陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(传热 复习笔记)

合集下载

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解-固体干燥【圣才出品】

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解-固体干燥【圣才出品】

第14章固体干燥14.1 复习笔记一、概述1.固体去湿方法和干燥过程(1)物料的去湿方法①机械去湿当物料带水较多,可先用离心过滤等机械分离方法以除去大量的水。

②吸附去湿用某种平衡水汽分压很低的干燥剂(如CaC12、硅胶等)与湿物料并存,使物料中水分相继经气相而转入干燥剂内。

③供热干燥向物料供热以汽化其中的水分。

供热方式又有多种。

工业干燥操作多是用热空气或其他高温气体为介质,使之掠过物料表面,介质向物料供热并带走汽化的湿分。

此种干燥常称为对流干燥,是本章讨论的主要内容。

(2)对流干燥过程的特点当温度较高的气流与湿物料直接接触时,气固两相间所发生的是热、质同时传递的过程。

2.对流干燥流程对流干燥可以是连续过程也可以是间歇过程,图14-1是典型的对流干燥流程示意图。

空气经预热器加热至适当温度后,进入干燥器。

在干燥器内,气流与湿物料直接接触。

沿其行程气体温度降低,湿含量增加,废气自干燥器另一端排出。

若为间歇过程,湿物料成批放入干燥器内,待干燥至指定的含湿要求后一次取出。

图14-1 对流干燥流程示意图二、干燥静力学1.空气的状态参数(1)空气中水分含量的表示方法①水汽分压p水汽与露点t d测定水汽分压的实验方法是测量露点,即在总压不变的条件下将空气与不断降温的冷壁相接触,直至空气在光滑的冷壁面上析出水雾,此时的冷壁温度称为露点t d。

测出露点温度t d,便可从手册中查得此温度下的饱和水蒸气压。

②空气的湿度空气的湿度H定义为每千克干空气所带有的水汽量,单位是kg/kg干气,即式中P为总压。

③相对湿度从相对湿度的定义可知,相对湿度φ表示了空气中水分含量的相对大小。

φ=1,表示空气已达饱和状态,不能再接纳任何水分;φ值愈小,表明空气尚可接纳的水分愈多。

④湿球温度测量水汽含量的简易方法是测量空气的湿球温度t w。

对空气-水系统,当被测气流的温度不太高,流速>5m/s时,α/k H为一常数,其值约为1.09kJ/(kg·℃),故由湿球温度的原理可知,空气的湿球温度t w总是低于干球温度t。

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(气体吸收 名校考研真题详解)

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(气体吸收 名校考研真题详解)

8.3 名校考研真题详解一、选择题1.在吸收塔某处,气相浓度y =0.005,液相浓度x =0.015(均为摩尔分数),两侧体积传质分系数,在该操作温度下气、液平衡关系。

这时气体界面上气相浓度应等于( )。

[华南理工大学2012研]A .0.002B .0.0015C .0.0057D .0.009【答案】C【解析】()()A y i x i N k y y k x x =-=-。

在相界面处气液达到平衡,则0.4i i y x =,所以()(2.5)y i x i k y y k y x -=-, 2.5 3.50.020.0057i i i i y y y x y y x y -=-⇒=+=⇒=。

2.亨利定律适用于溶液中可溶解组分的( )范围,拉乌尔定律适用于理想溶液中每一种组分的( )范围。

[华南理工大学2011研]A .高浓度B .中等浓度C .低浓度D .全浓度【答案】C;C【解析】亨利定律和拉乌尔定律都是针对稀溶液即低浓度溶液而言的。

3.某吸收任务的操作液气比、吸收剂进口温度、气体进出口浓度、吸收剂入塔浓度、操作压力均已确定,假定吸收为低浓度混合气体吸收,若设计时选用性能更优良的填料,则()。

[浙江大学2011研]A.所需传质单元数不变,填料层高度降低B.所需传质单元数不变,填料层高度不变C.所需传质单元数减少,填料层高度降低D.所需传质单元数减少,填料层高度不变【答案】A【解析】传质单元数只与物质的相平衡及进出口浓度条件有关,这些条件固定,则传质单元数不变,选用性能优良的填料,传质单元高度减小,又传质单元数不变,则填料层高度减小。

二、填空题1.在填料塔中用清水吸收混合气中氨,当水泵发生故障上水量减少时,气相总传质单元数将______。

[华南理工大学2012研]【答案】增加【解析】S=mV/L,当L减小,则S增大,N OG增大。

参数S反映吸收推动力的大小,S增大,吸收推动力变小,N OG必然增大。

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(流体通过颗粒层的流动 复习笔记)

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(流体通过颗粒层的流动 复习笔记)

4.1 复习笔记一、概述1.固定床定义固定床是指众多固体颗粒堆积而成的静止的颗粒层。

2.常见流体通过固定床的流动(1)流体通过固定床反应器进行化学反应,此时组成固定床的颗粒是粒状或片状催化剂;(2)固体悬浮液的过滤,此时可将由悬浮液中所含的固体颗粒形成的滤饼看作固定床,滤液通过颗粒之间的空隙流动。

二、颗粒床层的特性1.单颗粒的特性对于球形颗粒存在以下两个关系:式中d p——球形颗粒的直径;v——球形颗粒的体积;s——球形颗粒的表面积。

因此,球形颗粒的各有关特性可用单一参数——直径d p全面表示。

球形颗粒的比表面积非球形颗粒的当量直径:通常试图将非球形颗粒以某种相当的球形颗粒代表,以使所考察的领域内非球形颗粒的特性与球形颗粒等效。

根据不同方面的等效性,可以定义不同的当量直径。

(1)体积等效使得当量球形颗粒的体积等于真实颗粒的体积V,则体积当量直径定义为(2)表面积等效使得当量球形颗粒的表面积等于真实颗粒的表面积s,则面积当量直径定义为(3)比表面积等效使得当量球形颗粒的比表面积等于真实颗粒的比表面积μ,则比表面当量直径定义为d ev,d es和d ea在数值上是不等的,但根据各自的定义式可以推出三者之间有如下关系。

