γ射线的能谱测量和吸收测定报告

合集下载

实验报告γ射线能谱测定及γ射线的吸收与物质吸收系数μ的测定

实验报告γ射线能谱测定及γ射线的吸收与物质吸收系数μ的测定

实验报告γ射线能谱测定及γ射线的吸收与物质吸收系数μ的测定γ射线能谱测定以及γ射线的吸收与物质吸收系数μ的测定实验报告摘要原子核的能级跃迁可以产生伽马射线,通过测量γ射线的能量分布,可确定原子核激发态的能级,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。

同时通过学习了解伽马射线与物质相互作用的特性,测定窄束γ射线在不同物质中的吸收系数μ。

本实验通过使用伽马闪烁谱仪测定不同的放射源的γ射线能谱;根据当γ光子穿过吸收物质时,通过与物质原子发生光电效应、康普顿效应和电子对效应损失能量。

闪烁体分子电离和激发,退激时发出大量光子,闪烁光子入射到光阴极上,光电效应产生光电子,电子会在阳极负载上建立起电信号等原理,对γ射线进行研究。

γ射线,又称γ粒子流,是原子核能级跃迁蜕变时释放出的射线,波长短于0.2埃的电磁波,具有很强的穿透性。

本实验将γ射线的次级电子按不同能量分别进行强度测量,通过电子学仪器得到它的能谱图。

实验中使用NaI单晶γ闪烁谱仪对γ的能谱进行测定。

最后得到γ射线在160道数及320道数位置的一些相关数据。

在这些位置它的数量和能量的值都比较合适,有一定数量,又有一定的穿透能力。

实验中将了解NaI(Tl)单晶γ闪烁谱仪是如何测量γ射线的能谱,NaI(Tl)单晶γ闪烁谱仪的结构、原理与特性;掌握NaI(Tl)单晶γ闪烁谱仪整套装置的操作、调整和使用方法。

并通过对137Cs和60Co 放射源γ能谱的测量,加深对γ射线与物质相互作用的理解以及通过该实验了解多道脉冲幅度分析器在NaI(Tl)单晶γ谱测量中的数据采集及其基本功能。

在第一个实验的基础上,采用NaI闪烁谱仪测全能峰的方法测量137Cs的γ射线在铅、铝材料中的吸收系数。

并且通过实验对核试验安全防护的重要性有初步的认识。

关键词γ射线吸收系数μ60Co、137Cs放射源能谱NaI单晶γ闪烁谱仪多道分析器引言γ射线首先由法国科学家P.V.维拉德发现,γ射线是光子,是由原子核的衰变产生的,当原子核从激发态跃迁到较低能态或基态时,就有可能辐射出γ射线。

γ射线的能谱测量和吸收测定_实验报告

γ射线的能谱测量和吸收测定_实验报告

γ射线能谱的测量【摘要】某些物质的原子核能够发生衰变,放出我们肉眼看不见也感觉不到的射线,γ射线产生的原因正是由于原子核的能级跃迁。

我们通过测量γ射线的能量分布,可确定原子核激发态的能级,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。

因此本实验通过使用γ闪烁谱仪测定不同的放射源的γ射线能谱。

同时学习和掌握γ射线与物质相互作用的特性,并且测定窄束γ射线在不同物质中的吸收系数μ。

【关键词】γ射线能谱γ闪烁谱仪【引言】从1896年的法国科学家贝可勒尔发现放射性现象开始,经过居里夫人等一系列科学家对一些新放射性元素的发现及其性质进行研究的杰出工作后,人类便进入了对原子核能研究、利用的时代。

而原子核衰变能放出α、β、γ三种射线,这些射线可以通过仪器精确测量。

本次实验主要研究γ射线,通过对γ射线谱的研究可了解核的能级结构。

γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。

人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡。

因此本次实验研究了不同材料对于γ射线的吸收情况这是非常具有实际意义的,比如在居民区制造防空洞的时候可以使用一定厚度的抗辐射材料确保安全,而且在核电站、军事防护地以及放射源存放处等地方我们都有必要使用防辐射材料。

γ射线与物质的相互作用主要是光电效应、康普顿散射和正、负电子对产生这三种过程,如下图所示。

本实验主要研究的是窄束γ射线在物质中的吸收规律。

所谓窄束γ射线是指不包括散射成份的射线束,仅由未经相互作用或称为未经碰撞的光子所组成。

窄束γ射线再穿过物质时,由于上述三种效应,其强度就会减弱,这种现象称为γ射线的吸收。

γ射线强度随物质厚度的衰减服从指数规律。

本次实验仪器如下:NaI 闪烁谱仪,γ射线源137Cs 和60Co ,高压电源放大器,Pb,Al 吸收片各四片,计算机NaI(TI)闪烁探测器的结构如下图所示。

2010γ射线能谱的测量以及物质吸收系数的μ测定 预习报告

2010γ射线能谱的测量以及物质吸收系数的μ测定 预习报告

γ射线能谱的测量以及物质吸收系数的μ测定摘要本实验通过使用NaI(T1)γ单晶闪烁谱仪来测量γ能谱,并求出各项指标,分析谱形。

了解单道脉冲分析器和多道脉冲分析器的基本工作原理。

了解γ射线与带电体发生相互作用以及产生的三种主要效应。

了解窄束γ射线在物质中的吸收规律及测量其在不同物质中的吸收系数。

关键词NaI(T1)γ单晶闪烁谱仪单道/多道脉冲分析器窄束γ射线的吸收系数引言γ射线是光子,是由原子核的衰变产生的,当原子核从激发态跃迁到较低能态或基态是,就有可能辐射出γ射线。

本实验将γ射线的次级电子按不同能量分别进行强度测量,从而得到γ射线强度按能量的分布,即能谱。

测量能谱的装置称为能谱仪,简称谱仪。

本实验采用NaI(T1)γ单晶闪烁谱仪。

γ辐射时处于激发态原子核损失能量的最显著方式,γ跃迁可定义为一个核有激发态到脚底的激发态、而原子序数Z和质数A均保持不变的退激发过程。

γ射线会与被束缚在原子中的电子,自由电子,库仑场和核子发生相互作用。

这些相互作用可以导致下列三种效应:1、光子的完全吸收;2、弹性散射;3、非弹性散射。

但从约10KeV到约10MeV范围内,主要为:低能时以光电效应为主;1MeV左右时主要为康普顿效应;超过1.02MeV是电子对的生成成为可能。

正文一、γ射线能谱的测量原子核发生裂变时,会发出α、β、γ射线,核反应会产生各种离子。

其对应的探测器大致可分为两种,信号型和径迹型两种。

其中闪烁型探测器即为信号型中的一种。

本实验采用NaI(TI) 闪烁探测。

其利用核辐射与某些物质反应相互作用会使其电离、激发而发射荧光的原理工作。

当放射源发出的C射线进入闪烁体时, C光子即与闪烁体中的原子、分子及晶体系统发生相互作用(如光电效应, 康普顿散射和电子对效应等)。

相互作用的结果产生次级电子, C光子的能量转化为次级电子的动能。

探头的闪烁体是荧光物质,它被次级电子激发而发出荧光, 这些光子射向光电倍增管的光阴极。

γ射线能谱测量

γ射线能谱测量

γ射线能谱测量——物理0805 乔英杰u200810200王振宇u200810256实验背景:19世纪下半叶,物理学家对X射线和阴极射线进行了大量的研究,导致了放射性、电子以及α、β、γ射线的发现,这些射线的发现同时也为原子科学的发展奠定了基础。

