小学奥数题及答案(1)

合集下载

小学四年级奥数题及答案[5篇]

小学四年级奥数题及答案[5篇]

小学四年级奥数题及答案[5篇]1.小学四年级奥数题及答案篇一1、王爷爷家养的4头奶牛每个星期产奶896千克,平均1头奶牛每天产多少奶呢?2、4辆汽车3次运水泥960袋,平均每辆汽车每次运水泥多少袋?3、水波小学每间教室有3个窗户,每个窗户安装12块玻璃,9间教室一共安装多少块玻璃?4、小红买了2盒绿豆糕,一共重1千克。

每盒装有20块,平均每块重多少克?5、一辆大巴车从张村出发,如果每小时行驶60千米,4小时就可以到达李庄。

结果只用了3个小时就到达了。

这辆汽车实际平均每小时行驶多少千米?参考答案:1、896÷4÷7=32(千克)2、960÷4÷3=80(袋)3、12×9×3=324(块)4、1千克=1000克1000÷2÷20=25(克)5、60×4÷3=80千米/小时2.小学四年级奥数题及答案篇二1.用一根150厘米长的绳长围成一个等边三角形。

这个等边三角形的每条边的长是多少厘米?2.等腰直角三角形两条相邻的边分别是8米、5米,它的周长是多少米?3.用20分米和50分米的木条围成一个等腰三角形,所得等腰三角形的周长是多少?4.等腰三角形顶角度数是一个底角的一半,这个三角形顶角和底角各是多少度?5.一个等边三角形和一个正方形的周长相等。

正方形的边长是12厘米,等边三角形的边长是多少厘米?参考答案:1.150÷3=50(厘米)答:这个等边三角形的每条边的长是50厘米。

2.8+5+5=18(米)答:它的周长是18米。

3.20+50+50=120(分米)答:所得等腰三角形的周长是120分米。

4.180÷(1+2+2)=36°36°×2=72°(次)答:这个三角形顶角是36°,底角是72°。

5.12×4÷3=16(厘米)答:等边三角形的边长是16厘米。

小学奥数题及答案(1)

小学奥数题及答案(1)

工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:=表示甲乙的工作效率5=表示5小时后进水量=表示还要的进水量()=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。

2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为,乙的工效为,甲乙的合作工效为=,可知甲乙合作工效>甲的工效>乙的工效。

又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。

只有这样才能“两队合作的天数尽可能少”。

设合作时间为x天,则甲独做时间为(16-x)天(16-x)=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?解:由题意知,表示甲乙合作1小时的工作量,表示乙丙合作1小时的工作量()×2=表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

所以1-=表示乙做6-4=2小时的工作量。

2=表示乙的工作效率。

1÷=20小时表示乙单独完成需要20小时。

答:乙单独完成需要20小时。

4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

经典小学1奥数题(带答案)

经典小学1奥数题(带答案)

经典小学奥数题目1.一张圆形纸片的半径是3厘米,一张正方形纸片上的边长是4厘米。

两张纸片重叠一部分放在左面上,覆盖桌面的面积为38平方厘米。

问:两张纸片重合部分的面积是多少3*3*+4*4-38=平方厘米3.某班参加体育活动的学生有25人,参加音乐活动的有26人,参加美术活动的有24人,同时参加体、音活动的有16人,同时参加音、美活动的有15人同时参加体、美活动的有14人,三个组同时都参加的有5人。

这个班共有多少名学生参加活动?25+26+24-16-14-15+5=35人4.某校六年级举行语文和数学竞赛,参加人数占全年级总人数的百分之40.参加语文竞赛的占竞赛人数的五分之二,参加数学竞赛的占竞赛人数的四分之三,两项都参加的有12人。

这个学校六年级共有多少人40%*2/5*X+40%*3/4*X-40%X=12 X=2005.某班有52人,其中会下棋的有48人,会画画的有37人,会跳舞的有39人,这个班三项都会的至少有几人48+37+39-52*2=20人6.分母是385的最简真分数共有多少个这些真分数的和是多少385的最简真分数的个数240个,真分数的和是120牛吃草问题例1:一片青草地,每天都匀速长出青草,这片青草可供27头牛吃6周或23头牛吃9周,那么这片草地可供21头牛吃几周?这片草地上的草的数量每天都在变化,解题的关键应找到不变量——即原来的草的数量。

因为总草量可以分成两部分:原有的草与新长出的草。

新长出的草虽然在变,但应注意到是匀速生长,因而这片草地每天新长出的草的数量也是不变的。

假设1头牛一周吃的草的数量为1份,那么27头牛6周需要吃27×6=162(份),此时新草与原有的草均被吃完;23头牛9周需吃23×9=207(份),此时新草与原有的草也均被吃完。

而162份是原有的草的数量与6周新长出的草的数量的总和;207份是原有的草的数量与9周新长出的草的数量的总和,因此每周新长出的草的份数为:(207-162)÷(9-6)=15(份),所以,原有草的数量为:162-15×6=72(份)。

小学五年级经典奥数题[1]带答案

小学五年级经典奥数题[1]带答案

小学五年级经典奥数题(一)题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?答案:1.解:设有1元的x张,1角的(28-x)张x+0.1(28-x)=5.50.9x=2.7x=328-x=25答:有一元的3张,一角的25张。

2.解:设1元的有x张,2元的(x-2)张,5元的(52-2x)x+2x-4+260-10x=1167x=140x=20x-2=1852-2x=12答:1元的有20张,2元18张,5元12张。

3.解:设有7元和5元各x张,3元的(400-2x)张7x+5x+3(400-2x)=192012x+1200-6x=19206x=720x=120400-2x=160答:有3元的160张,7元、5元各120张。