记,则可得可以看出的物理含义故可称为形状系数。

体积相同时球形颗粒的表面积最小,因此,任何非球形颗粒的形状系数皆小于1。

2.颗粒群的特性在任何颗粒群中,各单颗粒的尺寸都不可能完全一样。

从而形成一定的尺寸(粒度)分布。

为研究颗粒分布对颗粒层内流动的影响,首先必须设法测量并定量表示这一分布。

颗粒粒度测量的方法:筛分法,显微镜法,沉降法,电阻变化法,光散射与衍射法,表面积法等。

3.床层特性颗粒按某种方式堆积成固定床时,床层中颗粒堆积的疏密程度可用空隙率来表示。

空隙率的定义如下:一般乱堆床层的空隙率大致在0.47~0.7之间。

三、流体通过固定床的压降1.颗粒床层的简化模型在固定床内大量细小而密集的固体颗粒对流体的运动提供了很大的阻力。

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(气液传质设备 课后习题详解)

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(气液传质设备 课后习题详解)

10.2 课后习题详解(一)习题板式塔10-1 某筛板塔在常压下以苯-甲苯为试验物系,在全回流下操作以测定板效率。

今测得由第9、第10两块板(自上向下数)下降的液相组成分别为0.652与0.489(均为苯的摩尔分数)。

试求第10块板的默弗里湿板效率。

解:已知:常压苯-甲苯系统,,求:第十块板的默弗里板效率E MV全回流下,y n+1=x n∴y11=x10=0.489 y10=x9=0.653苯-甲苯系统α=2.4810-2 甲醇-水精馏塔在设计时规定原料组成X F=0.40,塔顶产品组成为0.90,塔釜残液组成为0.05(均为甲醇的摩尔分数),常压操作。

试用0’connell关联图估计精馏塔的总塔效率。

解:已知:常压,甲醇-水系统,x f=0.4,x D=0.9,x w=0.05,求:用O´connell关联图估计E T由教材附录相平衡数据查得再查t=80℃时,汽液共存查O,connell关联图得10-3 一板式吸收塔用NaOH水溶液吸收氯气。

氯气的摩尔分数为2%,要求出塔摩尔分数低于0.002%。

各块塔板的默弗里板效率均为50%,不计液沫夹带,求此塔应有多少块实际板。

NaOH溶液与氯气发生不可逆化学反应,可设相平衡常数m=0。

解:已知:求:∵m=0每板逐推得实际板数为10。

10-4 某厂常压操作下的甲苯-邻二甲苯精馏塔拟采用筛板塔。

经工艺计算知某塔板的气相流量为2900m3/h,液相流量为9.2m3/h。

试用弗尔的泛点关联图以估计塔径。

有关物性数据:气相密度为3.85kg/m3,液相密度为770kg/m3.液体的表面张力为17.5mN/m。

根据经验选取板间距为450mm、泛点百分率为80%,单流型塔板,溢流堰长度为75%塔径。

解:已知:P=101.3kPa,甲苯-邻二甲苯系统,,求:用弗尔泛点关联图估计塔径查弗尔泛点关联图,得由教材图10-40查得圆整取D=1.2m此时泛点半分率填料塔10-5 某填料精馏塔用以分离氯仿-1,1-二氯乙烷,在全回流下测得回流液组成x D=8.05×10-3,残液组成x w=8.65×10-4(均为1,1-二氯乙烷的摩尔分数)。

陈敏恒《化工原理》(第3版)课后习题(含考研真题)(热、质同时传递的过程 课后习题详解)

陈敏恒《化工原理》(第3版)课后习题(含考研真题)(热、质同时传递的过程  课后习题详解)

13.2 课后习题详解(一)习题过程的方向和极限13-1 温度为30℃、水汽分压为2kPa的湿空气吹过如表13-1所示三种状态的水的表面时,试用箭头表示传热和传质的方向。

表13-1解:已知:t=30℃,P=2kPa,与三种状态水接触。

求:传热、传质方向(用箭头表示)查水的饱和蒸汽压以Δt为传热条件,为传质条件,得:表13-213-2 在常压下一无限高的填料塔中,空气与水逆流接触。

入塔空气的温度为25℃、湿球温度为20℃。

水的入塔温度为40℃。

试求:气、液相下列情况时被加工的极限。

(1)大量空气,少量水在塔底被加工的极限温度;(2)大量水,少量空气在塔顶被加工的极限温度和湿度。

解:已知:P=101.3kPa,,逆流接触。

求:(1)大量空气,少量水,(2)大量水,少量空气,(1)大量空气处理少量水的极限温度为空气的湿球温度(2)大量水处理少量空气的极限温度为水的温度且湿度为查40℃下,过程的计算13-3 总压力为320kPa的含水湿氢气干球温度t=30℃,湿球温度为t w=24℃。

求湿氢气的湿度H(kg水/kg干氢气)。

已知氢-水系统的α/k H≈17.4kJ/(kg·℃)。

解:已知:P=320kPa,t=30℃,氢水-水系统,求:H(kg水/kg干氢气)查得24℃下,13-4 常压下气温30℃、湿球温度28℃的湿空气在淋水室中与大量冷水充分接触后,被冷却成10℃的饱和空气,试求:(1)每千克干气中的水分减少了多少?(2)若将离开淋水室的气体再加热至30℃,此时空气的湿球温度是多少?图13-1解:已知:P=101.3 kPa,求:(1)析出的水分W(kg水/kg干气)(1)查水的饱和蒸汽压(2)设查得与所设基本相符,13-5 在t1=60℃,H1=0.02kg/kg的常压空气中喷水增湿,每千克的干空气的喷水量为0.006kg,这些水在气流中全部汽化。

若不计喷入的水本身所具有的热焓,求增湿后的气体状态(温度t2和湿度H2)。

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(流体输送机械 复习笔记)

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(流体输送机械 复习笔记)

2.1 复习笔记一、概述离心泵:用以输送液体的机械。

用以输送气体的机械按不同的情况分别称为通风机、鼓风机、压缩机和真空泵等。

1.管路特性方程式中系数K为K由管路特性决定。

当管内流动已进入阻力平方区,系数K是一个与管内流量无关的常数。

表明管路中流体的流量与所需补加能量的关系。

管路特性方程如图2-1所示。

图2-1中曲线称为管路特性曲线。

图2-1 管路特性曲线低阻管路系统的特性曲线较为平坦(曲线1),高阻管路的特性曲线较为陡峭(曲线2)。

2.扬程定义压头或扬程是指输送机械向单位重量流体提供的能量。

3.输送机械的分类(1)动力式(叶轮式):包括离心式、轴流式等;(2)容积式(正位移式):包括往复式、旋转式等;(3)其他类型:指不属于上述两类的其他型式,如喷射式等。

