定积分与微积分基本定理含答案版

合集下载

高中数学之定积分与微积分基本定理含答案

高中数学之定积分与微积分基本定理含答案

专题06 定积分与微积分基本定理1.由曲线,直线轴所围成的图形的面积为()A.B.4C.D.6【答案】A【解析】联立方程得到两曲线的交点(4,2),因此曲线y,直线y=x﹣2及y轴所围成的图形的面积为:S.故选:A.2.设f(x)=|x﹣1|,则=()A.5 B.6 C.7 D.8【答案】A【解析】画出函数的图像如下图所示,根据定积分的几何意义可知,定积分等于阴影部分的面积,故定积分为,故选A.3.曲线与直线围成的封闭图形的面积是()A.B.C.D.【答案】D【解析】令,则,所以曲线围成的封闭图形面积为,故选D4.为函数图象上一点,当直线与函数的图象围成区域的面积等于时,的值为A.B.C.1D.【答案】C【解析】直线与函数的图象围成区域的面积S dx=∴故选:C5.由直线与曲线所围成的封闭图形的面积为( )A.B.1C.D.【答案】B【解析】题目所求封闭图形的面积为定积分,故选B.6.如图,矩形中曲线的方程分别是,在矩形内随机取一点,则此点取自阴影部分的概率为( )A.B.C.D.【答案】A【解析】依题意的阴影部分的面积,根据用几何概型概率计算公式有所求概率为,故选A.7.()A.B.-1C.D.【答案】C【解析】解:.故选:C.8.,则T的值为A.B.C.D.1【答案】A【解析】由题意得表示单位圆面积的四分之一,且圆的面积为π,∴,∴.故选A.9.下列计算错误..的是()A.B.C.D.【答案】C【解析】在A中,,在B中,根据定积分的几何意义,,在C中,,根据定积分的运算法则与几何意义,易知,故选C.10.定积分的值为()A.B.C.D.【答案】A【解析】表示以为圆心,以为半径的圆,定积分等于该圆的面积的四分之一,定积分,故选A.11.如果曲线与直线所围成的封闭图形的面积为,则以下正确的一个值为()A.1 B.2 C.3 D.4【答案】D【解析】如图,如果,则所围面积为,故,代入,则,矛盾,故A错.如果,则,代入,则,矛盾,故B错.代入,则,矛盾,故C错.代入,则,符合,故D正确.综上,选D.12.一物体以速度v=3t2+2t(v的单位:m/s)做直线运动,则它在t=0 s到t=3 s时间段内的位移是() A.31 m B.36 mC.38 m D.40 m【答案】B【解析】由题意物体在t=0s到t=3s时间段内的位移是:.故选:B.13.由曲线与直线所围成图形的面积等于__________.【答案】【解析】根据定积分的几何意义得到,面积S=(e x+x)d x=故答案为:14.___________【答案】【解析】表示半圆夹在直线部分的面积S。

17定积分与微积分基本定理(含答案)

17定积分与微积分基本定理(含答案)

17定积分与微积分基本定理1.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑ni =1f (ξi )Δx =∑ni =1 b -a nf (ξi ),当n →∞时,上 述和式无限接近某个□01常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛a bf (x )d x ,即⎠⎛abf (x )d x =lim n →∞ ∑ni =1b -an f (ξi ).其中f (x )称为□02被积函数,a 称为积分□03下限,b 称为积分□04上限. 2.定积分的几何意义性质1:⎠⎛a b kf (x )d x =□01k ⎠⎛ab f (x )d x (k 为常数). 性质2:⎠⎛a b [f (x )±g (x )]d x =□02⎠⎛a b f (x )d x ±⎠⎛a b g (x )d x . 性质3:⎠⎛a b f (x )d x =⎠⎛ac f (x )d x +□03⎠⎛c b f (x )d x . 4.微积分基本定理一般地,如果f (x )是在区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎠⎛abf (x )d x =□01F (b )-F (a ).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.可以把F (b )-F (a )记为F (x )b a ,即⎠⎛abf (x )d x =F (x )b a =□02F (b )-F (a ). 5.定积分与曲边梯形面积的关系设阴影部分的面积为S . (1)S =⎠⎛a b f (x )d x ;(2)S =□01-⎠⎛ab f (x )d x ; (3)S =□02⎠⎛ac f (x )d x -⎠⎛cb f (x )d x ; (4)S =⎠⎛a b f (x )d x -⎠⎛a b g (x )d x =⎠⎛a b [f (x )-g (x )]d x . 6.定积分与函数奇偶性的关系函数f (x )在闭区间[-a ,a ]上连续,则有 (1)若f (x )为偶函数,则⎠⎛a -a f (x )d x =2⎠⎛0a f (x )d x .(2)若f (x )为奇函数,则⎠⎛a -a f (x )d x =0.练习1.如图,指数函数的图象过点E (2,9),则图中阴影部分的面积等于( ) A.8ln 3 B .8 C.9ln 3D .9答案 A解析 设指数函数为y =a x (a >0且a ≠1),因为其过点E (2,9),所以a 2=9,解得a =3,所以图中阴影部分的面积S =⎠⎛023x d x ==8ln 3. 2.已知质点的速率v =10t ,则从t =0 到t =t 0质点所经过的路程是( ) A .10t 20 B .5t 20 C.103t 20 D.53t 20 答案 B 解析3.设f (x )=⎩⎨⎧x 2,x ∈[0,1],2-x ,x ∈1,2],则等于( )A.34B.45C.56 D .不存在答案 C 解析==13x 310+⎝ ⎛⎭⎪⎫2x -12x 221=13+⎝ ⎛⎭⎪⎫2×2-12×22-⎝⎛⎭⎪⎫2-12=13+4-2-2+12=56. 4. =( )A .7 B.223 C.113 D .4答案 C 解析==⎝⎛⎭⎪⎫4x -x 3310=4-13=113.5. 的值为________.答案 2(e -1) 解析=2⎠⎛01e x d x =2·e x 10=2(e -1).6.若f (x )=3+2x -x 2,则=________.答案 π解析 令y =3+2x -x 2,则(x -1)2+y 2=4(y ≥0),所以函数f (x )的图象是以(1,0)为圆心,2为半径的圆在x 轴上方(包括x 轴)的部分,所以=14×π×22=π7.如图,已知点A (0,1),点P (x 0,y 0)(x 0>0)在曲线y =x 2上移动,过P 点作PB垂直x 轴于点B ,若图中阴影部分的面积是四边形AOBP 面积的13,则P 点的坐标为________.答案 (1,1)解析 由题意,点P (x 0,y 0),则梯形AOBP 的面积为12(1+y 0)x 0=12(1+x 20)x 0,且阴影部分的面积为又阴影部分的面积是梯形AOBP 面积的13,∴13x 30=13×12(1+x 20)x 0,解得x 0=0或x 0=±1; 取x 0=1,则y 0=1,∴P 点的坐标为(1,1).8.如图,矩形OABC 中曲线的方程分别是y =sin x ,y =cos x .A ⎝ ⎛⎭⎪⎫π2,0,C (0,1),在矩形OABC 内随机取一点,则此点取自阴影部分的概率为( )A.43-1πB.42-1πC .4(3-1)πD .4(2-1)π答案 B解析 由题可知图中阴影部分的面积故选C.9.如图,点M 在曲线y =x 上,若由曲线y =x 与直线OM 所围成的阴影部分的面积为16,则实数a 等于( )A.12B.13C .1D .2答案 C解析 由题意,M (a ,a ),直线OM 的方程为y =xa,故所求图形的面积为得a =1,故选C.10.若函数f (x )=A sin ⎝ ⎛⎭⎪⎫ωx -π6(A >0,ω>0)的图象如图所示,则图中的阴影部分的面积为________.答案2-32解析 由图可知,A =1,T 2=2π3-⎝ ⎛⎭⎪⎫-π3=π,T =2π,∴ω=1, 则f (x )=sin ⎝ ⎛⎭⎪⎫x -π6,∴图中的阴影部分的面积为=1-32=2-32. 11.一物体做变速直线运动,其 v ­t 曲线如图所示,则该物体在12~6 s 间的运动路程为________ m.答案 494解析由题图可知,v (t )=⎩⎪⎨⎪⎧2t 0≤t <1,21≤t ≤3,13t +13<t ≤6.由变速直线运动的路程公式,可得所以物体在12~6 s 间的运动路程是494m.12.从空中自由下落的一物体,在第一秒末恰经过电视塔顶,在第二秒末物体落地,已知自由落体的运动速度为v =gt (g 为常数),则电视塔高为( )A.12g B .g C.32g D .2g答案 C解析 由题意知电视塔高为=2g -12g =32g .13.若则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 2<S 3<S 1 D .S 3<S 2<S 1 答案 B 解析 因为所以,S 2<S 1<S 3.14.如图,阴影部分的面积是( )A .2 3B .5 3 C.323D.353答案 C解析 联立⎩⎨⎧y =2x ,y =3-x 2,解得⎩⎨⎧x =1,y =2或⎩⎨⎧x =-3,y =-6,由图可知,阴影部分的面积可表示为=⎝ ⎛⎭⎪⎫3-13-1-⎣⎢⎡⎦⎥⎤3×-3-13×-33--32=323. 15.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 的方程为x 2-y =0)的点的个数的估计值为( )A .5000B .6667C .7500D .7854答案 B解析 图中阴影部分的面积为⎝⎛⎭⎪⎫x -13x 310=23,又正方形的面积为1,则10000个点落入阴影部分个数估计为10000×23≈6667,故选B.16.若=3+ln 2(a >1),则a 的值是( )A .2B .3C .4D .6答案 A解析 ∵(x 2)′=2x ,(ln x )′=1x ,∴⎠⎛1a⎝⎛⎭⎪⎫2x +1x d x ==(a 2-1)+ln a ,由=3+ln 2(a>1),所以(a 2-1)+ln a =3+ln 2,所以a =2.17.已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴相切于原点,且x 轴与函数图象所围成区域(图中阴影部分)的面积为112,则a 的值为( )A .0B .1C .-1D .-2答案 C解析 由f (x )=-x 3+ax 2+bx ,得f ′(x )=-3x 2+2ax +b .∵x =0是原函数的一个极值点,∴f ′(0)=b =0,∴f (x )=-x 3+ax 2,⎠⎛a 0(x 3-ax 2)d x =⎝ ⎛⎭⎪⎫14x 4-13ax 30a=0-a 44+a 43=a 412=112,∴a =±1.函数f (x )与x 轴的交点横坐标一个为0,另一个为a ,根据图形可知a <0,得a =-1.18.如图,由两条曲线y =-x 2,4y =-x 2及直线y =-1所围成的图形的面积为________.答案4 3解析令y=-1得到A(-2,-1),B(-1,-1),C(1,-1),D(2,-1).设围成的图形的面积为S,因为y轴两边的阴影部分关于y轴对称,所以。

