高一数学空间几何体的体积PPT优秀课件
合集下载
1.3空间几何体的表面积与体积PPT课件
25cm.
A
分析: 可以把圆柱沿开始时蜜蜂所在位置的母线展开, 将问题转化为平面几何的问题.
第14页/共26页
知识探究(二)柱体、锥体、台体的体积
以前学过特殊的棱柱——正方体、长方体以及圆柱的 体积公式,它们的体积公式可以统一为:
V Sh(S为底面面积,h为高).
一般棱柱体积也是:
V Sh
其中S为底面面积,h为棱柱的高.
第7页/共26页
典型例题
例1 已知棱长为a,各面均为等边三角形的四面体SABC,求它的表面积 .
分析:四面体的展开图是由四个全等的正三角形组成,
因此只要求…...
S 解:先求SBC的面积,过点S作 SD BC
a
交BC于点D.
A
因为SB=a,SD SB sin 60 3 a
2
BD
C
所以:SABC
A
V VP ABCD VP ABCD
1 (S SS S)h 3
A
D
S
C
B
h
D
S C
B
第19页/共26页
台体体积
棱台(圆台)的体积公式
V 1 (S SS S)h 3
其中 S , S 分别为上、下底面面积,h为圆台
(棱台)的高.
第20页/共26页
典型例题
例3 有一堆规格相同的铁制(铁的密度是 7.8g / cm3 )六角螺帽共重5.8kg,已知底面是正六边 形,边长为12mm,内孔直径为10mm,高为10mm,
1 2
BC
SD
1 2
a
3a 2
3 a2 4
因此,四面体S-ABC 的表面积 .
第8页/共26页
圆柱的表面积
A
分析: 可以把圆柱沿开始时蜜蜂所在位置的母线展开, 将问题转化为平面几何的问题.
第14页/共26页
知识探究(二)柱体、锥体、台体的体积
以前学过特殊的棱柱——正方体、长方体以及圆柱的 体积公式,它们的体积公式可以统一为:
V Sh(S为底面面积,h为高).
一般棱柱体积也是:
V Sh
其中S为底面面积,h为棱柱的高.
第7页/共26页
典型例题
例1 已知棱长为a,各面均为等边三角形的四面体SABC,求它的表面积 .
分析:四面体的展开图是由四个全等的正三角形组成,
因此只要求…...
S 解:先求SBC的面积,过点S作 SD BC
a
交BC于点D.
A
因为SB=a,SD SB sin 60 3 a
2
BD
C
所以:SABC
A
V VP ABCD VP ABCD
1 (S SS S)h 3
A
D
S
C
B
h
D
S C
B
第19页/共26页
台体体积
棱台(圆台)的体积公式
V 1 (S SS S)h 3
其中 S , S 分别为上、下底面面积,h为圆台
(棱台)的高.
第20页/共26页
典型例题
例3 有一堆规格相同的铁制(铁的密度是 7.8g / cm3 )六角螺帽共重5.8kg,已知底面是正六边 形,边长为12mm,内孔直径为10mm,高为10mm,
1 2
BC
SD
1 2
a
3a 2
3 a2 4
因此,四面体S-ABC 的表面积 .
第8页/共26页
圆柱的表面积
高中数学必修2第1章132空间几何体的体积课件(38张)1
方法归纳 根据球的截面面积来求球的表面积和体积问题,关键是利 用重要的直角三角形建立关于半径R的方程.求出R,然后 代入球的表面积公式和体积公式进行求解.
4.本例中 ,若截面不过球的半径的中点,而是过半径 上与球心距离为1的点,且截面与此半径垂直,若此截面 的面积为π,试求此球的表面积和体积.
解:如图,由题意可知:OO1=1,设截面圆的 半径为 r, 则 π=πr2,∴r=1, 即 O1A=1. 在 Rt△OO1A 中, 球半径 R=OA= O1O2+O1A2= 12+12= 2, ∴球的表面积 S 球=4πR2=8π,
= 23a,所以 CH=EH·tan130°=32a.
在 Rt△CDH 中,CD= CH2-DH2= 32a2-12a2= 2a,
所以
S
△
CDF=12CD·AD=
1 2
×
2a×a= 22a2,所以 VE-CDF=
13·EH·S△CDF=13× 23a× 22a2= 126a3.
(2)在 Rt△AFE 中,由 AE=a,AF=12CD= 22a,
43πr31∶43πr23=rr213=233=8∶27.
3.如图在所有棱长均为2的正三棱柱ABC-A1B1C1中,三棱 23
锥B-A1C1C的体积是__3______.