自20世纪进入原子能时代,科学家对射线进行了更进一步的研究,射线在科学技术中开始渗透,根据γ射线具有波长短、能量高、穿透能力强和对细胞有很强的杀伤力的特性,γ射线的应用也成了一门新兴产业,现在它已经应用到了国民经济和社会生活的各个领域,特别是在工农业、医疗卫生和生物学方面取得了巨大的成果和效益,为科学技术和人类历史的进程起了巨大而深刻的影响。

目前γ射线的应用正在蓬勃快速的发展,应用领域仍在不断拓宽,它以低能耗、无污染、无残留、安全卫生等优点,深受众多行业的青睐,可是,其危害性也不容忽视。

我们需要对γ射线深入了解,才能在降低其危害性的同时让其更好的为我们服务。

本实验采用闪烁探测器和多道脉冲幅度分析器对γ射线的能量分布谱进行测量,以便我们了解用闪烁探测器测量γ射线的方法,学会分析能谱的特征及其影响因素。

实验原理:1、闪烁探测器工作原理:闪烁探测器探测γ射线时,γ光子与物质作用不直接产生电离,而是发生光电效应、康普顿效应、电子对效应,闪烁体的原子、分子、电离或激发的作用来自三种效应所产生的次级电子。

这样,我们就得到了对应于γ射线能量强度的电信号。

之后,光电倍增管将所得电信号放大(倍增管阴极与阳极之间有十余个打那级,每个打那级均发生电子的倍增现象),其阳极最后收集电子的电极,与射级跟随器电路相连,使收集到的电子流以电压脉冲的方式输出。

2、γ闪烁能谱仪的工作原理:如下图(1)所示,整个仪器的信号传递大致是:由γ射线放射源放出的γ射线被闪烁探测器接受并转换为电压脉冲,前置放大器和脉冲放大器对探测器输出的电压脉冲进行放大,最后这些脉冲被多道分析器采集、处理。

多道分析器的到是指在分析器中存在的记录不同高度脉冲的位置。

能谱

能谱

γ射线能谱的测量与吸收系数的测定吕永平 浙江师范大学数理与信息工程学院物理041班摘 要:我们做过能谱分析实验,其中我们研究了γ射线的能量和强度,知道了射线的能量很大的,既然γ射线具有很大的能量和很强的穿透能力,那么当γ射线通过一定物质时,它的能量会不会减少呢?同的物质对γ射线的吸收彼此之间有什么关系?本实验验证γ射线通过物质时其强度减弱遵循指数规律,测量γ射线在不同厚度的铅、铝中的吸收系数。

通过对γ射线的吸收特性,分析与物质的吸收系数与物质的密度,厚度等因素有关。

关键词:γ射线;吸收系数引 言:不同物质对同种射线的吸收系数是不同的,地质学上利用这个性质,实 现矿物质的快速精确勘探,医学上利用癌细胞与正常细胞的不同的吸收特性,来帮助医生诊断癌症。

通过改变吸收物的厚度,控制射线的强度,得到所需的强度。

强度弱射线的应用于杀菌,强度强的射线诱导基因突变育种等。

因此对物质吸收系数的测量的技术有着十分重要的意义现在社会γ-射线技术应用于很多领域,如医学、天文学、生物学、军事等。

γ射线的威力主要表现在以下两个方面:1.γ射线的能量大。

2.γ射线的穿透本领极强。

实验方案:实验目的:1.了解闪烁探测器的结构,原理。

2.掌握NaI 单晶γ闪烁谱仪的几个性能指标和测试方法。

3.了解核电子学仪器的笋据采集,记录方法和数据处理原理。

4.了解γ射线与物质相互作用的特性。

5.了解窄束γ射线在物质中的吸收规律及测量在不同物质中的吸收系数。

实验装置:γ放射源137Cs 和60Co ; 200m μAl 窗(1)NaI T 闪烁探头; 高压电源、放大器、多道脉冲幅度分析器; Pb ,Al 吸收片若干。

实验步骤:1, 连接好实验仪器线路,经老师检查同意后接通电源。

2, 取出放射源Cs 和Co 。

打开电脑预热,准备实验。

3, 了解电脑上软件的使用方法,并了解一些有关物理量的物理意义。

4, 开机预热后,选择合适的工作电压使探头的分辨率和线性都有较好。

伽马γ能谱测量分析近代物理实验报告

伽马γ能谱测量分析近代物理实验报告

γ能谱的测量中山大学 2013级材料物理供参(吓)考(你),此报告真心累数据处理注:本实验所有数据来自文件“蝙蝠侠”一、改变高压,保持其他条件不变(通道数1024)观察137Cs能谱变化图1 改变高压,137Cs能谱变化曲线图分析:1.137Cs的γ能谱应该呈现三个峰和一个平台的连续分布,从通道低到高依次为X射线峰、反散射峰、康普顿效应贡献的平台以及反映γ能量的全能峰。

高压越大,统计越明显。

2.随着高压增大,全能峰向右移动,并且高度下降、宽度增大。

因为闪烁谱仪能量分辨率不变,高压增大,道址增大,∆V V又不变,则∆V大,故宽度变大,高道址的粒子数减少,高度下降。

二、改变通道数,保持其他条件不变(高压500V)观察137Cs能谱变化分析:(见图2)1.由于通道数1500后粒子数很少,能谱曲线趋于横轴,故横坐标只取到1500,方便观察。

2.道数越小,全能峰对应的道址越小,全能峰也越高、越瘦。

因为道数越小,则每个道址包含的能量间隔越大,统计的粒子个数就越多,从而使全能峰越高。

三、60Co的γ能谱曲线图(500V,通道数2014)图3 60Co的γ能谱曲线图分析:1.因为全能峰可以表示γ射线的能量,60Co两个峰对应的射线能量在图中标出,分别为1173keV、1333keV。

2.为探究能谱仪的效率曲线,需要知道每个核素测量所得能谱图的全能峰面积。

计算方法如下:全能峰面积即图中峰与底部线段所围成的面积,可用能谱曲线下的面积减去线段两端与横轴所围成的梯形面积,而能谱曲线下的面积可用线段之间所有道址对应的粒子数的加和来表示。

加和结果通过matlab进行求和而得。

虽然计算方式较为粗糙,但基本符合。

对于左侧全能峰:S(E)1=7287-(27+60)*(626-551)/2=3981对于右侧全能峰:S(E)2=5824-(27+13)*(726-626)/2=3824四、137Cs的γ能谱曲线图(500V,通道数2014)图4 137Cs的γ能谱曲线图分析:1.全能峰面积为:S(E)=9916-(13+2)*90/2=92412.137Cs的γ能谱呈现三个峰和一个平台的连续分布,A为全能峰,这一幅度的脉冲是0.662MeV的γ光子与闪烁体发生光电效应产生的。

γ射线能谱测量

γ射线能谱测量

γ射线能谱测量γ 射线能谱测量中的物质变化过程是:γ 射线(光子)→ 次级电子(三种相互作用)→ 荧光(光子,探头的闪烁体发出)→ 光电子(在打拿极上产生并倍增)→ 光电流打拿极上光电子激发更多次级电子,打拿极上所加电压对电子加速,使形成更多的电子,从而形成足够大的较稳定的可以被探测到的光电流。