(山东专用)高考数学一轮复习专题16定积分与微积分基本定理(含解析)

(山东专用)高考数学一轮复习专题16定积分与微积分基本定理(含解析)

(山东专用)高考数学一轮复习专题16定积分与微积分基本定理(含解析)一、【知识精讲】1.定积分的概念与几何意义 (1)定积分的定义如果函数f (x )在区间[a ,b ]上连续,用分点将区间[a ,b ]等分成n 个小区间,在每个小区间上任取一点ξi (i=1,2,…,n ),作和式∑n i =1f (ξi )Δx =∑n i =1b -a n f (ξi ),当n →∞时,上述和式无限接近于某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛a b f (x )d x ,即⎠⎛ab f (x )d x =在⎠⎛ab f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.(2)定积分的几何意义f (x ) ⎠⎛abf (x )d x 的几何意义f (x )≥0表示由直线x =a ,x =b ,y =0及曲线y =f (x )所围成的曲边梯形的面积f (x )<0表示由直线x =a ,x =b ,y =0及曲线y =f (x )所围成的曲边梯形的面积的相反数f (x )在[a ,b ]上有正有负表示位于x 轴上方的曲边梯形的面积减去位于x 轴下方的曲边梯形的面积2.(1)⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数).(2)⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x .(3)⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).3.微积分基本定理一般地,如果f (x )是在区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.可以把F (b )-F (a )记为F (x )⎪⎪⎪b a ,即⎠⎛a b f (x )d x =F (x )⎪⎪⎪ba)=F (b )-F (a ). [微点提醒]函数f (x )在闭区间[-a ,a ]上连续,则有 (1)若f (x )为偶函数,则⎠⎛-a a f (x )d x =2⎠⎛0a f (x )d x .(2)若f (x )为奇函数,则⎠⎛-aa f (x )d x =0. 二、【典例精练】 考点一 定积分的计算【例1】 (1)⎠⎛0π(cos x +1)d x =________.(2) (2012【答案】 (1)π 【解析】(1)⎠⎛0π(cos x +1)d x =(sin x +x )⎪⎪⎪π0=π.(2) 【解法小结】 运用微积分基本定理求定积分时要注意以下几点: (1)对被积函数要先化简,再求积分;(2)若被积函数为分段函数的定积分,依据定积分“对区间的可加性”,先分段积分再求和; (3)对于含有绝对值符号的被积函数,要先去掉绝对值符号再求积分. 考点二 定积分的几何意义角度1 利用定积分的几何意义计算定积分【例2-1】 (1)计算:⎠⎛01(2x +1-x 2)d x =________.(2) (2013请根据以下材料所蕴含的数学思想方法,计算:.【答案】 (1)π4+1 【解析】 (1)由定积分的几何意义知,⎠⎛011-x 2d x 表示以原点为圆心,以1为半径的圆的面积的14,所以⎠⎛11-x 2d x =π4,又⎠⎛012x d x =x 2⎪⎪⎪10=1,所以⎠⎛01(2x +1-x 2)d x =π4+1.(2)从而得到如下等式:答案角度2 利用定积分计算平面图形的面积【例2-2】 (2014 )A .2 D .4 【答案】D【解法小结】 1.运用定积分的几何意义求定积分,当被积函数的原函数不易找到时常用此方法求定积分. 2.利用定积分求曲边梯形面积的基本步骤:画草图、解方程得积分上、下限,把面积表示为已知函数的定积分(注意:两曲线的上、下位置关系,分段表示的面积之间的关系). 考点三 定积分在物理中的应用【例3】 (1)物体A 以v =3t 2+1(m/s)的速度在一直线l 上运动,物体B 在直线l 上,且在物体A 的正前方5 m 处,同时以v =10t (m/s)的速度与A 同向运动,出发后,物体A 追上物体B 所用的时间t (s)为( ) A.3B.4C.5D.6(2)设变力F (x )作用在质点M 上,使M 沿x 轴正向从x =1运动到x =10,已知F (x )=x 2+1且方向和x 轴正向相同,则变力F (x )对质点M 所做的功为________ J(x 的单位:m ,力的单位:N).【答案】 (1)C (2)342【解析】(1)因为物体A 在t 秒内行驶的路程为⎠⎛0t (3t 2+1)d t ,物体B 在t 秒内行驶的路程为⎠⎛0t 10t d t .所以⎠⎛0t (3t 2+1-10t )d t =(t 3+t -5t 2)⎪⎪⎪t0=t 3+t -5t 2=5.整理得(t -5)(t 2+1)=0,解得t =5.(2)变力F (x )=x 2+1使质点M 沿x 轴正向从x =1运动到x =10所做的功为W =⎠⎛110F (x )d x =⎠⎛110(x 2+1)d x =⎝ ⎛⎭⎪⎫13x 3+x ⎪⎪⎪101=342(J).【解法小结】 定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的位移s =⎠⎛ab v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )d x .【思维升华】1.定积分是一个数值(极限值),它的值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关.2.⎠⎛a b f (x )d x 、⎠⎛a b |f (x )|d x 与|⎠⎛ab f (x )d x |在几何意义上有不同的含义,由于被积函数f (x )在闭区间[a ,b ]上可正可负,也就是它的图象可以在x 轴上方、也可以在x 轴下方、还可以在x 轴的上下两侧,所以⎠⎛ab f (x )d x表示由x 轴、函数f (x )的曲线及直线x =a ,x =b (a ≠b )之间各部分面积的代数和;而|f (x )|是非负的,所以⎠⎛a b |f (x )|d x 表示在区间[a ,b ]上所有以|f (x )|为曲边的正曲边梯形的面积;而|⎠⎛a b f (x )d x |则是⎠⎛ab f (x )d x的绝对值,三者的值一般情况下是不相同的. 【易错注意点】1.若定积分的被积函数是分段函数,应分段积分然后求和.2.若积分式子中有几个不同的参数,则必须先分清谁是被积变量.3.定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负. 三、【名校新题】1.(2019·西安调研)定积分⎠⎛01(2x +e x)d x 的值为( )A.e +2B.e +1C.eD.e -1【答案】C【解析】 ⎠⎛01(2x +e x )d x =(x 2+e x )⎪⎪⎪10)=1+e 1-1=e.2.(2019·郑州模拟)汽车以v =(3t +2) m/s 做变速运动时,在第1 s 至第2 s 之间的1 s 内经过的路程是( ) A.132m B.6 mC.152m D.7 m【答案】A【解析】 s =⎠⎛12(3t +2)d t =⎝ ⎛⎭⎪⎫32t 2+2t ⎪⎪⎪21=32×4+4-⎝ ⎛⎭⎪⎫32+2=10-72=132(m). 3.(2018·青岛月考)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积S ,正确的是( ) A.S =⎠⎛02(4x -x 3)d xB.S =⎠⎛02(x 3-4x )d xC.S =⎠⎛02⎝⎛⎭⎪⎫3y -y 4d yD.S =⎠⎛02⎝ ⎛⎭⎪⎫y 4-3y d y【答案】A【解析】 两函数图象的交点坐标是(0,0),(2,8),故对x 积分时,积分上限是2、下限是0,由于在[0,2]上,4x ≥x 3,故直线y =4x 与曲线y =x 3所围成的封闭图形的面积S =⎠⎛02(4x -x 3)d x ⎝⎛⎭⎪⎫同理对y 积分时S =⎠⎛08⎝ ⎛⎭⎪⎫3y -y 4d y .4.(2019·安阳模拟)若a =⎠⎛02x 2d x ,b =⎠⎛02x 3d x ,c =⎠⎛02sin x d x ,则a ,b ,c 的大小关系是( )A.a <c <bB.a <b <cC.c <b <aD.c <a <b【答案】D【解析】 由微积分基本定理a =⎠⎛02x 2d x =⎝ ⎛⎭⎪⎫13x 3⎪⎪⎪20=83,b =⎠⎛02x 3d x =⎝ ⎛⎭⎪⎫14x 4⎪⎪⎪20=4,c =⎠⎛02sin x d x =(-cos x )⎪⎪⎪20=1-cos 2<2,则c <a <b .5.(2019届江西九江高三第一次十校联考)M=dx,T=sin 2xdx,则T 的值为( )A. B.- C.-1 D.1【答案】 A【解析】先求出M=6.(2019届山东日照一中第二次质量达标检测)在函数y=cos x,x∈的图象上有一点P(t,cos t),若该函数的图象与x轴、直线x=t,围成图形(如图阴影部分)的面积为S,则函数S=g(t)的图象大致是( )【答案】 B【解析】因为g(t)==,所以图像是B.7.(2019届吉林长春实验中学上学期期中,6)设f(x)=则f(x)dx等于( )A. B. C. D.0【答案】 A【解析】原式=8.(2018山东菏泽第一次模拟)若(n∈N*)的展开式中含有常数项,且n的最小值为a,则dx=( )A.36πB.C.D.25π【答案】 C【解析】可求出a=5,由定积分的几何意义知:所求定积分为半径为5的半圆的面积,为.9.(荆州市2019届高三联考)已知函数234567()1234567x x x x x xf x x=+-+-+-+,若函数()(3)h x f x=-的零点都在区间(,)(,,)a b a b a b Z <∈内,当b a -取最小值时,(21)bax dx -⎰等于( )A .3B .4C .5D .6【答案】:B 【解析】234562326326()1(1)(1)(1)(1)f x x x x x x x x x x x x x x x x x '=-+-+-+=-+--++=--++,可知当1x ≤时,()0f x '>成立,又2345624232()11(1)(1)1(1)(1)f x x x x x x x x x x x x x x x x x '=-+-+-+=--++-+=+--+,可知当1x >时,()0f x '>成立,所以对任意R x ∈,()0f x '>,()f x 单调递增,所以函数()f x 只有一个零点,(0)10f =>,111111(1)0234567f -=------<,所以()f x 的零点位于区间(1,0)-,所以函数 ()(3)h x f x =-的零点位于区间(2,3),即2,3a b ==,所以32(21)(21)bax dx x dx -=-⎰⎰322()624x x =-=-=10.(2019·昆明诊断)若⎠⎛a0x 2d x =9,则常数a 的值为________.【答案】-3【解析】 ⎠⎛a0x 2d x =13x 3⎪⎪⎪0a =-13a 3=9,∴a 3=-27,a =-3.11.(2019·济南模拟)设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________. 【答案】49【解析】封闭图形如图所示,则⎠⎛0a x d x =23x 32⎪⎪⎪a0=23a 32-0=a 2,解得a =49.12.(2019·广州调研)设f (x )=⎩⎨⎧1-x 2,x ∈[-1,1),x 2-1,x ∈[1,2],则⎠⎛-12f (x )d x 的值为________.【答案】π2+43。

