自感电动势与自感系数

合集下载

自感电动势与自感系数

自感电动势与自感系数

3-6 自感电动势与自感系数一、教学目的:1、了解自感现象和自感系数的概念。

2、了解自感电动势的大小与什么因素有关,掌握自感电动势的方向判定。

二、教学重点:能够运动自感电动势判定,解决工作中的实际问题。

三、教学用具:日光灯一套、万用表、测电笔等。

四、教学过程:1、自感现象:通过如图3-28所示的实验来观察两种自感现象。

(1)在图3—28a电路中,HL1、HL2是两只完全相同的小灯泡,R为电阻,L是一个电感较大的铁心线圈,并且选择线圈的电阻和HL2支路的串联电阻R相等。

当开关S闭合瞬间,通过线圈的电流发生了由无到有的变化,线圈中的磁通呈增加的趋势。

根据楞次定律可知,线圈中的感应电动势要阻碍电流的增加,因此灯泡HL1发生逐渐变亮现象。

但HL2支路因串联的是一线性电阻而不会发生上述过程,因而灯泡HL2在接通电源后立即就亮。

(2)在图3—28b电路中线圈L和灯泡HL并联在直流电源上。

当开关S闭合后,灯亮。

但当开关S突然断开时,会发现灯泡并不是立即熄灭,而是猛然更亮了一下,然后才熄灭。

这是因为电源被切断瞬间,线圈产生一个很大的感应电动势,加在灯泡两端,在回路中形成很强的感应电流,使灯泡发出短暂的强光。

上述两种现象虽然不同,但本质却是相同的,都是由于线圈自身电流发生变化而引起的。

我们把这种由于流过线圈本身的电流发生变化而产生感应电动势的现象叫做自感应现象,简称自感。

由自感现象产生的电动势称自感电动势。

2、自感系数:当一个空心线圈通过电流后,这个电流产生的磁场使每匝线圈具有的磁通叫自感磁通。

使N匝线圈具有的磁通叫自感磁链。

我们把线圈中通过单位电流所产生的自感磁链称为自感系数,也称自感量。

简称电感。

电感量是衡量线圈通过单位电流时能够产生自感受磁链的物理量。

当线圈通过1A的电流能够产生1Wb的自感磁链,则该线圈的电感量就是1H。

电感的大小不但与线圈的匝数以及几何形状密切关系。

对有铁心线圈,L 不是常数,对空心线圈,因其媒体介质是空气,而空气磁导率是恒定不变的,当其结构一定时,L是常数。

大学物理B-第十二章 电磁感应

大学物理B-第十二章 电磁感应
法拉第电磁感应定律
电磁感应
产 生 机 理
i
d m dt
楞次定律 动生电动势
感生电动势
自感电动势
i (v B ) dl L B i dS S t
工业生产
12-3 自感和互感
互感电动势
一、自感电动势
自感系数 I(t) Φm
1.自感现象与自感系数 由于回路自身电流的变化,在回 路中产生感应电动势的现象。
N
ab a
I NIl a b ldr ln 2r 2 a
N B dS
s
dr
I
r
由互感系数定义可得互感为: Nl ab M ln I 2 a
l
a
b
I I I I
0
0
12-4磁场的能量与能量密度
I (t )
L
R
0
充电过程曲线
τ
t
I (t)
K2
麦克斯韦提出全电流的概念
I 全 I 传导 I D
全电流连续不中断的,构成闭合回路
ID

全电流安培环路定理
L H dl I 传导 I D dD d D dS D dS 位移电流 I D S t dt dt S
讨论: 1. 传导电流:电荷定向运动 2. 若传导电流为零
L
L
穿过S1 面 电流
穿过S2 面 电流
S1
I

+ + + +
S2
D
电流不连续 -
二、 全电流安培环路定理 S2 面电位移通量 D DS
极板间电位移矢量 D 位移电流

电感的三个公式

电感的三个公式

电感的三个公式
电感的三个公式包括:
1. 自感公式:V = L di/dt,其中 V 表示自感电动势,L 是自感系数,di 是电流的变化量,dt 是电流变化的时间。

2. 尼黑定律:EMF = n (E1 - E2),其中 n 表示电子路径的长度,E1 表示电子由中性对对象流入极 A 所准备的势,E2 表示电子由中性对象流入极 B 所准备的势。

3. 特尔定律:EMF = I1 (R1 + R2),其中 I1 表示电子由极 A 流入极 B 所提供的电流,R1 和 R2 分别表示两个电极之间的电阻。

这些公式涵盖了电感的不同方面,包括自感、尼黑定律和特尔定律。

希望以上信息对您有所帮助,如果您还有其他问题,欢迎告诉我。

高中物理第一章电磁感应第七节自感现象及其应用预习导学案粤教版选修3-2

高中物理第一章电磁感应第七节自感现象及其应用预习导学案粤教版选修3-2

第七节自感现象及其应用【思维激活】1.在接通或断开电动机电路时,在开关处会产生火花放电,你知道为什么吗?提示:电动机电路是含有线圈的电路,在通电瞬间或断电瞬间,线圈中就会有电流的巨大变化,从无到有或从有到无,在也会产生电磁感应现象,产生感应电动势,由于变化较快,感应电动势会比较大,加在开关的动片与静片之间,就会形成火花放电。

这是自感现象。

]2.在日常生活中,若发现或怀疑家用煤气泄漏,选用了打电话报警的方式求助,你认为这种方法正确吗?提示:不正确,打电话时会产生火花引起火灾,酿成更大的事故。

【自主整理】1.互感现象:绕在同一铁芯的两个线圈,当其中一个线圈上的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象就叫互感。

2.自感现象:当一个线圈中的电流发生变化时,它所产生的变化磁场不仅在邻近的电路中激发出感应电动势,同样也会在它本身激发出感应电动势。

这种由于导体本身的电流发生变化而使自身产生电磁感应的现象叫做自感。

3.自感电动势:由于自感而产生的感应电动势叫做自感电动势。

4自感系数:自感系数L简称自感或电感,它跟线圈的大小、形状、圈数以及是否有铁芯等因素有关,线圈的横截面积越大、线圈绕制得越密、匝数越多,它的自感系数就越大,另外有铁芯的线圈的自感系数比没有铁芯时大.单位:________,符号是H.常用的还有_____(mH)和_____(μH),换算关系是:1 H=____mH=____μH.。

5.磁场的能量:线圈中有电流,就有磁场,________就储存在磁场中。

【高手笔记】1.自感现象是否符合楞次定律?剖析:自感现象是一种特殊的电磁感应现象,其规律符合楞次定律,即感应电动势阻碍磁通量的变化。

只不过由于自感现象中磁通量的变化是由于电路中电流的变化引起的。

所以,自感电动势直接表现为阻碍原电源的变化。

这里要着重强调阻碍的含义:“阻碍”不是“相反”:原电流增加时“反抗”;原电流减小时“反抗”;原电流减小时“补偿”。

哈工大-大学物理-习题课-电磁感应和电磁场理论的基本概念-2010.7.9

哈工大-大学物理-习题课-电磁感应和电磁场理论的基本概念-2010.7.9

设单位长度电缆的自感为L,则单位长度电缆储存的磁能也可 设单位长度电缆的自感为 , 表示为
由方程
µ0I 2 1 R 1 2 2 LI = + ln R 2 4 4 π 1
µ0 1 R 2 可得出 L = + ln 从能量出发,求解自感系数 2 4 R π 1
10cm

dϕ 2 dB ei = = πr = π ×(10×10−2 )2 ×0.1 dt dt
= π ×10−3 = 3.14×10−3V
(3) 根据欧姆定律,圆环中的感应电流为 根据欧姆定律, ei π −3 −3
Ii = R = 2 ×10 =1.57×10 A
× × × × × × × × × × × ×
电场的电力线是同心圆, 且为顺时针绕向。 因此, 电场的电力线是同心圆 , 且为顺时针绕向 。 因此 , 圆环上 任一点的感生电场,沿环的切线方向且指向顺时针一边。 任一点的感生电场 , 沿环的切线方向且指向顺时针一边 。 其大小为
1 dB 1 E旋= r = ×10×10−2 ×0.1 2 dt 2
3、 在图示虚线圆内的所有点上,磁感 、 在图示虚线圆内的所有点上, 应强度B为 应强度 为 0.5T,方向垂直于纸面向里 , , 方向垂直于纸面向里, 且每秒钟减少0.1T。虚线圆内有一半径 且每秒钟减少 。 的同心导电圆环, 为 10 cm 的同心导电圆环,求: (1)圆环上任一点感生电场的大小和方向。 圆环上任一点感生电场的大小和方向。 圆环上任一点感生电场的大小和方向 (2)整个圆环上的感应电动势的大小。 整个圆环上的感应电动势的大小。 整个圆环上的感应电动势的大小
在圆柱与圆筒之间的空间距轴线r处 取一半径为 、厚为dr、 在圆柱与圆筒之间的空间距轴线 处,取一半径为r、厚为 、 单位长度的共轴薄壁圆柱壳、 单位长度的共轴薄壁圆柱壳、薄壁圆柱壳内磁能密度

法拉第电磁感应定律及应用

法拉第电磁感应定律及应用

法拉第电磁感应定律及应用高考要求:1、法拉第电磁感应定律。

、法拉第电磁感应定律。

2、自感现象和、自感现象和自感系数自感系数。

3、电磁感应现象的综合应用。

、电磁感应现象的综合应用。

一、法拉第电磁感应定律一、法拉第电磁感应定律1、 内容:电路中感应电动势的大小,跟穿过这一电路的内容:电路中感应电动势的大小,跟穿过这一电路的磁通量磁通量的变化率成正比。

的变化率成正比。

即E =n ΔФ/Δt 2、说明:1)在电磁感应中,E =n ΔФ/Δt 是普遍适用公式,不论导体回路是否闭合都适用,一般只用来求感应电动势的大小,方向由楞次定律或方向由楞次定律或右手定则右手定则确定。

2)用E =n ΔФ/Δt 求出的感应电动势一般是平均值,只有当Δt →0时,求出感应电动势才为瞬时值,若随时间均匀变化,则E =n ΔФ/Δt 为定值为定值3)E 的大小与ΔФ/Δt 有关,与Ф和ΔФ没有必然关系。

没有必然关系。

3、 导体在磁场中做切割磁感线运动导体在磁场中做切割磁感线运动1) 平动切割:当导体的运动方向与导体本身垂直,但跟磁感线有一个θ角在匀强磁场中平动切割磁感线时,产生感应电动势大小为:E =BLvsin θ。

此式一般用以计算感应电动势的瞬时值,但若v 为某段时间内的平均速度,则E =BLvsinθ是这段时间内的平均感应电动势。

其中L 为导体有效切割磁感线长度。

为导体有效切割磁感线长度。

2) 转动切割:线圈绕垂直于磁感应强度B 方向的转轴转动时,产生的感应电动势为:E =E m sin ωt =nBS m sin ωt 。

3) 扫动切割:长为L 的导体棒在磁感应强度为B 的匀强磁场中以角速度ω匀速转动时,棒上产生的感应电动势:①动时,棒上产生的感应电动势:① 以中心点为轴时E =0;② 以端点为轴时E=BL 2ω/2;③;③ 以任意点为轴时E =B ω(L 12 -L 22)/2。

二、自感现象及自感电动势二、自感现象及自感电动势1、 自感现象:由于导体本身自感现象:由于导体本身电流电流发生变化而产生的电磁感应现象叫自感现象。

当线圈中电流变化时

当线圈中电流变化时

M21 = M12 = M
就叫做这两个线圈的互感系数,简称为互感。 M 就叫做这两个线圈的互感系数,简称为互感。
M=
φ21
I1
=
φ12
I2
它的单位:亨利( ) 它的单位:亨利(H)
要求: Φ+与对应的I+符合右手螺旋关系
8
互感系数与两线圈的大小、形状、 互感系数与两线圈的大小、形状、磁介质和相对 位置有关。 位置有关。
φ 21 = N 2ϕ m 21 = ln2 B1S
µ
= ln2 µn1 I1S
中产生的互感系数: 线圈 1 在线圈 2 中产生的互感系数:
S n1 n2
M 21 =
φ 21
I1
= µn1n2lS
设线圈 2 中的电流为 I2, 线圈 2 在线圈 1 中产生的磁链: 中产生的磁链:
φ12 = N1ϕ m12 = ln B S = ln µn I S 1 2 1 2 2
7
根据毕奥—萨尔定 根据毕奥 萨尔定 律 写成等式: 写成等式:φ21 = M21i1,
r r r µ0 Idl × r dB = 4π r 3 ,
φ 21 ∝ I1 , φ12 ∝ I 2
φ12 = M12i2
M21 、M12是比例系数,M21称为线圈 1 对线圈 2 的互感 是比例系数, 系数, M12 称为线圈 2 对线圈 1 的互感系数, 系数 的互感系数, 从能量观点可以证明两个给定的线圈有: 从能量观点可以证明两个给定的线圈有:
2.自感系数 L 自感系数 自感磁通--由回路电流产生穿过电流自身回路的磁通 由回路电流产生穿过电流自身回路的磁通。 自感磁通 由回路电流产生穿过电流自身回路的磁通。 表示。 用 ϕL表示。 自感磁链--由回路电流产生穿过电流自身回路各匝线 自感磁链 由回路电流产生穿过电流自身回路各匝线 圈磁通的和。 表示。 圈磁通的和。用 ΦL表示。