电流与极间电压应该成正比关系,计数不能反映初始的电子产生数目,但能反映其统计规律,计数应该是由光电流的大小与单个电子的电量的比值所得到的。

示波器的幅度可以反映射线粒子的能量大小。

数据处理与结果○1 0(6.98,127.6) B (7.67,127.5) C (7.42,255.21)7.42 V U 0.69 V 0.69 W=100%8.97%7.67O A U U U =∆=∆⨯== ○20截距=-0.04473 G=斜率=0.1962线性方程 E(x )0.19620.04473p O p p E E Gx x ==+=- 实验分析○1 示波器上的波形有一波幅最大的曲线,下面的弥漫区域还有小的波形。

这是因为在闪烁体中发生了光电效应,康普顿效应,电子对效应,这三种效应中,光电效应最强,产生的次级电子最多,对应着波幅最大的波形,下面的小波形则是由康普顿效应造成的,其强度要弱于光电效应。

○2 γ射线是单能射线,其对应的能谱应该是单一的分立的,但是我们测得的能谱却是连续的。

这是因为三种效应激发出的电子的能量是不一样的,加上闪烁体分辨能力低,还有其它电子学的干扰存在,因此闪烁体谱仪测量单能射线不可能就一单能峰值。

○3实验中用示波器观察波形的时候,为什么要将光电峰置于8伏左右?我猜想是:示波器的波幅实际上是反应的电流的强弱,光电峰的强度应该是在8伏左右;电子在经过单道分析器的时候,是需经过选择的,只有能量介于某一道宽内的时候才能通过,在设置好道宽后,通过调节阈值就可以测得不同能量的电子了,表现出不同的光电流强度和计数率的变化,也可以解释为什么我们测得的是一条连续的曲线了。

γ能谱及γ射线的吸收实验报告(河南农业大学)

γ能谱及γ射线的吸收实验报告(河南农业大学)

γ能谱及γ射线的吸收实验报告学校:河南农业大学班级:能源与动力工程19-2姓名:刘轩志学号:1904116046指导教师:谭明实验时间:2020-06-29一、实验简介根据原子核结构理论,原子核能级属于分立能级。

当处于激发态上的核跃迁到低能级上时,就发射γ射线。

放出的光量子能量,此处h 为普朗克常数,ν为γ光子的频率。

原子核衰变放出的γ射线的能量反映了核能级差,且能量大小通常为特征能量,因此通过测量γ射线强度按能量的分布即γ射线能谱,可以用于研究核能级、核衰变纲图等,在放射性分析、同位素应用及鉴定核素等领域有重要的意义。

当γ射线穿过物质时,可能通过光电效应、康普顿效应和电子对效应(当E γ>1.02MeV )而损失能量,强度逐渐减弱,这种现象称为物质对γ射线的吸收。

目前物质对γ射线的吸收规律广泛应用于工业、科研、医疗、资源勘探、环境保护许多领域。

闪烁γ能谱仪具有实用范围广、探测效率高、时间分辨小、价格低廉等优点,是测量γ射线能谱最常用的工具。

本实验的目的是学习闪烁γ谱仪的工作原理和实验方法,研究吸收片对γ射线的吸收规律。

二、实验原理1.γ射线与物质的相互作用γ射线与物质原子之间的相互作用主要有三种方式:光电效应、康普顿散射、电子对效应。

(1)光电效应当能量的入射γ光子与物质中原子的束缚电子相互作用时,光子可以把全部能量转移给某个束缚电子,使电子脱离原子束缚而发射出去,光子本身消失,发射出去的电子称为光电子,这种过程称为光电效应.发射出光电子的动能:(1),为束缚电子所在壳层的结合能。

原子内层电子脱离原子后留下空位形成激发原子,其外部壳层的电子会填补空位并放出特征X 射线。

例如L 层电子跃迁到K 层,放出该原子的K 系特征X 射线。

(2)康普顿效应2E 1E 12E E hv −=γE i e B E E −=γi Bγ光子与自由静止的电子发生碰撞,而将一部分能量转移给电子,使电子成为反冲电子,γ光子被散射改变了原来的能量和方向。

γ射线能谱测量实验报告(共12页)

γ射线能谱测量实验报告(共12页)

γ射线能谱测量实验报告篇一:γ射线能谱的测量及γ射线的吸收γ射线能谱的测量及γ射线的吸收与物质吸收系数μ的测定【摘要】原子核从激发态跃迁到较低能级或基态跃迁能产生γ射线,实验,将γ射线的次级电子按不同能量分别进行强度测量,从而得到γ辐射强度按能量的分布。

并通过测量γ射线在不同物质中的吸收系数,了解γ射线在不同物质中的吸收规律。

【关键字】γ闪烁谱仪γ射线能谱物质吸收系数当今的世界,以对核技术进行了相当广泛的运用。

从1896年法国科学家A.H.Becquerel发现放射性现象开始,经过M.Curie一些新放射性元素的发现及其性质进行研究后,人类便进入了原子核科学时代。

在原子核发生衰变时,会发出α、β、γ射线,核反应时会产生各种粒子。

人们根据射线粒子与物质相互作用的规律,研制了各种各样的探测器。

这些探测器大致可以分为“信号型”和“径迹型”两大类。

径迹型探测器能给出粒子运动的径迹,有的还能测出粒子的速度、性质等,如核乳胶、固体径迹探测器、威尔逊云室、气泡室、多丝正比室等。

而信号型探测器根据工作物质和原理的不同,又可分为气体探测器、半导体探测器、闪烁探测器。

其中闪烁探测器的工作物质是有机或无机的晶体闪烁体,射线与闪烁体相互作用,会使其电离激发而发射荧光。

从闪烁体出来的光子与光电倍增管的光阴极发生光电效应而击出光电子,光电子在管中倍增,形成电子流,并在阳极负载上产生电信号。

如NaI(TI)单晶γ探测器。

γ射线是由原子核的衰变产生的,当原子核从激发态跃迁到较低能态或基态时,就有可能辐射出不同能量的γ射线。

人们已经对γ射线进行了很多研究,并在很多方面加以运用。

像利用γ射线杀菌,γ探伤仪等。

然而不恰当的使用γ射线也会对人类产生一定的危害。

γ射线的穿透力非常强,如果在使用过程中没有有效的防护,长时间被放射性元素照射的话可能发生细胞癌变。

在对γ射线进行了大量的研究后发现,按能量的不同,可以对其进行强度测量,从而得到γ辐射强度按能量的分布(能谱)。

实验1 γ射线能谱的测量实验报告

实验1  γ射线能谱的测量实验报告

γ射线能谱的测量光信息081 邵顺富 08620122摘要:本实验要求大家了解NaI(TI)闪烁探测器的结构,并对其工作原理有一定的认识。

γ射线射入闪烁体,通过光电效应、康普顿效应和电子对产生这三种效应,产生次级电子,再由这些次级电子去激发闪烁体发光。

所发之光被光电倍增管接收,经光电转换及电子倍增过程,最后从光电倍增管的阳极输出电脉冲。

分析、记录这些脉冲就能测定射线的强度和能量,从而得到γ射线的能谱。

关键词:闪烁探测器γ射线能谱引言:γ射线是原子核从激发态跃迁到较低能态时发射的波长很短的电磁辐射。

其能量由原子核跃迁前后的能级差来表示:γ射线与物质发生相互作用则产生次级电子或能量较低的射线,将γ射线的次级电子按不同能量分别进行强度测量,从而得到γ辐射强度按能量的分布,即为“γ能谱”。