解析:∵三棱锥 B-A1C1C 与三棱锥 B-A1AC 等底同高, 故 VB—A1C1C=VB-A1AC,又 VB-A1AC=VA1-ABC, ∴VB-A1C1C=VA1-ABC, 而三棱锥 A1-ABC 的底面就是正三棱柱的底面,它的高就是 正三棱柱的高,
∴DE=
3 4 a.
[感悟提高] (1)在三棱锥 A-BCD 中,若求点 A 到平面 BCD 的距离 h,可以先求 VA-BCD.则 因为 V=13hS△BCD,所以 h=S△3BVCD.这种方法就 是用等积法求点到平面的距离,其中 V 的求法 一般用换顶点法求解,可利用 VA-BCD=VB-ACD=VC-ABD=VD- ABC 求解,求解的原则是 V 易求,且△BCD 的面积易求. (2)等体积法主要用于求点面距离,且常用于三棱锥,通过选取 不同的底面建立体积等式.
高中数学PPT:第1讲空间几何体及其表面积和体积
3=
3 3 π.
索引
考点三 多面体与球的切、接问题
///////
【例3】 (经典母题)(2021·长沙检测)在封闭的直三棱柱ABC-A1B1C1内有一个体积 9
为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是____2_π___. 解析 由AB⊥BC,AB=6,BC=8,得AC=10.
个半圆,则此圆锥的体积为( A )
3 A. 3 π
3 B. 3
C. 3π
解析 设圆锥的底面半径为r,母线长为l,
D. 3
由πl=2πr,得l=2r,
又S=πr2+πr·2r=3πr2=3π,
所以r2=1,解得r=ห้องสมุดไป่ตู้, 所以圆锥的高为 h= l2-r2= 22-12= 3,
所以圆锥的体积为 V=13πr2h=13π×12×
1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是 作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或 “切点”、“接点”作出截面图,把空间问题化归为平面问题. 2.若球面上四点P,A,B,C且PA,PB,PC两两垂直或三棱锥的三条侧棱两 两垂直,可构造长方体或正方体确定直径解决外接球问题.
图(3)
索引
探究提高
1.求三棱锥的体积:等体积转化是常用的方法,转换原则是其高易求,底面放 在已知几何体的某一面上. 2.求不规则几何体的体积:常采用分割或补形的方法,将不规则几何体转化为 规则几何体以易于求解.
索引
【跟踪演练2】 (1)(2021·杭州二模)已知圆锥的表面积为3π,它的侧面展开图是一
图(2)
索引
法三 如图(3),延长BC至点M,使得CM=2,延长EF至点 N,使得FN=1,连接DM,MN,DN,得到直三棱柱ABEDMN,所以所求几何体的体积等于直三棱柱ABE-DMN 的体积减去四棱锥D-CMNF的体积. 因为 VABE-DMN=12×2×2×4=8, VD-CMNF=131+2 2×2×2=2, 所以所求几何体的体积为VABE-DMN-VD-CMNF=8-2=6.
专题:空间几何体的体积优秀课件
则该平行六面体 ABCD A1B1C1D1 的
体积V Sh
[变式 1] 已知斜三棱柱 ABC A1B1C1 中,
点 A1到面 BB1C1C 的距离为 h , 四边形 BB1C1C 面积为 S ,
则该三棱柱的体积=
方法1: 补成平行六面体
方法2: 一柱分两锥
一柱分三锥,
C1
B1 C1
A1
C
BC
A
B1 A1
B A
一柱分两锥,
方法1: 补成平行六面体
ห้องสมุดไป่ตู้
方法2: 一柱分两锥
[变式 2] 如图三棱柱 ABC A1B1C1 中,
若VABC A1B1C1 30,VM ABC 6,
则V
M A1B1C1
[变式 3] 如图三棱柱 ABC A1B1C1 中,
点 A1到面 BB1C1C 的距离为 h , 四边形 BB1C1C 面积为 S ,
方法1:分割法
方法2:补形法
(类型二)将线段EF位置特殊化
方案3:让点D待在墙角,三条棱DA、
DC、DE两两垂直
方法1:分割法
方法2:补形法
则三棱锥 B1 A1BC 的体积=
[变式 4] 如图三棱柱 ABC A1B1C1 中,