自感系数的计算方法

自感系数的计算方法

自感系数的计算方法
自感系数的计算方法是用来测量电路中电感元件对自身电流变化的敏感程度的
参数。

它表示了电感元件在电流变化时,会引起电感自感电压的变化程度。

计算自感系数的方法通常基于法拉第定律,即电感的自感电动势等于电流对时
间的导数乘以一个常数L,其中L为电感的自感系数。

一种常用的方法是利用恒定电流源和开关来测量电感的自感系数。

首先,将电
感元件与一个电流源和一个开关连接,并使电流流过电感。

然后,突然打开或关闭开关,记录电感两端的电压随时间的变化。

利用电流对时间的导数定义自感系数。

当开关关闭时,电感的自感电动势为零;当开关打开时,自感电动势随电流的变化而发生变化。

通过测量自感电动势的变化和电流对时间的导数,可以计算出电感的自感系数。

另一种常见的方法是使用电压源和电容来测量自感系数。

通过将电感元件与电
容器和电源连接,并将电容器的电压与电感元件的电流进行比较,可以计算出电感的自感系数。

总之,计算自感系数可以通过测量电感两端的电压随时间的变化或者通过比较
电容器的电压与电感元件的电流来实现。

这些方法可以帮助我们了解电感元件对电流变化的敏感程度,并在电路设计和分析中起到重要的作用。

高中物理选修2电磁感应互感和自感

高中物理选修2电磁感应互感和自感

互感和自感【学习目标】1.了解互感现象及其应用.2.能够通过电磁感应的有关规律分析通电自感和断电自感现象.3.了解自感电动势的表达式E =L ΔI Δt,知道自感系数的决定因素. 4.了解自感现象中的能量转化.1.关于自感现象,下列说法正确的是( )A .感应电流一定和原来的电流方向相反B .对于同一线圈,当电流变化越大时,线圈产生的自感电动势也越大C .对于同一线圈,当电流变化越快时,线圈的自感系数也越大D .对于同一线圈,当电流变化越快时,线圈中的自感电动势也越大2.(多选) 某线圈通有如图8所示的电流,则线圈中自感电动势改变方向的时刻有( )图8A .第1 s 末B .第2 s 末C .第3 s 末D .第4 s 末3. 在如图9所示的电路中,L 为电阻很小的线圈,G 1和G 2为零刻度在表盘中央的两相同的电流表.当开关S 闭合时,电流表G 1、G 2的指针都偏向右方,那么当断开开关S 时,将出现的现象是( )图9A .G 1和G 2指针都立即回到零点B .G 1指针立即回到零点,而G 2指针缓慢地回到零点C .G 1指针缓慢地回到零点,而G 2指针先立即偏向左方,然后缓慢地回到零点D .G 2指针缓慢地回到零点,而G 1指针先立即偏向左方,然后缓慢地回到零点4.在如图10所示的电路中,两个相同的小灯泡L1和L2分别串联一个带铁芯的电感线圈L和一个滑动变阻器R.闭合开关S后,调节R,使L1和L2发光的亮度一样,此时流过两个灯泡的电流均为I.然后,断开S.若t′时刻再闭合S,则在t′前后的一小段时间内,能正确反映流过L1的电流i1、流过L2的电流i2随时间t变化的图象是()图10精准突破1:通电自感现象[导学探究]通电自感:如图1所示,开关S闭合的时候两个灯泡的发光情况有什么不同?根据楞次定律结合电路图分析现象产生的原因.图1[知识梳理]自感及自感电动势的特点:(1)自感:当一个线圈中的电流变化时,它产生的变化的磁场不仅在邻近的电路中激发出感应电动势,同样也在它本身激发出感应电动势.这种现象称为自感.由于自感而产生的感应电动势叫做自感电动势.(2)当线圈中的电流增大时,自感电动势的方向与原电流方向相反,阻碍电流的增大,但不能阻止电流的变化.[即学即用]判断下列说法的正误.(1)在实际电路中,自感现象有害而无益.()(2)只要电路中有线圈,自感现象就会存在.()(3)线圈中的电流越大,自感现象越明显.()(4)线圈中的电流变化越快,自感现象越明显.()精准突破2:断电自感现象[导学探究]断电自感:如图2所示,先闭合开关使灯泡发光,然后断开开关.图2(1)开关断开前后,流过灯泡的电流方向相同吗?(2)在断开过程中,有时灯泡闪亮一下再熄灭,有时灯泡只会缓慢变暗直至熄灭,请分析上述两种现象的原因是什么?[知识梳理]对断电自感现象的认识:(1)当线圈中的电流减小时,自感电动势的方向与原电流方向相同;(2)断电自感中,若断开开关瞬间通过灯泡的电流大于断开开关前的电流,灯泡会闪亮一下;若断开开关瞬间通过灯泡的电流小于等于断开开关前的电流,灯泡不会闪亮一下,而是逐渐变暗.(3)自感电动势总是阻碍线圈中电流的变化,但不能阻止线圈中电流的变化.[即学即用]判断下列说法的正误.(1)自感现象中,感应电流一定与原电流方向相反.()(2)发生断电自感时,因为断开电源之后电路中还有电流,所以不符合能量守恒定律.()(3)线圈的电阻很小,对恒定电流的阻碍作用很小.()精准突破3:自感系数[导学探究] 如图3所示,李辉在断开正在工作的电动机开关时,会产生电火花,这是为什么?图3[知识梳理] 自感电动势及自感系数:(1)自感电动势:E =L ΔI Δt,其中L 是自感系数,简称自感或电感.单位:亨利,符号:H. (2)自感系数与线圈的大小、形状、圈数,以及是否有铁芯等因素有关.[即学即用] 判断下列说法的正误.(1)线圈中电流变化越快,自感系数越大.( )(2)线圈的自感系数越大,自感电动势就一定越大.( )(3)一个线圈中的电流均匀增大,自感电动势也均匀增大.( )(4)线圈自感系数由线圈本身性质及有无铁芯决定.( )精准突破4:互感现象的理解与应用1.两个相互靠近的线圈,当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象叫互感.2.利用互感现象可以把能量由一个线圈传递到另一个线圈,如变压器、收音机的磁性天线. 例1 (多选)如图4所示,是一种延时装置的原理图,当S 1闭合时,电磁铁F 将衔铁D 吸下,C 线路接通;当S 1断开时,由于电磁感应作用,D 将延迟一段时间才被释放.则 ( )图4A .由于A 线圈的电磁感应作用,才产生延时释放D 的作用B .由于B 线圈的电磁感应作用,才产生延时释放D 的作用C .如果断开B 线圈的开关S 2,无延时作用D .如果断开B 线圈的开关S 2,延时将变化精准突破5:自感现象的分析例2如图5所示,电感线圈L的自感系数足够大,其直流电阻忽略不计,L A、L B是两个相同的灯泡,且在下列实验中不会烧毁,电阻R2阻值约等于R1的两倍,则()图5A.闭合开关S时,L A、L B同时达到最亮,且L B更亮一些B.闭合开关S时,L A、L B均慢慢亮起来,且L A更亮一些C.断开开关S时,L A慢慢熄灭,L B马上熄灭D.断开开关S时,L A慢慢熄灭,L B闪亮后才慢慢熄灭针对训练(多选) 如图6所示,L为一纯电感线圈(即电阻为零),L A是一灯泡,下列说法正确的是()图6A.开关S闭合瞬间,无电流通过灯泡B.开关S闭合后,电路稳定时,无电流通过灯泡C.开关S断开瞬间,无电流通过灯泡D.开关S闭合瞬间,灯泡中有从a到b的电流,而在开关S断开瞬间,灯泡中有从b到a的电流自感线圈对电流的变化有阻碍作用,具体表现为:(1)通电瞬间自感线圈处相当于断路.(2)断电时,自感线圈相当于电源,其电流由原值逐渐减小,不会发生突变(必须有闭合回路).(3)电流稳定时自感线圈相当于导体,若其直流电阻忽略不计,则相当于导线.精准突破6:自感现象的图象问题例3如图7所示的电路中,S闭合且稳定后流过电感线圈的电流是2 A,流过灯泡的电流是1 A,现将S突然断开,S断开前后,能正确反映流过灯泡的电流i随时间t变化关系的图象是()图7选择题(1~8题为单选题,9~13题为多选题)1.在无线电仪器中,常需要在距离较近处安装两个线圈,并要求当一个线圈中电流有变化时,对另一个线圈中电流的影响尽量小.如图所示两个线圈的相对安装位置最符合该要求的是()2. 如图1所示,两个电阻阻值均为R,电感线圈L的电阻及电池内阻均可忽略不计,S原来断开,电路中电流I0=E2R,现将S闭合,于是电路中产生了自感电动势,此自感电动势的作用是()图1A.使电路的电流减小,最后由I0减小到零B.有阻碍电流增大的作用,最后电流小于I0C.有阻碍电流增大的作用,因而电流总保持不变D.有阻碍电流增大的作用,但电流最后还是变为2I03. 如图2所示,绕在铁芯上的线圈M与电源、滑动变阻器和开关组成了一个闭合回路,在铁芯的右端,线圈P与电流表连成闭合电路.下列说法正确的是()图2A.开关S闭合后,线圈P中有感应电流,M、P相互排斥B.开关S闭合后,使滑片向左匀速移动,线圈P中有感应电流,M、P相互排斥C.开关S闭合后,使滑片向右匀速移动,线圈P中有感应电流,M、P相互排斥D.开关S闭合瞬间,线圈P中有感应电流,M、P相互吸引4. 如图3所示的电路中,A1和A2是两个相同的小灯泡,L是一个自感系数相当大的线圈,其阻值与R 相同.在开关S接通和断开时,灯泡A1和A2亮暗的顺序是()图3A.接通时A1先达最亮,断开时A1后灭B.接通时A2先达最亮,断开时A1后灭C.接通时A1先达最亮,断开时A1先灭D.接通时A2先达最亮,断开时A2先灭5. 在制作精密电阻时,为了消除使用过程中由于电流变化而引起的自感现象,采取了双线绕法,如图4所示,其道理是()图4A.当电路中的电流变化时,两股导线中产生的自感电动势相互抵消B.当电路中的电流变化时,两股导线中产生的感应电流互相抵消C.当电路中的电流变化时,两股导线中产生的磁通量互相抵消D.当电路中的电流变化时,电流的变化量相互抵消6. 如图5所示的电路中,电源的电动势为E,内阻为r,自感线圈L的电阻不计,电阻R的阻值大于灯泡D的阻值,在t=0时刻闭合开关S,经过一段时间后,在t=t1时刻断开S,下列表示A、B两点间电压U AB随时间t变化的图象中,正确的是()图57.如图6所示的电路,可用来测定自感系数较大的线圈的直流电阻,线圈两端并联一个电压表,用来测量自感线圈两端的直流电压,在实验完毕后,将电路拆开时应()图6A.先断开开关S1 B.先断开开关S2C.先拆去电流表D.先拆去电阻R8.如图7甲所示,A、B两绝缘金属环套在同一铁芯上,A环中电流i A随时间t的变化规律如图乙所示,下列说法中正确的是()图7A.t1时刻,两环作用力最大B.t2和t3时刻,两环相互吸引C.t2时刻两环相互吸引,t3时刻两环相互排斥D.t3和t4时刻,两环相互吸引9.下列说法正确的是()A.当线圈中电流不变时,线圈中没有自感电动势B.当线圈中电流反向时,线圈中自感电动势的方向与线圈中原电流的方向相反C.当线圈中电流增大时,线圈中自感电动势的方向与线圈中原电流的方向相反D.当线圈中电流减小时,线圈中自感电动势的方向与线圈中原电流的方向相反10. 无线电力传输目前取得重大突破,在日本展出了一种非接触式电源供应系统.这种系统基于电磁感应原理可无线传输电力.两个感应线圈可以放置在左右相邻或上下相对的位置,原理示意图如图8所示.下列说法正确的是()图8A.若A线圈中输入电流,B线圈中就会产生感应电动势B.只有A线圈中输入变化的电流,B线圈中才会产生感应电动势C.A中电流越大,B中感应电动势越大D.A中电流变化越快,B中感应电动势越大11. 如图9所示的电路中,线圈L的自感系数足够大,其直流电阻忽略不计,A、B是两个相同的灯泡,下列说法中正确的是()图9A.S闭合后,A、B同时发光且亮度不变B.S闭合后,A立即发光,然后又逐渐熄灭C.S断开的瞬间,A、B同时熄灭D.S断开的瞬间,A再次发光,然后又逐渐熄灭12. 如图10所示的电路中,L为一个自感系数很大、直流电阻不计的线圈,D1、D2是两个完全相同的电灯,E是内阻不计的电源.t=0时刻,闭合开关S,经过一段时间后,电路达到稳定,t1时刻断开开关S.I1、I2分别表示通过电灯D1和D2中的电流,规定图中箭头所示方向为电流正方向,以下各图中能定性描述电流I随时间t变化关系的是()图1013.如图11所示,E为电池,L是直流电阻可忽略不计、自感系数足够大的线圈,D1、D2是两个规格相同的灯泡,S是控制电路的开关.对于这个电路,下列说法中正确的是()图11A.刚闭合S的瞬间,通过D1、D2的电流大小相等B.刚闭合S的瞬间,通过D1、D2的电流大小不相等C.闭合S待电路达到稳定后,D1熄灭,D2比S刚闭合时亮D.闭合S待电路达到稳定后,再将S断开的瞬间,D2立即熄灭【查漏补缺】1.(多选)在如图1所示的电路中,带铁芯的、电阻较小的线圈L与灯A并联,当合上开关S后灯A正常发光.则下列说法中正确的是()图1A.当断开S时,灯A立即熄灭B.当断开S时,灯A可能突然闪亮然后熄灭C.用阻值与灯A相同的线圈取代L接入电路,当断开S时,灯A逐渐熄灭D.用阻值与线圈L相同电阻取代L接入电路,当断开S时,灯A突然闪亮然后熄灭【拓展延伸】1.如图2所示的电路中,P、Q为两相同的灯泡,L的电阻不计,则下列说法正确的是()图2A.S断开瞬间,P立即熄灭,Q过一会儿才熄灭B.S接通瞬间,P、Q同时达到正常发光C.S断开瞬间,通过P的电流从右向左D.S断开瞬间,通过Q的电流与原来方向相反【思维导图】【知识总结】1.自感现象的原理当通过导体线圈中的电流变化时,其产生的磁场也随之发生变化.由法拉第电磁感应定律可知,导体自身会产生阻碍自身电流变化的自感电动势.2.自感现象的特点(1)自感电动势只是阻碍自身电流变化,但不能阻止.(2)自感电动势的大小跟自身电流变化的快慢有关.电流变化越快,自感电动势越大.(3)自感电动势阻碍自身电流变化的结果,会给其他电路元件的电流产生影响.①电流增大时,产生反电动势,阻碍电流增大,此时线圈相当于一个阻值很大的电阻;②电流减小时,产生与原电流同向的电动势,阻碍电流减小,此时线圈相当于电源.3.通电自感与断电自感自感现象中主要有两种情况:即通电自感与断电自感.在分析过程中,要注意:(1)通过自感线圈的电流不能发生突变,即通电过程中,电流是逐渐变大;断电过程中,电流是逐渐变小,此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.(2)断电自感现象中灯泡是否“闪亮”问题的判断在于对电流大小的分析,若断电后通过灯泡的电流比原来强,则灯泡先闪亮后再慢慢熄灭.1.如图499所示,带铁芯的电感线圈的电阻与电阻器R的阻值相同,A1、A2是两个完全相同的电流表,则下列说法中正确的是()图499A.闭合S瞬间,电流表A1示数小于A2示数B.闭合S瞬间,电流表A1示数等于A2示数C.断开S瞬间,电流表A1示数大于A2示数D.断开S瞬间,电流表A1示数等于A2示数2.某同学为了验证断电自感现象,自己找来带铁芯的线圈L、小灯泡A、开关S和电池组E,用导线将它们连接成如图4-9-18所示的电路.检查电路后,闭合开关S,小灯泡发光;再断开开关S,小灯泡仅有不显著的延时熄灭现象.虽经多次重复,仍未见老师演示时出现的小灯泡闪亮现象,他冥思苦想找不出原因.你认为最有可能造成小灯泡未闪亮的原因是()图4918A.电源内阻较大B.小灯泡电阻偏大C.线圈电阻偏大D.线圈自感系数较大3.如图4912是用于观察自感现象的电路图,设线圈的自感系数较大,线圈的直流电阻R L与灯泡的电阻R满足R L≪R,则在开关S由闭合到断开的瞬间,可以观察到()图4912A.灯泡立即熄灭B.灯泡逐渐熄灭C.灯泡有明显的闪亮现象D.只有在R L≫R时,才会看到灯泡有明显的闪亮现象4.关于线圈中自感电动势大小的说法中正确的是()A.电感一定时,电流变化越大,自感电动势越大B.电感一定时,电流变化越快,自感电动势越大C.通过线圈的电流为零的瞬间,自感电动势为零D.通过线圈的电流为最大值的瞬间,自感电动势最大1.在图4910中,线圈M和线圈P绕在同一铁芯上,则()图4910A.当合上开关S的一瞬间,线圈P里没有感应电流B.当合上开关S的一瞬间,线圈P里有感应电流C.当断开开关S的一瞬间,线圈P里没有感应电流D.当断开开关S的一瞬间,线圈P里有感应电流2. 如图4913所示,L为一纯电感线圈(即电阻为零).A是一灯泡,下列说法正确的是()图4913A.开关S接通瞬间,无电流通过灯泡B.开关S接通后,电路稳定时,无电流通过灯泡C.开关S断开瞬间,无电流通过灯泡D.开关S接通瞬间及接通稳定后,灯泡中均有从a到b的电流,而在开关S断开瞬间,灯泡中有从b 到a的电流3.在如图4914所示的甲、乙电路中,电阻R和灯泡电阻值相等,自感线圈L的电阻值可认为是零.在接通开关S时,则()图4914A.在电路甲中,A将渐渐变亮B.在电路甲中,A将先变亮,后渐渐变暗C.在电路乙中,A将渐渐变亮D.在电路乙中,A将由亮渐渐变暗,后熄灭4.在如图4919所示的电路中,开关S是闭合的,此时流过线圈L的电流为i1,流过灯泡A的电流为i2,且i1>i2.在t1时刻将S断开,那么流过灯泡A的电流随时间变化的图象是图中的哪一个()图4919。