本实验采用NaI(TI)单晶闪烁谱仪测量“γ能谱”。

研究γ射线的能谱对于放射性核素的应用和研究原子核的能级结构有很重要的意义。

闪烁探测器在科学技术的许多部门有着十分重要的应用,它的主要优点是:既能探测各种类型的带电粒子,又能探测中性粒子,既能对辐射强度进行测量,又能对辐射的能量进行分析,而且探测效率高(比G-M计数器高几十倍),分辨时间短(约10 秒)。

通过本实验,你将学习掌握一种测量射线能量的方法:用NaI(Tl)闪烁探测器测量γ能谱。

正文实验背景γ辐射是处于激发态原子核损失能量的最显著方式。

光子(γ射线)会与下列带电体发生相互作用:1)被束缚在原子中的电子;2)自由电子(单个电子);3)库仑场(核或电子的);4)核子(单个核子或整个核)。

这些类型的相互作用可以导致下列三种效应中的一种:1)光子的完全吸收;2)弹性散射;3)非弹性散射。

因此从理论上讲,γ射线可能的吸收和散射有12种过程,但在从约10KeV到约10MeV范围内,大部分相互作用产生下列过程中的一种:光电效应、康普顿效应、电子对。

实验目的1.了解闪烁探测器的结构、原理;2.掌握Nal(T1)单晶γ闪烁谱仪的几个性能指标和测试方法;3.了解和电子学仪器的数据采集、记录方法和数据处理原理;实验内容1.学会NaI(Tl)单晶γ闪烁谱仪整套装置的操作、调整和使用,调试一台谱仪至正常工作状态。

γ射线能谱分析试验报告

γ射线能谱分析试验报告

γ射线能谱分析试验一、预习报告实验名称:γ射线能谱分析试验.实验内容:1.学会Na(TI)单晶Y闪烁谱仪整套装置的操作.调整和使用.2.了解多道脉冲分析器在Na(TI)单晶Y闪烁谱仪测量中的数据采集及其基本功能.3.测量Na(TI)单晶Y闪烁谱仪的能量和线性.4.分析137C S单能Y射线谱仪.5. 测量Na(TI)单晶Y闪烁探测器的计数率随工作电压变化的关系曲线.实验目的:1.了解闪烁探测器的结构.原理.2.掌握Na(TI)单晶Y闪烁谱仪的几个性能指标和测量方法.3.了解核电子学仪器的数据采集.记录方法和数据处理原理.4.测量Na(TI)单晶Y闪烁探测器的坪曲线,确定合适的工作电压;实验仪器:Na(TI)单晶Y闪烁探头;微机多道Y(X)谱仪装置;Y放射源137C S一个.实验原理:1. 射线与物质的相互作用γ射线是原子核从激发态跃迁到低能态或基态时发射的波长很短的电磁辐射,研究γ射线的能谱对原子核的能级结构和放射性核素的应用等方面具有重要的意义。

γ射线与物质相互作用,可以有许多方式。

当γ射线的能量在30MeV 以下时,在所有相互作用方式中,最主要的三种,如图 1-1所示。

图1-1 γ射线与物质相互作用示意图(1)光电效应:入射γ粒子把能量全部转移给原子中的束缚电子,光子本身消失而把束缚电子打出来形成光电子这个过程称为光电效应。

由于束缚电子的电离能E i 一般远小于入射γ射线的能量E γ,所以光电子的动能近似等于入射γ射线的能量,即:E 光电 = E γ - E i ≈E γ (1)(2)康普顿散射:核外自由电子与入射γ射线发生康普顿散射。

根据动量守恒的要求,散射与入射只能发生在一个平面内。

设入射γ光子能量为hv ,散射光子能量为hv′,康普顿散射后散射光子能量与散射角θ的关系为:)cos 1(1θ-+='a hv v h(2)式中2c m hva e =,即为入射γ射线能量与电子静止质量m e所对应的能量之比。

γ射线能谱的测定实验报告

γ射线能谱的测定实验报告

γ射线能谱的测定【摘要】:本实验主要通过测量γ的能谱和采用NaI( Tl) 闪烁谱仪测全能峰的方法测量了137Cs 和60 Co 的γ射线在铅铜中吸收,对137Cs( 0. 661 MeV) 分别为1. 213、0. 642、0. 194 cm- 1, 与公认值相差均约1%; 对60Co 分别为0. 674、0. 481、0. 149 cm- 1 , 与公认值相差均在5%以内。

本实验就是利用探测器的输出脉冲幅度与入射粒子能量成正比的规律来测得能量与其强度的关系曲线。

通过对CS、CO能谱的测定,可以加深对γ射线能量与强度的关系,γ射线与物质相互作用的理解;可以进一步了解NaI(T )闪烁谱仪原理,特性与结构,掌握NaI(T )闪烁谱仪的使用方法以及鉴定谱仪的能量分辩率与线性。

【关键词】:γ射线、能谱、NaI(Tl)γ闪烁谱仪【引言】:γ跃迁可定义为一个核由激发态到较低的激发态, 而原子序数Z 和质量数A 均保持不变的退激发过程, 是激发核损失能量的最显著方式跃迁可定义为一个核由激发态到较低的激发态, 而原子序数Z 和质量数A 均保持不变的退激发过程, 是激发核损失能量的最显著方式。

闪烁探测器是利用某些物质在射线作用下会发光的特性来探5g射线的仪器。

它的主要优点是:既能探测各种类型的带电粒子,又能探测中性粒天既能测量粒子强度,又能测量粒子能氨并且探测效率高,分辨时间短。

它在核物理研究和放射性同位索的测量中得到广泛的应用。

本实验的目的是了解NaI(T1)闪烁谱仪的原理、特性与结构,掌捏NaI(T1)闪烁谱仪的使用方法,鉴定潜仪的能量分辨率和线性,并通过对于y射线能谱的测量,加深对y射线与物质相互作用规律的理解。

【实验方案】:实验原理原子核的衰变产生γ射线,不同能级间的衰变跃迁可以产生不同能量的γ射线,我们可以通过射线探测器对这些γ射线的能谱分析就可以推断出原子核的一些性质。

射线探测器的是根据射线与物质的相互作用规律研制的,可分为“信号型”和“径迹型”,本实验用的NaI(T1)单晶γ闪烁谱仪就是属于信号型。

r射线能谱实验报告

r射线能谱实验报告

实验报告 系 级 姓名 日期 No. 评分:实验题目:γ能谱及γ射线的吸收实验目的: 学习闪烁γ谱仪的工作原理和实验方法,研究吸收片对γ射线的吸收规律 实验原理:1.γ能谱的形状闪烁γ能谱仪可测得γ能谱的形状,下图所示是典型Cs 137的γ射线能谱图。

图的纵轴代表单位时间内的脉冲数目即射线强度,横轴代表脉冲幅度即反映粒子的能量值。

从能谱图上看,有几个较为明显的峰,光电峰e E ,又称全能峰,其能量就对应γ射线的能量γE 。

这是由于γ射线进入闪烁体后,由于光电效应产生光电子,能量关系见式(1),如果闪烁体大小合适,光电子停留在其中,可使光电子的全部能量被闪烁体吸收。

光电子逸出原子会留下空位,必然有外壳层上的电子跃入填充,同时放出能量i z B E =的X 射线,一般来说,闪烁体对低能X射线有很强的吸收作用,这样闪烁体就吸收了z e E E +的全部能量,所以光电峰的能量就代表γ射线的能量,对Cs 137,此能量为0.661Me V。