小学三年级奥数题及答案(可直接打印) 一

小学三年级奥数题及答案(可直接打印) 一

一、拓展提优试题1.一些糖果,如果每天吃3个,十多天吃完,最后一天只吃了2个,如果每天吃4个,不到10天就吃完了,最后一天吃了3个.那么,这些糖果原来有()个.A.32B.24C.35D.362.今年小春的年龄比他哥哥的年龄小18岁,再过3年小春的年龄将是他哥哥年龄的一半,那么小春今年岁.3.一个数与3的和是7的倍数,与5的差是8的倍数,这个数最小的.4.观察下列四图,求出x的值.x=.5.一根长30厘米的铁丝,可以围成种不同的长方形(边长是整厘米数).6.将一个大三角形分割成36 个小三角形,并且将其中一部分小三角形涂成红色,另一部分涂成蓝色,并且使得两个有公共边的三角形的颜色不同,如果红色的三角形比蓝色的多,那么多()个.A.1B.4C.6D.77.这个图形最少是由()个正方体整齐堆放而成的.A.12B.13C.14D.158.如图的两个竖式中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么所代表的四位数是()A.5240B.3624C.7362D.75649.六个数的平均数是24,加上一个数后的平均数是25,加上的这个数是.10.如图,每条边都相等,每个角都是直角,则根据信息,求下图的面积为()平方厘米.A.16B.20C.24D.3211.奶奶生日那天对小明说:“我出生以后只过了18个生日.”奶奶今年应该是岁.12.你能根据以下的线索找出百宝箱的密码吗?(1)密码是一个八位数;(2)密码既是3 的倍数又是25 的倍数;(3)这个密码在20000000 到30000000 之间;(4)百万位与十万位上的数字相同;(5)百位数字比万位数字小2;(6)十万位、万位、千位上数字组成的三位数除以千万位、百万位上数字组成的两位数,商是25.依据上面的条件,推理出这个密码应该是()A.25526250B.26650350C.27775250D.28870350 13.○○÷□=14…2,□内共有种填法.14.把一根15米长的钢管锯成5段,每锯一次用6分钟,一共要用分钟.15.同学们排成一个方阵进行广播操表演.小海的位置从前、从后、从左、从右数都是第5个,参加广播操表演的共有人.16.湖边种着一排柳树,每两棵数之间相距6米.小明从第一棵树跑到第200棵,一共跑了()米.A.1200米B.1206米C.1194米17.传说,能在三叶草中找到四叶草的人,都是幸运之人.一天,佳佳在大森林中摘取三叶草,当她摘到第一颗四叶草时,发现摘到的草刚好共有100片叶子,那么,她已经有颗三叶草.18.一群鸭子对一群狗说:“我们比你们多2只.”狗对鸭子说:“我们比你们多10条腿.”那么鸭子和狗共只.19.有一种特殊的计算器,当输入一个数后.计算器会把这个数乘以2,然后将其结果的数字顺序颠倒,接着再加2后显示最后的结果.如果输入一个两位数,最后显示的结果是45,那么,最开始输入的是.20.(12分)一次考试有三道题,四个好朋友考完后互相交流了成绩.发现四人各对了3、2、1、0题.这时一个路人问:你们考的怎么样啊?甲:“我对了两道题,而且比乙对的多,丙考的不如丁.”乙:“我全对了,丙全错了,甲考的不如丁.”丙:“我对了一道,丁对了两道,乙考的不如甲.”丁:“我全对了,丙考的不如我,甲考的不如乙.”已知大家都是对了几道题就说几句真话,那么对了2题的人是()A.甲B.乙C.丙D.丁21.五个连续的自然数的和是2010,其中最大的一个是.22.兄妹俩人去买文具,哥哥带的钱是妹妹的两倍,哥哥用去180元,妹妹用去30元,这是兄妹俩人剩下的钱正好相等.哥哥带了元钱,妹妹带了元钱.23.△=○+○+○,△+○=40,则○=,△=.24.找规律填数:1、4、3、8、5、12、7、.25.用3、0、8这三个数字可以组成个数字不重复的三位数.26.99999×77778+33333×66666=.27.如图,式中不同的字母表示不同的数字,那么ABC表示的三位数是.28.有甲乙两桶酒,如果甲桶倒入8千克酒,两桶酒就一样重,如果从甲桶取出3千克酒倒入乙桶,乙桶的酒就是甲桶的3倍,甲原来有酒千克,乙千克.29.三(1)班同学排成三排做早操,三排人数相等.小红排在中间一排.从左往右数,她是第6个;从右往左数,她是第7个,全班共有个人.30.54﹣□÷6×3=36,□代表的数是.31.★+★+★+■=36,■=●+●,●=★+★+★,■=,●=,★=.32.学校体育室买来一些足球和篮球,小强数了一数,足球的个数是篮球的3倍多4个;再数一遍,发现足球的个数还比篮球的4倍少2个.足球一共买了个.33.小李、小华比赛爬楼梯,小李跑到第5层时,小华正好跑到第3层.照这样计算,小李跑到第25层时,小华跑到第层.34.某个码头有一艘渡船.有一天,这艘船从南岸出发驶向北岸,来回送游客,一共202次(来回算做两次),此时,渡船停靠在岸.35.A、B、C、D、E五个盒子中依次有9个、5个、3个、2个、1个小球,第一个同学找到放球最少的盒子,然后从其它盒子中各拿出1个小球放到这个盒子里,第二个同学找到放球最少的盒子,然后从其它盒子中各拿出1个小球放到这个盒子里…;当第199个同学放完后,A、B、C、D、E五个盒子中各有个、个、个、个、个.36.观察下面两个算式,□、△各表示一个数字,□□、△△、□□□、△△△各表示一个两位数和三位数,这两个算式是和.□□□×□□×□=152625;△△△×△△×△=625152.37.有10个铅笔盒,其中5个装有铅笔,4个装有钢笔,2个既装有铅笔又有钢笔,空笔盒有个.38.切一个蛋糕,切1刀最多切成2块,切2刀最多切成4块,切3刀最多切成7块,照这样切下去,切5刀最多切成块.39.如图有5个点,在两个点之间可以画出一条线段,画出的图形中共可以得到条线段.40.有a,b,c三个数,a×b=24,a×c=36,b×c=54,则a+b+c=.【参考答案】一、拓展提优试题1.解:糖每天吃3个,最少吃11天,最后一天2个,糖至少有10×3+2=32(个)糖最多吃9天,最后一天吃3个,最多8×4+3=35个.∴在32,33,34,35这几个数中满足除以3余数是2,除以4余数是3的只有35.故选:C.2.解:18÷(2﹣1)﹣3=18﹣3=15(岁)答:小春今年 15岁.故答案为:15.3.解:7×8﹣3=53.故答案为:53.4.解:根据分析知本题的规律是:三角形是上面的数是下面左面的数扩大10倍与下面右面数的和.45×10+15=465.故答案为:465.5.解:长方形的周长=(长+宽)×2,长与宽的和是:30÷2=15(厘米),因为15=1+14=2+13=3+12=4+11=5+10=6+9=7+8,所以可以围成7种不同的长方形.答:可以围成7种不同的长方形.故答案为:7.6.解:根据分析,按题目要求来涂色的话,只有1 种涂法,如图:红色比蓝色多:(1+2+3+4+5+6)﹣(1+2+3+4+5)=6个.故选:C.7.解:观察如果俯视图是下面图形时(小正方形上的数字是上面立方体的个数),所放的立方体最少.所以所放的最少的立方体的个数为1+2+2+4+1+2+1=13个,故选:B.8.解:根据左边的数字谜中,可分析出A、C是相邻的,B、D是差2 的.右边的数字谜中,显然=19,若个位没有向十位进位,则F、J分别是0、4,E、I是 8、3 或 6、5,但无论是哪组解都不能满足左边数字谜“A、C相邻,B、D差2”的要求.故知右边个位向十位进位了,F+J=14,F、J只能分别是8、6,E+I=10,E、I 只能分别是3、7,此时得到=5240.故选:A.9.解:25×7﹣24×6,=175﹣144,=31,答:加上的这个数是31.故答案为:31.10.解:如右图进行分割,把图形分成了8个边长是2厘米的小正方形2×2×8=32(平方厘米)答:这个图形的面积是32平方厘米.故选:D.11.解:18×4=72(岁),答:奶奶今年应该是72岁.故答案为:72.12.解:(1)四个选项都是8位数;(2)四选项都是25的倍数,C的数字和是35不是3的倍数.排除C;(3)都满足条件;(4)都满足条件;(5)A,D相等不满足条件;(6)B满足条件.故选:B.13.解:因为余数<除数,所以□>2,因为14×6+2=86,14×7+2=100,被除数是两位数,所以□内最大填6,所以□内共有4种填法:3、4、5、6.故答案为:4.14.解:(5﹣1)×6=4×6=24(分钟)答:一共需要24分钟.故答案为:24.15.解:根据题干分析可得:5+5﹣1=9(人)9×9=81(人)答:参加广播操表演的共有81人.故答案为:81.16.解:(200﹣1)×6=199×6=1194(米)答:小明一共跑了1194米.故选:C.17.解:(100﹣4)÷3=96÷3=32(棵)答:她已经有了32棵三叶草.故答案为:32.18.解:根据分析,再加两只狗,狗与鸭子数量相同,狗的腿数比鸭子多:10+4×2=18(条)鸭子有:18÷(4﹣2)=9(只);狗有:9﹣2=7(只);狗和鸭子共有:9+7=16(只).故答案是:16.19.解:逆运算,乘积的数字顺序颠倒后为:45﹣2=43,则,颠倒前为34,输入的两位数为:34÷2=17;答:最开始输入的是17.故答案为:17.20.解:全对的人不会说自己对的题少于3,故只有乙、丁可能全对.若乙全对,则排名是乙、丁、甲、丙,与丙所说的“丁对了2 道”是假话相矛盾;若丁全对,则丙的后两句是假话,不可能是第二名,又由丁的“甲考得不如乙”能知道第二名是乙,故丙全错,甲只有“丙考得不如丁”是真话,排名是丁、乙、甲、丙且4 人的话没有矛盾.所以对了2题的人是乙.故选:B.21.解:2010÷5=402,最大的数是402+1+1=404;故答案为:404.22.解:根据题意可得:他们的钱数差是:180﹣30=150(元);由差倍公式可得:妹妹带的钱数是:150÷(2﹣1)=150(元);哥哥带的钱数是:150×2=300(元).答:哥哥带了300元钱,妹妹带了150元钱.故答案为:300,150.23.解:因为,△=○+○+○,所以,△=3○,将△=3○代入△+○=40,3○+○=40,即4○=40,○=10,△=3○=3×10=30;故答案为:10;30.24.解:根据分析可得,故答案为:16.25.解:用3、0、8可以组成的不重复数字的三位数有:308,380,803,830;一共是4个.故答案为:4.26.解:99999×77778+33333×66666,=99999×77778+33333×(3×22222),=99999×77778+(33333×3)×22222,=99999×77778+99999×22222,=99999×(77778+22222),=99999×100000,=9999900000;故答案为:9999900000.27.解:根据题意,由竖式可得:个位上:C+C+C=3C的末尾是8,由3×6=18,可得,C=6,向十位进1;十位上:B+B+B+1=3B+1的末尾是8,也就是3B的末尾是8﹣1=7,由3×9=27,可得,B=9,向百位进2;百位上:A+A+A+2=8,3A=6,A=2;由以上可得竖式是:;所以,ABC表示的三位数是276.故答案为:296.28.解:根据题意可得:如果从甲桶取出3千克酒倒入乙桶,两桶的差是:8+3+3=14(千克);这时甲桶有:14÷(3﹣1)=7(千克);乙桶有:7×3=21(千克);乙桶原来有:21﹣3=18(千克);甲桶原来有:18﹣8=10(千克).答:甲原来有酒10千克,乙18千克.故答案为:10,18.29.解:(6+7﹣1)×3,=36(人);答:全班共有36个人.故答案为:36.30.解:54﹣□÷6×3=36,□÷6×3=54﹣36,□÷6×3=18,□=18×6÷3,□=36.故答案为:36.31.解:由■=●+●,●=★+★+★,可得■=6个★,代入★+★+★+■=36,3个★加6★等于9个★就等于36,即可得出★的值是4,★=4,代入●=★+★+★,求出●=12,●=12,代入■=●+●,求出■=24;故答案为:24,12,4.32.解:根据题干分析可得:(4+2)×3+4=22(个),答:足球买了22个.故答案为:22.33.解:(25﹣1)×[(3﹣1)÷(5﹣1)]+1,=24×+1,=12+1,=13(层),答:小李跑到第25层时,小华跑到第13层.故答案为:13.34.解:在摆渡奇数次后,船在北岸,摆渡遇数次后,船在南岸.202为奇数,则摆渡202次后,小船在南岸.故答案为:南.35.解:由分析可知:第8个小朋友与第3个重复,即5组一循环;则以此类推:(199﹣2)÷5=39…2(次);第199个同学取后ABCDE五个盒子中应分别是:5、6、4、3、2个小球;答:当199个同学放完后,A,B,C,D,E五个盒子中各放5、6、4、3、2个小球.36.解:根据分析可得,□□□×□□×□=152625=5×5×5×3×11×37=5×55×555,所以,□□□×□□×□=5×55×555;△△△×△△×△=625152=64×11×888=8×8×11×888=8×88×888;故答案为:5×55×555,8×88×888.37.解:10﹣(5+4﹣2),=10﹣7,=3(个);答:空笔盒有3个;故答案为:3.38.解:当切1刀时,块数为1+1=2块;当切2刀时,块数为1+1+2=4块;当切3刀时,块数为1+1+2+3=7块;…当切n刀时,块数=1+(1+2+3…+n)=1+.则切5刀时,块数为1+=16块;故答案为:16.39.解:如图:4+3+3=10(条),答:图形中共可以得到10条线段;故答案为:10.40.解:因为,(a×b)×(a×c)÷(b×c)=24×36÷54=16,即a2=16,所以a=4,b=24÷a=6,c=36÷a=9,a+b+c=4+6+9=19;故答案为:19.。