法拉第电磁感应定律自感

法拉第电磁感应定律自感

考点解读 典型例题知识要点1.法拉第电磁感应定律:(1)感应电动势:在电磁感应现象中产生的电动势叫做感应电动势.感生电动势:由感生电场产生的感应电动势. 动生电动势:由于导体运动而产生的感应电动势.(2)内容:电路中感应电动势大小,跟穿过这一电路的磁通量的变化率成正比.(3)公式:E n t∆Φ=∆. (4)注意:①上式适用于回路磁通量发生变化的情况,回路不一定要闭合,只要穿过电路的磁通量发生变化,就会产生感应电动势;若电路是闭合的就会有感应电流产生.②△Φ不能决定E 的大小,t∆∆Φ才能决定E 的大小,而t∆∆Φ与△Φ之间无大小上的必然联系. ③公式只表示感应电动势的大小,不涉及方向. ④当△Φ仅由B 引起时,则tBnS E ∆∆=;当△Φ仅由S 引起时,则tSnBE ∆∆=. ⑤公式tnE ∆∆Φ=,若△t 取一段时间,则E 为△t 这段时间内感应电动势的平均值.当磁通量的变化率t∆∆Φ不随时间线性变化时,平均感应电动势一般不等于初态与末态电动势的平均值.若△t 趋近于零,则表示瞬时值.(5)部分导体切割磁感线产生的感应电动势的大小:E=BLVsinθ.①式中若V 、L 与B 两两垂直,则E=BLV ,此时,感应电动势最大;当V 、L 与B 中任意两个量的方向互相平行时,感应电动势E=0.②若导体是曲折的,则L 应是导体的两端点在V 、B 所决定的平面的垂线上投影间的.即L 为导体切割磁感线的等效长度.③公式E=BLV 中若V 为一段时间的平均值,则E 应是这段时间内的平均感应电动势;若V 为瞬时【例1】如图9-2-1所示,半径为r 的金属环,绕通过某直径的轴OO /以角速度ω转动,匀强磁场的磁感应强度为B .从金属环的平面与磁场方向重合开始计时,则在转过30O的过程中,环中产生的感应电动势的平均值是多大?【例2】在图9-2-2中,设匀强磁场的磁感应强度B=0.10T ,切割磁感线的导线的长度L=40cm ,线框向左匀速运动的速度V=5.0m/s ,整个线框的电阻R=0.5Ω,试求:感应电动势的大小;②感应电流的大小.【例3】如图9-2-3所示,固定在匀强磁场中的正方形导线框abcd ,各边长为L ,其中ab 边是一段电阻为R 的均匀电阻丝,其余三边均为电阻可忽略的铜导线,磁场的磁感应强度为B 方向垂直纸面向里.现有一与ab 段的材料、粗细、长度都相同的电阻丝PQ 架在导线框上,以恒定速度从ad 滑向bc .当PQ 滑过图9-2-3图9-2-1图9-2-2值,则E 应是某时刻的瞬时值.2.互感两个相互靠近的线圈中,有一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感生电动势,这种现象叫做互感,这种电动势叫做互感电动势.变压器就是利用互感现象制成的.3.自感:(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象.(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势.自感电动势的大小取决于自感系数和本身电流变化的快慢.(3)自感电流:总是阻碍导体中原电流的变化,当自感电流是由于原电流的增加引起时,自感电流的方向与原电流方向相反;当自感电流是由于原电流的减少引起时,自感电流的方向与原电流的方向相同.楞次定律对判断自感电流仍适用.(4)自感系数:①大小:线圈的长度越长,线圈的面积越大,单位长度上的匝数越多,线圈的自感系数越大;线圈有铁芯时自感系数大得多.②单位:亨利(符号H),1H=103mH=106μH ③物理意义:表征线圈产生自感电动势本领大小的物理量.数值上等于通过线圈的电流在1秒内改变1安时产生的自感电动势的大小.疑难探究4.如何理解和应用法拉第电磁感应定律? 对于法拉第电磁感应定律E n t∆Φ=∆应从以下几个方面进行理解:⑴它是描述电磁感应现象的普遍规律.不管是什么原因,用什么方式所产生的电磁感应现象,其感应电动势的大小均可由它进行计算.⑵一般说来,在中学阶段用它计算的是△t 时间内电路中所产生的平均感应电动势的大小,只有当磁通量的变化率为恒量时,用它计算的结果才等于电路中产生的瞬时感应电动势.L/3的距离时,通过aP 段电阻丝的电流强度是多大?方向如何?【例4】如图9-2-4所示的电路,L 为自感线圈,R 是一个灯泡,E 是电源,当S 闭合瞬间,通过电灯的电流方向是 ,当S 切断瞬间,通过电灯的电流方向是 .【例5】.金属杆ab 放在光滑的水平金属导轨上,与导轨组成闭合矩形电话,长L 1 = 0.8m ,宽L 2 = 0.5m ,回路的总电阻R = 0.2Ω,回路处在竖直方向的匀强磁场中,金属杆用水平绳通过定滑轮连接质量M = 0.04kg 的木块,木块放在水平面上,如图9-2-5所示,磁场的磁感应强度从B 0 = 1T 开始随时间均匀增强,5s 末木块将离开水平面,不计一切摩擦,g = 10m/s 2,求回路中的电流强度.图9-2-5图9-2-4⑶若回路与磁场垂直的面积S 不变,电磁感应仅仅是由于B 的变化引起的,那么上式也可以表述为:B E nSt ∆=∆,Bt∆∆是磁感应强度的变化率,若磁场的强弱不变,电磁感应是由回路在垂直于磁场方向上的S 的变化引起的,则SE nnB t t∆Φ∆==∆∆.在有些问题中,选用这两种表达方式解题会更简单. ⑷在理解这部分内容时应注意搞清楚:在电磁感应现象中,感应电流是由感应电动势引起的.产生感应电动势的那部分电路相当于电源,电动势的方向跟这段电路上的感应电流方向相同.当电路断开时,虽有感应电动势存在,并无感应电流,当电路闭合时出现感应电流.感应电流的大小由感应电动势的大小和电路的电阻决定,可由闭合电路的欧姆定律算出.感应电动势的大小由穿过这部分回路的磁通量变化率决定,与回路的通断,回路的组成情况无关.⑸要严格区分磁通量Φ、磁通量的变化量△Φ和磁通量的变化率t∆Φ∆这三个不同的概念. Φ、△Φ、t ∆Φ∆三者的关系尤如υ、△υ、tυ∆∆三者的关系.磁通量Φ等于磁感应强度B 与垂直于磁场方向的面积S 的乘积,即Φ=BS,它的意义可以形象地用穿过面的磁感线的条数表示.磁通量的变化量△Φ是指回路在初末两个状态磁通量的变化量,△Φ=Φ2-Φ1.△Φ与某一时刻回路的磁通量Φ无关,当△Φ≠0时,回路中要产生感应电动势,但是△Φ却不能决定感应电动势E 的大小.磁通量的变化率t∆Φ∆表示的是磁通量变化的快慢,它决定了回路中感应电动势的大小.t∆Φ∆的大小与Φ、△Φ均无关.5.公式E=BLV 使用时应注意那些问题? ⑴公式E=BLV 是法拉第电磁感应定律的一种特殊形式,不具有普遍适用性,仅适用于计算一段导体因切割磁感线而产生的感应电动势,且在匀强磁场中B 、L 、V 三者必须互相垂直.【例6】如图9-2-6所示,光滑导体棒bc 固定在竖直放置的足够长的平行金属导轨上,构成框架abcd ,其中bc 棒电阻为R ,其余电阻不计.一不计电阻的导体棒ef 水平放置在框架上,且始终保持良好接触,能无摩擦地滑动,质量为m .整个装置处在磁感应强度为B 的匀强磁场中,磁场方向垂直框面.若用恒力F 向上拉ef ,则当ef 匀速上升时,速度多大?【例7】如图9-2-9所示,两根电阻不计,间距为l 的平行金属导轨,一端接有阻值为R 的电阻,导轨上垂直搁置一根质量为m 、电阻为r 的金属棒,整个装置处于竖直向上磁感强度为B 的匀强磁场中.现给金属棒施一冲量,使它以初速0V 向左滑行.设棒与导轨间的动摩擦因数为μ,金属棒从开始运动到停止的整个过程中,通过电阻R 的电量为q .求:(导轨足够长)(1)金属棒沿导轨滑行的距离;(2)在运动的整个过程中消耗的电能.图9-2-6 图9-2-9⑵当V 是切割运动的瞬时速度时,算出的是瞬时电动势;当V 是切割运动的平均速度时,算出的是一段时间内的平均电动势.⑶若切割磁感线的导体是弯曲的,L 应理解为有效切割长度,即导体在垂直于速度方向上的投影长度.⑷公式E=BLV 一般适用于在匀强磁场中导体各部分切割速度相同的情况,对一段导体的转动切割,导体上各点线速度不等,怎样求感应电动势呢?如图9-2-7所示,一长为L 的导体棒AC 绕A 点在纸面内以角速度ω匀速转动,转动区域内在垂直于纸面向里的电动势.AC 转动切割时各点的速度不等,υA =0,υC =ωL,由A 到C 点速度按与半径成正比增加,取其平均切割速度12L υω=,得212E BL BL υω==.⑸若切割速度与磁场方向不垂直,如图9—28所示,υ与B 的夹角为θ,将υ分解为:υ∥=υcosθυ⊥=υsinθ,其中υ∥不切割磁感线,根据合矢量和分矢量的等效性得E=BLV ⊥=BLVsinθ.⑹区分感应电量与感应电流.回路中发生磁通量变化时,由于感应电场的作用使电荷发生定向移动而形成感应电流,在△t 内迁移的电量(感应电量)为E q I t t t R R t R∆Φ∆Φ=∆=∆=∆=∆ 仅由回路电阻和磁通量变化决定,与发生磁通量变化的时间无关.因此,当用一根磁棒先后两次从同一处用不同速度插至线圈中同一位置时,线圈里积聚的感应电量相等.但快插与慢插时产生的感应电动势、感应电流不同,外力做的功也不同.6.通电自感和断电自感的两个基本问题?【例8】CD 、EF 为两足够长的导轨,CE =L ,匀强磁场方向与导轨平面垂直,磁感强度为B ,导体CE 连接一电阻R ,导体ab 质量为m ,框架与导体电阻不计,如图9-2-11所示.框架平面与水平面成θ角,框架与导体ab 间的动摩擦因数为μ,求导体ab 下滑的最大速度?【例9】.如图9-2-12所示,两光滑平行导轨MN 、PQ 水平放置在匀强磁场中,磁场方向与导轨所在平面垂直,金属棒ab 可沿导轨自由移动,导轨左端M 、P 接一定值电阻,金属棒以及导轨的电阻不计.现将金属棒由静止向右拉,若保持拉力F 恒定,经过时间t 1后,金属棒的速度为v ,加速度为a 1,最终以2v 作匀速运动;若保持拉力F 的功率恒定,经过时间t 2后,金属棒的速度为v ,加速度为a 2,最终以2v 作匀速运动.求a 1与 a 2的比值.图9-2-7图9-2-8图9-2-11对自感要搞清楚通电自感和断电自感两个基本问题,尤其是断电自感,特别模糊的是断电自感中“小灯泡在熄灭之前是否要闪亮一下”的问题,如图9-2-10所示,原来电路闭合处于稳定状态,L 与A 并联,其电流分别为I L 和I A ,都是从左向右.在断开K 的瞬时,灯A 中原来的从左向右的电流I A 立即消失.但是灯A 与线圈L 组成一闭合回路,由于L 的自感作用,其中的电流I L 不会立即消失,而是在回路中逐渐减弱维持短暂的的时间,这个时间内灯A 中有从右向左的电流通过.这时通过A 的电流是从I L 开始减弱,如果原来I L >I A ,则在灯A 熄灭之前要闪亮一下;如果原来I L ≤I A ,则灯A 逐渐熄灭不再闪亮一下.原来的I L 和I A 哪一个大,要由L 的直流电阻R L 与A 的电阻R A 的大小来决定.如果R L ≥R A ,则I L ≤I A ;如果R L <R A ,则I L >I A .