C E 即为康普顿边界,对应反冲电子的最大能量。

背散射峰b E 是由射线与闪烁体屏蔽层等物质发生反向散射后进入闪烁体内,形成的光电峰,一般峰很小。

2.谱仪的能量刻度和分辨率 (1)谱仪的能量刻度闪烁谱仪测得的γ射线能谱的形状及其各峰对应的能量值由核素的蜕变纲图所决定,是各核素的特征反映。

但测得的光电峰所对应的脉冲幅度(即峰值在横轴上所处的位置)是与工作条件有关系的。

如光电倍增管高压改变、线性放大器放大倍数不同等,都会改变各峰位在横轴上的位置,也即改变了能量轴的刻度。

因此,应用γ谱仪测定未知射线能谱时,必须先用已知能量的核素能谱来标定谱仪的能量刻度,即给出每道所对应的能量增值E。

例如选择Cs 137的光电峰γE =0.661Me V和Co 60的光电峰MeV E 17.11=γ、MeV E 33.12=γ等能量值,先分别测量两核素的γ能谱,得到光电峰所对应的多道分析器上的道址(若不用多道分析器,可给出各峰位所为应的单道分析器上的阈值)。

实验报告γ射线能谱测定及γ射线的吸收与物质吸收系数μ的测定

实验报告γ射线能谱测定及γ射线的吸收与物质吸收系数μ的测定

实验报告γ射线能谱测定及γ射线的吸收与物质吸收系数μ的测定实验目的:1.学习使用谱仪测定γ射线的能谱。

2.通过实验测定不同物质对γ射线的吸收比例,确定物质的吸收系数μ。

实验原理:1.γ射线能谱测定:γ射线是电磁波谱中能量较高的一种,具有较强的穿透力。

通过使用谱仪,可以测定γ射线的能量分布,也称为能谱。

2.γ射线的吸收与物质吸收系数μ的测定:当γ射线穿过物质时,会与物质中的原子相互作用,包括散射、吸收等过程。

吸收系数μ表示单位长度物质对γ射线的吸收能力,是一个与物质本身性质相关的参数。

实验步骤:1.连接γ射线源和能谱仪,打开仪器,并调整合适的工作电压和放大倍数。

2.调整谱仪下方的定位器,使得探测器能够垂直于γ射线的入射方向。

3.选择一种物质样品,如铅,将其放在射线路径上,并记录下γ射线的能谱。

4.移除铅样品,选择其他物质样品进行测量,如铝、铁等,依次记录下γ射线的能谱。

5.根据能谱中的峰值位置和峰值强度,分析γ射线经过不同物质时的吸收情况。

实验结果:1.γ射线能谱测定结果:通过测量,得到γ射线的能谱图,并标出不同能量区间的峰值。

2.γ射线的吸收与物质吸收系数μ的测定结果:根据能谱分析,得到不同物质对γ射线的吸收比例,计算出它们的吸收系数μ。

实验讨论:1.γ射线的能谱测定是否准确和完整。

2.不同物质对γ射线的吸收程度是否与预期一致。

3.吸收系数μ的大小是否符合物质的性质和密度等参数。

实验结论:1.γ射线能谱可以通过谱仪测定,并且能够分析出不同能量区间的峰值。

2.不同物质对γ射线的吸收比例不同,吸收系数μ也因此而有所差异。

3.本实验所测得的吸收系数μ结果应该与物质的性质和密度等参数相符合。

实验中可能存在的误差:1.谱仪的仪器误差。

2.样品的放置位置和角度不准确。

3.γ射线的能量分辨能力不够精确。

改进方案:1.使用更高精度的谱仪。

2.对样品的放置进行更精确的定位和角度调整。

3.使用具有更高能量分辨能力的γ射线源。

γ射线能谱测量和γ射线吸收和物质吸收系数μ的测定

γ射线能谱测量和γ射线吸收和物质吸收系数μ的测定

γ射线能谱测量和γ射线吸收和物质吸收系数μ的测定的实验报告许琪娜物理092 08070116摘要:本文主要简述了Nal(Tl)γ闪烁谱仪的结构和基本工作原理以及利用Nal (Tl)γ闪烁谱仪来测量γ射线能谱及γ射线吸收系数μ,具体实验操作过程以及实验中遇到的问题和解决方案。

关键词:γ射线能谱γ闪烁谱仪吸收系数引言:在放射性测量工作中,对射线的测量是一个非常重要组成部分,对射线的测量通常有强度测量和能谱测量两种方式。

NaI( Tl) 闪烁谱仪是一种常用的对射线进行能谱测量的谱仪,它与高纯锗谱仪相比具有探测效率高NaI( Tl) 晶体便于加工成各种形状,价格便宜等特点,因而在环境测量、工业在线检测以及监测等方面有着广泛的应用。

γ射线是波长短于0.2A 的电磁波,它由原子核能级间的跃迁而产生, 是继γ射线后发现的第三种原子核射线。

γ射线具有比X射线还要强的穿透能力,目前广泛的应用于工业探伤、测厚、冶金、自动化、医疗等方面。

研究不同物质对γ射线的线性吸收系数的测量方法, 这对于在工业应用中对γ射线进行防护,以及用γ射线准确检测各种容器内所储存的液体、浆体或固体物料的位置, 都具有重要的意义。

正文:一.NaI( Tl) 闪烁谱仪1.如图为实验装置。

闪烁探测器有闪烁体、光电倍增管和相应的电子仪器三个主要部分组成。

其工作可分为五个相互联系的过程:(1)射线进入闪烁体,与之发生相互作用,闪烁体吸收带电粒子能量而使原子、分子电离和激发;(2)受激原子、分子退激时发射荧光光子;(3)利用反射物和光导将闪烁光子尽可能多得收集到光电倍增管的光阴极上,由于光电效应,光子在光阴极上击出光子;(4)光电子在光电倍增管中倍增,数量由一个增加到104~109个,电子流在阳极负载上产生电信号;(5)此信号由电子仪器记录和分析。

2.γ闪烁谱仪的调试方法:连接好实验仪器接线,高压为正极,所用的高压电缆在插头处有红色橡皮套,一头接探头后座,一头接仪器盒后面的+HV输出。

【报告】伽马能谱实验报告

【报告】伽马能谱实验报告

【关键字】报告伽马能谱实验报告篇一:闪烁伽马能谱测量实验报告实验题目:《闪烁γ能谱测量》一、实验目的1加深对γ射线和物质相互作用的理解。

2.掌握NaI(Tl)γ谱仪的原理及使用方法。

3.学会测量分析γ能谱。

4.学会测定γ谱仪的刻度曲线.。

二、实验仪器Cs放射源Co放射源FH1901型NaI闪烁谱仪SR-28双踪示波器三、实验原理1. γ射线与物质相互作用γ射线与物质相互作用主要有光电效应、康普顿散射及电子对效应。

1)光电效应:在光电效应中,原子吸收光子的全部能量,其中一部分消耗于光电子脱离原子束缚所需的电离能,另一部分就作为光电子的动能。

所以,释放出来的光电子能量和该束缚电子所处的电子壳层的结合能B?之差。

因此,E光电子=E??Bi?E?(需要原子核参加)2)康普顿散射:康普顿散射是γ光子与原子外层电子相互作用的结果。

反冲电子的动能为:Ee?E?2(1?cos?)m0c2?E?(1?cos?)即使入射γ光子的能量是单一的,反冲电子的能量却是随散射角连续变化的。

3)电子对效应:电子对效应是γ光子从原子核旁经过时,在原子核的库伦场作用下,γ光子转化为一个正电子和一个负电子的过程。

根据能量守恒定律,只有当入射光子的能量hν大于2m0c2,即hν〉1.02MeV时,才能发生电子对效应。

(与光电效应相似,需要原子核参加)2.NaI(Tl)γ能谱仪介绍1)闪烁谱仪装置示意图2)闪烁谱仪的工作原理Γ射线次级电子荧光Γ放射源与闪烁体发闪烁体受光阴极吸收生三种作用激辐射光电子电脉冲定标器记录分析器分析各打拿极逐级缩小3)能谱分析(以137Cs为例)全能峰是γ光子与闪烁体发生光电效应产生的,直接反映了γ射线的能量;康普顿坪是由康普顿效应贡献的;逸出的γ射线与闪烁体周围的物质发生康普顿散射,反散射光子进入闪烁体发生光电效应形成反散射峰。