二、离心泵1.离心泵的工作原理(1)离心泵的主要构件——叶轮和蜗壳离心泵的主要工作部件是旋转叶轮和固定的泵壳(如图2-2所示)。

叶轮是离心泵直接对液体做功的部件。

(2)工作原理离心泵在工作时,叶轮由电机驱动作高速旋转运动(1000~3000r/min),迫使叶片间的液体作近于等角速度的旋转运动,同时因离心力的作用,在叶轮中心处吸入低势能、低动能的液体,液体在流经叶轮的运动过程中获得能量,在叶轮外缘可获得高势能、高动能的液体。

液体进入蜗壳后,又将部分动能转化为势能,最后沿切向流入压出管道。

在液体受迫由叶轮中心流向外缘的同时,在叶轮中心形成低压。

液体在吸液口和叶轮中心处的势能差的作用下源源不断地吸入叶轮。

图2-2 离心泵装置简图1-叶轮;2-泵壳;3-泵轴;4-吸入管;5-底阔;6-压出管(3)离心力场中的机械能守恒叶轮进、出口截面列出机械能守恒式如下。

(4)离心泵的理论压头泵的理论压头HT和泵的流量之间的关系为上式表示不同形状的叶片在叶轮尺寸和转速一定时,泵的理论压头和流量的关系。

(5)叶片形状对理论压头的影响①叶片形状分类根据叶片出口端倾角β2的大小,叶片形状可分为三种:径向叶片(β2=90°);后弯叶片(β2<90°)和前弯叶片(β2>90°)。

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(流体流动 课后习题详解)

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(流体流动  课后习题详解)
7 / 51
圣才电子书 十万种考研考证电子书、题库视频学习平台

图 1-8 证明:已知:如图 1-8 所示,求证: 作 1-1 等压面,由静力学方程得

1-10 试利用流体平衡的一般表达式(1-9)推导大气压 P 与海拔高度 h 之间的关系。
因液体在器内及管内的流动缓慢,本题可作静力学处理。
3 / 51
圣才电子书 十万种考研考证电子书、题库视频学习平台

图 1-3 解:已知: 假定:由于液体流动速度缓慢,可作静力学处理
求:H(m)。
=0.5 780 =0.39m 1000
1-5 如图 1-4 所示复式 U 形压差计测定水管 A、B 两点的压差。指示液为汞,其间充 满水。今测得 h1=1.20m,h2=0.3m,h3=1.30m,h4=0.25m。试以 Pa 为单位表示 A、 B 两点的压差△p。
解:已知:T=20℃(苯),
求:(1)
入孔盖受力 F(N);(2)槽底压强 P(Pa)。
(1)由于入孔盖对中心水平线有对称性,且静压强随深度作线性变化,所以能够以孔
盖中心处的压强ቤተ መጻሕፍቲ ባይዱ全面积求积得 F。
=8809.819-0.6 0.785 0.52 =1.42 N
(2)P=ρgH=880×9.81×9=7.77×104(Pa)
图 1-2 解:已知: 气缓慢流动。求:储槽内液体的储存量 W。 (1)管道内空气缓慢鼓泡 u=0,可用静力学原理求解。 (2)空气的 ρ 很小,忽略空气柱的影响。 ∴
H= i R=13600 0.13=1.8 980

2 / 51
管道中空
圣才电子书 十万种考研考证电子书、题库视频学习平台

图 1-6

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(蒸发 复习笔记)

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(蒸发  复习笔记)

7.1 复习笔记一、概述1.蒸发操作的目的和方法含不挥发性溶质(如盐类)的溶液在沸腾条件下受热,使部分溶剂汽化为蒸气的操作称为蒸发。

化工生产中蒸发操作的目的是:(1)获得浓缩的溶液直接作为化工产品或半成品;(2)借蒸发以脱除溶剂,将溶液增浓至饱和状态,随后加以冷却,析出固体产物,即采用蒸发、结晶的联合操作以获得固体溶质;(3)脱除杂质,制取纯净的溶剂。

单效蒸发:用来自锅炉的蒸汽(加热蒸汽)作加热剂使溶液受热沸腾。

蒸发出的蒸汽(二次蒸汽)如不再利用,应将其在冷凝器中加以冷凝。

这种蒸发装置称为单效蒸发。

蒸发操作可连续或间歇地进行,工业上大量物料的蒸发通常是连续的定态过程。

2.蒸发操作的特点尽管蒸发操作的目的是物质的分离,但其过程的实质是热量传递而不是物质传递,溶剂汽化的速率取决于传热速率。

因此,蒸发操作应属于传热过程,但它具有某些不同于一般传热过程的特殊性。

(1)溶液在沸腾汽化过程中常在加热表面上析出溶质而形成垢层,使传热过程恶化。

因此,蒸发器结构的设计应设法延缓垢层的生成并易于清理。

(2)溶液的物性对蒸发器的设计和操作有重要影响。

(3)溶剂汽化需吸收大量汽化热蒸发操作是大量耗热的过程,节能是蒸发操作应予考虑的重要问题。

蒸汽温位降低的主要原因有两个:①传热需要有一定的温度差为推动力,所以汽化温度必低于加热蒸汽的温度;②在指定外压下,由于溶质的存在造成溶液的沸点升高。

由此可知,蒸发操作是高温位的蒸汽向低温位转化.较低温位的二次蒸汽的利用必在很大程度上决定了蒸发操作的经济性。

二、蒸发设备1.各种蒸发器针对各种物料不同的物性,研制了各种不同结构的蒸发器。

它们均由加热室、流动(或循环)通道、气液分离空间这三部分所组成。

(1)循环型蒸发器①垂直短管式;②外加热式;③强制循环蒸发器。

(2)单程型蒸发器单程型蒸发器中,物料单程通过加热室后蒸发达到指定浓度。

器内液体滞留量少,物料的受热时间大为缩短,所以对热敏物料特别适宜。

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(蒸发 课后习题详解)

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(蒸发  课后习题详解)