点 A1到面 BB1C1C 的距离为 h , 四边形 BB1C1C 面积为 S , 取 A1B1 中点 M ,
则三棱锥 B MB1C 的体积=
方法1
M N
方法1
方法2
[例 2] 如图,在多面体 ABCDEF 中, 四边形 ABCD 是边长为 3 的正方形,
一、复习回顾——体积公式
名称
体积(V )
柱体
体积V Sh
[变式 1] 已知斜三棱柱 ABC A1B1C1 中,
点 A1到面 BB1C1C 的距离为 h , 四边形 BB1C1C 面积为 S ,
则该三棱柱的体积=
方法1: 补成平行六面体
方法2: 一柱分两锥
一柱分三锥,
C1
B1 C1
A1
C
BC
A
B1 A1
B A
一柱分两锥,
方法1: 补成平行六面体
ห้องสมุดไป่ตู้
方法2: 一柱分两锥
[变式 2] 如图三棱柱 ABC A1B1C1 中,
若VABC A1B1C1 30,VM ABC 6,
则V
M A1B1C1
[变式 3] 如图三棱柱 ABC A1B1C1 中,
点 A1到面 BB1C1C 的距离为 h , 四边形 BB1C1C 面积为 S ,
方法1:分割法
方法2:补形法
(类型二)将线段EF位置特殊化
方案3:让点D待在墙角,三条棱DA、
DC、DE两两垂直
方法1:分割法
方法2:补形法
则三棱锥 B1 A1BC 的体积=
[变式 4] 如图三棱柱 ABC A1B1C1 中,
点 A1到面 BB1C1C 的距离为 h , 四边形 BB1C1C 面积为 S , 取 A1B1 中点 M ,
则三棱锥 B MB1C 的体积=
方法1
M N
方法1
方法2
[例 2] 如图,在多面体 ABCDEF 中, 四边形 ABCD 是边长为 3 的正方形,
一、复习回顾——体积公式
名称
体积(V )
柱体
空间几何体的表面积与体积PPT教学课件
单的几何体,研究空间几何体的表面积
和体积,应以柱、锥、台、球的表面积
和体积为基础.那么如何求柱、锥、台、
球2的020/12表/12 面积和体积呢?
2
2020/12/12
3
知识探究(一)柱体、锥体、台体的表面积
思考1:面积是相对于平面图形而言的, 体积是相对于空间几何体而言的.你知道 面积和体积的含义吗?
2020/12/12
21
2020/12/12
22
知识探究(一):球的体积
思考1:从球的结构特征分析,球的大小 由哪个量所确定?
思考2:底面半径和高都为R的圆柱和圆锥 的体积分别是什么?
V柱 R3
V锥
1
3
R3
2020/12/12
23
思考3:如图,对一个半径为R的半球,其 体积与上述圆柱和圆锥的体积有何大小 关系?
思考4:圆柱的侧面展开图的形状有哪些 特征?如果圆柱的底面半径为r,母线长 为l,那么圆柱的表面积公式是什么?
S2r(rl)
2020/12/12
6
思考5:圆锥的侧面展开图的形状有哪些 特征?如果圆锥的底面半径为r,母线长 为l,那么圆锥的表面积公式是什么?
Sr(rl)
2020/12/12
7
思考6:圆台的侧面展开图的形状有哪些 特征?如果圆台的上、下底面半径分别 为r′、r,母线长为l,那么圆台的表面 积公式是什么?
17
例3 有一堆规格相同的铁制六角螺帽 共重5.8kg(铁的密度是7.8g/cm3),已 知螺帽的底面是正六边形,边长为12mm, 内孔直径为10mm,,高为10mm,问这堆 螺帽大约有多少个?
V≈2956(mm3) =2.956(cm3)
空间几何体的体积课件(共26张PPT)
解 因此剩余部分的体积是
5 V V1 6 V ,
所以棱锥C-A'DD'的体积与剩余部分的体积之比为1:5. 想一想
如图7-52所示,三棱锥C-A'DD'的体积是三棱柱 B'CC'-A'DD'的体积的几分之几?三棱柱 B'CC'-A'DD '的体积是长方体ABCD-A'B'C'D'的体积的几分之几?
解则
V 122 2 4 2 .
3
3即该Leabharlann 锥的体积是 4 2 .3活动 3 巩固练习,提升素养
运用祖暅原理我们还能得出这样一个结论:一个 底面半径和高都等于 R 的圆柱,挖去一个以上底面为 底面、下底面圆心为顶点的圆锥后,所得几何体的体 积与一个半径为 R 的半球的体积相等. 试一试
运用祖暅原理推导球体体积公式?