五年级奥数题及答案-(1)

五年级奥数题及答案-(1)

第六届小学“希望杯”全国数学邀请赛一、填空题(每小题5分,共60分)1、(1 +2 +8 )÷(1 +2 +8 )=2、奥运吉祥物中的5个“福娃”取“北京欢迎您”的谐音:贝贝、京京、欢欢、迎迎、妮妮。

如果在盒子中从左向右放5个不同的“福娃”,那么,有种不同的放法。

3、有一列数:1,1,3,8,22,60,164,448……其中的前三个数是1,1,3,从第四个数起,每个数都是这个数前面两个数之和的2倍。

那么,这列数中的第10个数是4、有一排椅子有27个座位,为了使后去的人随意坐在哪个位置都有人与他相邻,则至少要先坐人。

5、一个拧紧瓶盖的瓶子里装着一些水(如图1),由图中的数据可推知瓶子的容积是立方厘米;(取3.14)6、某小区有一块如图2所示的梯形空地,根据图中的数据计算,空地的面积是平方米。

7、如图3,棱长分别为1厘米,2厘米,3厘米,5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是平方厘米。

8、五年级一班共有36人,每人参加一个兴趣小组,共有A,B,C,D,E 五个小组,若参加A组的有15人,参加B组的仅次于A组,参加C组、D组的人数相同。

参加E组的人数最少,只有4人,那么,参加B组的有人。

9、菜地里的西红柿获得丰收,摘了全部的时,装满了3筐还多16千克。

摘完其余部分后,又装满6筐,则共收得西红柿千克。

10、工程队修一条公路,原计划每天修720米,实际每天比原计划多修80米。

因而提前3天完成任务。

这条路全长千米。

11、王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了,结果提前一个半小时到达;返回时,按原计划的速度行驶280千米后,将车速提高,于是提前1小时40分到达北京。

北京、上海两市间的路程是千米。

12、两个完全相同长方体的长、宽、高分别是5厘米、4厘米、3厘米,把它们拼在一起可组成一个新长方体,在这些长方体中,表面积最小的是平方厘米。

二、解答题(本大题共4小题,每小题15分,共60分)要求:写出推算过程13、著名的哥德巴赫猜想:“任意一个大于4的偶数都可以表示为两个质数的和”。

(完整版)小学各题型奥数题(含答案)

(完整版)小学各题型奥数题(含答案)

小学各题型奥数题及答案一.比例问题1.AB两人在河边钓鱼,A钓了三条,B钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,A、B怎么分?答案:A收8元,B收2元。

解:“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。

又因为“A钓了三条”,相当于A吃之前已经出资3*6=18元,“B钓了两条”,相当于B吃之前已经出资2*6=12元。

而AB两人吃了的价值都是10元,所以A还可以收回18-10=8元B还可以收回12-10=2元刚好就是客人出的钱。

2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?答案22/25最好画线段图思考:把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份。

增加的成本2份刚好是下降利润的2份。

售价都是25份。

所以,今年的成本占售价的22/25。

3.AB两车分别从甲乙两地出发,相向而行,出发时,A.B的速度比是5:4,相遇后,A的速度减少20%,B的速度增加20%,这样,当A到达乙地时,B离甲地还有10千米,那么甲乙两地相距多少千米?解:原来A.B乙的速度比是5:4现在的A:5×(1-20%)=4现在的B:4×(1+20%)4.8A到乙地后,B离甲地还有:5-4.8=0.2总路程:10÷0.2×(4+5)=450千米4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少?答案为64:27解:根据“周长减少25%”,可知周长是原来的3/4,那么半径也是原来的3/4,则面积是原来的9/16。

根据“体积增加1/3”,可知体积是原来的4/3。

体积÷底面积=高现在的高是4/3÷9/16=64/27,也就是说现在的高是原来的高的64/27或者现在的高:原来的高=64/27:1=64:275.某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨。

小学六年级奥数题50道题及解答(可直接打印)

小学六年级奥数题50道题及解答(可直接打印)

练习(一)姓名1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱? 得分5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走4.5千米,第二小组每小时行3.5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。

多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。

甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。

甲、乙两队每天共修多少米? 9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。

快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?答案:奥数题解答参考1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。

再根据椅子的价钱,就可求得一张桌子的价钱。

解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。

小学奥数题及答案

小学奥数题及答案

小学奥数题及答案小学奥数题及答案1商店进了一批商品,按40%加价出售.在售出八成后,为了尽快销完,决定五折处理剩余商品,而且商品全部出售后,突然被征收了150元的附加税,这使得商店的实际利润率只是预期利润率的一半,那么这批商品的进价是多少元?(注:附加税算作成本)答案与解析:理解利润率的含义,是利润在成本上的百分比。

设进价x元,则预期利润率是40%所以收入为(1+40%)x×0.8+0.5×(1+40%)x×0.2=1.26x实际利润率为40%×0.5=20%1.26x=(1+20%)(x+150)得x=3000所以这批商品的进价是3000元。

小学奥数题及答案2三年级奥数题:和差倍数问题(一)1、南京长江大桥共分两层,上层是公路桥,下层是铁路桥。

铁路桥和公路桥共长11270米,铁路桥比公路桥长2270米,问南京长江大桥的公路和铁路桥各长多少米?2、三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。

3、甲、乙两筐苹果,甲筐比乙筐多19千克,从甲筐取出多少千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克?三年级奥数题:和差倍数问题(二)1、在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3倍,那么差等于多少?2、已知两个数的商是4,而这两个数的差是39,那么这两个数中较小的一个是多少?3、姐姐做自然练习比妹妹做算术练习多用48分钟,比妹妹做英语练习多用42分钟,妹妹做算术、英语两门练习共用了44分钟,那么妹妹做英语练习用了多少分钟?三年级奥数题:和差倍数问题(三)1、已知△,○,□是三个不同的数,并且△+△+△=○+○,○+○+○+○=□+□+□,△+○+○+□=60,那么△+○+□等于多少?2、用中国象棋的车、马、炮分别表示不同的自然数。