(2)假定 K 值不变 均不变
∴Q 不变,得
4/6
圣才电子书 十万种考研考证电子书、题库视频学习平台

(二)思考题 7-1 蒸发操作不同于一般换热过程的主要特点有哪些? 答:蒸发操作应属于传热过程,但它具有某些不同于一般传热过程的特殊性。(1)溶 液在沸腾汽化过程中常在加热表面上析出溶质而形成垢层,使传热过程恶化;(2)溶液的 物性对蒸发器的设计和操作有重要影响;(3)溶剂汽化需吸收大量汽化热。
温度差损失 7-2 完成液为 30%(质量)的氢氧化钠水溶液.在压强为 60kPa(绝压)的蒸发室 内进行单效蒸发操作。器内溶液的深度为 2m,溶液密度为 1280kg/m3,加热室用 0.1MPa (表压)的饱和蒸汽加热,求传热的有效温差。 解:已知:w=0.30(质量分率,NaOH),P=60kPa(绝),L=2m,p=1280kg/m3, 加热蒸汽 P0=0.1MPa,求: 查 P=60kPa(绝)下,水蒸气饱和温度 t°=85.6℃,P=0.1MPa(表)下,T=120.2℃ 查教材图 7-17,30%NaOH,t°=85.6℃下,t=106
7-4 欲将含 NaOH10%(质量分数)的水溶液浓缩至 70%,可用两种方案:①用一 个蒸发器连续操作;②用两个蒸发器作双效连续蒸发。试比较两种方案的优缺点。
5/6
圣才电子书 十万种考研考证电子书、题库视频学习平台

答:②的温度差损失较大,但也提高了加热蒸汽的利用率,即经济效益。由于②较①温 度差损失更大,因此生产能力和生产强度较小,因此设备投资将加大。
3/6
圣才电子书 十万种考研考证电子书、题库视频学习平台

6800kg/h.其他操作条件(加热蒸汽及进料温度、进料浓度、操作压强)不变时.可将溶

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(其他传质分离方法 复习笔记)

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(其他传质分离方法  复习笔记)

12.1 复习笔记一、结晶1.结晶操作的类型和经济性由蒸汽、溶液或熔融物中析出固态晶体的操作称为结晶。

结晶在工业生产中主要用于实现混合物的分离。

根据析出固体的原因不同,可将结晶操作分成若干类型。

工业上使用最广泛的是溶液结晶,即采用降温或浓缩的方法使溶液达到过饱和状态,析出溶质,以大规模地制取固体产品。

此外,还有熔融结晶、升华结晶、加压结晶、反应沉淀、盐析等多种类型。

与其他单元操作相比,结晶操作的特点:(1)能从杂质含量较多的混合液中分离出高纯度的晶体;(2)高熔点混合物、相对挥发度小的物系、共沸物、热敏性物质等难分离物系,可考虑采用结晶操作加以分离;(3)由于结晶热一般约为汽化热的1/3~1/7,过程的能耗较低。

2.晶系和晶习构成晶体的微观粒子(分子、原子或离子)按一定的几何规则排列,由此形成的最小单元称为晶格。

晶体可按晶格空间结构的区别分为不同的晶系。

同一种物质在不同的条件下可形成不同的晶系,或为两种晶系的混合物。

二、吸附分离1.吸附与解吸利用多孔固体颗粒选择性地吸附流体中的一个或几个组分,从而使流体混合物得以分离的方法称为吸附操作。

通常称被吸附的物质为吸附质,用作吸附的多孔固体颗粒称为吸附剂。

解吸的方法有多种,原则上是升温和降低吸附质的分压以改变平衡条件使吸附质解吸。

工业上根据不同的解吸方法,赋予吸附—解吸循环操作以不同的名称。

(1)变温吸附;(2)变压吸附;(3)变浓度吸附;(4)置换吸附。

除此之外,改变其他影响吸附质在流固两相之间分配的热力学参数,如pH值、电磁场强度等都可实现吸附解吸循环操作。

2.常用吸附剂化工生产中常用天然和人工制作的两类吸附剂。

天然矿物吸附剂有硅藻土、白土、天然沸石等。

虽然其吸附能力小,选择吸附分离能力低,但价廉易得,常在简易加工精制中采用,而且一般使用一次后即舍弃,不再进行回收。

人工吸附剂则有活性炭、硅胶、活性氧化铝、合成沸石等等。

三、膜分离1.膜分离的种类和特点利用固体膜对流体混合物中的各组分的选择性渗透从而分离各个组分的方法统称为膜分离。

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(颗粒的沉降可流态化 课后习题详解)

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(颗粒的沉降可流态化  课后习题详解)


得 查 60℃天气
5-3 直径为 0.12mm,密度为 2300kg/m3 的球形颗粒在 20℃水中自由沉降,试计算
颗粒由静止状态开始至速度达到 99%沉降速度所需的时阃间和沉降的距离。
解:已知:
,20℃水,求:由 0→99%u 所需 t,距离 s。
根据牛顿第二定律有
(设处于斯托克斯区)所以 积分得
表 5-1
粒径/μm
5~10
10~20
20~40
40~100
质量分率
0.20
0.20
0.30
0.30
粒级效率ηi
0.80
0.90
0.95
1.00
试计算该旋风分离器的总效率及未分离下而被气体带出的颗粒的粒度分布。
若进旋风分离器的气体中催化剂尘粒的量为 18g/m3,含尘气的流量为 1850m3/h,试
解:已知: ,求:A、B 两种颗粒能否分开?
因为沉降在斯托克斯区
所以

同一
必有
能否将 A、B 分开,取决于 A 最小颗粒的沉降速度,是否大于 B 最大颗粒的沉降速度

,所以 A、B 可完全分开。
5-7 试证 ζ·Re2p 为与沉降速度无关的无量纲数据,且当 ζ·Re2p 小于何值时则沉降是
在斯托克斯定律区的范围以内?
9 / 12
圣才电子书 十万种考研考证电子书、题库视频学习平台

证明:已知:欧根方程,小颗粒惯性项可忽略,且
,大颗粒性项以在水中

假设成立 在空气中
验证:
1 / 12
圣才电子书

假设成立。
十万种考研考证电子书、题库视频学习平台
5-2 密度为 2000kg/m3 的球形颗粒,在 60℃空气中沉降,求服从斯托克斯定律的最大

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(气液传质设备 复习笔记)

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(气液传质设备 复习笔记)

10.1 复习笔记一、板式塔1.概述(1)板式塔的功能①在每块塔板上气液两相必须保持密切而充分的接触,为传质过程提供足够大而且不断更新的相际接触表面,减小传质阻力;②在塔内应尽量使气液两相呈逆流流动,以提供最大的传质推动力。