式V柱体=Sh,可得底面积为S、高为h的锥体(棱锥、圆锥) 的体积计算公式:
V锥体
1 3
Sh.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
例2 已知正四棱锥S-ABCD的棱长都是2,求该棱 锥的体积.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
活动 3 巩固练习,提升素养
解 将该长方体看成四棱柱ADD'A'-BCC'B',设它的
底面ADD'A'的面积为S,高为h,则它的体积
V=Sh.
棱锥C-A'DD'的底面积为 1 S,高为h,因此棱锥C-
5 V V1 6 V ,
所以棱锥C-A'DD'的体积与剩余部分的体积之比为1:5. 想一想
如图7-52所示,三棱锥C-A'DD'的体积是三棱柱 B'CC'-A'DD'的体积的几分之几?三棱柱 B'CC'-A'DD '的体积是长方体ABCD-A'B'C'D'的体积的几分之几?
解则
V 122 2 4 2 .
3
3即该Leabharlann 锥的体积是 4 2 .3活动 3 巩固练习,提升素养
运用祖暅原理我们还能得出这样一个结论:一个 底面半径和高都等于 R 的圆柱,挖去一个以上底面为 底面、下底面圆心为顶点的圆锥后,所得几何体的体 积与一个半径为 R 的半球的体积相等. 试一试
运用祖暅原理推导球体体积公式?
式V柱体=Sh,可得底面积为S、高为h的锥体(棱锥、圆锥) 的体积计算公式:
V锥体
1 3
Sh.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
例2 已知正四棱锥S-ABCD的棱长都是2,求该棱 锥的体积.
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
活动 3 巩固练习,提升素养
解 将该长方体看成四棱柱ADD'A'-BCC'B',设它的
底面ADD'A'的面积为S,高为h,则它的体积
V=Sh.
棱锥C-A'DD'的底面积为 1 S,高为h,因此棱锥C-
空间几何体的体积.ppt课件
2.特点 (1)近代中国交通业逐渐开始近代化的进程,铁路、水运和 航空都获得了一定程度的发展。 (2)近代中国交通业受到西方列强的控制和操纵。 (3)地域之间的发展不平衡。 3.影响 (1)积极影响:促进了经济发展,改变了人们的出行方式, 一定程度上转变了人们的思想观念;加强了中国与世界各地的 联系,丰富了人们的生活。 (2)消极影响:有利于西方列强的政治侵略和经济掠夺。
时
代潮流
图说历史
主旨句归纳
(1)20世纪初,孙中山提出“民族、民权、
民生”三民主义,成为以后辛亥革命
的
指导思想。
(2)三民主义没有明确提出反帝要求,也
没
有提出废除封建土地制度,是一个
ቤተ መጻሕፍቲ ባይዱ
不彻
底的资产阶级革命纲领。
()
A.江南制造总局的汽车
B.洋人发明的火车
C.轮船招商局的轮船
D.福州船政局的军舰
[解析] 由材料信息“19世纪七十年代,由江苏沿江居民 到上海”可判断最有可能是轮船招商局的轮船。
[答案] C
[题组冲关]
1.中国近代史上首次打破列强垄断局面的交通行业是 ( )
A.公路运输
B.铁路运输
C.轮船运输
[合作探究·提认知] 电视剧《闯关东》讲述了济南章丘朱家峪人朱开山一家, 从清末到九一八事变爆发闯关东的前尘往事。下图是朱开山 一家从山东辗转逃亡到东北途中可能用到的四种交通工具。
依据材料概括晚清中国交通方式的特点,并分析其成因。 提示:特点:新旧交通工具并存(或:传统的帆船、独轮车, 近代的小火轮、火车同时使用)。 原因:近代西方列强的侵略加剧了中国的贫困,阻碍社会发 展;西方工业文明的冲击与示范;中国民族工业的兴起与发展; 政府及各阶层人士的提倡与推动。
空间几何体的体积PPT课件
割为3个三棱锥.
A’
C’ A’
A’
A’
C’
B’
B’
B’
1
2
3
A
CA
C
C
C
B
B
B
其中三棱锥1、2的底面积SA'AB SA'B'B , 高也相等;
三棱锥2、3的底面积SB'BC SB'C 'C , 高也相等;
因20此19/9三/22 个三棱锥的体积相等,V1 V2 V3
1 3
Sh.13
经探究得知,棱锥(圆锥)是同底等高的棱柱(圆柱) 的 1,即棱锥(圆锥)的体积:
3
V 1 Sh(其中S为底面面积,h为高)
3
由此可知,棱柱与圆柱的体积公式类似,都是底面面积乘高;棱 锥与圆锥的体积公式类似,都是等于底面面积乘高的 .1
3
2019/9/22
14
对于任意一个底面积为S,高为h的锥体
组成的矩形(如图),底边为直四棱柱的底面周长
1
2
2
5
1
c 1 2 2 5 5 5,
D1
C1
可知直四棱柱的侧面积为
A1
B1
S侧 cl 5 5.