定积分与微积分含答案

定积分与微积分含答案

定积分与微积分基本定理基础热身1.已知f (x )为偶函数,且⎠⎜⎛06f(x)d x =8,则⎠⎛6-6f(x)d x =( ) A .0 B .4 C .8 D .162. 设f(x)=⎩⎪⎨⎪⎧x 2,x∈[0,1],1x,x∈1,e ](其中e 为自然对数的底数),则⎠⎜⎛ef(x)d x 的值为( )B .2C .13.若a =⎠⎜⎛02x 2d x ,b =⎠⎜⎛02x 3d x ,c =⎠⎜⎛02sin x d x ,则a 、b 、c 的大小关系是( )A .a<c<bB .a<b<cC .c<b<aD .c<a<b4.如图K 15-1,阴影部分的面积是( )图15-1A .2 3B .2- 3能力提升5.设函数f(x)=ax 2+1,若⎠⎜⎛1f(x)d x =2,则a =( )A .1B .2C .3D .46.由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )B .17.一物体以v =+(单位:m /s )的速度自由下落,则下落后第二个4 s 内经过的路程是( )A .260 mB .258 mC .259 mD . m8.若⎠⎜⎛0k(2x -3x 2)d x =0,则k 等于( ) A .0 B .1C .0或1D .以上均不对9.如果10 N 的力能使弹簧压缩10 cm ,为在弹性限度内将弹簧拉长6 cm ,则力所做的功为( )A . JB . JC . JD . J10.设函数y =f(x)的定义域为R +,若对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧K ,f x ≤K ,f x ,f x >K ,则当函数f (x )=1x ,K =1时,定积分⎠⎛214f K (x)d x 的值为________.(x -x 2)d x =________.12. ∫π20(sin x +a cos x)d x =2,则实数a =________.13.由抛物线y 2=2x 与直线x =12及x 轴所围成的图形绕x 轴旋转一周所得旋转体的体积为________.14.(10分)已知函数f(x)=x 3+ax 2+bx +c 的图象如图K 15-2所示,直线y =0在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为274,求f(x)的解析式.图K 15-215.(13分)如图K 15-3所示,已知曲线C 1:y =x 2与曲线C 2:y =-x 2+2ax(a>1)交于点O 、A ,直线x =t(0<t≤1)与曲线C 1、C 2分别相交于点D 、B ,连接OD 、DA 、AB.(1)写出曲边四边形ABOD(阴影部分)的面积S 与t 的函数关系式S =f(t);(2)求函数S =f(t)在区间(0,1]上的最大值.图K 15-3难点突破16.(12分)已知点P 在曲线y =x 2-1上,它的横坐标为a(a>0),由点P 作曲线y =x 2的切线PQ(Q 为切点).(1)求切线PQ 的方程;(2)求证:由上述切线与y =x 2所围成图形的面积S 与a 无关.参考答案:【基础热身】1.D [解析] ⎠⎛6-6f(x)d x =2⎠⎜⎛6f(x)d x =2×8=16.2.A [解析] 根据积分的运算法则,可知∫e0f(x)d x 可以分为两段,即∫e 0f(x)d x =⎠⎜⎛01x 2d x +∫e 11x d x =13x 3⎪⎪⎪⎪⎪⎪10+ln x e 1=13+1=43,所以选A .3.D [解析] a =⎠⎜⎛2x 2d x =13x 3⎪⎪⎪20=83,b =⎠⎜⎛02x 3d x =14x 4⎪⎪⎪ 20=4,c =⎠⎜⎛2sin x d x =-cos x ⎪⎪⎪ 20=1-cos 2<2,∴c<a<b.4.C [解析] ⎠⎛1-3(3-x 2-2x)d x =⎝ ⎛⎭⎪⎫3x -13x 3-x 2⎪⎪⎪1-3=323. 【能力提升】5.C [解析] ⎠⎜⎛1f(x)d x =⎠⎜⎛01(ax 2+1)d x =ax 33+x ⎪⎪⎪10=a3+1=2,解得a =3.6.D [解析] 根据定积分的相关知识可得到:由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为:⎪⎪⎪S =∫π3-π3cos x d x =sin x π3-π3=sin π3-sin ⎝ ⎛⎭⎪⎫-π3=3,故选D .7.D [解析] ⎠⎜⎛48+d t =+⎪⎪⎪ 84=×64+×8-×16-×4=+52--26=.8.C [解析] ⎠⎜⎛0k (2x -3x 2)d x =⎠⎜⎛0k2x d x -⎠⎜⎛0k3x 2d x =x 2⎪⎪⎪⎪⎪⎪k 0-x 3k=k 2-k 3=0,∴k=0或k =1.9.D [解析] 由F(x)=kx ,得k =100,F(x)=100x ,错误!100x d x =(J ).10.2ln 2+1 [解析] 由题设f 1(x)=⎩⎪⎨⎪⎧1,1x≤1,1x ,1x >1,于是定积分⎠⎛214f 1(x )d x =⎠⎛1141x d x +⎠⎜⎛121d x =ln x⎪⎪⎪114+x⎪⎪⎪ 21=2ln 2+1.[解析] ⎠⎜⎛1(x -x 2)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫23x 32-13x 310=13. 12.1 [解析] ∫π20(sin x +a cos x)d x =(a sin x -cos x)错误!=⎝⎛⎭⎪⎫a sin π2-cos π2-a sin 0+cos 0=a +1=2,∴a=1.[解析] 如图所示,因为y 2=2x ,x∈⎣⎢⎡⎦⎥⎤0,12,⎪⎪⎪所以V =π∫1202x d x =πx 2120=π4.14.[解答] y =0在原点处相切知b =0,则有f (x )=x 3+ax 2,令f (x )=0,得x 3+ax 2=0,可得x =0或x =-a (-a >0,即a <0).可以得到图象与x 轴交点为(0,0),(-a,0),故∫-a 0-f (x )d x =⎪⎪⎪⎝ ⎛⎭⎪⎫-x 44-ax 33-a 0=-a 44+a 43=a 412=274,a=-3,所以f (x )=x 3-3x 2.15.[解答] (1)由⎩⎪⎨⎪⎧y =x 2,y =-x 2+2ax ,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =a ,y =a 2.∴O (0,0),A (a ,a 2).又由已知得B (t ,-t 2+2at ),D (t ,t 2),∴S =⎠⎜⎛0t(-x 2+2ax )d x -12t ×t 2+12(-t 2+2at -t 2)×(a -t ) =⎝ ⎛⎭⎪⎫-13x 3+ax 2⎪⎪⎪t-12t 3+(-t 2+at )×(a -t ) =-13t 3+at 2-12t 3+t 3-2at 2+a 2t =16t 3-at 2+a 2t .故S =f (t )=16t 3-at 2+a 2t (0<t ≤1).(2)f ′(t )=12t 2-2at +a 2,令f ′(t )=0,即12t 2-2at +a 2=0,解得t =(2-2)a 或t =(2+2)a .∵0<t ≤1,a >1,∴t =(2+2)a 应舍去.①若(2-2)a ≥1,即a ≥12-2=2+22,∵0<t ≤1,∴f ′(t )≥0.∴f (t )在区间(0,1]上单调递增,S 的最大值是f (1)=a 2-a +16.②若(2-2)a <1,即1<a <2+22,(i)当0<t <(2-2)a 时,f ′(t )>0, (ii)当(2-2)a <t ≤1时,f ′(t )<0.∴f (t )在区间(0,(2-2)a )上单调递增,在区间[(2-2)a ,1]上单调递减.∴f (t )的最大值是f ((2-2)a )=16[(2-2)a ]3-a [(2-2)a ]2+a 2(2-2)a =22-23a 3.综上所述f (t )max=⎩⎪⎨⎪⎧a 2-a +16⎝ ⎛⎭⎪⎪⎫a ≥2+22,22-23a 3⎝ ⎛⎭⎪⎪⎫1<a <2+22.【难点突破】16.[解答] (1)设点P 的坐标为(a ,a 2-1),又设切点Q 的坐标为(x ,x 2).则k PQ =a 2-1-x 2a -x ,由y ′=2x 知a 2-1-x 2a -x=2x ,解得:x =a +1或x =a -1.所以所求的切线方程为2(a +1)x -y -(a +1)2=0或2(a -1)x -y -(a -1)2=0.(2)证明:S =⎠⎛a a -1[x 2-2(a -1)x +(a -1)2]d x +∫a +1a[x 2-2(a +1)x +(a +1)2]d x =23.故所围成的图形面积S =23,此为与a 无关的一个常数.。

专题07 定积分与微积分基本定理(解析版)

专题07 定积分与微积分基本定理(解析版)

