏流一定促使载流子复合发出光,还有一部分变为热,使结温升高。

《热 学》课件

《热      学》课件

VS
相变
相变是指物质在一定条件下从一种相转变 为另一种相的过程,如冰融化成水、水蒸 发成水蒸气。相变过程中会吸收或释放大 量的热量。
热力学第一定律
热力学第一定律
热力学第一定律是能量守恒定律在热现象中的具体表现形式,它指出能量不能凭空产生 或消失,只能从一种形式转化为另一种形式。
表达式
$Delta U = Q + W$,其中$Delta U$表示系统内能的增量,$Q$表示外界对系统传递 的热量,$W$表示外界对系统做的功。
热传导原理
总结词
详细描述热传导的物理机制和数学模型,包括温度场、 傅里叶定律等。
详细描述
热传导是热量在物质内部由高温区域向低温区域传递的 过程。其物理机制基于分子热运动,数学模型通常用傅 里叶定律描述,即热流量与温度梯度成正比。
对流换热
总结词
详细介绍对流换热的类型、特点以及与热传 导、热辐射的比较。
要点一
未来热学的发展趋势
要点二
面临的挑战
未来热学的发展趋势包括深入研究新能源的热学特性、探 索新的热能转换与利用技术、发展高效的热管理技术等。 同时,随着科技的不断发展,热学与其它学科的交叉研究 也将更加深入和广泛。
未来热学发展面临的挑战包括如何提高新能源转换效率、 如何降低能耗和减少环境污染、如何应对气候变化等。同 时,随着科技的不断发展,新的应用领域和技术也对热学 提出了更高的要求和挑战。
PART 02
热力学基础
温度与热量
温度
温度是表示物体冷热程度的物理量, 是大量分子无规则运动的宏观表现。 常用的温度单位有摄氏度、华氏度和 开尔文。
热量
热量是指在热传递过程中传递的能量 ,单位是焦耳。热量是一个过程量, 只有在热传递过程中才能存在。

LED的电学、热学及光学特性研究_百度文库(精)

LED的电学、热学及光学特性研究_百度文库(精)

LED 的电学、热学及光学特性研究2011-05-11 16:05:15 文章来源:明导国际我来说两句 (0••导读: LED 的发光性能不仅和其电学特性相关,还受其结温影响。

因此,通过实际测试和仿真工具来研究其散热性能及热管理方法在LED 的设计过程中十分重要。

本文对LED 的电学、热学及光学特性进行了协同研究。

在仿真方面,完成了一个板级系统的电-热仿真;在测试方面,讨论了一个热-光联合测试系统的应用。

o关键字o LED电学热学光学特性电-热仿真• 1. 简介众所周知,LED的有效光辐射(发光度和/或辐射通量严重受其结温影响(如图一所示,数据来源于Lumileds Luxeon DS25 的性能数据表。

