LED可控恒流源驱动系统设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LED可控恒流源驱动系统设计
LED作为第三代照明光源,具有工作电压低,耗电量小,发光效率高、寿命
长等优点.LED 是一个非线性器件,当LED 导通时,只要LED 上的电压发生微小变化,就会使电流过大导致LED 器件发热损坏.LED 的工作特性对其供电电源
质量的依赖程度很大,因此实现一个高质量的供电电源对提高LED 的照明质量、电能利用率、延长LED 的使用寿命有着重要的意义.供电电源的稳定性主要取决于LED 驱动电路设计,恒流源驱动是最佳的LED 驱动方式,采用恒流源驱动,LED 上流过的电流将不受电压、环境温度变化,以及LED 参数离散性的影响,从而能保持电流恒定,充分发挥LED 的各种优良特性.目前广泛采用的恒流源
有两种形式:一种是线性电源改进型恒流源,另一种是开关电源式恒流源.线性电源改进型恒流源的线性损耗大,适用范围小; 开关电源式恒流源的可靠性较差,适应范围小,而且成本高.因此,经济实用、性能可靠的数控恒流源就得到了广泛的应用.本文针对小功率LED 在现有照明系统中驱动方式存在的一些
不足,设计了一种高效的驱动系统,提出了一种相应的新型驱动系统。
1 LED 特性
1.1 LED 伏安特性
LED 伏安特性的数学模型可以表示为
IF=V+RS+△VF/△T ( T-25℃ ) (1)
式中,V 是LED 启动电压;RS 表示伏安曲线斜率;IF 表示LED 正向电流;T 表示环境温度;△VF/△T 是LED 正向电压的温度系数,对于大多数LED 而言,它的典型值为-2V/℃.从LED 的数学模型看,在一定的环境温度条件下LED 在正向导通后其正向电压的细小变动将引起LED 电流的很大变化。
1.2 LED 温度特性
LED 正向电流的大小是随温度变化而变化的, 白光LED 的工作电流一般在
200mA 左右,当环境温度一旦超过50℃,白光LED 的容许正向电流会幅度降低而达不到正常发光亮度所需的工作电流,在此情况下如果仍旧施加大电流,很容易
使白光LED 老化。
1.3 LED 光学
光源的光通量是指单位时间内通过4π立体角的可见光能量.白光LED 电流与
光通量的关系如图1所示,随着电流的增加, LED 的光通量非线性增加,并逐渐趋于饱和.其原因主要是因为随着电流及时间的增大,大功率LED 内部温度上升,
发生在P/N 结结区的载流子复合几率下降,造成LED 发光效率降低。
2 系统方案选择与比较
2.1 系统结构框图
系统结构框图如图2 所示.
2.2 核心控制器的选择
控制器采用目前比较通用的STC 系列单片机STC89C52,一种带8K 字节闪烁可编程可擦除只读存(FPEROM—Falsh Programmableand Erasable Read Only Memory)的高性能8 位微处理器.该器件采用高密度非易失存储器制造技术制造,与工业标准的MCS-51 指令集和输出管脚相兼容. 由于将多功能8 位CPU和闪烁存储器组合在单个芯片中,STC 的STC89C52 是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
2.3 时钟功能模块的选择
方案1 采用DS1302 时钟芯片. 此芯片体积小、引脚少,操作起来非常方便.缺点是使用时需要外接备份电池和外部晶振,硬件线路较复杂,成本较高。
方案2 采用DS12C887 时钟芯片.此芯片,体积相对较大,内部集成有可充电锂电池,同时还集成32.768kHz 的标准晶振,可有效地保持时间的连续性,使用
起来非常方便,但价格昂贵。
方案3 利用单片机(晶振11.0592M)的定时器设计时钟.时间显示在1602 液晶上,用独立键盘调节时钟的时、分、秒,并且可以设置定时.成本低,不需要在启用其他的芯片和外围电路,但程序较为复杂.考虑到性价比的问题和电路优化问题,所以选用方案3.
2.4 恒流源模块选择
方案1 采用单片机产生PWM 信号,输出到达林顿管,经滤波器消除纹波,实现恒流源功能.采用PWM 脉冲方式来实现的恒流源可简化硬件电路,易于控制和调节,但是该方案精度难以保证,要适应本设计对精度的要求在技术上难度较高,且该方案很难适应电流调节范围大的应用需求,受纹波和稳定性等因素的限制,难以实现.
方案2 由运算V/I 转换电路构成恒流电路.运算放大器构成的恒流电路摆脱了
晶体管恒流电路受限于工艺参数的缺点.该方案可实现0~5V/0~500mA 的V/I 转换,且转换精度较高.若输入端由单片机配合数字电位器控制,还可很方便实现数控恒流源.
方案3 通过专门的恒流/恒压芯片LT1769 和简单的控制线路来实现压控电流源方案.这种恒压芯片具有集成度高,使用起来控制系统的软硬件都变得相对简单的优点.但缺点是方案实现不够灵活;由于该芯片精度不高,设备性能被局限在这种专用芯片性能指标所允许的范围内.所以这种设计一般只适合于精度要求不高,但集成度和便携性要求高的场合,事实证明,这不是做理想的数控电流源实现方案.鉴于论证与比较,最终选择方案2.
2.5 D/A 转换器选择
对于D/A 转换器,笔者使用非常普遍的8 位D/A 转换器DAC0832,其转换时间为1μs,工作电压为+5V~+15 V,基准电压为±10V,与微处理器接口完全兼容,具有价格低廉、接口简单、转换控制容易等优点,在单片机应用系统中得到广泛的应用. 其D/A 转换器由8 位输入锁存器、8 位DAC 寄存器、8 位D/A 转换电路及转换控制电路构成。
3 硬件电路设计
3.1 系统电源电路
如图3 所示,该电源利用正压集成稳压器LM7812 和负压集成稳压器LM7912 提供对称的正/负12V 稳压输出,供给运放使用,而后再通过LM7805 稳压成5V 输出,供给单片机使用。