如果,车÷马=2,炮÷车=4,炮-马=56,那么“车+马+炮”等于多少?3、聪聪用10元钱买了3支圆珠笔和7本练习本,剩下的钱若买一支圆珠笔就少1角4分;若买一本练习本还多8角,问一支圆珠笔的售价是多少元?三年级奥数题:和差倍数问题(四)1、甲、乙两位学生原计划每天自学的时间相同,若甲每天增加自学时间半小时,乙每天减少自学时间半小时,则乙自学6天的时间仅相等于甲自学一天的时间。

小学四年级奥数题及答案[五篇]

小学四年级奥数题及答案[五篇]

小学四年级奥数题及答案[五篇]1.小学四年级奥数题及答案篇一1、有四个数,其中每三个数的和分别是45,46,49,52,那么这四个数中最小的一个数是多少?解析:把4个数全加起来就是每个数都加了3遍,所以,这四个数的和等于(45+46+49+52)÷3=64。

用总数减去最大的三数之和,就是这四个数中的最小数,即64-52=12。

2、电车公司维修站有7辆电车需要维修,如果用一名工人维修这7辆电车的修复时间分别为12,17,8,18,23,30,14分钟。

每辆电车每停开1分钟的经济损失是11元。

现在由3名工作效率相同的维修工人各自单独工作,要是经济损失减到最小程度,那么最小的损失是多少元?答案与解析:由题可知,要使经济损失最小,3名工人的工作时间尽量均等,缤纷接每个人要先维修时间短的,故有:12+17+8+18+23+30+14=122122÷3=40余2①12+30=42②17+23=40③8+14+18=40这7辆车最少共停开的时间为:(12+12+30)+(17+17+23)+(8+8+8+14+14+18)=181(分钟)最小损失为11×181=1991(元)2.小学四年级奥数题及答案篇二1、一块平行四边形地,如果只把底增加8米,或只把高增加5米,它的面积都增加40平方米。

求这块平行四边形地原来的面积?解析:根据只把底增加8米,面积就增加40平方米,可求出原来平行四边形的高。

根据只把高增加5米,面积就增加40平方米,可求出原来平行四边形的底。

再用原来的底乘以原来的高就是要求的面积。

解:(40÷5)×(40÷8)=40(平方米)答:平行四边形地原来的面积是40平方米。

2、上午6时从汽车站同时发出1路和2路公共汽车,1路车每隔12分钟发一次,2路车每隔18分钟发一次,求下次同时发车时间。

分析:1路和2路下次同时发车时,所经过的时间必须既是12分的倍数,又是18分的倍数。

奥数题及答案(9篇)

奥数题及答案(9篇)

奥数题及答案(9篇)篇1:奥数题及答案1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。

2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?4、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。

5、甲、乙、丙、丁四个人过桥,分别需要1分钟,2分钟,5分钟,10分钟。

因为天黑,必须借助于手电筒过桥,可是他们总共只有一个手电筒,并且桥的载重能力有限,最多只能承受两个人的重量,也就是说,每次最多过两个人。

现在希望可以用最短的时间过桥,怎样才能做到最短呢?你来帮他们安排一下吧。

最短时间是多少分钟呢?6、小明骑在牛背上赶牛过河,共有甲乙丙丁四头牛,甲牛过河需1分钟,乙牛需2分钟,丙牛需5分钟,丁牛需6分钟,每次只能骑一头牛,赶一头牛过河。

要过河时间最少?是多少?四年级奥数题:速算与巧算(一)1.【试题】计算9+99+999+9999+999992【试题】计算99+19999+1999+199+193【试题】计算(2+4+6+…+996+998+1000)--(1+3+5+…+995+997+999)4【试题】计算9999×2222+3333×33345【试题】56×3+56×27+56×96-56×57+566【试题】计算98766×98768-98765×98769四年级奥数题:年龄问题1、父亲45岁,儿子23岁。

六年级奥数题及答案经典-(1)

六年级奥数题及答案经典-(1)

六年级奥数题及答案(dáàn)经典-(1)1·由奶糖和巧克力糖混合成一堆糖,如果(rúguǒ)增加10颗奶糖后,巧克力糖占总数的60%。

再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案(dá àn)加10颗奶糖,巧克力占总数的60%,说明(shuōmíng)此时奶糖占40%,巧克力是奶糖的60/40=1。

5倍再增加(zēngjiā)30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1,5=1,5倍,说明30颗占1,5倍奶糖=30/1,5=20颗巧克力=1,5*20=30颗奶糖=20-10=10颗2·小明和小亮各有一些玻璃球,小明说;“你有球的个数比我少1/4!”小亮说;“你要是能给我你的1/6,我就比你多2个了。

”小明原有玻璃球多少个?答案小明说(mínɡ shuō);“你有球的个数比我少1/4!”,则想成小明的球的个数为4份,则小亮(xiǎo liànɡ)的球的个数为3份4*1/6=2/3 (小明(xiǎo mínɡ)要给小亮2/3份玻璃球)小明(xiǎo mínɡ)还剩;4-2/3=3又1/3(份)小亮(xiǎo liànɡ)现有;3+2/3=3又2/3(份)这多出来的1/3份对应的量为2,则一份里有;3*2=6(个)小明原有4份玻璃球,又知每份玻璃球为6个,则小明原有玻璃球4*6=24(个)3·搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时,有同样的仓库A和B,甲在A仓库·乙在B 仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运,最后两个仓库货物同时搬完,问丙帮助甲·乙各多少时间?解;设搬运一个仓库的货物的工作量是1,现在相当于三人共同完成工作量2,所需时间是答;丙帮助(bāngzhù)甲搬运3小时,帮助乙搬运5小时解本题的关键,是先算出三人共同搬运(bānyùn)两个仓库的时间,本题计算当然也可以(kěyǐ)整数化,设搬运一个仓库全部工作量为 60,甲每小时(xiǎoshí)搬运 6,乙每小时搬运5,丙每小时搬运4三人共同(gòngtóng)搬完,需要60 × 2÷(6+ 5+ 4)= 8(小时)甲需丙帮助搬运(60- 6× 8)÷ 4= 3(小时)乙需丙帮助搬运(60- 5× 8)÷4= 5(小时)4·一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?答案(dá àn)甲乙丙3人8天完成(wán chéng) :5/6-1/3=1/2甲乙丙3人每天完成(wán chéng) :1/2÷8=1/16,甲乙丙3人4天完成(wán chéng) :1/16×4=1/4则甲做一天(yī tiān)后乙做2天要做 :1/3-1/4=1/12那么乙一天做 :[1/12-1/72×3]/2=1/48则丙一天做 :1/16-1/72-1/48=1/36则余下的由丙做要 :[1-5/6]÷1/36=6天答;还需要6天5·股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。

小学五年级奥数题(有答案)

小学五年级奥数题(有答案)

小学五年级奥数题一、小数的巧算(一)填空题1. 计算 1.996+19.97+199.8=_____。

答案:221.766。

解析:原式=(2-0.004)+(20-0.03)+(200-0.2)=222-(0.004+0.03+0.2)=221.766。

2. 计算 1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____。

答案:103.25。

解析:原式=1.1⨯(1+3+...+9)+1.01⨯(11+13+ (19)=1.1⨯25+1.01⨯75=103.25。

3. 计算 2.89⨯4.68+4.68⨯6.11+4.68=_____。

答案:46.8。

解析:4.68×(2.89+6.11+1)=46.84. 计算 17.48⨯37-17.48⨯19+17.48⨯82=_____。

答案:1748。

解析: 原式=17.48×37-17.48×19+17.48×82=17.48×(37-19+82)=17.48×100=1748。

5. 计算 1.25⨯0.32⨯2.5=_____。

答案:1。

解析:原式=(1.25⨯0.8)⨯(0.4⨯2.5)=1⨯1=1。

6. 计算 75⨯4.7+15.9⨯25=_____。

答案:750。

原式=75⨯4.7+5.3⨯(3⨯25)=75⨯(4.7+5.3)=75⨯10=750。

7. 计算 28.67⨯67+3.2⨯286.7+573.4⨯0.05=____。

答案:2867。

原式=28.67⨯67+32⨯28.67+28.67⨯(20⨯0.05)=28.67⨯(67+32+1)=28.67⨯100=2867。

(二)解答题8. 计算 172.4⨯6.2+2724⨯0.38。

答案:原式=172.4⨯6.2+(1724+1000)⨯0.38=172.4⨯6.2+1724⨯0.38+1000⨯0.38=172.4⨯6.2+172.4⨯3.8+380=172.4⨯(6.2+3.8)+380=172.4⨯10+380=1724+380=2104。