4)谱仪的能量分(原文来自:小草范文网:伽马能谱实验报告)辨率和能量刻度曲线闪烁单晶γ谱仪最主要的指标是能量分辨率和线性。

γ射线的吸收和物质吸收系数的测量

γ射线的吸收和物质吸收系数的测量

实验2-2 γ射线的吸收和物质吸收系数的测量摘要:本文通过对γ射线与物质相互作用的相关知识介绍,使读者对不同作用的特点有基本的了解,并通过测量γ射线在不同物质中的吸收系数,了解γ射线在不同物质中的吸收规律。

关键字:核技术;γ射线;光电效应;康普顿效应;吸收系数引言:γ射线首先由法国科学家P .V .维拉德发现的,γ射线是光子,是由原子核的衰变产生的,当原子核从激发态跃迁到较低能态或基态时,就有可能辐射出不同能量的γ射线。

不同能量的γ射线与物质的相互作用效果不同,为了有效地屏蔽γ辐射,需要根据物质对γ射线的吸收规律来选择合适的材料及厚度,反之,利用物质对γ射线的吸收规律可以进行探伤及测厚等。

因此研究不同物质对γ射线的吸收规律的现实意义非常巨大,如在核技术的应用与辐射防护设计和材料科学等许多领域都有应用。

正文:γ射线在吸收物质中会和物质中的束缚电子、自由电子、库伦场、核子发生相互作用,并且单次作用不可导致完全吸收或散射,理论上,相互作用有12个过程,但是对于10KeV 到10MeV 之间的γ射线来说,主要有三个效应,下面我们简单地介绍一下γ射线与物质相互作用的三种效应:光电效应、康普顿效应和电子对效应。

光电效应是指γ射线光子在与吸收物质互相作用时把全部能量都给了原子中的束缚电子,使其脱离原子发射出来,可以知道,如果入射的γ射线是单能的,则发射的电子也会是单能的,并且发生光电效应的几率随原子序数的增加而迅速增大,随入射γ射线能量的增大而减小。

康普顿效应是指入射γ射线光子与吸收物质原子产生非弹性碰撞,一部分能量传递给电子使其脱离原子,剩余的能量使得γ射线的能量和方向发生改变,这种改变是连续的,故单能的γ射线入射时会产生连续能量的自由电子,并且发生康普顿效应的几率随原子序数的增加而迅速增大,随入射γ射线能量的增大而减小,但比光电效应减小的慢。

最后是电子对效应,其是指γ射线光子在吸收原子库伦场的作用下转化成一对正负电子,正电子寿命很短,最后只剩下自由的负电子。

γ射线的能谱测量和吸收测定_实验报告

γ射线的能谱测量和吸收测定_实验报告

γ射线能谱的测量【摘要】某些物质的原子核能够发生衰变,放出我们肉眼看不见也感觉不到的射线,γ射线产生的原因正是由于原子核的能级跃迁。

我们通过测量γ射线的能量分布,可确定原子核激发态的能级,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。

因此本实验通过使用γ闪烁谱仪测定不同的放射源的γ射线能谱。

同时学习和掌握γ射线与物质相互作用的特性,并且测定窄束γ射线在不同物质中的吸收系数μ。

【关键词】γ射线能谱γ闪烁谱仪【引言】从1896年的法国科学家贝可勒尔发现放射性现象开始,经过居里夫人等一系列科学家对一些新放射性元素的发现及其性质进行研究的杰出工作后,人类便进入了对原子核能研究、利用的时代。

而原子核衰变能放出α、β、γ三种射线,这些射线可以通过仪器精确测量。

本次实验主要研究γ射线,通过对γ射线谱的研究可了解核的能级结构。

γ射线有很强的穿透力,工业中可用来探伤或流水线的自动控制。

人体受到γ射线照射时,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡。

因此本次实验研究了不同材料对于γ射线的吸收情况这是非常具有实际意义的,比如在居民区制造防空洞的时候可以使用一定厚度的抗辐射材料确保安全,而且在核电站、军事防护地以及放射源存放处等地方我们都有必要使用防辐射材料。

γ射线与物质的相互作用主要是光电效应、康普顿散射和正、负电子对产生这三种过程,如下图所示。

本实验主要研究的是窄束γ射线在物质中的吸收规律。

所谓窄束γ射线是指不包括散射成份的射线束,仅由未经相互作用或称为未经碰撞的光子所组成。

窄束γ射线再穿过物质时,由于上述三种效应,其强度就会减弱,这种现象称为γ射线的吸收。

γ射线强度随物质厚度的衰减服从指数规律。

本次实验仪器如下:NaI 闪烁谱仪,γ射线源137Cs 和60Co ,高压电源放大器,Pb,Al 吸收片各四片,计算机NaI(TI)闪烁探测器的结构如下图所示。

实验报告Ⅵ-γ射线能谱的测量,物质吸收系数的测定

实验报告Ⅵ-γ射线能谱的测量,物质吸收系数的测定

γ射线能谱的测量与物质吸收系数μ的测定物理082班李春宇08180240摘要:本实验用Nal(Tl) 闪烁谱仪来测量Co和Cs 元素所发出来射线能谱图,并比较这两幅图可知Cs元素所发出射线的强度比Co强,换句话说不同物质所发出来的能谱是不一样的。

再利用Nal(Tl) 闪烁谱仪来测定射线的吸收与物质吸收系数,本实验主要是研究了同一放射源Cs不同物质不同厚度的吸收系数。

关键词:射线能谱图吸收系数引言:原子核由高能级向低能级跃迁时会辐射射线,它是一种波长极短的电磁波,其能量由原子核跃迁前后的能级差来表示即:射线与物质发生相互作用则产生次级电子或能量较低的射线,将射线的次级电子按不同能量分别进行强度测量,从而得到辐射强度按能量的分布,即为“能谱”。