1 2D
2
C
两个底面面积为
S底
=2
1
2
2
2=6.
A
1
B
故2其019全/9/22面积为:11 5 .
4
练习1 . 若一个圆柱的侧面展开图是一个正方形,则
圆锥的侧面积展开图----扇形的圆心角为_1_8_0_ 度
解:设圆锥的底面圆半径为 由r 题意 S全 3S底
A’
C’ A’
A’
A’
C’
B’
B’
B’
1
2
3
A
CA
C
C
C
B
B
B
其中三棱锥1、2的底面积SA'AB SA'B'B , 高也相等;
三棱锥2、3的底面积SB'BC SB'C 'C , 高也相等;
因20此19/9三/22 个三棱锥的体积相等,V1 V2 V3
1 3
Sh.13
经探究得知,棱锥(圆锥)是同底等高的棱柱(圆柱) 的 1,即棱锥(圆锥)的体积:
3
V 1 Sh(其中S为底面面积,h为高)
3
由此可知,棱柱与圆柱的体积公式类似,都是底面面积乘高;棱 锥与圆锥的体积公式类似,都是等于底面面积乘高的 .1
3
2019/9/22
14
对于任意一个底面积为S,高为h的锥体
组成的矩形(如图),底边为直四棱柱的底面周长
1
2
2
5
1
c 1 2 2 5 5 5,
D1
C1
可知直四棱柱的侧面积为
A1
B1
S侧 cl 5 5.
1 2D
2
C
两个底面面积为
S底
=2
1
2
2
2=6.
A
1
B
故2其019全/9/22面积为:11 5 .
4
练习1 . 若一个圆柱的侧面展开图是一个正方形,则
圆锥的侧面积展开图----扇形的圆心角为_1_8_0_ 度
解:设圆锥的底面圆半径为 由r 题意 S全 3S底
空间几何体的表面积和体积课件-ppt
解答: V≈2956(mm3)=2.956
(cm3)
5.8×1000÷7.8×2.956
≈252(个)
1.3.2
球的体积和表面积
球
球的表面积
球的体积
球面距离
球的体积和表面积
设球的半径为R,则有体积公式和表面积公式
V 4 R3
A
3
R
O
S 4R2
B
H h
S1
R
4 3
R3
V球
1 3
4 3
R3
,V柱
R2
2R
2 R3
2
V球 3 V柱
S球 4 R2 , S 圆柱侧 =2 R 2R 4 R2
S球 S圆柱侧
球面距离
球面距离 即球面上两点间的最短距离, 是指经过这两点和球心的大圆的劣 弧的长度.
球心O
O
B
A
B
大圆劣弧的圆心角为α弧
度,半径为R,则弧长为
解:由圆台的表面积公式得一个花
盆外壁的表面积
20
S [(15)2 15 15 20 15] (1.5)2
22 2
2
1000(cm 2 ) 0.1(m 2 )
15
所以涂100个花盆需油漆:
0.1100100=1000(毫升).
空间几何体的体积
体积:几何体所占空间的大小
棱柱的表面积=2 底面积+侧面积 侧面积是各个侧面面积之和
棱锥的表面积=底面积+侧面积
棱台的表面积=上底面积+下底面积+侧面积
例1.已知棱长为a,各面均为等边三角形的四面体 S-ABC,求它的表面积 .
(cm3)
5.8×1000÷7.8×2.956
≈252(个)
1.3.2
球的体积和表面积
球
球的表面积
球的体积
球面距离
球的体积和表面积
设球的半径为R,则有体积公式和表面积公式
V 4 R3
A
3
R
O
S 4R2
B
H h
S1
R
4 3
R3
V球
1 3
4 3
R3
,V柱
R2
2R
2 R3
2
V球 3 V柱
S球 4 R2 , S 圆柱侧 =2 R 2R 4 R2
S球 S圆柱侧
球面距离
球面距离 即球面上两点间的最短距离, 是指经过这两点和球心的大圆的劣 弧的长度.
球心O
O
B
A
B
大圆劣弧的圆心角为α弧
度,半径为R,则弧长为
解:由圆台的表面积公式得一个花
盆外壁的表面积
20
S [(15)2 15 15 20 15] (1.5)2
22 2
2
1000(cm 2 ) 0.1(m 2 )
15
所以涂100个花盆需油漆:
0.1100100=1000(毫升).