单颗LED 封装通常被称为一级LED,而多颗LED 芯片装配在同一个金属基板上的LED 组件通常被称为二级LED。

当二级LED 对光的均匀性要求很高时,结温对LED 发光效率的影响这个问题将十分突出[1]。

文献[2]中提到,可以利用一级LED 的电、热、光协同模型来预测二级LED 的电学、热学及光学特性。

前提是需要对LED 的散热环境进行准确建模。

本文第 2 节中我将讨论怎样通过实测利用结构函数来获取LED 封装的热模型,并将简单描述一下我们用来进行测试的一种新型测试系统。

第 3 节中,首先我们回顾了电-热仿真工具的原理,然后将此原理扩展应用到板级的热仿真以帮助优化封装结构的简化热模型。

在文章的最后我们将介绍一个应用实例。

2. 建立LED 封装的简化热模型关于半导体封装元器件的简化热模型(CTMs的建立,学术界已经进行了超过10 年的讨论。

现在,对于建立封装元器件特别是IC封装的独立于边界条件的稳态简化热模型(CTMs,大家普遍认同DELPHI 近似处理方法[3][4][5]。

为了研究元器件的瞬态散热性能,我们需要对CTM 进行扩展,扩展后的模型称之为瞬态简化热模型(DCTMs。

欧盟通过PROFIT 项目[7]制定了建立元器件DCTM 的方法,并且同时扩展了热仿真工具[6]的功能以便能够对DCTM 模型进行仿真计算。

大学物理热学PPT课件

大学物理热学PPT课件

平衡态:孤立系统所长期维持的状态。
孤立: 不受干扰,不与系统外的其它物质发生任何关系 (发生相互作用,或交换任何东西)。
注意:“孤立=无相互作用”,“长期维持的状态”,这两个特色表明, “平衡态”概念与“惯性”运动概念非常相似。
实际上,平衡态概念在热学中有着与惯性概念在力学中的同等重要地位。 可以说是热学中的“惯性”状态,是个安静老实的状态。
例 氧气瓶的压强降到106Pa即应重新充气,以免混 题 入其他气体而需洗瓶。今有一瓶氧气,容积为
32L,压强为1.3107Pa,若每天用105Pa的氧气 400L,问此瓶氧气可供多少天使用?设使用时
温度不变。
解: 根据题意,可确定研究对象为原来气体、用去气 体和剩余气体,设这三部分气体的状态参量分别为
V,P,M
几何,力学,化学
T
平衡态,热
注意: 它们只对平衡状态才成立。 另外它们只是近似的自然规律,不是像万有引力或库仑定律那样的100%正确的公式。
实际气体状态方程 范德瓦尔斯的气体状态方程
范德瓦尔斯利用微观分子运动的图象,提出理想气体的平衡状态方程修改为
P
a 2
V2
V b RT
在低密度极限v→0下,有bv <<V
多元系:由多种化学成分组成的系统,如空气
按系统组成均匀性分:
单相系:由单一均匀成分构成的系统,如水、
多相系:由多个均匀成分组合的系统,如水与水蒸汽组合的系统
物态
热学的两部分内容: (1) 热力学:学习静止物体的不同状态、 它们的能量差别,状态发生转变的规律等。
(为简单起见,忽略与物体运动,几何变形等力学课中相关的东西)。 (2) 分子运动论:学习分子运动的某些规律和描述方法, 以及它们与热力学之间的联系。

LED光谱特性分析ppt课件

LED光谱特性分析ppt课件

资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
光纤介绍
❖ 在光纤的数值孔径范围 ❖ 光纤光学设计 内的光线将被反射并通 过光纤传播
❖ 数值孔径大小由制造光 纤的纤芯和包层材料决 定
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
实验内容
❖ 测量LED 光谱管 Na灯 Hg灯 LD 的谱线 ❖ 与标准谱比对,记录实验所测谱线 ❖ 分析LED白光与单色光的谱线区别 ❖ 了解光电器件的光谱特性
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
实验原理
❖ 光谱(Spectrum),全称为光学频谱,是复色 光通过色散系统(如光栅、棱镜)进行分光 后,依照光的波长(或频率)的大小顺次排 列形成的图案。
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
70000 60000 50000 40000 30000 20000 10000
0
wavelength
intensity
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
70000 60000 50000 40000 30000 20000 10000

最新LED电学光学热学特性参数

最新LED电学光学热学特性参数

L E D电学光学热学特性参数LED主要参数及电学、光学、热学特性LED电子显示屏是利用化合物材料制成pn结的光电器件。

它具备pn结结型器件的电学特性:I-V特性、C-V特性和光学特性:光谱响应特性、发光光强指向特性、时间特性以及热学特性。

1、LED电学特性1.1 I-V特性表征LED芯片pn结制备性能主要参数。

LED的I-V特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触电阻,反之为高接触电阻。

如左图:(1) 正向死区:(图oa或oa′段)a点对于V0 为开启电压,当V<Va,外加电场尚克服不少因载流子扩散而形成势垒电场,此时R很大;开启电压对于不同LED其值不同,GaAs为1V,红色GaAsP为1.2V,GaP为1.8V,GaN为2.5V。

(2)正向工作区:电流IF与外加电压呈指数关系IF = IS (e qVF/KT –1) -------------------------IS 为反向饱和电流。

V>0时,V>VF的正向工作区IF 随VF指数上升 IF = IS e qVF/KT (3)反向死区:V<0时pn结加反偏压V= - VR 时,反向漏电流IR(V= -5V)时,GaP为0V,GaN为10uA。