测量能谱的装置称为“能谱仪”。

闪烁探测器是利用带电粒子或非带电粒子与某些物质的相互作用下转化成为带电粒子对物质原子的激发,从而会产生发光效应的特性来测量射线的仪器。

它的主要优点是即能测量各种类型的带电粒子,又能探测中性粒子;即能测量粒子强度,又能测量粒子能量;并且探测效率高。

一、实验背景核物理:A、发展初期1896年,贝可勒尔发现天然放射性,这是人们第一次观察到的核变化。

现在通常就把这一重大发现看成是核物理学的开端。

此后的40多年,人们主要从事放射性衰变规律和射线性质的研究,并且利用放射性射线对原子核做了初步的探讨,这是核物理发展的初期阶段。

在这一时期,人们为了探测各种射线,鉴别其种类并测定其能量,初步创建了一系列探测方法和测量仪器。

大多数的探测原理和方法在以后得到了发展和应用,有些基本设备,如计数器、电离室等,沿用至今。

探测、记录射线并测定其性质,一直是核物理研究和核技术应用的一个中心环节。

放射性衰变研究证明了一种元素可以通过衰变而变成另一种元素,推翻了元素不可改变的观点,确立了衰变规律的统计性。

统计性是微观世界物质运动的一个重要特点,同经典力学和电磁学规律有原则上的区别。

实验1 γ射线能谱的测量实验报告

实验1  γ射线能谱的测量实验报告

近代物理实验报告γ射线能谱的测量学院数理与信息工程学院班级光信081班姓名陈亮学号08620114时间 2011年04月27日Υ射线能谱的测量班级:光信081 姓名:陈亮学号:08620114摘要:学会NaI(Tl)单晶Υ闪烁体整套装置的操作、调整和使用;在此基础上测量137Cs和60Co 的Υ能谱,求出能量变化率、峰康比、线性等各项指标,并分析谱形;了解多道脉冲幅度分析器在NaI(Tl)单晶Υ谱测量中的数据采集及其基本功能,在数据处理中包括对谱形进行光滑、寻峰,曲线拟合等。

通过测量137Cs和60Co的Υ射线的吸收曲线,研究Υ射线与物质(被束缚在原子中的电子、自有电子、库仑场、核子)相互作用的特性,了解窄束Υ射线在物质中的吸收规律及测量其在不同物质中的吸收系数。

关键字:Υ射线能谱物质吸收系数μ光电效应康普顿效应电子对效应引言:原子核由高能级向低能级跃迁时会辐射射线,它是一种波长极短的电磁波,其能量由原子核跃迁前后的能级差来表示即:射线与物质发生相互作用则产生次级电子或能量较低的射线,将射线的次级电子按不同能量分别进行强度测量,从而得到辐射强度按能量的分布,即为“能谱”。

测量能谱的装置称为“能谱仪”。

闪烁探测器是利用带电粒子或非带电粒子与某些物质的相互作用下转化成为带电粒子对物质原子的激发,从而会产生发光效应的特性来测量射线的仪器。

它的主要优点是即能测量各种类型的带电粒子,又能探测中性粒子;即能测量粒子强度,又能测量粒子能量;并且探测效率高。

γ射线,又称γ粒子流,是原子核能级跃迁蜕变时释放出的射线,是波长短于0.2埃的电磁波。

首先由法国科学家P.V.维拉德发现,是继α、β射线后发现的第三种原子核射线。

原子核衰变和核反应均可产生γ射线。

γ射线的波长比X射线要短,所以γ射线具有比X射线还要强的穿透能力。

当γ射线通过物质并与原子相互作用时会产生光电效应、康普顿效应和正负电子对三种效应。

原子核释放出的γ光子与核外电子相碰时,会把全部能量交给电子,使电子电离成为光电子,此即光电效应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

NaI(TI)单晶γ闪烁谱仪与γ射线能谱的测量γ射线的吸收与物质吸收系数μ的测定【摘要】我们知道原子核的能级跃迁可以产生伽马射线,而通过测量γ射线的能量分布,可确定原子核激发态的能级,这对于放射性分析,同位素应用及鉴定核素等都有重要意义。

同时通过学习了解伽马射线与物质相互作用的特性,测定窄束γ射线在不同物质中的吸收系数μ。

因此本实验通过使用伽马闪烁谱仪测定不同的放射源的γ射线能谱;根据当γ光子穿过吸收物质时,通过与物质原子发生光电效应、康普顿效应和电子对效应损失能量。

闪烁体分子电离和激发,退激时发出大量光子,闪烁光子入射到光阴极上,光电效应产生光电子,电子会在阳极负载上建立起电信号等原理,对γ射线进行研究。

【关键词】伽马射线吸收系数μ60Co、137Cs放射源能谱γ闪烁谱仪【引言】提出问题某些物质的原子核能发生衰变,会放出射线,核辐射主要有α、β、γ三种射线。

我们可以通过不同的实验仪器能够探测到这些肉眼无法看见的射线。

同时由于射线与物质相互作用,导致射线通过一定厚度物质后,能量或强度有一定的减弱,称为物质对射线的吸收。

而这在防护核辐射、核技术应用和材料科学等许多领域都有重要意义。

核辐射主要是α、β、γ三种射线,人工辐射源包括放射性诊断和放射性治疗辐射源、放射性药物、放射性废物、核武器爆炸的落下灰尘以及核反应堆和加速器产生的照射等,辐射时处于激发态原子核损失能量的最显著方式。

γ跃迁可定义为一个核由激发态到较低的激发态、而原子序数Z和质数A均保持不变的退激发过程。

我们使用何种仪器来探测伽马射线,又如何测量物质对射线的吸收规律,不同物质的吸收性能等。

这是都是本次实验需要去解决的问题。

解决问题本实验使用的是γ闪烁谱仪。

γ闪烁谱仪内部含有闪烁体,可以把射线的能量转变成光能。

实验中采用含TI(铊)的NaI晶体作γ射线的探测器。

利用此来研究窄束γ射线在物质中的吸收规律。

【正文】通过查阅相关资料,我了解了伽马闪烁谱仪的基本工作原理以及整个的工作过程。

NaI(TI)闪烁探测器的结构如下图所示。

整个谱仪由探头(包括闪烁体,光电倍增管,射极跟随器),高压电源,线性放大器,多道脉冲幅度分析器等组成。

图一探测器结构闪烁探测器由闪烁体、光电倍增管和相应的电子放大器件三个主要部分组成。

(1)闪烁体: 闪烁体是用来把射线的能量转变成光能的。

本实验中采用含TI (铊)的NaI晶体作射线的探测器。

(2)光电倍增管: 光电倍增管的结构如图2。

它由光阴极K、收集电子的阳极 A 和在光阴极与阳极之间十个左右能发射二次电子的次阴极D(又称倍增极、打拿极或联极)构成。

在每个电极上加上正电压,相邻的两个电极之间的电位差一般在100V左右。

当闪烁体放出的光子打到光阴极上时,发生光电效应,打出的光电子被加速聚集到第一倍增极D1上,平均每个光电子在D1上打出3~6个次电子,增值后的电子又为D1和D2之间的电场加速,打到第二倍增极D2上,平均每个电子又打出3~6个次级电子,……这样经过n级倍增以后,在阳极上就收集到大量的电子,在负载上形成一个电压脉冲。

图 2 百叶窗式光电倍增管示意图(3)射极跟随器:光电倍增管输出负脉冲的幅度较小,内阻较高。

一般在探头内部安置一级射极跟随器以减少外界干扰的影响,同时使之与线性放大器输入端实现阻抗匹配。

(4)线性放大器:由于入射粒子的能量变化范围很大,线性放大器的放大倍数能在10~1000倍范围内变化,对它的要求是稳定性高、线性好和噪声小。

开启实验仪器工作时射线通过闪烁体,闪烁体的发光强度与射线在闪烁体内损失的能量成正比,即入射线的能量越大,在闪烁体内损失能量越多,闪烁体的发光强度也越大。

当射线(如γ、β)进入闪烁体时,在某一地点产生次级电子,它使闪烁体分子电离和激发,退激时发出大量光子(一般光谱范围从可见光到紫外光,并且光子向四面八方发射出去)。

在闪烁体周围包以反射物质,使光子集中向光电倍增管方向射出去,当闪烁光子入射到光阴极上,就会产生光电子,这些光电子受极间电场加速和聚集,在各级打拿极上发生倍增(一个光电子最终可产生104~109个电子),最后被阳级收集。