空间几何体的体积
体积:几何体所占空间的大小
棱柱的表面积=2 底面积+侧面积 侧面积是各个侧面面积之和
棱锥的表面积=底面积+侧面积
棱台的表面积=上底面积+下底面积+侧面积
例1.已知棱长为a,各面均为等边三角形的四面体 S-ABC,求它的表面积 .
高考数学空间几何体及其表面积、体积ppt课件
21
2.(多选)下列命题,正确的有( )
A.棱柱的侧棱都相等,侧面都是全等的平行四边形
√B.若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直 √C.在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直
四棱柱
√D.存在每个面都是直角三角形的四面体
上一页
返回导航
下一页
第八章 立体几何与空间向量
22
解析:A 不正确,根据棱柱的定义,棱柱的各个侧面都是平行 四边形,但不一定全等;B 正确,若三棱锥的三条侧棱两两垂 直,则三个侧面构成的三个平面的二面角都是直二面角;C 正 确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;D 正确, 如图,正方体 ABCD-A1B1C1D1 中的三棱锥 C1ABC,四个面都是直角三角形.
上一页
返回导航
下一页
第八章 立体几何与空间向量
32
平面图形与其直观图的关系
(1)在斜二测画法中,要确定关键点及关键线段.平行于 x 轴的线段平行性不
变,长度不变;平行于 y 轴的线段平行性不变,长度减半.
(2)按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关
系:S
= 直观图
2 4S
原图形.
第八章 立体几何与空间向量
11
3.正方体与球的切、接常用结论 正方体的棱长为 a,球的半径为 R, (1)若球为正方体的外接球,则 2R= 3a; (2)若球为正方体的内切球,则 2R=a; (3)若球与正方体的各棱相切,则 2R= 2a.
上一页
返回导航
下一页
第八章 立体几何与空间向量
12
常见误区 1.求组合体的表面积时,组合体的衔接部分的面积问题易出错. 2.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析 图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的 截面图.
《空间几何体的体积》课件
立方体的体积公式为 V = 边 长³;圆柱体的体积公式为 V = πr²h;球体的体积公式为 V = (4/3)πr³。
参考文献
• 张宇高等数学教材 • 数学分析习题集
圆锥体
பைடு நூலகம்
圆锥体的体积可以通过公式 V = (1/3)πr²h 来计算。
2
球体
球体的体积可以通过公式 V = (4/3)πr³ 来计算。
总结
定义
空间几何体是三维空间中的 实体物体,具有长度、宽度 和高度。
计算方法
空间几何体的体积可以通过 直接计算公式、剖法计算公 式或定积分计算公式来获得。
常见空间几何体体 积公式
定积分计算公式
某些几何体的体积计算需要使用定积分计算公式,比如球体。
常见空间几何体的体积计算
1
立方体
立方体的体积可以通过公式 V = 边长³来计算。
2
正方体
正方体的体积可以通过公式 V = 边长³来计算。
3
圆柱体
圆柱体的体积可以通过公式 V = πr²h 来计算。
常见空间几何体的体积计算(续)
1
《空间几何体的体积》PPT课 件
什么是空间几何体?
在数学中,空间几何体是三维空间中的实体物体,具有长度、宽度和高度。常见的空间几何体包括:立 方体、正方体、圆柱体、圆锥体和球体。
如何计算空间几何体的体积?
直接计算公式
某些几何体可以通过直接计算公式来获得体积,如立方体和正方体。
剖法计算公式
某些几何体可以通过剖法计算公式来获得体积,比如圆柱体和圆锥体。
参考文献
• 张宇高等数学教材 • 数学分析习题集
圆锥体
பைடு நூலகம்
圆锥体的体积可以通过公式 V = (1/3)πr²h 来计算。
2
球体
球体的体积可以通过公式 V = (4/3)πr³ 来计算。
总结
定义
空间几何体是三维空间中的 实体物体,具有长度、宽度 和高度。
计算方法
空间几何体的体积可以通过 直接计算公式、剖法计算公 式或定积分计算公式来获得。
常见空间几何体体 积公式
定积分计算公式
某些几何体的体积计算需要使用定积分计算公式,比如球体。
常见空间几何体的体积计算
1
立方体
立方体的体积可以通过公式 V = 边长³来计算。
2
正方体
正方体的体积可以通过公式 V = 边长³来计算。
3
圆柱体
圆柱体的体积可以通过公式 V = πr²h 来计算。
常见空间几何体的体积计算(续)
1
《空间几何体的体积》PPT课 件
什么是空间几何体?