小学一年级数学奥数题及答案

小学一年级数学奥数题及答案

小学一年级数学奥数题及答案当我第一遍读一本好书的时候我仿佛觉得找到了一个朋友;当我再一次读这本书的时候仿佛又和老朋友重逢。

我们要把读书当作一种乐趣并自觉把读书和学习结合起来做到博览、精思、熟读更好地指导自己的学习让自己不断成长。

让我们一起到职场文秘网一起学习吧!小学数学奥数题一一、计算题。

(共12题)1.8个小男孩在一起要比谁的力气大各人都说自己力气最大.这时过来一位老先生说:“不要吵了我们用淘汰制两个人一组掰手腕每场比赛淘汰一人最后决出冠军也就是力气最大的人.”大家一致赞成.老先生又说:“那这样一共要赛多少场呢?你们算一算算好了我来当裁判.”小朋友你能算出来吗?答案:一共要赛7场2.学校开运动会一年级同学站成一排昊昊往左数了数自己左面有10个人;往右数了数自己右面有8个人。

老师问昊昊这排有多少人?聪明的小朋友你们会算吗?答案:根据题意这排不含昊昊有10+8=18人所以一共有18+1=19人。

3.有25本书分成6份。

如果每份至少一本且每份的本数都不相同有多少种分法?答案:一共有5种分法4.小明给了小力10元钱以后还剩下15元这时两个人的钱数同样多小力原来有多少钱?答案:15-10=5(元)小力原来有5元钱5.小亮今年7岁爸爸比他大30岁三年前爸爸是多少岁?答案:30+7=37(岁)37-3=34(岁)所以三年前爸爸是34岁。

6.时钟一点钟敲1下2点中敲2下3点钟敲3下...照这样敲下去从1点到12点这12个小时时钟一共敲了多少下。

答案:787.一个小朋友折一架飞机需要3分钟现在有5个小朋友按同样的速度同时折5个同样的纸飞机需要几分钟?答案:需要3分钟8.天色已晚妈妈叫小明打开房间电灯可淘气的小明一连拉了9下开关。

请你说说这时灯是亮还是不亮?拉20下呢?拉100下呢?【小结】初步认识奇偶数的概念。

答案:开、关、关。

9.在一个箱子里面乱七八糟的放着4只红色袜子和4只白色袜子。

现在小红把手伸进去摸请问至少摸几只就能保证拿到相同颜色的袜子?答案:2+1=3(只)至少摸3只就能保证拿到相同颜色的袜子10.小动物们排队做早操第一排有1个小动物然后每排每次增加2个小动物一共排了8排算一算一共有多少个小动物?答案:64。

小学奥数题及答案详解

小学奥数题及答案详解

小学奥数题及答案详解
(一)植树问题
题目1:在一条长20米的公园小道一边种杨柳树,每隔4米种一棵,两端都要种,一种要种多少棵?
答案:20米的路每隔4米种一棵,可以分成5段,两端都种的话,就在加1棵。

算式为:20÷4=5(棵),5+1=6(棵);20÷4+1=6(棵)。

题目2:一条路上每隔2米有一根电线杆,连两端一共有10根电线杆,这条路有多长?
答案:加上两端一共10根电线杆,说明有9段,每段2米,则一共有18米。

算式为:2×(10-1)=18(米)
题目3:在一条20米的公园小道两边种树,每隔4米种1棵,两头都要种,一共要种多少棵?
答案:20米的小路每边每隔4米的话一共有5段,两头都种则每边有6棵,两边都种则有12棵。

算式为:20÷4=5(棵),5+1=6(棵),2×6=12(棵);(20÷4+1)×2=12(棵)。

题目4:一个圆形水池周围每隔2米栽一棵杨树,共栽了40棵,水池的周长是多少米?
答案:因为水池是圆形的,树的棵树与树的间隔数是相同的,所以40棵树把水池周围分成了40段,因此水池的长度为80米,算式为:2×40=80(米)。

一年级小学生奥数题及答案

一年级小学生奥数题及答案

一年级小学生奥数题及答案1.一年级小学生奥数题及答案篇一1、用数字5、6、7可以组成多少个不同的二位数?解答:9个(55、56、57、65、66、67、75、76、77)2、用数字1、3、5可以组成多少个不同的二位数?解答:9个(11、13、15、31、33、35、51、53、55)3、一年级五个班举行拔河比赛,每个班都要和另外四个班赛一场,这样一共要举行几场拔河比赛?解答:5×4=20(场)2.一年级小学生奥数题及答案篇二1、幼儿园小班1班有6个小朋友,2班有7个小朋友。

现在又转来5个小朋友,怎样安排,才能使两个班有同样多的小朋友?解答:3个小朋友到1班,2个小朋友到2班。

两个班分别有9个小朋友。

小丽有6本课外书,如果她送1本书给小君,两个人的课外书就同样多。

小君原来有多少本书?解答:6-1-1=4(本)2、第一盒有8颗巧克力,从第一盒中拿出2颗放入第二盒,这时两盒巧克力的颗数同样多,原来第二盒有几颗巧克力?解答:8-2-2=4(颗)3、小红有6个皮球,小明拿2个球给小红后,皮球的个数同样多,小明原来有几个皮球?解答:6+2+2=10(个)3.一年级小学生奥数题及答案篇三1、小婷有2张卡片,小云有8张卡片。

要使两人的卡片数同样多,应该怎么办?解答:小云拿3张卡片给小婷。

2、博达一号书架有故事书5本,二号书架有7本。

博达现在又买来6本故事书。

怎样分才能使两个书架的本数相等?解答:一号书架再放4本,二号书架再放2本。

3、小红有4支铅笔,小明给小红2支铅笔后,两人铅笔数同样多,原来小明有几支铅笔?解答:4+2+2=8(本)4.一年级小学生奥数题及答案篇四1、1、2、3、4、5的和是单数还是双数?解答:单数2、3、5、7、9的和是单数还是双数?解答:双数3、晚上小明在灯下做作业的时候,突然停电,小明去拉了两下开关。