1.πcos d x x =⎰A .1B .2-C .0D .π【答案】C 【解析】ππ00cos d sin |sin π00x x x ==-=⎰. 2.若12()2()d f x x f x x =+⎰,则1()d f x x ⎰=A .−1B .13- C .13D .1【答案】B 【解析】令1()d =f x x m ⎰,则2()=+2f x x m ,所以1123100011()d =(+2)d (2)|233f x x x m x x mx m =+=+⎰⎰m =,解得13m =-,所以101()d =3f x x -⎰, 故选B. 3.若()π402sin cos d 2x a x x -=-⎰,则实数等于 A . B .2 C .1-D .3-【答案】B【解析】由题意可知:()πππ4440022sin cos d sin d cos d 122x a x x x x a x x a -=-=---⎰⎰⎰, 专题07 定积分与微积分基本定理第一章 导数及其应用结合题意有:222 1a--=-,解得:2a=.本题选择B.4.直线34xyxy==与曲线在第一象限内围成的封闭图形的面积为A.22B.24C. 3 D.4【答案】D【解析】由已知得,232421(4)d(2)|44S x x x x x=-=-=⎰,故选D.5.设实数2log3a=,131log2b=,π1sin dcx x=⎰,则A.b a c>>B.b c a>>C.a b c>>D.a c b>>【答案】C【解析】221331log3log21,0log log212a b=>=<==<,而()()ππsin d cos|cosπx x x=-=--⎰()cos02-=,所以12c=,331log2log32>=,所以a b c>>,选C.6.两曲线siny x=,cosy x=与两直线0x=,π2x=所围成的平面区域的面积为A.π2(sin cos)dx x x-⎰B.π402(sin cos)dx x x-⎰C.π2(cos sin)dx x x-⎰D.π402(cos sin)dx x x-⎰【答案】D7.在平面直角坐标系中,记抛物线y =x −x 2与x 轴所围成的平面区域为M ,该抛物线与直线y =kx (k >0)所围成的平面区域为A ,向区域M 内随机抛掷一点P ,若点P 落在区域A 内的概率为827,则k 的值为 A .13 B .23 C .12D .34【答案】A【解析】∵M 的面积为122301111()d ()0236x x x x x -=-=⎰,A 的面积为12232301111()d ()(1)02326kk kx x kx x x x x k ----=--=-⎰,∴31(1)86,1276k -=∴1=3k ,故选A.8.若函数)(x f 、)(x g 满足11()()d 0f x g x x -=⎰,则称)(x f 、)(x g 为区间]1,1[-上的一组正交函数,给出三组函数:①x x g x x f 21cos )(,21sin)(==;②1)(,1)(-=+=x x g x x f ;③2)(,)(x x g x x f ==.其中为区间]1,1[-的正交函数的组数是 A .0 B .1 C .2D .3【答案】C有2组,故选C.9.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 的方程为20x y -=)的点的个数的估计值为A .5000B .6667C .7500D .7854【解析】1230101d |133S x x x ===⎰空白,则121133S S -=-=空白阴影=,因此点落入阴影部分的概率为2313P ==,从而所求点的个数估计为21000066673⨯≈,故选B .10.自由落体的运动速度v gt =(g 为常数),则当[]1,2t ∈时,物体下落的距离为__________. 【答案】32g 【解析】由定积分的物理意义可得,2221113d |22gt t gt g ==⎰. 11.已知()[](]221,1,11,1,2x x f x x x ⎧-∈-⎪=⎨-∈⎪⎩,则()21d f x x -=⎰__________. 【答案】23+【解析】由题意可得()21222211131ππ4d 1d (1)d |2323x f x x x x x x x --⎛⎫=-+-=+-=+⎪⎝⎭⎰⎰⎰, 答案为π423+.。

1-定积分与微积分基本定理(理)含答案版

1-定积分与微积分基本定理(理)含答案版

定积分与微积分基本定理(理)基础巩固强化1.求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( ) A .S =⎠⎛01(x 2-x )d xB .S =⎠⎛01(x -x 2)d xC .S =⎠⎛01(y 2-y )d yD .S =⎠⎛01(y -y )d y[答案] B[分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图形的面积S =⎠⎛01(x -x 2)d x .2.如图,阴影部分面积等于()A .2 3B .2- 3 C.323 D.353[答案] C[解析] 图中阴影部分面积为S =⎠⎛-31(3-x 2-2x )d x =(3x -13x 3-x 2)|1-3=323. 3.⎠⎛024-x 2d x =( )A .4πB .2πC .π D.π2[答案] C [解析] 令y =4-x 2,则x 2+y 2=4(y ≥0),由定积分的几何意义知所求积分为图中阴影部分的面积,∴S =14×π×22=π.4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是( )A .在t 1时刻,甲车在乙车前面B .在t 1时刻,甲车在乙车后面C .在t 0时刻,两车的位置相同D .t 0时刻后,乙车在甲车前面 [答案] A[解析] 判断甲、乙两车谁在前,谁在后的问题,实际上是判断在t 0,t 1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间内行驶的路程就是该时间段内速度函数的定积分,即速度函数v (t )的图象与t 轴以及时间段围成区域的面积.从图象知:在t 0时刻,v 甲的图象与t 轴和t =0,t =t 0围成区域的面积大于v 乙的图象与t 轴和t =0,t =t 0围成区域的面积,因此,在t 0时刻,甲车在乙车的前面,而且此时乙车的速度刚刚赶上甲车的速度,所以选项C ,D 错误;同样,在t 1时刻,v 甲的图象与t 轴和t =t 1围成区域的面积,仍然大于v 乙的图象与t 轴和t =t 1围成区域的面积,所以,可以断定:在t 1时刻,甲车还是在乙车的前面.所以选A.5.向平面区域Ω={(x ,y )|-π4≤x ≤π4,0≤y ≤1}内随机投掷一点,该点落在曲线y =cos2x 下方的概率是( )A.π4B.12C.π2-1 D.2π[答案] D[解析] 平面区域Ω是矩形区域,其面积是π2,在这个区6.的值是( )A .0 B.π4 C .2 D .-2 [答案] D[解析] 2(cos sin )2x x ππ---=2(cos sin )2x x ππ---=-2. 7.⎠⎛02(2-|1-x |)d x =________.[答案] 3 [解析]∵y =⎩⎨⎧1+x 0≤x ≤13-x 1<x ≤2,∴⎠⎛02(2-|1-x |)d x =⎠⎛01(1+x )d x +⎠⎛12(3-x )d x=(x +12x 2)|10+(3x -12x 2)|21=32+32=3. 