在数学中,空间几何体是三维空间中的实体物体,具有长度、宽度和高度。常见的空间几何体包括:立 方体、正方体、圆柱体、圆锥体和球体。
如何计算空间几何体的体积?
直接计算公式
某些几何体可以通过直接计算公式来获得体积,如立方体和正方体。
剖法计算公式
某些几何体可以通过剖法计算公式来获得体积,比如圆柱体和圆锥体。
空间几何体的表面积和体积教学ppt课件
2. 求锥体的体积,要选择适当的底面和高,然后应用公
式v=3 Sh进行计算即可.常用方法为:割补法和等体 积变换法:
(1)割补法:求一个几何体的体积可以将这个几何体分 割成几个柱体、锥体,分别求出锥体和柱体的体积, 从而得出几何体的体积.
(2)等体积变换法:利用三棱锥的任一个面可作为三棱锥 的底面. ① 求体积时,可选择容易计算的方式来计算; ② 利用“等积性”可求"点到面的距离".
5.已知一个几何体的三视图如图所示,则此几何体的体积 是
正视图
侧视图
俯视图
解析: 此几何体为一圆锥与圆柱的组合体. 圆柱底面半径为r=a, 高为h₁=2a, 圆锥底面半径为r=a, 高为h₂=a . 故组合体体积为V=πr²h₁+
答案:
慎
KAODIAN
TUPO
JIEJIE
GAO
考点一
多面体的表面积
则三棱锥D-ABC 的体积为
()
A.
B.
C. a3
D.
解析:设正方形ABCD的对角线AC、BD 相交于点E, 沿AC折起后依题意得,当
BD=a 时,BE⊥DE, 所以DE⊥平面ABC, 于是三棱锥D-ABC 的高为DE=
a, 所以三棱锥D-ABC 的体积
答案: D
4.若棱长为3的正方体的顶点都在同一球面上,则该球 的表面积为 解析: 正方体的体对角线为球的直径. 答案: 27π
2.计算柱体、锥体、台体的体积关键是根据条件找出相应 的底面积和高,要充分利用多面体的截面及旋转体的轴 截面,将空间问题转化为平面问题.
例 3 如图所示,半径为R的半圆 内 的阴影部分以直径AB 所在直线为轴,
旋转一周得到一几何体,求该几何
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
栏 目 链 接
=13(42+82+ 42×82)×3
=112 (cm3).
球体的体积
三个球的半径之比是1:2:3,求证:最大球的体积
等于其他两个球体积和的三倍.
栏 目
分析:由三个球的半径之比为1:2:3,可设三个球
链 接
半径分别为r、2r和3r,则三个球的体积都可以表示成
r的代数式,然后再研究它们体积的数量关系.
个三棱锥A1ABC和CA1B1C1后剩余的几何体,分
栏
别求几何体的体积,然后相比即可.
目 链
接
解析:设棱台的高为 h,S△ABC=S,则 S△A1B1C1=4S.
∴VA1ABC=13S△ABC·h=13Sh,
VCA1B1C1=31S△A1B1C1·h=34Sh.
又 V 台=13h(S+4S+2S)=73Sh,
栏 目
链
∴VBA1B1C=V 台-VA1ABC-VCA1B1C1
接
=37Sh-S3h-4S3h
=32Sh.
∴体积比为 1:2:4.
答案:1:2:4
规律总结:(1)求台体体积的常用方法有三种:一是利
用台体的体积公式来求解,这就需要知道台体的上、
下底面积和高;二是抓住台体是由锥体截割而来的这
一特征,把它还原成锥体,利用锥体体积公式来求其
台体的体积
三棱台ABCA1B1C1中,AB:A1B1=1:2,
栏
目
则三棱锥A1ABC,BA1B1C,CA1B1C1的体
链 接
积之比为________.
分析:如右图,三棱锥A1ABC的顶点看作A1,底
面看作ABC;三棱锥CA1B1C1的顶点看作C,底面
看作A1B1C1;三棱锥BA1B1C可看作棱台截去两
栏 目 链 接
r22=R2-x2且πr22=π(R2-x2)=8π,
r12=R2-(x+1)2且πr12=π[R2-(x+1)2]=5π,
于是π(R2-x2)-π[R2-(x+1)2]=8π-5π,
栏 目
链
即R2-x2-R2+x2+2x+1=3,∴2x=2,即x=1. 接
目
握球的体积公式,它可以想象成以球的半径为
链
接
高,球面为底面的圆锥.在求球的体积时,其
关键是求球的半径.