大量电子会在阳极负载上建立起电信号,通常为电流脉冲或电压脉冲,然后通过起阻抗匹配作用的射极跟随器,由电缆将信号传输到电子学仪器中去。

由原子物理学中可知g射线与物质的相互作用主要是光电效应、康普顿散射和正、负电子对产生这三种过程,如图 3所示。

图 3 γ射线与物质相互作用示意图最终实现了能谱图样的输出如下:图中的横坐标CH表示道数,与能量成正比,纵坐标表示强度,也就是射线的密集程度,与计数成正比。

而γ跃迁可定义为一个核由激发态到较低的激发态、而原子序数Z和质数A 均保持不变的退激发过程。

所谓窄束γ射线是指不包括散射成份的射线束,通过吸收片后的γ光子,仅由未经相互作用或称为未经碰撞的光子所组成。

“窄束”一词是实验上通过准直器得到细小的束而取名。

这里所说的“窄束”并不是指几何学上的细小,而是指物理意义上的“窄束”。

即使射线束有一定宽度,只要其中没有散射光子,就可称之为“窄束”。

窄束γ射线在穿过物质时,由于上述三种效应,其强度就会减弱,这种现象称为γ射线的吸收。

γ射线强度随物质厚度的衰减服从指数规律,即xNxeI eI I r μσ--==00 (1)其中,I 0、I 分别是穿过物质前、后的γ射线强度,x 是γ射线穿过的物质的厚度(单位cm ),σr 是光电、康普顿、电子对三种效应截面之和,N 是吸收物质单位体积中的原子数,μ是物质的线性吸收系数(μ=σr N ,单位为cm )。

显然μ的大小反映了物质吸收γ射线能力的大小。

需要说明的是,吸收系数μ是物质的原子序数Z 和γ射线能量的函数,且:p c ph μμμμ++= 式中ph m 、c m 、p m 分别为光电、康普顿、电子对效应的线性吸收系数;其中:5ph Zm µ、c Z m µ、2p Z m µ(Z 为物质的原子序数)。

γ射线与物质相互作用的三种效应的截面都是随入射γ射线的能量E γ和吸收物质的原子序数Z 而改变。

γ射线的线性吸收系数μ是三种效应的线性吸收系数之和。

下图给出了铅对γ射线的线性吸收系数与γ射线能量的线性关系。

实际工作中常用质量厚度R m (g/cm 2)来表示吸收体厚度,以消除密度的影响。

因此(3—1)式可表达为ρμ/0)(R m eI R I -= (2)由于在相同的实验条件下,某一时刻的计数率N 总与该时刻的γ射线强度I 成正比,又对(2)式取对数得:ln ln N R N m +-=ρμ (3)由此可见,如果将吸收曲线在半对数坐标纸上作图,将得出一条直线,如右图所示。

/m m r 可以从这条直线的斜率求出,即1212ln ln R R N N m --=-ρμ (4)物质对γ射线的吸收能力也经常用半吸收厚度表示。

所谓半吸收厚度就是使入射的γ射线强度减弱到一半时的吸收物质的厚度,记作:μμ693.02ln 21==d (5)下图为伽马射线与吸收质量密度关系曲线:实验操作程序1阅读仪器使用说明,掌握仪器及多道分析软件的使用方法。

调整实验装置,使放射源、准直孔、闪烁探测器的中心位于一条直线上。

2仪器开机并调整好工作电压(700-750V )和放大倍数后,预热30分钟左右。

3、把γ放射源137Cs 或60Co 放在探测器前,调节放大倍数为0.3,在600V~850V 之间,调节高压使137Cs 或60Co 能谱的最大脉冲幅度尽量大而又不超过多道脉冲分析器的分析范围。

4、用多道分析器观察137Cs 的γ能谱的形状,识别其光电峰、反散射峰、X 射线峰及康普顿边界等;记录光电峰、反散射峰的峰位(道数);打印能谱图。

5、测量60Co 的γ能谱,绘制能谱图,记录光电峰位(两个光电峰,能量分别为1.33MeV 和1.17MeV ),结合137Cs 的γ能谱的光电峰(0.662MeV )和反散射(0.184MeV )位来标定谱仪的能量刻度,打印能量刻度曲线。

6、用一组铝吸收片测量对 137 Cs 的γ射线(取 0.662MeV 光电峰)的吸收曲线,并用最小二法原理拟合求质量吸收系数。

根据铝的密度( r = 2.7 g/cm 3)求线性吸收系数,与理论值(0.194 ㎝-1)比较,求相对不确定度。

计算半吸收厚度。

7、重复上述步骤,用一组铅吸收片测量对 137Cs 的γ射线(取0.662MeV 光电峰)的吸收曲线,并用最小二法原理拟合求质量吸收系数。

根据铅的密度(r = 11.34 g/cm 3)求线性吸收系数,与理论值(1.213 ㎝-1)比较,求相对不确定度。

计算半吸收厚度。

数据处理与分析1. Cs 的能谱图测量参数设置,预置时间300s ,高压电源667V ,放大倍数0.3倍,全谱道数512道,扩展道数128道,道数160道2.Co 的能谱图测量参数设置,预置时间500s ,高压电源668V ,放大倍数0.3倍,全谱道数512道,扩展道数128道,道数320道能谱图见附页137Cs 刻度(cm ) 总计数率 峰位 半高宽净面积分辨率 位置一40.518232th=157.53chn 14.90chn 335829.46%位置二 40.7 1864 2th=157.44chn 15.17chn 48644 9.63% 位置三40.317512th=157.44chn14.95chn 397149.5%60Co 刻度(cm )总计数率 峰位 半高宽 净面积 分辨率 位置一 40.5 412 5th=318.24chn 15.69chn 1758 4.93% 位置二 40.7 424 4th=314.68chn 18.20chn 1298 5.78% 位置三40.3382 5th=323.77chn16.56chn 12645.12%3.利用铝块测量吸收系数参数设置,预置时间300s ,高压电源667V ,放大倍数0.3倍,全谱道数512道,扩展道数128道,位置40.5cm铝块数量 R(g/c ㎡) 计数 总计数率 峰位 半高宽 净面积 分辨率 一块 2.40 1769 832 5th=163.25 1.73chn -163225 1.06% 两块 2.40+2.44 1460 770 163.27 1.59chn -136940 0.97% 三块 2.40+2.44+2.42 1230 723 163.11 1.34chn -121511 0.82% 四块2.40+2.44+2.42+2.43987687163.101.11chn-977930.68%根据吸收系数计算公式 1212ln ln R R N N m --=-ρμ十组数据的平均值:0.078 相对误差59.8%4利用铅块测量吸收系数 上下两边参数一样铅块数量 R(g/c ㎡) 计数总计数率 峰位 半高宽 净面积 分辨率 一块 2.40 1632 683 4th=163.42 3.14chn -150168 1.92% 两块 2.40+2.44 1360 565 4th=162.90 2.30chn -129837 1.41% 三块 2.40+2.44+2.42 1063 467 3th=163.01 2.68chn -101329 1.64% 四块2.40+2.44+2.42+2.438763914th=163.112.34chn-804931.43%根据吸收系数计算公式 1212ln ln R R N N m --=-ρμ十组数据的平均值:0.8697 相对误差为28.3%误差分析从误差结果不难看出,本实验中的误差较大,特别是Al对γ射线的吸收系数相对误差达到了59.8%在实验中是不允许的,下面对可能导致实验误差的原因进行分析。

相关文档
最新文档