爸爸回来后,到小明房间又拉了三下开关。

等来电以后,小明房间的灯是亮的还是不亮的?解答:不亮。

小学奥数-四年级-奥数题及答案一图文百度文库

小学奥数-四年级-奥数题及答案一图文百度文库

小学奥数-四年级-奥数题及答案一图文百度文库一、拓展提优试题1.(15分)如图,小红和小丽的家分别在电影院的正西和正东方向,某日她们同时从自己家出发,小红每分钟走52米,小丽每分钟走70米,两人同时到达电影院.看完电影后,小红先回家,速度不变,4分钟后小丽也开始往家走,每分钟走90米,两人同时到家.求两人的家相距多少米.2.100只老虎和100只狐狸分别为100组,每组两只动物,老虎总说真话,狐狸总说假话.当问及“组内另一只动物是狐狸吗?”结果这200只动物中恰有128只回答“是”,其它的都回答“不是”.那么同组2只动物都是狐狸的共有组.3.一个三位数A的三个数字所组成的最大三位数与最小三位数的差仍是A,那么,这个数A等于几?4.豆豆全家有4口人.今年豆豆哥哥比豆豆大3岁,豆豆妈妈比豆豆爸爸小2岁.5年前,全家年龄为59岁,5年后,全家年龄和为97岁,豆豆妈妈今年岁.5.过元旦时,班委会用730元为全班同学每人买了一份价值17元的纪念品,剩余16元,那么,这个班共有学生名.6.小东和小荣同时从甲地出发到乙地,小东每分钟行50米,小荣每分钟行60米,小荣到达乙地后立即返回,若两人从出发到相遇用了10分钟,则甲、乙两地相距米.7.如图,阴影小正方形的边长是2,最外边的大正方形的边长是6,则正方形ABCD的面积是.【分析】如图所示:添加辅助线,因为阴影小正方形的边长是2,最外边的大正方形的边长是6,则大正方形被分成了9个小正方形,其中大正方形每个角上的三角形的面积相当于边长是2的小正方形的面积,所以正方形ABCD的面积相当于5个阴影小正方形的面积,然后利用正方形的面积公式即可求解.8.21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装盒.9.如图,BC=3BE,AC=4CD,三角形ABC的面积是三角形ADE面积的倍.10.有白棋子和黑棋子共2014个,按照如图的规律从左到右排成一行,其中黑棋子的个数是.○●○●●○●●●○●○●●○●●●○●○●●○…11.一列火车身长90米,火车以每分钟160米的速度通过山洞,用了3分钟,山洞长390米.12.小明有100元钱,买了3支相同的钢笔后还剩61元,则他最多还可以买支相同的钢笔.13.商店里有甲、乙、丙三筐苹果,丙筐内苹果的个数是甲筐内苹果的个数的2倍,若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果,则乙筐内原有苹果个.14.一个质数的2倍和另一个质数的5倍的和是36,求这两个质数的乘积是多少?15.3年前,爸爸的年龄是明明年龄的8倍,在今年,爸爸的年龄是明明年龄的5倍,则爸爸今年岁.16.(8分)如图所示,东东用35米长的栅栏在墙边围出一块梯形的地用来养猪,那么,这块养猪场的面积是平方米.17.(8分)杨树、柳树、槐树、桦树和梧桐树各一棵树种成一排,相邻两颗树之间的距离都是1米.杨树与柳树、槐树之间的距离相等,桦树与杨树、槐树之间的距离相等.那么梧桐树与桦树之间的距离是米.18.(8分)如图,在一个长、宽分别为19厘米和11厘米的大长方形内放了四个正方形,那么没有被正方形覆盖的小长方形(图中阴影部分)的面积是平方厘米.19.(8分)有一棵神奇的树上长了123个果子,第一天会有1个果子从树上掉落,从第二天起,每天掉落的果子数量比前一天多1个,但如果某天树上的果子数量少于这一天应该掉落的数量时,那么这一天它又重新从掉落1个果子开始,按照规律进行新的一轮,如此继续,那么第天树上的果子会都掉光.20.一列快车和一列慢车相向而行,快车的车长是315米,慢车的车长是300米.坐在慢车上的人看见快车驶过的时间是21秒,那么坐在快车上的人看见慢车驶过的时间是秒.【分析】坐在慢车上的人看见快车驶过的时间是21秒:既为人与快车的相遇问题,人此21.如图所示,长方形ABCD中,AB=14厘米,AD=12厘米,现沿其对角线BD将它对折,得一几何图形,则图中阴影部分周长是.22.已知x,y是大于0的自然数,且x+y=150,若x是3的倍数,y是5的倍数,则(x,y)的不同取值有对.23.10个连续的自然数从小到大排列,若最后6个数的和比前4个数的和的2倍大15,则这10个数中最小的数是.24.有一个数学运算符号“⊙”,使下列算式成立:2⊙4=8,4⊙6=14,5⊙3=13,8⊙7=23.按此规定,9⊙3=.25.把50颗巧克力分给4个小朋友,每个小朋友分得的巧克力的颗数各不相同.分得最多的小朋友至少可以得颗巧克力.26.甲乙两所学校共有学生864人.新学期开学前,由甲校调入乙校32人,这时甲校还比乙校多48人.原来甲校有个学生.27.少先队员计划做一些幸运星送给幼儿园的小朋友.如果每人做10个,还差6个没完成计划;如果其中4人各做8个,其余每人各做12个,就正好完成计划.问一共计划做颗幸运星.28.小慧从开始站立的A点向西走了15米,到达B点,接着从B点向东走了23米,到达C点,那么从C点到A点的距离是米.29.4名工人3小时可以生产零件108个,现在要在8小时内生产504个零件,需增加工人名.30.只能被1和它本身整除的自然数叫做质数,如:2,3,5,7等.那么,比40大并且比50小的质数是,小于100的最大的质数是.31.(8分)传说,能在三叶草中找到四叶草的人,都是幸运之人.一天,佳佳在大森林中摘取三叶草,当她摘到第一颗四叶草时,发现摘到的草刚好共有100片叶子,那么,她已经有颗三叶草.32.在□中填上适当的数,使竖式成立.33.一条大河,河中间(主航道)水的流速为每小时10千米,沿岸边水的流速为每小时8千米.一条船在河中间顺流而下,10小时行驶360千米,这条船沿岸边返回原地需要小时.34.A说:“我10岁,比B小2岁,比C大1岁.”B说:“我不是年龄最小的,C和我差3岁,C是13岁.”C说:“我比A年龄小,A是11岁,B比A 大3岁.”以上每人所说的三句话中都有一句是错误的,请确定其中A的年龄是岁.35.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是.36.(7分)今年小翔和爸爸、妈妈的年龄分别是5岁、48岁、42岁.年后爸爸、妈妈的年龄和是小翔的6倍.37.(17分)一块长方形木板,如果按长、短不同的两组边分别截去4分米,则面积减少了168平方分米,请问:原来长方形的周长是多少分米?38.爸爸比儿子大24岁,今年爸爸的年龄是儿子的五倍,年后爸爸的年龄是儿子的三倍.39.一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米.这捆电线原来有多少米?40.一个口袋中有5枚面值1元的硬币和6枚面值5角的硬币,小明随意从袋中摸出6枚,那么这6枚硬币的面值的和有种.【参考答案】一、拓展提优试题1.【分析】根据题意知:小丽第一次用的时间×第一次的速度=(第一次用的时间﹣4)×第二次用的速度,可设第一次用的时间是x小时,据此可求出用的时间,再根据路程=速度和×时间可求出两家的距离.据此解答.解:设第一次相遇用的时间是x分钟70x=90×(x﹣4)70x=90x﹣36090x﹣70x=36020x=360x=360÷20x=18(52+70)×18=122×18=2196(米)答:两家相距2196米.【点评】本题的重点是求出两人相遇时用的时间,再根据路程=速度和×时间进行解答.2.解:128÷2=64(组)100﹣64=36(组)36÷2=18(组)答:那么同组2只动物都是狐狸的共有18组.故答案为:18.3.解:设组成三位数A的三个数字是a,b,c,且a>b>c,则最大的三位数是a×100+b×10+c,最小的三位数是c×100+b×10+a,所以差是(a×100+b×10+c)﹣(c×100+b×10+a)=99×(a﹣c).所以原来的三位数是99的倍数,可能的取值有198,297,396,495,594,693,792,891,其中只有495符合要求,954﹣459=495.答:这个三位数A是495..4.解:10×4﹣(97﹣59)=40﹣38=2(岁)所以豆豆是3年前出生的,即今年豆豆应该是3岁,今年豆豆的哥哥的年龄为:3+3=6(岁),今年全家的年龄和为:97﹣5×4=77(岁),今年爸爸妈妈的年龄和为:77﹣3﹣6=68(岁),豆豆的妈妈今年的年龄为:(68﹣2)÷2=33(岁).答:豆豆妈妈今年33岁.故答案为:33.5.【分析】根据题意,由减法的意义,用730元减去16元,求出全班同学每人买一份纪念品的总钱数,再根据数量=总价÷单价,代入数据解答即可.解:(730﹣16)÷17=714÷17=42(名);答:这个班共有学生42名.故答案为:42.【点评】解答此题的关键是求出全班同学每人买一份纪念品的总钱数,再根据单价、数量和总价之间的关系进行解答.6.【分析】两人从出发到相遇用了10分钟,也就是二人相遇时都行了10分钟,行了两个单程,因此先求出两人的速度和,再乘上相遇时间,再除以2,解决问题.解:(50+60)×10÷2=110×10÷2=1100÷2=550(米)答:甲、乙两地相距550米.故答案为:550.【点评】此题根据关系式:速度和×相遇时间=路程,进而解决问题.7.解:2×2×5=20答:正方形ABCD的面积是20.故答案为:20.【点评】解答此题的关键是:将原图形进行分割,然后利用正方形的面积公式求解.8.【分析】根据乘法的意义,可用21乘48计算出鸡蛋的总个数,然后再根据除法的意义,用总的鸡蛋个数除以28进行计算即可得到需要的盒子数.解:21×48÷28=1008÷28=36(盒)答:可以装36盒.故答案为:36.【点评】此题主要考查的是乘法意义和除法意义的应用.9.解:因为BC=3BE,AC=4CD,则BC:BE=3:1,AC:CD=4:1,所以S△ABE =S△ABC,S△ACE=S△ABC,S△ADE=S△ACE=S△ABC=S△ABC,三角形ABC的面积是三角形ADE面积的2倍.故答案为:2.10.【分析】根据每9个棋子是一个循环,用2014除以9,用得到的商乘以一个循环中黑棋子的个数,再根据余数的情况判断最后需加上几个黑棋子即可.解:2014÷9=223…7,循环了223次后,还剩7个,里面有4个黑棋子,223×6+4=1338+4=1342(个)答:其中黑棋子的个数是1342个.故答案为:1342.【点评】答此类问题的关键是找出每几个数或每几个图形是一个循环.11.解:160×3﹣90,=480﹣90,=390(米),答:山洞长390米.故答案为:390.12.