典型例题答案【例1】解析:金属环在转过300的过程中,磁通量的变化量201221030sin r B BS π=-=Φ-Φ=∆Φ 又ωπωπωθ66===∆t 所以223621r B r B tE ωωππ==∆∆Φ=【例2】解析:①线框中的感应电动势 E=BLV=0.10×0.40×5.0V=0.20V ②线框中的感应电流A A R E I 40.050.020.0===【例3】解析:当PQ 滑过L/3时,PQ 中产生感应电动势为E=BLV ,它相当于此电路中的一个电源,其内电阻r=R .此时外电阻R aP =R/3,R bP =2R/3,总的外电阻为R R RR R 923231=⨯=总, 由全电路欧姆定律得到,通过PQ 的电流强度为RBLVR R BLV r R E I 11992=+=+=总; 则通过aP 的电流强度为RBLV I I aP 11632==, 方向由P 到a.【例4】解析:当S 闭合时,流经R 的电流是A —B .当S 切断瞬间,由于电源提供给R 及线圈的电流立即消失,因此线圈要产生一个和原电流方向相同的自感电动势来阻碍原电流减小,所以线圈此时相当于一个电源,产生的自感电流流经R 时的方向是B —A .【例5】解析:设磁感应强度B 的变化率tB∆∆ = k ,则B = B 0 + kt ,并根据法拉第电磁感应定律ε= N ·tB ∆∆,有:21L Lk S tB ⋅⋅=⋅∆∆=ε图9-2-10PM NQR a bF图9-2-12则感应电流 RL kL RI 21==ε 感应电流所受安培力F 安为:()2210L RL kL kt B BIL F ⋅+==安 当F 安= Mg 时木块离开水平面,即()()A R L kL I T k k k MgL RL L k kt B 4.02.05.08.02.02.01004.05.02.05.08.051212210=⨯⨯===⨯=⨯⨯⨯+=⋅⋅+∴ 感应电流的电流强度为0.4A .【例6】解析:当杆向上运动时,杆ef 受力如图9-2-7所示.由牛顿第二定律得:maF mg F =--安,mF mg F a 安--=,当F 、mg 都不变时,只要v 变大,E =BLv 就变大,REI =变大,F 安变大,从而a 变小.当v 达到某一值,则a =0,此后杆ef 做匀速运动.因此,杆ef 做加速度越来越小的加速运动,当a =0时最终匀速上升.当杆匀速上升时,有F =F 安+mg …………①F 安=BIL =Rv L B 匀22…………②由①、②式得:v 匀=()22L B R mg F -【例7】解析:(1)设滑行的距离为L 由法拉第电磁感应有tlBL t S B t Φ∆⨯=∆∆=∆∆=ε ① 而由电流定义有tqI ∆=② 由闭合电路的欧姆定律得rR I +=ε③由①②③解得q r R l BL=+⋅得lB rR q L ⋅⋅+=(2)由功能原理得20210)(mV Q W f -=-+- ④而lB rR mgq mgL W f ⋅⋅+==μμ ⑤ 所以:lB rR mgqmV Q ⋅⋅+-=μ2021 【例8】解析:由能的转化和守恒定律知,当导体ab 以最大速度v m 匀速运动以后,导体ab 下滑过程中,减少的重力势能(机械能)等于克服摩擦力所做的功和电阻R 产生的热量,并设以最大速度运动的时间为t ,则:mgsin θ·(v m t )= μmgcos θ·(v m t ) +I 2Rt mgsin θ·(v m t ) =μmgcos θ·(v m t ) +Rt R v l B m2222 解得:()22cos sin l B mgR v m θμθ-=【例9】解析:F 恒定,当金属棒速度为2v 时:RvL B L BI F 2222== 当金属棒速度为v 时: mRv L B a ma R vL B R v L B ma L BI F 22112222112==-=- F 功率恒定,设为P .当金属棒速度为2v 时:R v L B v F P 222242==当金属棒速度为v 时: mRv L B a ma Rv L B v P ma L BI F 2222222113==-='- 则:3121=a a图9-2-针对练习 1.在电磁感应现象中,通过线圈的磁通量与感应电动势关系正确的是( )A .穿过线圈的磁通量越大,感应电动势越大B .穿过线圈的磁通量为零,感应电动势一定为零C .穿过线圈的磁通量变化越大,感应电动势越大D .穿过线圈的磁通量变化越快,感应电动势越大2.如图9-2-13所示的电路中,A 1和A 2是完全相同的灯泡,线圈L 的电阻可以忽略.下列说法中正确的是()A .合上开关S 接通电路时,A 2先亮,A 1后亮,最后一样亮B .合上开关S 接通电路时,A 1和A 2始终一样亮C .断开开关S 切断电路时,A 2立刻熄灭,A 1过一会儿才熄灭D .断开开关S 切断电路时,A 1和A 2都要过一会儿才熄灭3. (2006年潍坊市高三统一考试)如图9-2-14所示,a 、b 是平行金属导轨,匀强磁场垂直导轨平面,c 、d 是分别串有电压表和电流表的金属棒,它们与导轨接触良好,当c 、d 以相同的速度向右运动时,下列说法正确的是()A.两表均无读数B.两表均有读数C.电流表有读数,电压表无读数D.电流表无读数,电压表有读数4.如图9-2-15示,甲中有两条不平行轨道而乙中的两条轨道是平行的,其余物理条件都相同.金属棒MN 都正在轨道上向右匀速平动,在棒运动的过程中,将观察到 ( )A .L 1,L 2小电珠都发光,只是亮度不同B .L l ,L 2都不发光C .L 2发光,L l 不发光D .L l 发光,L 2不发光5.(连云港2006年第一学期期末调研考试)如图9-2-16所示,AOC 是光滑的直角金属导轨,AO 沿竖直方向,OC 沿水平方向,ab 是一根金属直棒,如图立在导轨上(开始时b 离O 点很近).它从静止开始在重力作用下运动,运动过程中a 端始终在AO 上,b 端始终在OC 上,直到ab 完全落在OC 上,整个装置放在一匀强磁场中,磁场方向垂直纸面向里,则ab 棒在运动过程中( )A.感应电流方向始终是b→aB.感应电流方向先是b→a,后变为a→bC.受磁场力方向垂直于ab 向上D.受磁场力方向先垂直ab 向下,后垂直于ab 向上6.如图9-2-17所示,在两平行光滑导体杆上,垂直放置两导体ab 、cd ,其电阻分别为R l 、R 2,且R 1<R 2,其他电阻不计,整个装置放在磁感应强度为B 的匀强磁场中.当ab 在外力F l 作用下向左匀速运动,cd 则在外力F 2作用下保持静上,则下面判断正确的是( )A .F l >F 2,U ab >U abB .F l =F 2,U ab =U cdC .F 1<F 2,U ab =U cdD .F l =F 2,U ab <U cd图9-2-17图9-2-14图9-2-13 图9-2-16A CabO图9-2-15单元达标1.穿过闭合回路的磁通量φ随时间t变化的图象分别如图9-2-18①~④所示,下列关于回路中产生的感应电动势的论述,正确的是( )A.图①中回路产生的感应电动势恒定不变B.图②中回路产生的感应电动势一直在变大C.图③中回路在0~t1时间内产生的感应电动势小于在t1~t2时间内产生的感应电动势D.图④中回路产生的感应电动势先变小再变大2.如图9-2-19所示,两个互连的金属圆环,粗金属环的电阻是细金属环电阻的二分之一.磁场垂直穿过粗金属环所在区域.当磁感应强度随时间均匀变化时,在粗环内产生的感应电动势为E,则a、b两点间的电势差为:()A.E21B.E31C.E32D.E3.水平放置的金属框架cdef处于如图9-2-20所示的匀强磁场中,金属棒ab置于粗糙的框架上且接触良好.从某时刻开始磁感应强度均匀增大,金属棒ab始终保持静止,则()A.ab中电流增大,ab棒受摩擦力也增大B.ab中电流不变,ab棒受摩擦力也不变C.ab中电流不变,ab棒受摩擦力增大D.ab中电流增大,ab棒受摩擦力不变4.如图9-2-21所示,让线圈由位置1通过一个匀强磁场的区域运动到位置2,下述说法中正确的是:()A.线圈进入匀强磁场区域的过程中,线圈中有感应电流,而且进入时的速度越大,感应电流越大B.整个线圈在匀强磁场中匀速运动时,线圈中有感应电流,而且感应电流是恒定的C.整个线圈在匀强磁场中加速运动时,线圈中有感应电流,而且感应电流越来越大D.线圈穿出匀强磁场区域的过程中,线圈中有感应电流,而且感应电流越来越大5.如图9-2-22中所示电路,开关S原来闭合着,若在t1时刻突然断开开关S,则于此时刻前后通过电阻R1的电流情况用图9-2-23中哪个图像表示比较合适()6.如图9-2-24所示,一宽40cm的匀强磁场图9-2-22图9-2-20图9-2-19图9-2-18××××××××××××1 2图9-2-21图9-2-23区域,磁场方向垂直纸面向里,一边长为20cm的正方形导线框位于纸面内,以垂直于磁场边界的恒定速度v=20cm/s通过磁场区域,在运动过程中,线框中有一边始终与磁场区域的边界平行,取它刚进入磁场的时刻t=0,在图9-2-25的图线中,正确反映感应电流强度随时间变化规律的是()7.如图9-2-26所示,一闭合小铜环用绝缘细线悬挂起来,铜环从图示位置静止释放,若不计空气阻力,则()A.铜环进入或离开磁场区域时,环中感应电流方向都沿顺时针方向B.铜环进入磁场区域后,越靠近OO′位置速度超大,产生的感应电流越大C.此摆的机械能不守恒D.在开始一段时间内,铜环摆动角度逐渐变小,以后不变8.如图9-2-27所示,在光滑绝缘水平面上,有一矩形线圈以一定的初速度进入匀强磁场区域,线圈全部进入匀强磁场区域时,其动能恰好等于它在磁场外面时的一半,设磁场区域宽度大于线圈宽度,则()A.线圈恰好在完全离开磁场时停下B.线圈在未完全离开磁场时已停下C.线圈能通过场区不会停下D.线圈在磁场中某个位置停下9.如图9-2-28所示,水平金属导轨足够长,处于竖直向上的匀强磁场中,导轨上架着金属棒ab,现给ab一个水平冲量,ab将运动起来,最后又静止在导轨上,对此过程,就导轨光滑和粗糙两种情况比较有()A.安培力对ab棒做功相等B.电流通过整个回路做功相等C.整个回路产生的热量相等D.两棒运动的路程相等10.如图9-2-29所示,两个相同的线圈从同一高度自由下落,途中在不同高度处通过两处高度d 相同、磁感应强度B相等的匀强磁场区域后落到水平地面上,则两线圈着地时动能E Ka、E Kb的大小和运动时间t a、t b的长短关系是()A.E Ka=E Kb,t a=t bB.E Ka>E Kb,t a>t bC.E Ka>E Kb,t a<t bD.E Ka<E Kb,t a<t b图9-2-29图9-2-28图9-2-27图9-2-24图9-2-25图9-2-2611.如图9-2-30所示,导体ab 可无摩擦地在足够长的处在匀强磁场中的竖直导轨上滑动,除电阻R 外,其余电阻不计,在ab 下落过程中,试分析(1)导体的机械能是否守恒.________ (2)ab 达到稳定速度之前,其减少的重力势能________(填“大于”“等于”或“小于”)电阻R 上产生的内能.12.如图9-2-31所示,两反向匀强磁场宽均为L ,磁感应强度均为B ,正方形线框边长也为L ,电阻为R ,当线框以速度v 匀速穿过此区域时,外力所做的功为________.图9-2-30图9-2-31。