板式塔的设计意图是,在塔内造成一个对传质过程最有利的理想流动条件,即在总体上使两相呈逆流流动,而在每一块塔板上两相呈均匀的错流接触。

(2)筛孔塔板的构造①塔板上的气体通道——筛孔为保证气液两相在塔板上能够充分接触并在总体上实现两相逆流。

塔板上均匀地开有一定数量的供气体自下而上流动的通道。

图10-1 板式塔结构简图筛孔塔板的气体通道最为简单,它是在塔板上均匀地冲出或钻出许多圆形小孔供气体上升之用。

这些圆形小孔称为筛孔。

上升的气体经筛孔分散后穿过板上液层,造成两相间的密切接触与传质。

筛孔的直径通常是3~8mm,但直径为12~25mm的大孔径筛板也应用得相当普遍。

②溢流堰为保证气液两相在塔板上有足够的接触表面,塔板上必须贮有一定量的液体。

为此,在塔板的出口端设有溢流堰。

③降液管作为液体自上层塔板流至下层塔板的通道,每块塔板通常附有一个降液管。

图10-2 筛板塔的构造在塔板上的流动更为均匀,当采用圆形溢流管时,仍需设置平直溢流堰。

同理,在圆形降液管的出口附近也应设置堰板,称为入口堰。

2.筛板上的气液接触状态实验观察发现,气体通过筛孔的速度不同,两相在塔板上的接触状态亦不同。

如图10-3所示,气液两相在塔板上的接触情况可大致分为三种状态。

图10-3 塔板上的气液接触状态(1)鼓泡接触状态当孔速很低时,通过筛孔的气流断裂成气泡在板上液层中浮升,塔板上两相呈鼓泡接触状态。

(2)泡沫接触状态随着孔速的增加,气泡数量急剧增加,气泡表面连成一片并且不断发生合并与破裂。

此时,板上液体大部分是以液膜的形式存在于气泡之间,仅在靠近塔板表面处才能看到少许清液。

这种接触状况称为泡沫接触状态。

在泡沫接触状态,液体仍为连续相,而气体仍为分散相。

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(流体输送机械 名校考研真题详解)

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(流体输送机械  名校考研真题详解)

2.3 名校考研真题详解一、选择题1.在一定的管路输送系统,将两个相同的泵串联操作,工作点压头(),并联操作,工作点流量:()。

[华南理工大学2011研]A.等于单台泵工作时的两倍B.小于单台泵工作时的两倍C.大于单台泵工作时的两倍D.不确定【答案】B;B【解析】因为泵串联后一方面扬程的增加大于管路阻力的增加,致使富余的扬程促使流量增加,另一方面流量的增加又使阻力增加,抑制了总扬程的升高。

串联性能曲线相当于单泵性能曲线的流量在扬程相等的情况下迭加起来。

并联工作点A的流量和扬程均比单泵工作点的大,但考虑管阻因素,同样达不到单泵时的2倍。

2.某泵在运行一年后发现有气缚现象,应()。

出现气蚀现象,应()。

[华南理工大学2011研]A.升高泵的安装高度B.缩小进口管路直径C.检查进出口管路有否泄漏现象D.检查核算进口管路阻力是否过大【答案】C;D【解析】气缚应检查进出口管路有无泄漏,而气蚀则应降低离心泵的安装高度或检查进口管路阻力是否过大。

二、填空题1.将含晶体10%的悬浮液送往料槽宜选用______泵;该泵在运行过程中发现有气缚现象,应该采取的措施是:______。

(写出一种措施)[浙江大学2011研]【答案】离心泵,停泵,关闭出口阀向泵内充满液体。

【解析】离心泵适用于输送腐蚀性或含有悬浮物的液体,所以将晶体10%的悬浮液送往料槽宜选用离心泵。

气缚现象是由于离心泵启动前泵内存有空气,由于空气的密度很小,因而叶轮中心区所形成的低压不足以将储槽内的液体吸入泵内。

因此当发生气缚现象时,要停泵然后关闭出口阀再向泵内充满液体。

2.往复泵的流量取决于______,而压头取决于______。

[北京化工大学2012研]【答案】泵的几何尺寸与活塞的往复次数;管路特性【解析】往复泵的流量只与泵的几何尺寸和活塞的往复次数有关,而压头与管路特性有关。

3.离心泵的性能参数是:______,______,______,______,特性曲线是:______,______,______。

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(固体干燥 课后习题详解)

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(固体干燥  课后习题详解)

14-10 一理想干燥器在总压 100kPa 下将物料由含水 50%干燥至含水 1%,湿物料的 处理量为 20kg/s。室外空气温度为 25℃,湿度为 0.005kg 水/kg 干气,经预热后送入干燥 器。废气排出温度为 50℃,相对湿度 60%。试求:(1)空气用量 V;(2)预热温度;(3) 干燥器的热效率.
解:已知:浅盘 n=50 只,盘底面积 70×70cm,厚度 h=0.02m,p 壶=1600kg/m3,
X1=0.5kg 水/kg 干料,x2=0.005kg 水/kg 干料,
干燥条件:
平行流过 u=0.2m/s,t=77℃,ψ=40%,
求:t
以一只盘为基准计算
查焓-湿图:t=77℃,ψ=10%时,H=0.0268kg 水/kg 干料
14-4 在温度为 80℃、湿度为 0.0lkg/kg 干气的空气流中喷入流速为 0.1kg/s 的水滴。 水滴温度为 30℃,全部汽化被气流带走。干气体的流量为 10kg 干气/s,不计热损失。试 求;(1)喷水后气体的热焓增加了多少?(2)喷水后气体的温度降低到多少度?(3)如 果忽略水滴带入的热焓,即把气体的增湿过程当作等焓变化过程,则增湿后气体的温度降到 几度?
气中凝结出多少水分?1kg 干空气放出多少热量?
解:已知:
求: Q
查水的饱和蒸汽压
1 / 13
圣才电子书 十万种考研考证电子书、题库视频学习平台

14-3 总压为 l00kPa 的湿空气,试用焓湿度图填充表 14-1。 表 14-1
解:已知:P=100kPa 求:用焓-湿度图填充表 14-1。 表 14-2
解:已知:p=100kPa, 理想干燥剂,求:(1)v(2)t1(3)
解:已知:

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(流体流动 名校考研真题详解)

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(流体流动  名校考研真题详解)

1.3 名校考研真题详解一、选择题1.计算管路系统突然扩大的局部阻力时,速度值应取(),计算突然缩小的局部阻力时,速度值应取()。

[华南理工大学2011研]A.小管的流速B.大管的流速C.上游管道的流速D.大管与小管的流速平均值【答案】A;A【解析】计算系统突然扩大或缩小的局部阻力时,速度值都应取小管流速。