9.已知a =20(sin cos )x x dx π+⎰,则二项式(a x -1x)6的展开式中含x 2项的系数是________.[答案] -192[解析] 由已知得a =20(sin cos )x x dx π+⎰=(-cos x +sin x )|π20=(sin π2-cos π2)-(sin0-cos0)=2,(2x -1x)6的展开式中第r +1项是T r +1=(-1)r ×C r 6×26-r×x 3-r ,令3-r =2得,r =1,故其系数为(-1)1×C 16×25=-192.10.有一条直线与抛物线y =x 2相交于A 、B 两点,线段AB 与抛物线所围成图形的面积恒等于43,求线段AB 的中点P 的轨迹方程.[解析] 设直线与抛物线的两个交点分别为A (a ,a 2),B (b ,b 2),不妨设a <b ,则直线AB 的方程为y -a 2=b 2-a2b -a(x -a ),即y =(a +b )x -ab .则直线AB 与抛物线围成图形的面积为S =⎠⎛ab [(a +b )x -ab -x 2]d x=(a +b 2x 2-abx -x 33)|b a =16(b -a )3,∴16(b -a )3=43,解得b -a =2.设线段AB 的中点坐标为P (x ,y ), 其中⎩⎪⎨⎪⎧x =a +b 2,y =a 2+b 22.将b -a =2代入得⎩⎨⎧x =a +1,y =a 2+2a +2.消去a 得y =x 2+1.∴线段AB 的中点P 的轨迹方程为y =x 2+1.能力拓展提升11.等比数列{a n }中,a 3=6,前三项和S 3=⎠⎛034x d x ,则公比q 的值为( )A .1B .-12C .1或-12 D .-1或-12[答案] C [解析] 因为S 3=⎠⎛34x d x =2x 2|30=18,所以6q +6q2+6=18,化简得2q 2-q -1=0,解得q =1或q =-12,故选C.12.已知(x ln x )′=ln x +1,则⎠⎛1e ln x d x =( )A .1B .eC .e -1D .e +1 [答案] A[解析] 由(x ln x )′=ln x +1,联想到(x ln x -x )′=(ln x +1)-1=ln x ,于是⎠⎛1e ln x d x =(x ln x -x )|e 1=(e ln e -e )-(1×ln1-1)=1.13.抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积为________.[答案] 18 [解析]由方程组⎩⎨⎧y 2=2x ,y =4-x ,解得两交点A (2,2)、B (8,-4),选y 作为积分变量x =y 22、x =4-y ,∴S =⎠⎛-42 [(4-y )-y 22]dy =(4y -y 22-y 36)|2-4=18.14.已知函数f (x )=e x -1,直线l 1:x =1,l 2:y =e t -1(t 为常数,且0≤t ≤1).直线l 1,l 2与函数f (x )的图象围成的封闭图形如图中区域Ⅱ所示,其面积用S 2表示.直线l 2,y 轴与函数f (x )的图象围成的封闭图形如图中区域Ⅰ所示,其面积用S 1表示.当t 变化时,阴影部分的面积的最小值为________.[答案] (e -1)2[解析] 由题意得S 1+S 2=⎠⎛0t (e t -1-e x +1)d x +⎠⎛t1(e x -1-e t +1)d x =⎠⎛0t (e t -e x )d x +⎠⎛t1(e x -e t )d x =(xe t -e x )|t 0+(e x -xe t )|1t =(2t -3)e t +e+1,令g (t )=(2t -3)e t +e +1(0≤t ≤1),则g ′(t )=2e t +(2t -3)e t =(2t -1)e t ,令g ′(t )=0,得t =12,∴当t ∈[0,12)时,g ′(t )<0,g (t )是减函数,当t ∈(12,1]时,g ′(t )>0,g (t )是增函数,因此g (t )的最小值为g (12)=e +1-2e 12=(e -1)2.故阴影部分的面积的最小值为(e -1)2.15.求下列定积分. (1)⎠⎛1-1|x |d x;(2)⎠⎛0πcos 2x2d x ;(3)∫e +121x -1d x . [解析] (1)⎠⎛1-1|x |d x =2⎠⎛01x d x =2×12x 2|10=1.(2)⎠⎛0πcos 2x2d x =⎠⎛0π1+cos x 2d x =12x |π0+12sin x |π=π2. (3)∫e +121x -1d x =ln(x -1)|e +12=1.16.已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围区域(图中阴影部分)的面积为112,求a 的值.[解析] f ′(x )=-3x 2+2ax +b ,∵f ′(0)=0,∴b =0, ∴f (x )=-x 3+ax 2,令f (x )=0,得x =0或x =a (a <0). ∴S 阴影=⎠⎛a0[0-(-x 3+ax 2)]d x=(14x 4-13ax 3)|0a =112a 4=112, ∵a <0,∴a =-1.1.已知函数f (x )=sin 5x +1,根据函数的性质、积分的性质和积分的几何意义,探求22()f x dx ππ-⎰的值,结果是( )A.16+π2 B .π C .1 D .0 [答案] B[解析] 22()f x dx ππ-⎰=22ππ-⎰sin 5x d x +22ππ-⎰1d x ,由于函数y =sin 5x 是奇函数,所以22ππ-⎰sin 5x d x =0,而22ππ-⎰1d x =x |π2-π2=π,故选B.2.若函数f (x )=⎩⎨⎧-x -1 (-1≤x <0),cos x (0≤x <π2),的图象与坐标轴所围成的封闭图形的面积为a ,则a 的值为( )A.2+π4B.12 C .1 D.32[答案] D[解析] 由图可知a =12+⎠⎜⎜⎛0π2cos x d x =12+sin x |π20=32.3.对任意非零实数a 、b ,若a ⊗b 的运算原理如图所示,则2⊗⎠⎛0πsin x d x =________.[答案] 22[解析] ∵⎠⎛0πsin x d x =-cos x |π0=2>2, ∴2⊗⎠⎛0πsin x d x =2⊗2=2-12=22. 4.设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________.[答案] 33[解析] ⎠⎛01f (x )d x =⎠⎛01(ax 2+c )d x =(ax 33+cx )|10=a 3+c ,故a 3+c =ax 20+c ,即ax 20=a 3,又a ≠0,所以x 20=13,又0≤x 0≤1,所以x 0=33.故填33.5.设n =⎠⎛12(3x 2-2)d x ,则(x -2x )n 展开式中含x 2项的系数是________.[答案] 40[解析] ∵(x 3-2x )′=3x 2-2,∴n =⎠⎛12(3x 2-2)d x =(x 3-2x )|21 =(23-2×2)-(1-2)=5.∴(x -2x )5的通项公式为T r +1=C r 5x 5-r (-2x)r =(-2)r C r 5x 5-3r 2 ,令5-3r 2=2,得r =2, ∴x 2项的系数是(-2)2C 25=40.。