►变式训练 3.一平面截一球得直径是6 cm的圆面,球心到这 个平面的距离是4 cm,则该球的体积是________.
解析:设球的半径为R,则球心与截面圆的圆心的
栏 目
链
连线与截面圆垂直.∴42+32=R2,R=5.
接
∴V 球=43πR3=34π·53=5003π (cm3). 答案:5003π cm3
球的表面积
已知球的两平行截面的面积分别为5π和8π,它们位
于球心的同一侧,且距离为1,求这个球的表面
栏 目
链
积.
接
分析:要求球的表面积,只需求出球的半径,因此 要抓住球的轴截面(过球的直径的截面).
解析:如图所示,设以r1为半径的截面面积为5π, 以r2为半径的截面面积为8π,O1O2=1,球的半 径为R,OO2=x,那么可得下列关系式:
栏 目
相应台体的体积;三是利用割补法来求其体积(如本
链 接
例).
(2)三棱柱、三棱台都可以分割成三个三棱锥,分割后
可由锥体的体积求柱体和台体的体积,在立体几何中,
割补法是重要的思想方法.
►变式训练 2.已知一正四棱台的上底边长为4 cm,下底边长为 8 cm,高为3 cm,求其体积.
解析:V=31(S 上+S 下+ S上·S下)h
棱锥的任意一个面都可以作为底面,所以此题可把 A 看做顶点,面
PBC 作为底面求解.
栏
目
解析:由于
PA⊥PB
且
PA⊥PC,而
PB
与
PC
相交于点
P,所以
链 接
PA 垂直平面 PBC,即 PA 为三棱锥 APBC 的高.故 V=31Sh=13S△
PBC·PA=13×12×3×4×2=4.
规律总结:锥体的高实质上是与锥体底面垂直的线段, 由前面知识可知,只要一条直线与一个平面的两条相 交直线垂直,则它就与这个平面垂直. 本例中,不是先求出以ABC为底面的三棱锥的高,而 是把它转化为三棱锥APBC的高.这种方法的依据是: 三棱锥又称为四面体,它的每一个面都可当做底面来 处理.这一方法叫做体积转移法(或称等积法),随着 知识的增多,它的应用越来越广,因此必须熟练掌 握.
证明:∵三个球半径之比为 1:2:3,于是可设三个球的半径分
别为 r、2r 和 3r.
则最大球的体积为4π(33r)3=36πr3.
栏 目 链
接
其他两个球的体积之和为4π3r3+4π(32r)3=12πr3.
∴最大球的体积等于其他两个球的体积之和的三倍.
规律总结:解决球的体积问题,首先要熟练掌
栏
1.3 空间几何体的表面积和体 积
1.3.2 空间几何体的体积
课标点击 栏 目 链 接
1.了解柱、锥、台、球的体积的计算方法.
2.能用柱、锥、台、球的体积公式解决相关问 题.
典例剖析 栏 目 链 接
柱体的体积
如图,一个正三棱柱形容器中盛有水,且侧棱
AA1=8.若侧面AA1B1B水平放置时,液面恰好
►变式训练 1.已知三角形ABC的边长分别是AC=3,BC=4, AB=5,以AB所在直线为轴,将此三角形旋转一周, 求所得几何体的体积.
栏 目 链
解析:∵△ABC 为直角三角形,且 AB 为斜边,∴绕 AB 边旋转 接
一周,所得几何体为两个同底的圆锥,且圆锥的底面半径 R=152.
∴V 锥=13·AB·πR2=31×5×π×1522=11454π.
规律总结:有些几何体虽是柱体但由于放置的 栏
目
位置不同不易求体积,应考虑转换位置回归到 链
接
柱体解决问题.
锥体的体积
如右下图所示,三棱锥的顶点为P,PA、PB、PC
=2,PB=3,PC=4,求三棱锥PABC的体积V.
栏 目
链
接
分析:三棱锥的体积 V=31Sh,其中 S 为底面积,h 为高,而三
栏
过AC,BC,A1C1,B1C1的中点.当底面ABC
目 链
水平放置时,液面高为多少?
接
分析:不妨设正三棱柱的底面△ABC的面积为S,则 可算出水的体积,由此当底面水平放置时就不难求 出其高度了.
栏 目 链
解析:设△ABC 的面积为 S ,则三棱柱△ABCA1B1C1 的体积 接
为 8S,∴水的体积为43×8S=6S.当底面水平放置时,设液面高度为 h′, 则 h′S=6S,∴h′=6.