2.层流与湍流的本质区别是()。

[中南大学2012研]A.湍流流速>层流流速B.流道截面大的为湍流,截面小的为层流C.层流的雷诺数<湍流的雷诺数D.层流无径向脉动,而湍流有径向脉动【答案】D【解析】流体作层流流动时,其质点有无规则的平行运动,各质点互不碰撞,互不混合。

流体作湍流流动时,其质点作不规则的杂乱运动并相互碰撞,产生大大小小的漩涡。

既湍流向前运动的同时,还有径向脉动。

二、填空题1.某流体在直管中作层流流动,在流速不变的情况下,管长、管径同时增加一倍,并保持层流流动状态不变,则其阻力损失为原来的______倍。

[浙江大学2011研]【答案】1/2【解析】2λ2f l u h =d ,6464μλRe ρ==ud,可得出流速相同时,2f l h d ,因此管长管径都增加一倍时,h f 变为原来的0.5倍。

2.转子流量计应安装在______段的管路上,已知某流量计的转子为不锈钢,在测量密度为1.2kg/m 3的空气流量时的最大量程为400m 3/h 。

若测量密度为0.8kg/m 3的氨气流量,则在流量计校正系数假设不变的前提下,该流量计的最大量程近似为______m 3/h 。

[华南理工大学2011研]【答案】介质流向自下而上、无振动的垂直;500【解析】根据《压力管道设计审批人员培训教材》里面的规定,转子流量计必须安装在介质流向自下而上、无振动的垂直管道上。

安装时要保证流量计前应有不小于5倍管子内径的直管段,且不小于300mm 。

在流量计校正系数假设不变的前提下,。

3.流体在管内作层流流动,如流量不变,若仅增大管径,则摩擦系数变______,直管阻力变______。

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(液液萃取 复习笔记)

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(液液萃取 复习笔记)

11.1 复习笔记一、概述1.液液萃取过程(1)液液萃取原理液液萃取是分离液体混合物的一种方法,利用液体混合物各组分在某溶剂中溶解度的差异而实现分离。

图11-1 萃取操作示意图设有一溶液内含A、B两组分,为将其分离可加入某溶剂S。

该溶剂S与原溶液不互溶或只是部分互溶,于是混合体系构成两个液相,如图11-1所示。

为加快溶质A由原混合液向溶剂的传递,将物系搅拌,使一液相以小液滴形式分散于另一液相中,造成很大的相际接触表面。

然后停止搅拌,两液相因密度差沉降分层。

这样,溶剂S中出现了A和少量B,称为萃取相;被分离混合液中出现了少量溶剂S,称为萃余相。

以A表示原混合物中的易溶组分,称为溶质;以B表示难溶组分,习称稀释剂。

由此可知,所使用的溶剂S必须满足两个基本要求:①溶剂不能与被分离混合物完全互溶,只能部分互溶;②溶剂对A、B两组分有不同的溶解能力,或者说,溶剂具有选择性:即萃取相内A、B两组分浓度之比y A/y B大于萃余相内A、B两组分浓度之比x A/x B。

(2)萃取过程由于萃取相和萃余相中均存在三个组分,上述萃取操作并未最后完成分离任务,萃取相必须进一步分离成溶剂和增浓了的A、B混合物,萃余相中所含的少量溶剂也必须通过分离加以回收。

在工业生产中,这两个后继的分离通常是通过精馏实现的。

(3)萃取过程的经济性①萃取过程在经济上是否优越取决于后继的两个分离过程是否较原溶液的直接分离更容易实现。

一般说来,在下列情况下采用萃取过程较为有利。

a.混合液的相对挥发度小或形成恒沸物,用一般精馏方法不能分离或很不经济;b.混合液浓度很稀,采用精馏方法须将大量稀释剂B汽化,能耗过大;c.混合液含热敏性物质(如药物等),采用萃取方法精制可避免物料受热破坏。

②萃取过程的经济性在很大程度上取决于萃取剂的性质,萃取溶剂的优劣可由以下条件判断:a.溶剂应对溶质有较强的溶解能力,这样,单位产品的溶剂用量可以减少,后继的精馏分离的能耗可以降低。

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解-热、质同时传递的过程

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解-热、质同时传递的过程

第13章热、质同时传递的过程13.1 复习笔记一、概述1.热、质同传的分类生产实践中的某些过程,热、质传递同时进行,热、质传递的速率互相影响。

此种过程大体上分两类。

(1)以传热为目的,伴有传质的过程:如热气体的直接水冷,热水的直接空气冷却等。

(2)以传质为目的,伴有传热的过程:如空气调节中的增湿和减湿等。

2.热气体的直接水冷为快速冷却反应后的高温气体,可令热气体自塔底进入,冷水由塔顶淋下,气液呈逆流接触。

在塔内既发生气相向液相的热量传递,也发生水的汽化或冷凝,即传质过程。

(1)塔下部气温高于液温,气体传热给液体。

同时,气相中的水汽分压p水汽低于液相的水汽平衡分压(水的饱和蒸气压P s),此时p水汽<p s,水由液相向气相蒸发。

在该区域内,热、质传递的方向相反,液相自气相获得的显热又以潜热的形式随汽化的水分返回气相。

因此,塔下部过程的特点是:热、质反向传递,液相温度变化和缓;气相温度变化急剧,水汽分压自下而上急剧上升,但气体的热焓变化较小。

(2)塔上部气温仍高于液温,传热方向仍然是从气相到液相,但气相中的水汽分压与水的平衡分压的相对大小发生了变化。

由于水温较低,相应的水的饱和蒸气压P s也低,气相水汽分压p转而高于液相平衡分压p e,水汽将由气相转向液相,即发生水汽的冷凝。

在该区域内,水汽液相既获得来自气相的显热,又获得水汽冷凝所释出的潜热。

因此,塔上部过程的特点是:热、质同向进行。

水温急剧变化。

3.热水的直接空气冷却(1)塔上部热水与温度较低的空气接触,水传热给空气。

因水温高于气温,液相的水汽平衡分压必高于气相的水汽分压(p s>p水汽),水汽化转向气相。

此时,液体既给气体以显热,又给汽化的水以潜热,因而水温自上而下较快地下降。

该区域内热、质同向传递,都是由液相传向气相。

(2)塔下部水与进入的较干燥的空气相遇,发生较剧烈的汽化过程,虽然水温低于气相温度,气相给液相以显热,但对液相来说,由气相传给液相的显热不足以补偿水分汽化所带走的潜热,因而水温在塔下部还是自上而下地逐渐下降。