第一章 6 自感

第一章 6 自感

6 自感[学习目标] 1.了解自感现象.能够通过电磁感应的有关规律分析通电自感和断电自感现象.2.了解自感电动势的表达式E L =L ΔI Δt ,知道自感系数的决定因素.3.了解日光灯的构造及工作原理.1.自感现象由于导体线圈本身的电流发生变化而引起的电磁感应现象叫做自感,在自感现象中产生的电动势叫做自感电动势.2.自感系数(1)自感电动势:E L =L ΔI Δt,其中L 是自感系数,简称自感或电感.单位:亨利,简称亨,符号为H.(2)自感系数与线圈的形状、大小、匝数,以及是否有铁芯等因素有关.3.日光灯(1)日光灯的构造:普通日光灯由灯管、镇流器、启动器、导线和开关组成.(2)镇流器的作用:启动时产生瞬时高电压使灯管发光,正常工作时,起着降压限流作用.(1)自感现象中,感应电流一定与原电流方向相反.( × )(2)线圈的自感系数与电流大小无关,与电流的变化率有关.( × )(3)日光灯点亮后,启动器就没有作用了.( √ )(4)在日光灯正常工作中,镇流器只会消耗能量,没有作用.( × )一、通电自感现象如图1所示,先闭合S ,调节R 2使A 1、A 2的亮度相同,再调节R 1,使A 1、A 2都正常发光,然后断开S.再次闭合S ,观察两只灯泡在电路接通瞬间的发光情况有什么不同?根据楞次定律分析现象产生的原因.图1答案现象:灯泡A2立即发光,灯泡A1逐渐亮起来.原因:电路接通时,电流由零开始增加,穿过线圈L的磁通量逐渐增加,为了阻碍磁通量的增加,感应电流产生的磁通量与原来电流产生的磁通量方向相反,则线圈中感应电动势的方向与原来的电流方向相反,阻碍了L中电流的增加,即推迟了电流达到稳定值的时间.1.通电瞬间自感线圈处相当于断路.2.当线圈中的电流增大时,自感电动势的方向与原电流的方向相反,阻碍电流的增大,使电流从零逐渐增大到稳定值,但不能阻止电流的增大.3.电流稳定时自感线圈相当于导体(若直流电阻为零,相当于导线).例1(2021·长沙一中高二检测)如图2所示,电路中电源的内阻不能忽略,电阻R的阻值和线圈L的自感系数都很大,A、B为两个完全相同的灯泡,当S闭合时,下列说法正确的是(线圈L的直流电阻较小)()图2A.A比B先亮,然后A灭B.B比A先亮,然后B逐渐变暗C.A、B一起亮,然后A灭D.A、B一起亮,然后B灭答案 B解析S闭合时,由于与A灯串联的线圈L的自感系数很大,故在线圈上产生很大的自感电动势,阻碍电流的增大,所以B比A先亮,稳定后,流过B灯支路的电流变小,所以B灯逐渐变暗,故B正确.二、断电自感现象如图3所示,先闭合开关使灯泡发光,然后断开开关.(1)开关断开前后,流过灯泡的电流方向相同吗?(2)在断开过程中,有时灯泡闪亮一下再熄灭,有时灯泡只会缓慢变暗直至熄灭,请分析上述两种现象发生的原因是什么?图3答案(1)S闭合时,灯泡A中的电流方向向左,S断开瞬间,灯泡A中的电流方向向右,所以开关S断开前后,流过灯泡的电流方向相反.(2)在开关断开后灯泡又闪亮一下的原因是灯泡断电后自感线圈中产生的感应电流比开关断开前流过灯泡的电流大.要想使灯泡闪亮一下再熄灭,就必须使自感线圈的电阻小于与之并联的灯泡电阻.而当线圈电阻大于或等于灯泡电阻时,灯泡就会缓慢变暗直至熄灭.1.当线圈中的电流减小时,自感电动势的方向与原电流方向相同;2.断电自感中,由于自感电动势的作用,线圈中电流从原值逐渐减小.若断开开关瞬间通过灯泡的电流大于断开开关前的电流,灯泡会闪亮一下;若断开开关瞬间通过灯泡的电流小于或等于断开开关前的电流,灯泡不会闪亮一下,而是逐渐变暗直至熄灭.3.自感电动势总是阻碍线圈中电流的变化,但不能阻止线圈中电流的变化.例2如图4所示,开关S处于闭合状态,小灯泡A和B均正常发光,小灯泡A的电阻大于线圈L的电阻,现断开开关S,以下说法正确的是()图4A.小灯泡A越来越暗,直到熄灭B.小灯泡B越来越暗,直到熄灭C.线圈L中的电流会立即消失D.线圈L中的电流过一会再消失,且方向向右答案 D解析S断开瞬间,B立即熄灭.S断开瞬间,线圈中的电流由原电流逐渐减小,导致线圈中出现感应电动势从而阻碍电流的减小,即线圈L中的电流过一会再消失,且方向向右,因L和A组成新的回路,电流由原线圈中的电流逐渐减小,由于小灯泡A的电阻大于线圈L的电阻,所以S断开前线圈的电流大于小灯泡A中的电流,所以A先亮一下,然后慢慢熄灭,故D正确.针对训练在如图5所示的电路中,两个电流表完全相同,零刻度在刻度盘的中央.当电流从“+”接线柱流入时,指针向右摆;当电流从“-”接线柱流入时,指针向左摆(本题中的指针摆向是相对于电流表零刻度而言的).在电路接通且稳定后断开开关的瞬间,下列说法正确的是()图5A.G1指针向右摆,G2指针向左摆B.G1指针向左摆,G2指针向右摆C.两指针都向右摆D.两指针都向左摆答案 A解析电路接通且稳定时,两支路中都有自左至右的电流,当开关断开的瞬间,电路电流减小,故L将产生自左至右的自感电流以阻碍原电流变化,L所在支路与R所在支路串联形成回路,则电流自右至左流经R所在支路,故选A.例3如图6所示的电路中,开关S闭合且稳定后流过电感线圈的电流是2 A,流过灯泡D 的电流是1 A,现将开关S突然断开,开关S断开前后,能正确反映流过灯泡D的电流i随时间t变化关系的图像是()图6答案 D解析开关S断开前,通过灯泡D的电流是稳定的,其值为1 A.开关S断开瞬间,自感线圈的支路由于自感现象会产生与线圈中原电流方向相同的自感电动势,使线圈中的电流从2 A逐渐减小,方向不变,且与灯泡D构成回路,通过灯泡D的电流和线圈L中的电流相同,也应该是从2 A逐渐减小到零,但是方向与原来通过灯泡D的电流方向相反,故D对.提示要注意断电前后,无线圈的支路电流方向是否变化.三、自感的典型应用——日光灯1.日光灯的电路如图7所示.图72.工作原理:日光灯在接通电源时,启动器首先导通,又立即断开,在断开的瞬间,由于自感现象,镇流器产生很高的自感电动势,而使灯管快速启动.3.镇流器的作用:日光灯启动时,镇流器提供瞬时高电压,而使气体放电;灯管发光后,镇流器又起着降压限流的作用.例4若将图8甲中启动器换为开关S1,并给镇流器并联一个开关S2,如图乙所示,则下列叙述正确的是()图8A.只把S3接通,日光灯就能正常发光B.把S3、S1接通后,S2不接通,日光灯就能正常发光C.S2不接通,接通S3、S1后,再断开S1,日光灯就能正常发光D.当日光灯正常发光后,再接通S2,日光灯仍能正常发光答案 C解析一般日光灯启动的瞬间把电源、灯丝、镇流器接通,然后启动器自动断开,靠镇流器产生瞬时高压,使灯管内气体导电,所以启动时既要使题图乙中S3闭合,又需使S1瞬间闭合再断开,A 、B 错,C 对.正常工作时镇流器起降压限流作用,若把题图乙中S 2闭合,则镇流器失去作用,日光灯不能正常工作,D 错.1.(对自感系数的理解)关于线圈的自感系数,下列说法正确的是( )A .线圈的自感系数越大,自感电动势就一定越大B .线圈中电流等于零时,自感系数也等于零C .线圈中电流变化越快,自感系数越大D .线圈的自感系数由线圈本身的因素及有无铁芯决定答案 D2.(对自感电动势的理解)关于线圈中自感电动势的大小,下列说法中正确的是( )A .电感一定时,电流变化越大,自感电动势越大B .电感一定时,电流变化越快,自感电动势越大C .通过线圈的电流为零的瞬间,自感电动势为零D .通过线圈的电流为最大值的瞬间,自感电动势最大答案 B解析 电感一定时,电流变化越快,ΔI Δt 越大,由E L =L ΔI Δt知,自感电动势越大,故A 错,B 对;线圈中电流为零时,电流的变化率不一定为零,自感电动势不一定为零,故C 错;当通过线圈的电流最大时,若电流的变化率为零,自感电动势为零,故D 错.3.(对自感现象的理解)如图9所示,L 是电感足够大的线圈,其直流电阻可忽略不计,A 和B 是两个参数相同的灯泡,若将开关S 闭合,等灯泡亮度稳定后,再断开开关S ,则( )图9A .开关S 闭合时,灯泡A 比B 先亮B .开关S 闭合时,灯泡A 、B 同时亮,最后一样亮C .开关S 闭合后,灯泡A 逐渐熄灭,灯泡B 逐渐变亮,最后亮度保持不变D .开关S 断开瞬间,A 、B 闪亮一下逐渐熄灭答案 C解析 开关S 闭合时,由于L 的阻碍作用,电流从两灯中流过,故两灯同时亮,此后,有电流流过L,且流过L的电流逐渐增大,流过A的电流逐渐减小,电路稳定后,灯泡A被短路而熄灭,B灯比原来更亮且最后亮度保持不变,故C正确,A、B错误;开关S断开瞬间,B 中电流消失,故立即熄灭,由于线圈中产生自感电动势,且L和A构成回路,所以A闪亮一下后逐渐熄灭,故D错误.4.(自感现象中的图像问题)如图10所示的电路中,电源的电动势为E,内阻为r,电感线圈L 的电阻不计,电阻R的阻值大于灯泡D的阻值.在t=0时刻闭合开关S,经过一段时间后,在t=t1时刻断开S.下列表示A、B两点间电压U AB随时间t变化的图像中,正确的是()图10答案 B解析闭合开关S后,灯泡D立即发光,电感线圈L中的电流逐渐增大,电路中的总电流也将逐渐增大,电源内电压逐渐增大,则路端电压U AB逐渐减小;电阻R的阻值大于灯泡D的阻值,则开关断开前,电感线圈L所在支路电流小于灯泡所在支路电流,断开开关S后,电感线圈L中的原电流逐渐减小,导致电感线圈中出现感应电流从而阻碍原电流的减小,方向与原电流方向相同,电感线圈L与灯泡形成闭合回路,所以灯泡D中电流反向,并逐渐减小为零,即U AB反向并逐渐减小为零,故选B.5.(日光灯工作原理)家用日光灯电路如图11所示,S为启动器,A为灯管,L为镇流器,关于日光灯的工作原理,下列说法正确的是()图11A.