第二章 第十三节 定积分与微积分基本定理

第二章 第十三节  定积分与微积分基本定理

的部分,
∴ 13 3+2x是-x圆2 d面x 积的
1, 4

13
3+2x-x2 dx=1gg22=. 4
答案:π
【互动探究】在本例题(3)中条件不变,求 31 f(x)dx的值.
【解析】由本例题(3)的解答过程知,

3 1
f
x表d示x 以
(1,0)为圆心,2为半径的圆在x轴上方的部分的面积,故
|02
(4x

x2 2

22 3
3
x 2 ) |82
16 38 18. 33
方法二:S=
2[4
4-y

y2 2
]dy
=(4y

1 2
y2

1 6
y3
)
|24
=18.
答案:18
(3)由
y

x得3 ,
y x
所求xy 旋11,,转体的体积等于由
y x,xx 轴1所,围成的图形绕x轴旋转一周形成的旋转体
判断出 f x= 3+表2x-示x的2 几何意义,再利用定积分的
几何意义求解.
【规范解答】(1)
11
x2 sin x
dx
(1 3
x3

cos
x)|11
2. 3
答案:2
3
(2)


2 0

1 sin
2xdx


2 0
sin
x cos
x
dx



04
(cosx
sin
_________________.
(2)(2013·芜湖模拟)

选修2-2 定积分及微积分基本定理-含答案

选修2-2 定积分及微积分基本定理-含答案

第5讲定积分及微积分基本定理A 组一、选择题 1.由曲线x y =,直线2-=x y 及y 轴所围成的封闭图形的面积为( )A .316 B .310 C .4 D .6【答案】A 【解析】 由2y x y x ⎧=⎪⎨=-⎪⎩解得4,2x y ==,故面积为()324420021622323|xx x dx x x ⎛⎫-+=-+= ⎪⎝⎭⎰.2.如图,阴影部分的面积是( )A .23B .23-C .323D .353【答案】C【解析】直线2y x =与抛物线23y x =-,解得交点为(3,6)--和(1,2),抛物线23y x =-与x 轴负半轴交点(3,0)-,设阴影部分的面积为132220333(32)(3)2(3)s x x dx x dx xdx x dx---=--+--+-⎰⎰⎰⎰5322392333=++-=,故选C. 3.由曲线y=x 3与直线y=4x 所围成的平面图形的面积为( ) A .4 B .8 C .12 D .16 【答案】B 【解析】根据题意,得到积分上限为2,积分下限为﹣2,曲线y=x 3与直线所围成的图形的面积是∫﹣22(4x ﹣x 3)dx , 而∫﹣22(4x ﹣x 3)dx=(2x 2﹣x 4)|﹣22=8 ∴曲边梯形的面积是8, 故选:B .4.设[](]2,0,1,()1,1,e x x f x x x⎧∈⎪=⎨∈⎪⎩(其中e 为自然对数的底数),则e 0()d f x x ⎰的值为( )A .43 B .54 C .65 D .67【答案】A【解析】123101001114()|ln |33eeef x dx x dx dx x x x =+=+=⎰⎰⎰,故选A . 5.已知函数31()(0)3mg x x x m m x=+-+>是[1,)+∞上的增函数.当实数m 取最大值时,若存在点Q ,使得过点Q 的直线与曲线()y g x =围成两个封闭图形,且这两个封闭图形的面积总相等,则点Q 的坐标为 ( )A .(03)-,B .(03),C .(02)-,D .(02), 【答案】C【解析】22'()1m g x x x =+-,由题意1x ≥时,22'()10m g x x x =+-≥恒成立,所以22(1)m x x ≤+,而当1x ≥时,22(1)1(11)2x x +≥⨯+=,所以2m ≤,即m 的最大值为2.此时312()23g x x x x =+-+,由于函数312()()23h x g x x x x=+=++是奇函数,关于点(0,0)对称,所以函数()g x 的图象关于点(0,2)-对称,所以点Q 的坐标为(0,2)-.6.4cos 2cos sin xdx x xπ=+⎰( )A .)221 B 21C.21- D .22- 【答案】C 【解析】22444000cos 2cos sin (cos sin )(sin cos )4cossin cos sin 0x x x dx dx x x dx x x x x x x ππππ-==-=+++⎰⎰⎰21=-,故选C .7.曲线2x y =和曲线x y =2围成的图形面积是( )A .31 B .32 C .1 D .34 【答案】A 【解析】解方程组2y x =和2y x =,得曲线的交点(0,0)和(1,1),在x 取区间(0,1)内范围内2y x =的图象始终在函数2y x =的上方,故曲线围成的图形面积3123201211()()0333S x x dx x x =-=-=⎰.8.如图,阴影部分的面积是( )A .23B .-23C .353D .323【答案】D 【解析】()1232133132323|33S x x dx x x x --⎛⎫=--=--= ⎪⎝⎭⎰9.给出下列四个命题:① 是增函数,无极值.②在上没有最大值③由曲线所围成图形的面积是④函数存在与直线平行的切线,则实数取值范围是其中正确命题的个数为( )A.1 B.2 C.3 D.4【答案】B【解析】利用导数法知,函数的单调递增区间为,单调递减区间为,既有极大值也有极小值,同时在区间上有最大值,所以命题①②都错误;,所以命题③正确;函数存在与直线平行的切线等价于在有解,因,,所以,即命题④正确。