(4)反向击穿区 V<- VR ,VR 称为反向击穿电压;VR 电压对应IR为反向漏电流。

当反向偏压一直增加使V<- VR时,则出现IR突然增加而出现击穿现象。

由于所用化合物材料种类不同,各种LED的反向击穿电压VR也不同。

1.2 C-V特性鉴于LED的芯片有9×9mil (250×250um),10×10mil,11×11mil (280×280um),12×12mil (300×300um),故pn结面积大小不一,使其结电容(零偏压)C≈n+pf左右。

C-V特性呈二次函数关系(如图2)。

由1MHZ交流信号用C-V特性测试仪测得。

热学物理学PPT课件

热学物理学PPT课件
影响因素
温度差、导热系数、物体形状和尺寸等。
导热系数与材料性质
不同材料的导热系数差异较大,金属通常具有较高的导热系数。
对流现象及其分类
对流现象
流体中由于温度差异引 起的宏观运动,导致热
量传递的过程。
分类
自然对流和强制对流。
自然对流
由温度梯度引起的密度 差异而产生的流动。
强制对流
通过外部作用力(如风 扇、泵等)驱动流体流
02
气体动理论与性质
理想气体状态方程
理想气体状态方程表 达式:pV = nRT
理想气体状态方程的 应用:计算气体的压 强、体积、温度等热 力学参量
理想气体状态方程的 适用条件:适用于稀 薄气体,忽略分子间 相互作用力
实际气体行为描述
实际气体与理想气体的差异
实际气体存在分子间相互作用力,不满足理想气体状态方程
热力学系统与过程
热力学系统
由大量微观粒子组成的宏观物体,是 热学研究的基本对象。
热力学过程
系统从一个状态变化到另一个状态所 经历的全部过程。
能量守恒与转换
能量守恒定律
能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式 ,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变。
气体内部能量传递
气体内部能量传递的方式
气体热传导的宏观表现
通过分子间的碰撞传递能量,实现热 传导
热量从高温区域向低温区域传递,遵 循傅里叶定律
气体热传导的微观机制
能量较高的分子与能量较低的分子碰 撞,使能量分布趋于均匀
03
热传导、对流与辐射过程
热传导原理及影响因素
热传导原理
物体内部或物体之间由于温度差异引起的内能传递现象。

LED的电学参数及其测试技术PPT课件

LED的电学参数及其测试技术PPT课件

其中,
,x, y为色坐标。9、源自色指数低色温的白光LED与标准灯的比较分析
表1 低色温的白光LED与标准灯的光色参数 图 白光LED和标准灯的显色指数比较
• R9(深红色)值是所有显色指数中最小的,低于60。
图 白光LED和标准灯的光谱图
• 改善LED光源的显色性,须调整其光谱,使之在可 见光连续、均衡。
IF
正反向电性的测量
正向电性能:采用恒流源供电,根据设定的电流自动调节输出正向
工作电流,并测出LED两端的正向电压和流过LED的正 向电流。
反向电性能:采用恒压源供电,增加恒压源电压,监测流过LED的电
流,当电流达到设定的反向漏电流值时,测量此时的电 压即为反向电压; 根据设定的反向电压调节恒压源, 测出流过LED的反向漏电流。
式中 为光谱功率分布函数, 为视见函数。
8、相关色温Tc
光源发射的光与黑体在某一温度下辐射的光 颜色最接近,则黑体的温度就称为该光源发射的 光的相关色温,单位为K。
色温与色坐标有着紧密的联系,一个色坐标x,y 值对应一个色温值。色温的确定可以根据相关色 温公式(McCamy,1992)进行计算,即:
10、平均波长
某一波长左右两边光谱所占的能量相等, 则该波长称为平均波长。
第三部分 光强与发光角度的测量
1、发光强度
• 单位: 坎德拉/cd (Candela) 符号I =Φ/Ω 定义: 光源在指定方向的单位立体角内发出的 光通量。(即:光照或照明灯具所发出的 光通量在空间选定方向上分布密度)
被光均匀照射的物体,距离该光源1米处, 在1m²面积上得到的光通量是1lm时,它的 照度是1lux。习称“烛光米”。
3、发光效率
LED发光效率表征器件电光转换的能力, 一般用流明效率表示,即:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档