镇流器的作用是将交流电变为直流电B.在日光灯正常发光时,启动器中的两个触片是分开的C.日光灯发出的光是电流加热灯丝发出的D.日光灯发出的光是汞原子受到激发后直接辐射的答案 B解析镇流器在启动时产生瞬时高压,在正常工作时起降压限流作用,故A错误;电路接通后,启动器中的氖气停止放电(启动器分压少、辉光放电无法进行,不工作),U形动触片冷却收缩,两个触片分离,故B正确.灯丝受热时发射出来的大量电子,在灯管两端高电压作用下,以极大的速度由低电势端向高电势端运动.在加速运动的过程中,碰撞管内气体(通常是氩气)分子,使之迅速电离.在紫外线的激发下,管壁上的荧光粉发出近乎白色的可见光,故C、D错误.考点一自感现象分析1.如图1所示,L为一纯电感线圈(即电阻为零).L A是一个灯泡,下列说法中正确的是()图1A.开关S闭合瞬间,无电流通过灯泡B.开关S闭合后,电路稳定时,无电流通过灯泡C.开关S断开瞬间,无电流通过灯泡D.开关S闭合瞬间及稳定时,灯泡中均有从a到b的电流,而在开关S断开瞬间,灯泡中有从b到a的电流答案 B解析开关S闭合瞬间,灯泡中的电流从a到b.开关S闭合后,电路稳定时,纯电感线圈对电流无阻碍作用,将灯泡短路,灯泡中无电流通过.开关S断开瞬间,由于线圈的自感作用,线圈中原有的向右的电流将逐渐减小,线圈和灯泡形成回路,故灯泡中有从b到a的电流,故B正确.2.如图2所示的电路中,A1和A2是两个相同的小灯泡,L是一个自感系数相当大的线圈,其阻值与R相同.在开关S接通和断开时,灯泡A1和A2亮暗的顺序是()图2A.接通时A1先达最亮,断开时A1后灭B.接通时A2先达最亮,断开时A1后灭C.接通时A1先达最亮,断开时A2后灭D.接通时A2先达最亮,断开时A2后灭答案 A解析当开关S接通时,A1和A2同时亮,但由于自感现象的存在,流过线圈的电流由零变大时,线圈上产生自感电动势阻碍电流的增大,使通过线圈的电流从零开始慢慢增加,所以开始时电流几乎全部从A1通过,而该电流又将同时分路通过A2和R,所以A1先达最亮,经过一段时间电路稳定后,A1和A2达到一样亮;当开关S断开时,电源电流立即为零,因此A2立即熄灭,而对A1,由于通过线圈的电流突然减小,线圈中产生自感电动势阻碍电流的减小,使线圈L和A1组成的闭合回路中有感应电流,所以A1后灭.3.(多选)如图3所示,A、B是两个完全相同的小灯泡,L是电阻不计、自感系数很大的线圈.下列说法正确的有()图3A.闭合S1,再闭合S2,A灯将变暗B.闭合S1,再闭合S2,B灯将变暗直至熄灭C.闭合S1、S2稳定后,再断开S1,A灯将立即熄灭D.闭合S1、S2稳定后,再断开S1,B灯先亮一下然后变暗直至熄灭答案BCD4.如图4所示,电源电动势为E,其内阻不可忽略,L1、L2是完全相同的灯泡,线圈L的直流电阻不计,电容器的电容为C,合上开关S,电路稳定后()图4A.电容器的带电荷量为CEB.灯泡L1、L2的亮度相同C.在断开S的瞬间,通过灯泡L1的电流方向向右D.在断开S的瞬间,灯泡L2立即熄灭答案 C解析合上开关S,电路稳定后,L1被短路,灯L1不亮,灯L2发光,B错误;由于电源有内阻,电容器两端电压U<E,则电容器所带电荷量Q<CE,A错误;断开S瞬间,通过L1的电流方向向右,C正确;断开S瞬间,电容器放电,L2过一会熄灭,D错误.5.如图5所示,A、B是两个完全相同的灯泡,D是理想二极管,L是带铁芯的线圈,其直流电阻忽略不计.下列说法正确的是()图5A.S闭合瞬间,B先亮A后亮B.S闭合瞬间,A先亮B后亮C.电路稳定后,在S断开瞬间,B闪亮一下,然后逐渐熄灭D.电路稳定后,在S断开瞬间,B立即熄灭答案 D解析开关S闭合瞬间,线圈相当于断路,二极管正向导通,故电流可通过灯泡A、B,A、B灯泡同时亮,故A、B错误;因线圈的直流电阻为零,则当电路稳定后,灯泡A被短路而熄灭,当开关S断开瞬间B立即熄灭,线圈中的电流也不能反向通过二极管,则灯泡A仍是熄灭的,故C错误,D正确.6.在如图6所示的电路中,a、b、c为三盏完全相同的灯泡,L是自感线圈,直流电阻为R L,则下列说法正确的是()图6A.闭合开关后,c先亮,a、b后亮B.断开开关时,N点电势高于M点电势C.断开开关后,b、c同时熄灭,a缓慢熄灭D.断开开关后,c立即熄灭,b闪一下后缓慢熄灭答案 B解析开关闭合瞬间,因线圈L的电流增大,产生自感电动势,则通过a的电流逐渐增大,所以b、c先亮,a后亮,故A错误;断开开关的瞬间,因线圈L的电流减小,产生自感电动势,根据楞次定律可知通过自感线圈的电流方向与原电流方向相同,则N点电势高于M点,故B正确;L和a、b组成的闭合回路中有电流,由于原来通过a的电流小于通过b的电流,则开关断开的瞬间,b不会闪一下,而是与a一起缓慢熄灭,而c中没有电流,立即熄灭,故C、D错误.7.如图7所示的电路可用来测定自感系数较大的线圈的直流电阻,线圈两端并联一个电压表,用来测量自感线圈两端的直流电压,在实验完毕后,将电路拆去时应()图7A.先断开开关S1B.先断开开关S2C.先拆去电流表A D.先拆去电阻R答案 B解析当开关S1、S2闭合稳定后,线圈中的电流由a→b,电压表右端为“+”极,左端为“-”极,指针正向偏转,先断开开关S1或先拆去电流表A或先拆去电阻R的瞬间,线圈中产生的自感电动势相当于瞬间电源,其a端相当于电源的负极,b端相当于电源的正极,此时电压表上加了一个反向电压,使指针反偏,若反偏电压过大,会烧坏电压表,故应先断开开关S2,故选B.8.(多选)在如图8所示电路中,L为自感系数很大的线圈,N为试电笔中的氖管(启辉电压约60 V),电源电动势为12 V,已知直流电使氖管启辉时,辉光只发生在负极周围,则下列说法中正确的是()图8A.S接通时,氖管不会亮B.S接通时启辉,辉光在a端C.S接通后迅速切断时启辉,辉光在a端D.S接通后迅速切断时启辉,则辉光在电极b处答案AD解析S接通后,电源电动势约为12 V,而启辉电压约60 V,所以氖管不会亮,故A正确,B错误;接通后迅速切断时启辉,因线圈的电流变化,导致产生较大的感应电动势,从而氖管启辉发出辉光,而线圈产生感应电动势时,左端相当于电源正极,右端相当于负极,由题意可知,辉光在b端,故C错误,D正确.考点二自感现象中的图像问题9.如图9所示的电路中,电源的电动势为E,内阻为r,线圈的自感系数很大,线圈的直流电阻R L与灯泡的电阻R满足R L<R.在t=0时刻闭合开关S,经过一段时间后,在t=t1时刻断开S.下列表示通过灯泡的电流随时间变化的图像中,正确的是()图9答案 C10.(多选)在如图10所示的电路中,L是一个自感系数很大、直流电阻不计的线圈,D1、D2和D3是三个完全相同的灯泡,E是内阻不计的电源.在t=0时刻,闭合开关S,电路稳定后在t1时刻断开开关S.规定以电路稳定时流过D1、D2的电流方向为正方向,分别用I1、I2表示流过D1、D2的电流,则下列图像中能定性描述电流随时间变化关系的是()图10答案BC解析闭合开关S后,通过D1、D2和D3的电流都是由上向下,D1中电流逐渐增大为稳定电流,且D1中稳定电流为D2、D3中稳定电流的2倍,断开开关S后,由于自感现象,通过D1的电流方向不变,而电流大小不能突变,电流逐渐减为0,所以选项A错误,B正确;开关断开后,D2和D3中电流方向与原方向相反,大小由D1中的稳定电流值逐渐减为0,所以选项C正确,D错误.考点三日光灯的工作原理11.(多选)如图11甲所示为日光灯电路,图乙为启动器结构图.在日光灯正常工作的过程中()图11A.镇流器为日光灯的点亮提供瞬时高压B.镇流器维持灯管两端有高于电源的电压,使灯管正常工作C.灯管点亮发光后,启动器中两个触片是接触的D.灯管点亮发光后,镇流器起降压限流作用使灯管在较低的电压下工作答案AD解析日光灯刚发光时,镇流器在启动时产生瞬时高压,故A正确;灯管点亮发光后,镇流器起降压限流作用使灯管在较低的电压下工作,故B错误,D正确;灯管正常发光后,启动器不再工作,启动器中两个触片是分离的,故C错误.12.如图所示,S为启动器,L为镇流器,其中日光灯的接线图正确的是()答案 A解析根据日光灯的工作原理,要想使日光灯发光,灯丝需要预热发出电子,灯管两端应有瞬时高压,这两个条件缺一不可.当启动器动、静触片分离后,选项B中灯管和电源断开,选项B错误;选项C中镇流器与灯管断开,无法将瞬时高压加在灯管两端,选项C错误;选项D中灯丝左、右端分别被短接,无法预热放出电子,不能使灯管内气体导电,选项D错误.13.如图12所示电路中,灯泡L1、L2、L3完全相同,线圈L的电阻可忽略,D为理想二极管.下列说法正确的是()图12A.闭合开关S的瞬间,L3立即变亮,L1、L2逐渐变亮B.闭合开关S的瞬间,L2、L3立即变亮,L1逐渐变亮C.断开开关S的瞬间,L2立即熄灭,L1先变亮一下然后才熄灭D.断开开关S的瞬间,L2立即熄灭,L3先变亮一下然后才熄灭答案 B14.(多选)如图13所示,灯泡A、B与定值电阻的阻值均为R,L是自感系数较大的线圈,当S1闭合、S2断开且电路稳定时,A、B两灯亮度相同,再闭合S2,等电路稳定后将S1断开,下列说法正确的是()图13A.B灯立即熄灭B.A灯亮一下后熄灭C.有电流通过B灯,方向为c→dD.有电流通过A灯,方向为b→a答案AD解析S1闭合、S2断开且电路稳定时,A、B两灯一样亮,说明两个支路中的电流相等,这时线圈L没有自感作用,可知线圈L的电阻也为R,在S2、S1都闭合且稳定时,I A=I B,当S2闭合、S1突然断开时,由于线圈的自感作用,流过A灯的电流方向变为b→a,A灯缓慢熄灭,故选项B错误,D正确;由于定值电阻R没有自感作用,故断开S1时,B灯立即熄灭,故选项A正确,C错误.。