【分析】根据题意,可用100减去61计算出购买3支钢笔花的钱数,然后再除以3计算出每支钢笔的钱数,最后再用100除以每支钢笔的钱数进行计算,得到的商就是最多购买钢笔的支数,得到的余数就是剩余的钱数,最后再用最多购买的钢笔数减去原来买的3支即可.解:(100﹣61)÷3=39÷3=13(元)100÷13=7(支)…9(元)7﹣3=4(支)答:他最多还可以买4支同样的钢笔.故答案为:4.【点评】此题主要考查的有余数除法计算方法的应用,解答时关键求出每支钢笔的单价.13.【分析】根据题意“若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果”则原来甲筐比丙筐少(12+24)=36个苹果,结合原来丙筐内苹果的个数是甲筐内苹果的个数的2倍,可以求出原来甲筐和丙筐苹果的数量,同时知道原来乙筐比丙筐多(6+12)个苹果,进而求出原来乙筐苹果的个数.解:根据题意可知,原来甲筐比丙筐少(12+24)=36个苹果,且原来丙筐是甲筐个数的2倍,则原来甲筐有:36÷(2﹣1)=36个,原来丙筐有:36×2=72个,原来乙筐有:72+(6+12)=90(个)答:乙筐内原有苹果 90个.故答案为:90.【点评】此题考查了差倍问题,根据题意得出:原来甲筐比丙筐少(12+24)=36个苹果,原来乙筐比丙筐多(6+12)个苹果,是解答此题的关键.14.【分析】一个质数的2倍一定是偶数,一个质数的5倍一定是5的倍数,而36要拆成两个数的和,要么都是偶数,要么都是奇数,本题中2的倍数一定是偶数,所以只能拆成两个偶数,故此5的倍数只能是个位上带0的数,当是10时,36﹣10=26,26÷2=13当是20时,4×5=20,4不是质数当是30时,5×6=30,6不是质数,据此解答.解:根据分析可得:符合题意的5的倍数只能是10,20,305×2=10,5×4=20,5×6=30,4和6不是质数,所以只能是2,36﹣10=26.答:这两个质数的乘积是26.【点评】本题考查了质数的定义及其奇数与偶数的性质.15.【分析】3年前,爸爸的年龄是父子年龄差的,今年后爸爸的年龄是年龄差的,共经过了3年,对应的分率是(),用除法可以求出父子的年龄差,进而可以求出爸爸今年的年龄.据此解答.解:3÷()=3÷()=3×=28(岁)28×=35(岁)答:爸爸今年35岁.故答案为:35.【点评】父子年龄差是个不变的量,而年龄的倍数却年年不同.我们可以抓住“差不变”这个特点,再根据父子年龄之间的倍数关系与年龄之和等条件解答这类应用题.16.解:(35﹣7)×7÷2=28×7÷2=98(平方米)答:这块养猪场的面积是 98平方米.故答案为:98.17.解:杨树与柳树、槐树之间的距离相等,所有三种树的位置有可能是:柳□杨□槐,柳杨槐□□,□柳杨槐□,□□柳杨槐,其中□表示暂时不知道.而桦树与杨树、槐树之间的距离相等,所以只有可能是:柳□杨桦槐,剩余的一个位置是梧桐树,所以梧桐树和桦树间的距离是2米.故答案为:2.18.解:最大正方形的边长是11厘米,次大正方形的边长:19﹣11=8(厘米)最小正方形的边长是:11﹣8=3(厘米)阴影长方形的长是3厘米,宽是8﹣3﹣3=2(厘米)3×2=6(平方厘米)答:没有被正方形覆盖的小长方形(图中阴影部分)的面积是 6平方厘米.故答案为:6.19.解:因为1+2+3+4+5+6+7+8+9+10+11+12+13+14+15=120当到第十六天时不够16个需要重新开始.1+2=3即1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+1+2=123(个)故答案为:17天20.时具有慢车的速度,相遇路程为快车的车长315米,相遇时间为21秒,即人与慢车的速度和为快车与慢车的速度和为:315÷21=15(米/秒);那么坐在快车上的人看见慢车驶过的时间,既为人与慢车的相遇问题,人此时具有快车的速度,相遇路程为慢车的车长300米,由于两车为相向而行,所以坐在车上的人看到车通过的速度为两车的速度和.用快车车长除以快车与慢车的速度和即可.解:根据题意可得:快车与慢车的速度和:315÷21=15(米/秒);坐在快车上的人看见慢车驶过的时间是:300÷15=20(秒);答:坐在快车上的人看见慢车驶过的时间是20秒.故答案为:20.【点评】完成本题的关键是根据坐在慢车上的人见快车通过的时间求出两车的速度和,然后再根据相遇问题进一步解答即可.21.【分析】由图意得:BE、CD是长方形的长,BC、DE是长方形的宽,阴影部分的周长=长方形的2条长+2条宽,代数计算即可.解:14×2+12×2,=28+24,=52(厘米).答:阴影部分的周长是52厘米.故答案为:52厘米.【点评】解决本题的关键是找到BE、CD是长方形的长,BC、DE是长方形的宽,阴影部分的周长=长方形的2条长+2条宽.22.【分析】首先根据5的整除特性可知尾数是0或者5,那么150和5的倍数差依然是尾数是0或者5的数字枚举即可.解:根据5的整除特性可知尾数是0或者5.那么150减去这个数字尾数还是0或者5.可以找到尾数是0或者5的数字是3的倍数.30,60,90,120,15,45,75,105,135共9个数字满足条件.对应的数字就有9对.故答案为:9.【点评】本题是考察数的整除特性,关键在于找到尾数是0或5的数字是3的倍数,枚举即可解决问题.23.【分析】本题主要考察等差数列.解:设最小的数为x,则剩余自然数依次为x+1,x+2,…,x+9,由题可得2(4x+1+2+3)+15=6x+4+5+6+7+8+9,化简后是8x+27=6x+39∴x=6,【点评】本题可以借助列方程,设最小的数为x,一一用x表示其他连续自然数,根据等量关系就可求解.24.解:9⊙3=9×2+3=21;故答案为:21.25.解:因为要使每个小朋友分得的巧克力的颗数各不相同,第一次先分给这4个小朋友的巧克力数依次为:1、2、3、4,从这里可以看出最后那个人是分得鲜花最多的人;那么还剩下50﹣(1+2+3+4)=40颗巧克力;如果这40颗巧克力全给最后这个人,那么他最多可分得4+40=44颗,要想让他分得的巧克力数少,那么剩下的40颗朵,可以再分给每个人10,由此可得出这时每个人的巧克力数为:11、12、13、14,答:分得最多的小朋友至少可以得14颗巧克力;故答案为:14.26.解:甲校比乙校多的人数:32×2+48=112人,甲校的人数:(864+112)÷2,=976÷2,=488(人).答:原来甲校有488人.故答案为:488.27.解:[(12﹣8)×4+6]÷(12﹣10),=[16+6]÷2,=22÷2,=11(人);10×11+6=116(个);答:一共计划做116颗幸运星.故答案为:116.28.【分析】我们通过画图进行解决,向西走15米,然后再向东走23米其实,从C点到A点的距离是就是23米与15米的差.解:画图如下:从C点到A点的距离是:23﹣15=8(米),答:从C点到A点的距离是8米.29.解:504÷8÷(108÷3÷4)﹣4,=504÷8÷9﹣4,=63÷9﹣4,=7﹣4,=3(名),答:需增加3名,故应填:3.30.【分析】根据质数的概念:指在一个大于1的自然数中,除了1和此整数自身外,没其它约数的数;然后列举出比40大并且比50小的质数;求小于100的最大的质数,应从100以内的最大数找起:99、98是合数;进而得出结论.解:比40大比50小的质数有:41、43、47;小于100的最大质数是97;故答案为:41、43、47,97.【点评】解答此题的关键:根据质数的定义,并结合题意,进行例举即可.31.解:(100﹣4)÷3=96÷3=32(棵)答:她已经有了32棵三叶草.故答案为:32.32.解:根据题干分析可得:33.解:船的静水速度为:360÷10﹣10,=36﹣10,=26(千米/时);返回原地需要:360÷(26﹣8),=360÷18,=20(小时);答:这条船沿岸边返回原地需要20小时.故答案为:20.34.解:根据题干分析,将讨论分析的过程利用表格的形式进行统计如下:×√以得出:B是11+2=13岁,C是11﹣1=10岁;即A11岁、B13岁、C10岁;将这个结论代入上表中,可以得出B说的C是13岁时错误的,其他两句正好符合题意是正确的,由此可得,此假设成立;答:由上述推理可以得出A是11岁.故答案为:11.35.【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.解:西巴巴数字8表示阿拉伯数字9﹣8=1,西巴巴数字3表示阿拉伯数字9﹣3=6,西巴巴数字7表示阿拉伯数字9﹣7=2,西巴巴数字4表示阿拉伯数字9﹣4=5,西巴巴数字2表示阿拉伯数字9﹣2=7,所以837+742表示的正常算式为:162+257=419.故答案为:419.36.【分析】设x年后,爸爸、妈妈的年龄和是小翔的6倍,则:小翔x年后的年龄×4=小翔爸爸x年后的年龄+小翔妈妈x年后的年龄,列出方程解答即可.解:设x年后,爸爸、妈妈的年龄和是小翔的6倍,(5+x)×6=48+42+2x30+6x=90+2x4x=60x=15答:15年后,爸爸、妈妈的年龄和是小翔的6倍.故答案为:15.37.解【分析】如图所示:,假设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,则截去的部分的面积为:4b+4a+4×4=168,求出a+b=(168﹣16)÷4=38,原来长方形的周长为:(b+4+a+4)÷2,据此代入(a+b)的值计算即可.:如图所示:,设长、宽各截去4分米后剩下的长为b分米,剩下的宽为a分米,4b+4a+4×4=1684(a+b)=168﹣164(a+b)=152,4(a+b)÷4=152÷4a+b=38,原长方形的周长为:(b+4+a+4)×2=(38+8)×2=46×2=92(分米).答:原来长方形的周长是92分米.38.解:根据题意,由差倍公式可得:今年爸爸的年龄是儿子的五倍时,儿子的年龄是:24÷(5﹣1)=6(岁);爸爸的年龄是儿子的三倍时,儿子的年龄是:24÷(3﹣1)=12(岁);12﹣6=6(年).答:6年后爸爸的年龄是儿子的三倍.故答案为:6.39.解:[(15+7﹣10)×2+3]×2=[12×2+3]×2=[24+3]×2=27×2=54(米)答:这捆电线原来长54米.40.【分析】从5角的硬币进行分析讨论:首选从袋中摸出6枚全是5角的硬币;(2)从袋中摸出6枚中5枚面值5角的硬币和1枚面值1元的硬币;(3)从袋中摸出6枚中4枚面值5角的硬币和2枚面值1元的硬币;(4)从袋中摸出6枚中3枚面值5角的硬币和3枚面值1元的硬币;(5)从袋中摸出6枚中2枚面值5角的硬币和4枚面值1元的硬币;(6)从袋中摸出6枚中1枚面值5角的硬币和5枚面值1元的硬币.解:由以上分析,得出下列情况:这6枚硬币的面值的和有6种.故答案为:6.【点评】解答此题可从5角的硬币考虑,逐一分析探讨得出结论.。