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解
陈敏恒《化工原理》(第3版) 笔记和课后习题(含考研真题)
详解
读书笔记模板
01 思维导图
03 目录分析 05 读书笔记
目录
02 内容摘要 04 作者介绍 06 精彩摘录
思维导图
本书关键字分析思维导图
第版
化工
习题
陈敏恒
颗粒
教材
传质
笔记
真题
原理 真题
流体
原理
名校

笔记
ห้องสมุดไป่ตู้流动
复习
方法
内容摘要
内容摘要
5.1复习笔记
5.3名校考研真题 详解
6.2课后习题详解
6.1复习笔记
6.3名校考研真题 详解
7.2课后习题详解
7.1复习笔记
7.3名校考研真题 详解
8.2课后习题详解
8.1复习笔记
8.3名校考研真题 详解
9.2课后习题详解
9.1复习笔记
9.3名校考研真题 详解
10.2课后习题详解
10.1复习笔记
本书特别适用于参加研究生入学考试指定考研参考书目为陈敏恒《化工原理》(第3版)的考生。也可供各大 院校学习陈敏恒《化工原理》(第3版)的师生参考。陈敏恒编写的《化工原理》(第3版)是我国高校化学类广 泛采用的权威教材之一,也被众多高校(包括科研机构)指定为考研考博专业课参考书目。为了帮助参加研究生 入学考试指定参考书目为陈敏恒编写的《化工原理》(第3版)的考生复习专业课,我们根据该教材的教学大纲和 名校考研真题的命题规律精心编写了陈敏恒《化工原理》(第3版)辅导用书(均提供免费下载,免费升级): 1.[3D电子书]陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解[免费下载]2.[3D电子书]陈 敏恒《化工原理》(第3版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】[免费下载]本书是陈敏恒 编写的《化工原理》(第3版)的配套e书,主要包括以下内容:(1)梳理知识脉络,浓缩学科精华。本书每章 的复习笔记均对该章的重难点进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。因此,本书的内容几 乎浓缩了该教材的所有知识精华。(2)详解课后习题,巩固重点难点。本书参考大量相关辅导资料,对陈敏恒编 写的《化工原理》(第3版)的课后思考题进行了详细的分析和解答,并对相关重要知识点进行了延伸和归纳。 (3)精编考研真题,培养解题思路。本书精选详析了部分名校近年来的相关考研真题,这些高校均以该教材作为 考研参考书目。所选考研真题基本涵盖了每章的考点和难点,考生可以据此了解考研真题的命题风格和难易程度, 并检验自己的复习效果。(4)免费更新内容,获取最新信息。本书定期会进行修订完善,补充最新的考研真题和 答案。对于最新补充的考研真题和答案,均可以免费升级获得。

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(液体精馏 课后习题详解)

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(液体精馏  课后习题详解)
解:已知:乙苯(A)-苯乙烯(B),P=13.6kPa,xA=0.144 求(1)t;(2)yA (1)设一体温度为 81.36℃
原假设正确,∴板上液体的温度为 81.36℃ (2)
9-4 总压(绝压)为 303.9kPa 下,含丁烷 0.80、戊烷 0.20(均为摩尔分数)的混合 蒸气冷凝至 40℃所得的液、气两相成平衡。求液相和气相数量(摩尔)之比。
3 / 41
圣才电子书 十万种考研考证电子书、题库视频学习平台

已知丁烷(A)和戊烷(B)的混合物是理想物系,40℃下纯组分的饱和蒸气压为; 。
解:已知: 求
冷凝至 40℃后
取总物料为 1 摩尔记 得
9-5 某二元混合液 l00kmol,其中含易挥发组分 0.40。在总压 101.3kPa 下作简单精
馏。最终所得的液相产物中,易挥发物为 0.30(均为摩尔分数)。试求:(1)所得气相产物
的数量和平均组成;(2)如改为平衡蒸馏,所得气相产物的数量和组成。
已知物系的相对挥发度为 α=3.0。
解:已知:P=101.3Kpa 下作简单精馏

(1)
;(2)改为平衡蒸馏 W 汽,y
(1)
4 / 41
圣才电子书 十万种考研考证电子书、题库视频学习平台
(1)物料衡算
5 / 41
圣才电子书 十万种考研考证电子书、题库视频学习平台

解得 D/F=0.228
9-7 苯-甲苯混合液中含苯摩尔分数为 0.3,预热至 40℃以 l0kmol/h 的流量连续加入 一精馏塔。塔的操作压强为 l01.3kPa。塔顶馏出液中含苯摩尔分数 95%,残液含苯摩尔分 数为 0.03,回流比 R=3。试求塔釜的蒸发量是多少?
已知:XF=0.6,XD=0.9,XB=0.3,XT=0.5(均为摩尔分数),F=100kmol/h。整 个流程可使易挥发组分 A 的回收率达 90%。试求:(1)塔Ⅱ的塔釜蒸发量;(2)写出塔 I 中间段(F 和 T 之间)的操作线方程。

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(绪论 复习笔记)

陈敏恒《化工原理》(第3版)笔记和课后习题(含考研真题)详解(绪论 复习笔记)

0.1 复习笔记一、化工生产过程1.化学工业的定义化学工业是对原料进行化学加工以获得有用产品的工业,核心是化学反应过程及其设备——反应器。

2.化工生产的要求为使反应器内保持适宜的压力、温度和物料的组成等条件,原料需经过前处理。

前处理是指原料经过的一系列预处理以除去杂质,达到必要的纯度、温度和压力的过程。

反应产物同样需要经过各种后处理过程加以精制。

二、单元操作1.单元操作的分类按操作的目的可分为:(1)物料的增压、减压和输送;(2)物料的混合或分散;(3)物料的加热或冷却;(4)非均相混合物的分离;(5)均相混合物的分离。