高考定积分与微积分基本定理

高考定积分与微积分基本定理

a
做微积分基本定理,又叫做牛顿一莱布尼兹公式.为了方
便,我们常常把 F(b)-F(a)记成 F(x)|ab,
即b
f(x)dx=F(x)|ba=
a
F(b)-F(a).
其中 F(x)叫做 f(x)的一个原函数.
思想方法技巧
一、思想方法 (1)数形结合思想:求曲线围成图形的面积,要画出草 图,寻找积分上限和积分下限,以及被积函数的形式. (2)极限的思想:求曲边梯形的面积时,分割,近似代 替,求和,取极限,采用的是以直代曲,无限逼近的极限思 想. (3)公式法:套用公式求定积分,避免繁琐的运算,是求 定积分常用的方法. (4)定义法:用定义求定积分是最基本的求定积分方法.
D. 3
解析:如图为y=cosx在[-3π,π3]上的图象. 答案:D
[例4] 如图所示,已知曲线C1:y=x2与曲线C2:y=- x2+2ax(a>1)交于点O、A,直线x=t(0<t≤1)与曲线C1、C2 分别相交于点D、B,连结OD、DA、AB.
(1)写出线段OD、DA、AB和曲线 OB 所围成的曲.边.四.边. 形.ABOD(阴影部分)的面积S与t的函数关系式S=f(t);
S=b[f(x)-g(x)]dx(如图). a
考点典例讲练
定积分的几何意义
[例 1] (2011·潍坊二模)曲线 y=sinx,y=cosx 与直线 x =0,x=2π所围成的平面区域的面积为( )
解析:当 x∈[0,2π]时,y=sinx 与 y=cosx 的图象的交点坐标为 π4, 22,作图可知曲线 y=sinx,y=cosx 与直线 x=0,x=π2所围成 的平面区域的面积可分为两部分:一部分是曲线 y=sinx,y=cosx 与直线 x=0,x=π4所围成的平面区域的面积;另一部分是曲线 y= sinx,y=cosx 与直线 x=π4,x=π2所围成的平面区域的面积.且这两 部分的面积相等,结合定积分定义可知选 D.

2020届高三理数一轮讲义:3.3-定积分与微积分基本定理(含答案)

2020届高三理数一轮讲义:3.3-定积分与微积分基本定理(含答案)
答案 C
[思维升华] 1.定积分是一个数值(极限值),它的值仅仅取决于被积函数与积分的上、下限,而 与积分变量用什么字母表示无关. 2.错误!f(x)dx、错误!|f(x)|dx 与|错误!f(x)dx|在几何意义上有不同的含义,由于被积函
数 f(x)在闭区间[a,b]上可正可负,也就是它的图象可以在 x 轴上方、也可以在 x 轴下方、还可以在 x 轴的上下两侧,所以 错误!f(x)dx 表示由 x 轴、函数 f(x)的曲线
4 角度 2 利用定积分计算平面图形的面积 【例 2-2】 (一题多解)由抛物线 y2=2x 与直线 y=x-4 围成的平面图形的面积 为________.
y2=2x,
解析 如图所示,解方程组
得两交点为(2,-2),(8,4).
y=x-4,
法一 选取横坐标 x 为积分变量,则图中阴影部分的面积 S 可看作两部分面积之 和,即 S=2错误! 2xdx+错误!( 2x-x+4)dx=18.
角度 1 利用定积分的几何意义计算定积分
【例 2-1】 (1)计算:错误!(2x+ 1-x2)dx=________.
(2)若错误! -x2-2x dx=π,则 m=________. 4
解析 (1)由定积分的几何意义知,错误! 1-x2 dx 表示以原点为圆心,以 1 为半
| 径的圆的面积的1,所以错误! 1-x2 dx=π,又 错误!2xdx=x2
曲边梯形的面积
2.定积分的性质
(1)错误!kf(x)dx=k错误!f(x)dx(k 为常数).
(2)错误![f1(x)±f2(x)]dx=错误!f1(x)dx±错误!f2(x)dx.
(3)错误!f(x)dx=错误!f(x)dx+错误!f(x)dx(其中 a<c<b).

第2章第12节定积分与微积分基本定理(含答案详细解析)

第2章第12节定积分与微积分基本定理(含答案详细解析)