小学生奥数题及答案(三篇)

小学生奥数题及答案(三篇)

【导语】奥数题中常常出现⼀些数量关系⾮常特殊的题⽬,⽤普通的⽅法很难列式解答,有时根本列不出相应的算式来。

我们可以⽤枚举法,根据题⽬的要求,⼀⼀列举基本符合要求的数据,然后从中挑选出符合要求的答案。

以下是整理的《⼩学⽣奥数题及答案(三篇)》相关资料,希望帮助到您。

⼩学⽣奥数题及答案篇⼀ 1、学校园林科有⼀批树苗,交给若⼲名学⽣去栽,⼀次⼀次往下分,每次分⼀棵,最后剩下12棵,不够分了。

如果再拿来8棵,那么每个学⽣正好栽10棵。

求参加栽树的学⽣有多少⼈,这批树苗共多少棵? 考点:盈亏问题 分析:最后剩下12棵,不够分了,可知,学⽣数应⼤于12,再拿来8棵正好平均分完(每⼈10棵)由于8<12,所以可知学⽣数应为:12+8=20(⼈);⼜再拿来8棵,那么每个学⽣正好栽10棵,由此可得树苗应为10×20﹣8=192(棵)。

解答:解:⼈数为:12+8=20(⼈); 树苗的棵数为:10×20﹣8=192(棵)。

答:参加栽树的学⽣有20⼈,这批树苗共192棵。

点评:这是⼀个盈余问题,主要是先根据余下的树苗及需要补进的树苗求出⼈数是多少就好解答了。

2、⼩春读⼀本⼩说,若每天读35页,则读完全书⽐规定时间迟⼀天;若每天读40页,则最后⼀天要少读5页,如果他每天读39页,最后⼀天应读多少页才按规定时间读完? 考点:盈亏问题 分析:因为书的总页数不变,若设规定x天读完,书的页数为35×(x+1)和40x﹣5;据此可列式计算。

解答:解:设规定x天读完, 35×(x+1)=40x﹣5, 35x+35=40x﹣5, 5x=40, x=8; 书的总页数为:40x﹣5=40×8﹣5=315(页); 最后⼀天应读:315﹣(8﹣1)×39 =315﹣273 =42(页); 答:最后⼀天应读42页才按规定时间读完。

点评:此题依据书的页数不变,列⽅程即可解决。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数题及答案工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。

2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。

又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。

只有这样才能“两队合作的天数尽可能少”。

设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。

根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。

所以1-9/10=1/10表示乙做6-4=2小时的工作量。

1/10÷2=1/20表示乙的工作效率。

1÷1/20=20小时表示乙单独完成需要20小时。

答:乙单独完成需要20小时。

4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?解:由题意可知1/甲+1/乙+1/甲+1/乙+……+1/甲=11/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)得到1/甲=1/乙×2又因为1/乙=1/17所以1/甲=2/17,甲等于17÷2=8.5天5.师徒俩人加工同样多的零件。

当师傅完成了1/2时,徒弟完成了120个。

当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?答案为300个120÷(4/5÷2)=300个可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。

6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。

单份给男生栽,平均每人栽几棵?答案是15棵算式:1÷(1/6-1/10)=15棵7.一个池上装有3根水管。

甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。

现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?答案45分钟。

1÷(1/20+1/30)=12 表示乙丙合作将满池水放完需要的分钟数。

1/12*(18-12)=1/12*6=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。

1/2÷18=1/36 表示甲每分钟进水最后就是1÷(1/20-1/36)=45分钟。

8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?答案为6天解:由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:乙做3天的工作量=甲2天的工作量即:甲乙的工作效率比是3:2甲、乙分别做全部的的工作时间比是2:3时间比的差是1份实际时间的差是3天所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期方程方法:[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1解得x=69.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?答案为40分钟。

解:设停电了x分钟根据题意列方程1-1/120*x=(1-1/60*x)*2解得x=40二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?解:4*100=400,400-0=400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。

400-28=372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么?4+2=6 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6)372÷6=62 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只100-62=38表示兔的只数三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。

解题:1+2+3+4+5+6+7+8+9=45;45能被9整除依次类推:1~1999这些数的个位上的数字之和可以被9整除10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450 它有能被9整除同样的道理,100~900 百位上的数字之和为4500 同样被9整除也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;同样的道理:1000~1999这些连续的自然数中百位、十位、个位上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少22从1000~1999千位上一共999个“1”的和是999,也能整除;22的各位数字之和是27,也刚好整除。

最后答案为余数为0。

2.A和B是小于100的两个非零的不同自然数。

求A+B分之A-B的最小值...解:(A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2 * B/(A+B)前面的1 不会变了,只需求后面的最小值,此时(A-B)/(A+B) 最大。

对于B / (A+B) 取最小时,(A+B)/B 取最大,问题转化为求(A+B)/B 的最大值。

(A+B)/B = 1 + A/B ,最大的可能性是A/B = 99/1(A+B)/B = 100(A-B)/(A+B) 的最大值是:98 / 1003.已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少?答案为6.375或6.4375因为A/2 + B/4 + C/16=8A+4B+C/16≈6.4,所以8A+4B+C≈102.4,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103。

当是102时,102/16=6.375当是103时,103/16=6.43754.一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.答案为476解:设原数个位为a,则十位为a+1,百位为16-2a根据题意列方程100a+10a+16-2a-100(16-2a)-10a-a=198解得a=6,则a+1=7 16-2a=4答:原数为476。

5.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.答案为24解:设该两位数为a,则该三位数为300+a7a+24=300+aa=24答:该两位数为24。

6.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少?答案为121解:设原两位数为10a+b,则新两位数为10b+a它们的和就是10a+b+10b+a=11(a+b)因为这个和是一个平方数,可以确定a+b=11因此这个和就是11×11=121答:它们的和为121。

7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.答案为85714解:设原六位数为abcde2,则新六位数为2abcde(字母上无法加横线,请将整个看成一个六位数)再设abcde(五位数)为x,则原六位数就是10x+2,新六位数就是200000+x根据题意得,(200000+x)×3=10x+2解得x=85714所以原数就是857142答:原数为8571428.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.答案为3963解:设原四位数为abcd,则新数为cdab,且d+b=12,a+c=9根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察abcd2376cdab根据d+b=12,可知d、b可能是3、9;4、8;5、7;6、6。

再观察竖式中的个位,便可以知道只有当d=3,b=9;或d=8,b=4时成立。

相关文档
最新文档