2.常用单元操作及内容(1)常见单元操作单元操作是按物理过程的目的,兼顾过程的原理、相态,将各种前、后处理归纳成的系列操作,如表0-1所示。

表0-1(2)单元操作的内容各单元操作的内容包括:过程和设备。

三、“化工原理”课程的两条主线1.传递过程(1)动量传递过程(单相或多相流动);(2)热量传递过程——传热;(3)物质传递过程——传质。

表0-1中各单元操作皆属传递过程。

传递过程成为统一的研究对象,也是联系各单元操作的一条主线。

2.研究工程问题的方法论(1)两种基本的研究方法①实验研究方法,即经验的方法;②数学模型方法,即半理论、半经验的方法。

(2)方法论的必要性实验研究方法避免了方程的建立,直接用实验测取各变量之间的联系。

当实验工作遍历各种规格的设备和各种不同的物料时,实验研究的方法论可使实验结果在几何尺寸上能“由小见大”,在物料品种上能“由此及彼”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.1 复习笔记
一、概述
1.传热目的
(1)加热或冷却,使物料达到指定的温度;
(2)换热,以回收利用热量或冷量;
(3)保温,以减少热量或冷量的损失。

生产上最常遇到的是冷、热两种流体之间的热量交换。

若加热和冷却同属一个生产过程,则可采用图6-1所示的换热流程以同时达到加热和冷却的目的。

图6-1 典型的换热流程
1-换热器;2-反应器
2.工业上的传热过程
(1)直接接触式传热
对某些传热过程,可使冷、热流体直接接触进行传热。

这种接触方式,传热面积大,设备亦简单。

由于冷、热流体直接接触,这种传热方式必伴有传质过程同时发生。

因此,直接接触式传热在原理上与单纯传热过程有所不同。

(2)间壁式传热
工业上应用最多的是间壁式传热过程。

间壁式换热器类型很多,其中最简单而又最典型的结构是套管式换热器。

在套管式换热器中,冷、热流体分别通过环隙和内管,热量自热流体传给冷流体。

这种热量传递过程包括三个步骤:
①热流体给热于管壁内侧;
②热量自管壁内侧传导至管壁外侧;
③管壁外侧给热于冷流体。

在冷、热流体之间进行的热量传递总过程通常称为传热(或换热)过程,而将流体与壁面之间的热量传递过程称为热过程,以示区别。

(3)蓄热式传热
这种传热方式是首先使热流体流过蓄热器中固体壁面,用热流体将固体填充物加热;然后停止热流体,使冷流体流过固体表面,用固体填充物所积蓄之热量加热冷流体。

如此周而复始,冷、热流体交替流过壁面,达到冷热流体之间传热的目的。

蓄热式换热器又称蓄热器,是由热容量较大的蓄热室构成,室内可填充耐火砖等各种填料。

3.传热过程
(1)传热速率
①热流量Q:即单位时间内热流体通过整个换热器的传热面传递给冷流体的热量,单位为W;
②热流密度(或热通量)q:单位时间、通过单位传热面积所传递的热量,单位为W/m2。


与热流量Q不同,热流密度q与传热面积A大小无关,完全取决于冷、热流体之间的
热量传递过程,是反映具体传热过程速率大小的特征量。

(2)换热器的热流量
换热器的热流量为
(3)非定态传热过程
工业上不少传热过程是间歇进行的,此时流体的温度随时间而变,属非定态过程。

用饱和蒸汽加热搅拌釜内的液体,是最简单的非定态传热过程。

非定态传热一段时间内所传递的累积总热量Q T
为计算累积传热量Q T,只知道热流密度q的计算式是不够的,尚需知道热流密度q随时间的变化规律。

(4)传热机理
任何热量的传递只能通过传导、对流、辐射三种方式进行。

固体内部的热量传递只能以传导的方式进行,但流体与换热器壁面之间的给热过程则往往同时包含对流与传导,对高温流体则还有热辐射。

二、热传导
1.傅里叶定律和热导率
(1)傅里叶定律
式中q——热流密度,W/m2;
——法向温度梯度,℃/m
λ——比例系数,称为热导率(导热系数),w/(m·℃)。

傅里叶定律指出,热流密度正比于传热面的法向温度梯度,式中负号表示热流方向与温度梯度方向相反,即热量从高温传至低温。

式中的比例系数(即热导率)λ是表征材料导热性能的一个参数,λ愈大,导热性能越好。

与黏度系数μ一样,热导率λ也是分子微观运动的一种宏观表现。

(2)热导率
物体的热导率与材料的组成、结构、温度、湿度、压强以及聚集状态等许多因素有关。

各类固体材料热导率的数量级为:
金属10~102w/(m·℃)
建筑材料10-1~10W/(m·℃)
绝热材料10-2~10-1w/(m·℃)
固体材料的热导率随温度而变,绝大多数质地均匀的固体,热导率与温度近似成线性关系。

可用下式表示
λ=λ0(1+at)
式中λ——固体在温度f℃时的热导率,w/(m·℃);
λ0——固体在0℃时的热导率,w/(m·℃);
α——温度系数,1/℃;对大多数金属材料为负值,而对大多数非金属材料为正值。

液体的热导率较小,但比固体绝热材料为大。

在非金属液体中,水的热导率最大,而且除水和甘油外,常见液体的热导率随温度升高而略有减小。

气体的热导率比液体更小,约为液体热导率的1/10。

固体绝热材料的热导率之所以很小。

就是因为空隙率很大,含有大量空气的缘故。

气体的热导率随温度升高而增大;但在相当大的压强范围内,压强对λ无明显影响。


有当压强很低或很高时,λ才随压强增加而增大。

2.通过平壁的定态导热过程
设有一高度和宽度均很大的平壁,厚度为δ,两侧表面温度保持均匀,分别为t1及t2,且t1>t2。

若t1、t2不随时间而变,壁内传热系定态一维热传导。

此时傅里叶定律可写成
积分得:
式中,△t=t1-t2,为平壁两侧的温度差,℃;A为平壁的面积,m2。

上式又可写成如下形式
表明热流量Q正比于推动力△t,反比于热阻R,与欧姆定律极为类似。

从上式还可以看出,传导层厚度δ越大,传热面积和热导率越小,热阻越大。

若热导率λ随温度而变化,则可用平均温度下的λ值。

3.通过圆筒壁的定态导热过程
设有内、外半径分别为r1、r2的圆筒,内、外表面分别维持恒定的温度t1、t2,管长l 足够大,则圆筒壁内的传热属定态一维热传导。

此时,傅里叶定律可写成
壁内温度分布为
上式表明,圆筒壁内的温度按对数曲线变化。

上式中的积分常数c和热流量Q可由边界条
件(r=r1时t=t1,r=r2时t=t2)求出。

热流量:

以上两式均可改写成
式中
对于的圆筒壁,以算术平均值代替对数平均值导致的误差<4%。

作为工程计算,此时A m可取d m可取
圆筒壁热阻为
4.通过多层壁的定态导热过程。

相关文档
最新文档