电磁感应

电磁感应

探秘规律•升华技巧
两个典型的自感实验 自感现象的分析方法:明确自感电动势总是阻碍自感线圈中电流的变 化,通过自感线圈的电流不能发生突变. 1.通电自感 (1)演示通电自感电路图如右图所示.
(2)当接通电路时,看到的现象:灯B立刻正常发光,灯A逐渐变亮至 正常发光. (3)结论:因线圈中电流增大,线圈中产生自感电动势的方向与原电流 方向相反(增反),对要增大的电流有阻碍作用,不能让电流立刻增加 到最大值.
方向:(1)通电时,自感电动势阻碍电流的增大,与电流方向相反;含 较大自感系数的线圈的支路此时可看作断路. (2)断电时,自感电动势阻碍电流的减小,与原电流方向相同;线圈相 当于电源,它提供的电流在原来IL的基础上渐渐减小;跟自感线圈并 联的灯泡可能“闪亮”一下. (3)电路稳定时,线圈有电阻则相当于一个定值电阻;没有电阻则相当 于一根导线,跟线圈并联的灯泡不亮.
【解析】 本题考查通电自感,与滑动变阻器R串联的L2,没有自感 直接变亮,电流变化图象和A项中图线相同,C、D项错误.与带铁芯 的电感线圈串联的L1,自感应电流逐渐变大,B项正确.
【答案】 B
二、自感的应用——日光灯 1.日光灯的点燃过程 闭合开关,电压加在启动器的两极间,氖气放电发出辉光,产生热量 使U型双金属片膨胀伸长.跟静触片接触电路接通,灯丝和镇流器中 有电流通过;此后氖气停止放电,U型片冷却,两个触片分离,电路 自动断开;此时在镇流器上产生自感电动势.这个电动势与电源电动 势方向相同,两个电动势加起来形成瞬间高压(约500 V)加在灯管两端, 使管内气体电离,有电流通过日光灯开始发光.
【答案】 AD
突破压轴•技压群雄
一、电流方向的确定 电流方向仍符合楞次定律.具体到自感中,体现为感应电流的方向与 原电流的方向的关系,“增反减同”.即原电流增加,感应电流的方 向与原电流的方向相反,原电流减小,感应电流的方向与原电流的方 向相同.

自感电动势与自感系数

自感电动势与自感系数
t
4.楞次定律的内容是什么? 答:当穿过线圈的磁通(原有的磁通)发生变化时,感应电动势的方向
3
总是企图使它的感应电流产生的磁通阻止原有磁通的变化。
授新课
课时计划副页
授 课内 容
第2页
共9页
时间 分配
3-7 自感电动势与自感系数
设问:除可以采用向线圈中插入或拔出磁铁的方法使线圈中磁通发 10 分
生变化而产生电磁感应现象外,还有没有其他办法呢?
t
eL =0


若 i 一定,L 越大,
t
eL 越大。
L 越小, eL 越小。
下面通过举例对 eL
L i t
进行应用。
例 3-6 电感量 L=0.12H 线圈在 0.5s 内电流自 2A 均匀地降
到 0.5A,求此线圈所产生的自感电动势eL ?
解:
eL
L i t
0.12 0.5 2 0.5
0.36V
2
课时计划副页
第1页 共9页
授 课内 容
时间 分配
复习:(为了调动学生的积极性,采用学生抢答形式,抢答正确后算成 5 分
平时成绩进行加分)
1.什么叫电磁感应现象?
答:由于磁通变化而在导体或线圈中产生感应电动势的现象。
2.产生电磁感应的条件是什么? 答:通过线圈回路的磁通必须发生变化。 3.法第电磁感应定律的内容及公式是怎样的? 答:①内容:线圈感应电动势的大小与通过同一线圈的磁通的变化 率(即变化快慢)成正比。②公式: e N
课时计划副页
第3页 共9页
授 课内 容
时间 分配
由学生回答:当开关 S 闭合时,通过线圈中的电流发生了由无到
有的变化,线圈中的磁通呈增加的趋势。

第四章 第6节 互感和自感

第四章  第6节  互感和自感

第6节互感和自感1.当一个线圈中的电流变化时,会在另一个线圈中产生感应电动势,这种现象叫互感,互感的过程是一个能量传递的过程。

2.当一个线圈中的电流变化时,会在它本身激发出感应电动势,叫自感电动势,自感电动势的作用是阻碍线圈自身电流的变化。

3.自感电动势的大小为E =L ΔI Δt,其中L 为自感系数,它与线圈大小、形状、圈数,以及是否有铁芯等因素有关。

4.当电源断开时,线圈中的电流不会立即消失,说明线圈中储存了磁场能。

一、互感现象1.定义两个相互靠近的线圈,当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势的现象。

产生的电动势叫做互感电动势。

2.应用互感现象可以把能量由一个线圈传递到另一个线圈,变压器、收音机的“磁性天线”就是利用互感现象制成的。

3.危害互感现象能发生在任何两个相互靠近的电路之间。

在电力工程和电子电路中,互感现象有时会影响电路正常工作。

二、自感现象和自感系数1.自感现象 当一个线圈中的电流变化时,它产生的变化的磁场在它本身激发出感应电动势的现象。

2.自感电动势 由于自感而产生的感应电动势。

3.自感电动势的大小E =L ΔI Δt,其中L 是自感系数,简称自感或电感,单位:亨利,符号为H 。

4.自感系数大小的决定因素 自感系数与线圈的大小、形状、圈数,以及是否有铁芯等因素有关。

三、磁场的能量1.自感现象中的磁场能量(1)线圈中电流从无到有时:磁场从无到有,电源的能量输送给磁场,储存在磁场中。

(2)线圈中电流减小时:磁场中的能量释放出来转化为电能。

2.电的“惯性” 自感电动势有阻碍线圈中电流变化的“惯性”。

1.自主思考——判一判(1)两线圈相距较近时,可以产生互感现象,相距较远时,不产生互感现象。

(×)(2)在实际生活中,有的互感现象是有害的,有的互感现象可以利用。

(√)(3)只有闭合的回路才能产生互感。

(×)(4)线圈的自感系数与电流大小无关,与电流的变化率有关。

自感互感与磁能3

自感互感与磁能3

当然,这只是相似,并非全同! 当然,这只是相似,并非全同! 因而研究中还要抓住特异点。 因而研究中还要抓住特异点。 类比研究有利于思维联想,能够开拓思路。 类比研究有利于思维联想,能够开拓思路。我 们要学会抓住各学科的交叉渗透现象, 们要学会抓住各学科的交叉渗透现象,要从看上去 互不相关的现象中寻找内在的联系。 互不相关的现象中寻找内在的联系。 建议阅读文献: 建议阅读文献: 费曼物理学讲义 第一卷 25 章
d 2q dI =L 2 U=L dt dt
dI d 2q U=L =L 2 dt dt
线圈 U I q
dv d2x 比较 F = m =m 2 dt dt
牛顿粒子 F v x m mv 1 2 mv 2
L LI(自磁链) (自磁链) 1 2 LI 2
?
相同的方程应该有相同的解。 相同的方程应该有相同的解。这种形式上的对 提供给我们一个可能是正确的信息: 可能是正确的信息 比,提供给我们一个可能是正确的信息: 1 2 LI 应该具有能量的意义 !? 2 这种从数学形式相同出发进行类比的研究方法 是非常有效的。 是非常有效的。 非常有趣的是,物理学中既存在相似定律, 非常有趣的是,物理学中既存在相似定律,也 存在相似现象, 存在相似现象,如 万有引力定律 机械振动 ─ ─ 库仑定律 电磁振荡 相似定律 相似现象
Ψ µ N 2 h R2 L= = ln( ) 2π R1 I
自感线圈的串联
L 1
L 2
L 1
L 2
a I
b
c
d
a I
b
c
d
(a)顺接 )
(b)逆接 )
L= L + L2 +2M 1
L= L + L2 −2M 1

电磁感应知识点总结

电磁感应知识点总结

电磁感觉1、磁通量、磁通量变化、磁通量变化率对照表t磁通量物理某时辰穿过磁场中某个意面的磁感线条数义大, S为与B垂直的面积,小不垂直式,取S 在与 B 垂计直方向上的投影算若穿过某个面有方向相注反的磁场,则不可以直接用意B ? S ,应试虑相反问方向的磁通量或抵消以题后所节余的磁通量2、电磁感觉现象与电流磁效应的比较磁通量变化穿过某个面的磁通量随时间的变化量2-1,或B? S,或S?B开始和转过 1800时平面都与磁场垂直,但穿过平面的磁通量是不一样的,一正一负,此中 =B· S,而不是零磁通量变化率t表述磁场中穿过某个面的磁通量变化快慢的物理量B ?S 或t tB ?Bt t既不表示磁通量的大小也不表示磁通量变化的多少,在=t图像中,可用图线的斜率表示电磁感觉现象电流磁效应关系利用磁场产生电流的现电流产生磁场电能够生磁,磁能够生电象3、产生感觉电动势和感觉电流的条件比较只需穿过闭合电路的磁通量发生变化,闭合电路中就有感觉电流产生,即产生感觉电流的条件有两个:产生感觉电流的条件○1电路为闭合回路○2回路中磁通量发生变化,0无论电路闭合与否,只需电路中磁通量发生变化,电产生感觉电动势的条件路中就有感觉电动势产生4、感觉电动势在电磁感觉现象中产生的电动势叫感觉电动势,产生感觉电流比存在感觉电动势,产生感觉电动势的那部分导体相当于电源,电路断开时没有电流,但感觉电动势仍旧存在。

(1)电路无论闭合与否,只需有一部分导体切割磁感线,则这部分导体就会产生感觉电动势,它相当于一个电源(2)无论电路闭合与否,只需电路中的磁通量发生变化,电路中就产生感觉电动势,磁通量发生变化的那部分相当于电源。

5、公式E n与 E=BLvsin的差别与联系tE n E=BLvsintt 时间内的均匀感差别( 1)求的是( 1)求的是瞬时感觉电动势, E 与某个应电动势, E 与某段时间或某个过时辰或某个地点相对应程相对应(2)求的是整个回路的感觉电动( 2)求的是回路中一部分导体切割磁势,整个回路的感觉电动势为零感线是产生的感觉电动势时,其回路中某段导体的(3)因为是整个回路的感觉电动(3)因为是一部分导体切割磁感线的势,所以电源部分不简单确立运动产生的,该部分就相当于电源。

自感现象

自感现象
L R2
S
R1
A1 A2
后稳定时, 解:合上S后稳定时,R2和L中电流方向向右 合上 后稳定时 中电流方向向右 断开S的瞬间 的瞬间, 中电流不能突变 仍然向右, 中电流不能突变, 断开 的瞬间, L中电流不能突变,仍然向右, 通过闭合回路中的电流为逆时针方向, 通过闭合回路中的电流为逆时针方向, A1中 电流方向与原来相反。 电流方向与原来相反。 向左, 所以 A1向左,A2向右
L
线圈中的电流不能突变
I0
R
S R
如图所示的电路, 是自感系数较大的线圈 是自感系数较大的线圈, 例3. 如图所示的电路,L是自感系数较大的线圈, 在滑动变阻器的滑动片P从 端迅速滑向 端迅速滑向B端的过 在滑动变阻器的滑动片 从 A端迅速滑向 端的过 程中,经过AB中点 时通过线圈的电流为I 中点C时通过线圈的电流为 程中,经过 中点 时通过线圈的电流为 1;P从 从 B端迅速滑向 端的过程中 , 经过 点时通过线圈 端迅速滑向A端的过程中 端迅速滑向 端的过程中, 经过C点时通过线圈 的电流为I 固定在C点不动 的电流为 2 ; P固定在 点不动 , 达到稳定时通过 固定在 点不动, 线圈的电流为I ) 线圈的电流为 0,则( D A. I1 = I2= I0 B. I1 > I0 > I2 C. I1 = I2> I0 D. I1 < I0 < I2
L A C B
·P
R
R1
如图14所示的电路 所示的电路, 例4. 如图 所示的电路 ,L1和L2是两个相同的小 电珠, 是一个自感系数相当大的线圈 是一个自感系数相当大的线圈, 电珠,L是一个自感系数相当大的线圈,其电阻与 R相同 , 由于存在自感现象 , 在电键 接通时 , 相同, 接通时, 相同 由于存在自感现象, 在电键S接通时 L1 灯先亮 _______灯先亮;S断开时,_______灯先熄灭。 灯先亮; 断开时 断开时, L2 灯先熄灭 灯先熄灭。

电工学第二章

电工学第二章
第二章 磁场与电磁感应
§2-1 磁场 §2-2 磁场的主要物理量 §2-3 磁场对电流的作用 §2-4 电磁感应 §2-5 自感 §2-6 互感
历史上的磁现象:
东汉王充在《论衡》中写道:“司南之杓,投之于地,其柢指南”
最初发现的磁体是被称为“天然磁石”的矿物,其中含有主要成分为 Fe3O4,能吸引其他物体,很像磁铁。
1T增加到9T。求线圈中的感应电动势。
E=1800V
§2-5 自感
一、自感现象 二、自感系数 三、自感电动势 四、线圈L所储存能量
一、自感现象
a 合上开关, HL2比 HL1亮得慢
b 断开开关,灯泡 闪亮一下才熄灭
分 析:
图a由于线圈L自身的磁通量增加,而产生了感应电动势,这个感
应电动势的作用是阻碍磁通量的增加,即原来所加电压相反,阻碍线 圈中电流的增加,故通过与线圈串联的灯泡的电流不能立即增大到最 大值,它的亮度只能慢慢增加.
磁感线的疏密程度可以大致反映磁感应强度的大小。在同一个磁场 的磁感线分布图上,磁感线越密的地方,磁感应强度越大,磁场越
强。
为讨论问题方便,我们规定用符号⊙ 表示电流或磁力线流出 纸面, 表示电流或磁力线流入纸面。
安培力的大小:由式
B F Il
可知,当测得F、I和l时,就可
方便求出某点的磁感应强度。反之当已知B、I和l时,就可求
现代生活中的磁现象
上海磁悬浮列车专线西起上海地铁 龙阳路站,东至上海浦东国际机场 ,列车加速到平稳运行之后,速度 是430公里/小时。这个速度超过了 F1赛事的最高时速。
§2-1 磁场
一、磁体及其性质 二、磁场与磁感线 三、电流的磁场
一、磁体及其性质
磁性——某些物体能够吸引铁、镍、钴等金属
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3-6 自感电动势与自感系数
一、教学目的:
1、了解自感现象和自感系数的概念。

2、了解自感电动势的大小与什么因素有关,掌握自感电动势的方向判定。

二、教学重点:能够运动自感电动势判定,解决工作中的实际问题。

三、教学用具:日光灯一套、万用表、测电笔等。

四、教学过程:
1、自感现象:通过如图3-28所示的实验来观察两种自感现象。

(1)在图3
—28a电路中,HL1、HL2是两只完全相同的小灯泡,R为电阻,L是一个电感较大的铁心线圈,并且选择线圈的电阻和HL2支路的串联电阻R相等。

当开关S闭合瞬间,通过线圈的电流发生了由无到有的变化,线圈中的磁通呈增加的趋势。

根据楞次定律可知,线圈中的感应电动势要阻碍电流的增加,因此灯泡HL1发生逐渐变亮现象。

但HL2支路因串联的是一线性电阻而不会发生上述过程,因而灯泡HL2在接通电源后立即就亮。

(2)在图3—28b电路中线圈L和灯泡HL并联在直流电源上。

当开关S闭合后,灯亮。

但当开关S突然断开时,会发现灯泡并不是立即熄灭,而是猛然更亮了一下,然后才熄灭。

这是因为电源被切断瞬间,线圈产生一
个很大的感应电动势,加在灯泡两端,在回路中形成很强的感应电流,使灯泡发出短暂的强光。

上述两种现象虽然不同,但本质却是相同的,都是由于线圈自身电流发生变化而引起的。

我们把这种由于流过线圈本身的电流发生变化而产生感应电动势的现象叫做自感应现象,简称自感。

由自感现象产生的电动势称自感电动势。

2、自感系数:当一个空心线圈通过电流后,这个电流产生的磁场使每匝线圈具有的磁通叫自感磁通。

使N匝线圈具有的磁通叫自感磁链。

我们把线圈中通过单位电流所产生的自感磁链称为自感系数,也称自感量。

简称电感。

电感量是衡量线圈通过单位电流时能够产生自感受磁链的物理量。

当线圈通过1A的电流能够产生1Wb的自感磁链,则该线圈的电感量就是1H。

电感的大小不但与线圈的匝数以及几何形状密切关系。

对有铁心线圈,L 不是常数,对空心线圈,因其媒体介质是空气,而空气磁导率是恒定不变的,当其结构一定时,L是常数。

我们把L为常数的线圈称做线性电感,把线圈统称电感线圈,也称电感器或电感。

电感这个名词包含了双重意思,一方面它表示一种电器元件,另一方面它又是一个电气参数。

3、自感电动势:
(1)自感电动势的大小:自感是电磁感应的形式之一。

对于一个具有N匝的空心线圈而言,当忽略其绕线电阻时,可视为线性电感,根据电磁感应定律,其感应电动势eL的大小为:
|eL|=|L×Δi/Δt| (3-18)式中L——线圈的电感受量,H;
Δi/Δt——电流对时间的变化率,A/s。

式(3——18)就是线圈自感电动势与线圈中电流的关系式。

它表明,线圈的自感电动势eL与线圈的电感L和线圈中电流的变化率Δi/Δt的乘积成正比。

当线圈的电感量一定时,线圈的电流变化越快,自感电动势越大;线圈的电流变化越慢,自感电动势越小;线圈的电流不变就没有自感电动势。

反之,在电流变化率一的情况下,若线圈的电感量L越大,自感电动势越大;若线圈
的电感量L越小,自感电动势越小。

所以电感量L也反映了线圈产生自感电动势的能力。

(2)自感电动势的方向:自感电动势的方向仍可以根据楞次定律来判断。


感电动势的方向总是和原电流变化的趋势(增大或减小)相反,如图3
——29所示。

图3—29a中原电流i的变化趋势是增大的,自感电动势
产生的电流iL就要阻碍原电流的增大而与原电流方向相反。

图3-29b
中由于原电流i的变化趋势是减小的,因而自感电动势产生的电流就会
与原电流方向相同。

知道了自感电流的方向,就很容易得出自感电动势
的方向,因为自感电流是由自感电动势作用产生的。

自感电动势的极性
如图中所示。

应该注意的是,在判断时要把产生自感电动势的线圈看成感应电源。

如果规定自感电动势的参考方向与自感磁通的参考方向之间符合右手螺旋定则,即eL的方向与i的方向一致,这时有:
eL=-L(Δi/Δt) (3-19) 式中的负号是由楞次定律决定的,它表明自感电动势总是企图阻碍电流的变化。

4、自感现象的应用:在电工技术中,很多电器都是利用自感作用进行工作的,
以下仅举几例加以说明。

(1)最常用的电光源——日光灯,就是利用自感电动势来点燃灯管,并使日光灯正常工作的。

日光灯采用普通的照明电源(交流220V),但它的工作电压低于电源电压
(220V),而“点燃”电压又高于电源电压。

如图3-30所示,将镇流器(一个带铁心的线圈)与日光灯串联,在启辉器断电的瞬间,镇流器产生一个很高的自感电动势,与电源电压一起加在日光灯的两端,使灯管内气体导通而发光。

日光灯点燃后正常工作时,镇流器又起到分压的作用,使灯管的工作电压低于电源电压。

把日光灯散件,一件件展示给学生,并把启辉器、镇流器外壳取下来,展示其内部结构。

直观讲解各件原理和故障现象及处理方法。

日光灯出现噪声,即“哼哼”声,在夜深人静时特别烦人,出现这种情况,一般都是镇流器线圈与铁芯之间出现缝隙,或线圈没有固定好产生的。

日光灯不能启动(灯管两头闪光或只亮不闪,整个灯管点不亮),如果灯管两端不出现黑头,一般是启辉器故障,需要更换启辉器;如果灯管两端发黑,可能是灯管老化,需要更换灯管。

让学生自己动手组装日光灯,并找出故障问题。

注意用电安全。

(2)图3—31所是常见整流设备中的滤波器电路,它也是利用铁心线圈的自感作用完成滤波的。

滤波器由铁心线圈L和电容器C1、C2组成,它的作用是将整流后得到的脉动电流中的交流成分滤除掉,而得到接近理想的直流电压,以供给负载工作。

当交流成分的电流流过铁心线圈时,就会在线圈中产生自感电动势,自感电动势产生的自感电流总是力图阻碍交流成分的电流通过。

当直流成分的电流通过铁心线圈时,由于电流恒定不变(变化率为零),因而不会产生在阻碍作用的电动势和电流,直流成分就能顺利通过铁心线圈。

当然,自感现象也有不利的一面,在一些电工设备中,由于自感现象的存在,会造成不必要的过电压、过电流,使电气设备受到危害。

如含有大电感受的电路在与电源切断的瞬间,会在电感两端产生很高的自感电动势,使开关的刀闸和固定夹片之间的空气电离形成电弧,可能烧坏开关,甚至危及工作人员安全。

这些情况在工作中都要尽量避免。

所以通常在含有大电感的电路中都有灭弧装置。

最简便的办法是在开关或电感两端并接一个适当的电阻或电容,让自感电流在刀闸动作后有一通路。

5、电感线圈中的磁场能量:在图3—28a的自感现象实验中,当开关S闭合时,灯泡HL1逐渐变亮。

这说明在接通电源过程中,电源供给的电能不是全部转变
光能和热能。

那么,还有一部分能量到哪里去了呢?实验证明,这部分能量以磁能的形式储存在线圈中。

所以电感线圈是一个储能元件。

电感线圈中通过的电流越大,磁场越强,磁场能量就越大,这说明利用线圈就可以将电能转换成磁能。

实验和理论分析可以证明,磁场能量与通过线圈的电流的平方成正比,与线圈的电感量成正比,即
W
=1/2×(LI2) (3_20)
L
磁场能量,J;
式中W
L—
L—自感系数,H;
I—线圈的电流,A;
在图3—28a的自感现象实验中,我们还从HL1灯泡逐渐变亮的现象中得出,灯泡逐渐变亮的原因是由于通过灯泡的电流是逐渐增大的。

这是因为HL1支路串联的电感线圈产生自感电动势阻碍电流通过的缘故。

由此可以得出:电感线圈中的电流是逐渐变化的,即电流不能发生突变。

五、作业:习题三 12、13。

相关文档
最新文档