第2章第12节定积分与微积分基本定理(含答案详细解析)第2章函数、导数及其应用第12节定积分与微积分基本定理考点定积分与微积分基本定理1.(2013北京,5分)直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A.43B .2 C.83D. 1623解析:本题考查抛物线的几何性质、定积分的几何意义、微积分基本定理等基础知识,考查数形结合思想以及考生的运算求解能力.由题意知抛物线的焦点坐标为(0,1),故直线l 的方程为y =1,该直线与抛物线在第一象限的交点坐标为(2,1),根据对称性和定积分的几何意义可得所求的面积是2∫201-x 24d x =2x -x 312|2=83.答案:C2.(2013江西,5分)若S 1=??12x 2d x ,S 2=??121x d x ,S 3=??12e xd x ,则S 1,S 2,S 3的大小关系为( )A .S 1B .S 2C .S 2D .S 3解析:本题考查定积分的计算及实数大小的比较,意在考查考生的运算能力. S 1=13x 3 21=83-13=73,S 2=ln x 21=ln 2<="" e="" p="" x="" =1,s="">21=e 2-e ≈2.72-2.7=4.59,所以S 2答案:B3.(2013福建,4分)当x ∈R ,|x |<1时,有如下表达式: 1+x +x 2+…+x n +…=11-x. 两边同时积分得:∫121d x +∫12x d x +∫120x 2d x +…+∫12x n d x +…=∫12011-x d x ,从而得到如下等式:1×12+12×122+13×123+…+1n +1×12n +1+…=ln 2. 请根据以上材料所蕴含的数学思想方法,计算:C 0n ×12+12C 1n ×122+13C 2n ×123+…+1n +1C n n ×12n +1=________.解析:本题考查定积分、二项式定理、类比推理等基础知识,意在考查考生的转化和化归能力、类比推理能力和运算求解能力.法一:设f (x )=C 0nx +12×C 1n x 2+13×C 2n x 3+…+1n +1×C n n x n +1,所以f ′(x )=C 0n +C 1n x +C 2n x 2+…+C n n x n =(1+x )n,所以f 12=∫120f ′(x )d x =∫120(1+x )n d x =1n +1(1+x )n +1120=1n +11+12n +1-1n +1(1+0)n +1=1n +132n +1-1.法二:C 0n×12+12C 1n ×122+13C 2n ×123+…+1n +1C n n ×12n +1=1×12+12×n ×122+13×n (n -1)2×123+…+1n +1×n (n -1)×…×2×1n (n -1)×…×2×1×12n +1 =1n +1(n +1)×12+(n +1)n 2×122+(n +1)n (n -1)3×2×123+…+(n +1)n (n -1)×…×2×1(n +1)n (n -1)×…×2×1×12n +1=1n +1C 1n +1×12+C 2n +1×122+…+C n +1n +1×12n +1 =1n +11+12n +1-C 0n +1 =1n +132n +1-1.答案:1n +132n +1-14.(2013湖南,5分)若∫T 0x 2d x =9,则常数T 的值为________.解析:本小题主要考查定积分的计算.∵∫T 0x 2d x =13T 3=9,T >0,∴T =3. 答案:35.(2012福建,5分)如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( )A.14 B.15 C.16D.17解析:阴影部分的面积为∫10(x -x )d x =(23x 32-12x 2)|10=16,故所求的概率P =阴影部分的面积正方形OABC 的面积=1 6.答案:C6.(2012湖北,5分)已知二次函数y =f (x )的图象如图所示,则它与x 轴所围图形的面积为( )A.2π5B.43C.32D.π2解析:由题中图象易知f (x )=-x 2+1,则所求面积为2∫10(-x 2+1)d x =2(-x 33+x )|10=43.答案:B7.(2011新课标全国,5分)由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( )A.103 B .4 C.163D .6解析:由y =x 及y =x -2可得,x =4,所以由y =x 及y =x -2及y 轴所围成的封闭图形面积为?4(x -x +2)dx =(23x 32-12x 2+2x )|40=163. 答案:C8.(2011湖南,5分)由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A.12 B .1 C.32D. 3解析:结合函数图像可得所求的面积是定积分∫π3 π3cos xdx =sin x |π3 π3=32-(-32)=3.答案:D9.(2010山东,5分)由曲线y =x 2,y =x 3围成的封闭图形面积为( ) A.112 B.14 C.13D.712解析:由题可知y =x 2,y =x 3围成的封闭图形的面积为∫ 10(x 2-x 3)d x =(13x 3-14x 4)| 10=13-14=112. 答案:A10.(2010湖南,5分)∫ 421xd x 等于( )。

2-定积分与微积分基本定理(理)含答案

2-定积分与微积分基本定理(理)含答案

(理)定积分与微积分基本定理一、选择题1.S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1解析 本题考查微积分基本定理. S 1=⎠⎛12x 2d x =x 33|21=73.S 2=⎠⎛121x d x =ln x |21=ln 2-ln 1=ln 2.S 3=⎠⎛12e x d x =e x |21=e 2-e =e (e -1).令e =2.7,∴S 3>3>S 1>S 2.故选B . 答案 BA .3B .4C .3.5D .4.5解析答案 C3.如图所示,图中曲线方程为y =x 2-1,用定积分表达围成封闭图形(阴影部分)的面积是()A .⎪⎪⎪⎪⎪⎪⎠⎛02(x 2-1)d x B .⎠⎛02(x 2-1)d xC.⎠⎛02|x 2-1|d xD .⎠⎛01(x 2-1)d x +⎠⎛02(x 2-1)d x解析 面积S =⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x=⎠⎛02|x 2-1|d x ,故选C.答案 C4.已知二次函数y =f (x )的图象如图所示,则它与x 轴所围图形的面积为()A.2π5B.43C.32D.π2解析答案 B5.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t (t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( )A .1+25ln5B .8+25ln 113 C .4+25ln5D .4+50ln2解析 令v (t )=0,7-3t +251+t=0∴3t 2-4t -32=0,∴t =4,则汽车行驶的距离为⎠⎛04v (t )d t =⎠⎛04⎝ ⎛⎭⎪⎪⎫7-3t +251+t d t = ⎣⎢⎡⎦⎥⎤7t -32t 2+25ln (1+t )|40=7×4-32×42+25ln5-0=4+25ln5,故选C.答案 C6.如图,设D 是图中边长分别为1和2的矩形区域,E 是D 内位于函数y =1x (x >0)图象下方的区域(阴影部分),从D 内随机取一个点M ,则点M 取自E 内的概率为( )A.ln22B.1-ln22C.1+ln22D.2-ln22解析答案 C 二、填空题7.若⎠⎛0T x 2d x =9,则常数T 的值为________.解析 ∵⎠⎛0T x 2d x =x 33|T 0=T 33=9,∴T =3.答案 38.计算:⎠⎛01(x 2+1-x 2)d x =______.解析 ⎠⎛01(x 2+1-x 2)d x =⎠⎛01x 2d x +⎠⎛011-x 2d x =x 3310+14π=13+π4.答案 13+π49.已知函数y =f (x )的图象是折线段ABC ,其中A (0,0)、B ⎝ ⎛⎭⎪⎫12,5、C (1,0).函数y =xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为________.解析 设直线为y =kx +b ,代入A ,B 两点,得y =10x . 代入B ,C 两点,则⎩⎪⎨⎪⎧5=12k +b ,0=k +b ,∴k =-10,b =10.∴f (x )=⎩⎪⎨⎪⎧10x , 0≤x ≤12,-10x +10, 12<x ≤1.∴y =xf (x )=⎩⎪⎨⎪⎧10x 2, 0≤x ≤12,-10x 2+10x , 12<x ≤1.答案 54 三、解答题10.若f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176,求⎠⎛12f (x )x d x的值.解 ∵f (x )是一次函数,∴设f (x )=ax +b (a ≠0).由⎠⎛01(ax +b )d x =5,得⎝ ⎛⎭⎪⎫12ax 2+bx |10=12a +b =5.① 由⎠⎛01xf (x )d x =176,得⎠⎛01(ax 2+bx )d x =176. 即⎝ ⎛⎭⎪⎫13ax 3+12bx 2|10=176. ∴13a +12b =176.②解①②,得a =4,b =3.∴f (x )=4x +3. 于是⎠⎛12f (x )x d x =⎠⎛124x +3x d x =⎠⎛12(4+3x )d x=(4x +3ln x )|21=8+3ln2-4 =4+3ln2.11.如图,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值.解 抛物线y =x -x 2与x 轴两交点的横坐标x 1=0,x 2=1, 所以抛物线与x 轴所围图形的面积 S =⎠⎛01(x -x 2)d x =⎝ ⎛⎭⎪⎫x 22-x 33|10=12-13=16. 又可得抛物线y =x -x 2与y =kx 两交点的横坐标为x ′1=0,x ′2=1-k ,所以S 2=∫1-k0(x -x 2-kx )d x=⎝ ⎛⎭⎪⎫1-k 2x 2-x 33|1-k0 =16(1-k )3.又知S =16,所以(1-k )3=12. 于是k =1- 312=1-342.12.设函数f (x )=x 3+ax 2+bx 在点x =1处有极值-2. (1)求常数a ,b 的值;(2)求曲线y =f (x )与x 轴所围成的图形的面积.解 (1)由题意知,f ′(x )=3x 2+2ax +b ,f (1)=-2,且f ′(1)=0,即⎩⎨⎧1+a +b =-2,3+2a +b =0,解得⎩⎨⎧a =0,b =-3.(2)由(1)可知,f (x )=x 3-3x . 作出曲线y =x 3-3x 的草图如图,所求面积为阴影部分的面积,由x 3-3x =0得曲线y =x 3-3x 与x 轴的交点坐标是(-3,0),(0,0)和(3,0),而y =x 3-3x 是R 上的奇函数,所以函数图象关于原点成中心对称.所以所求图形的面积为。

(复习指导)3.3 定积分与微积分基本定理含解析

(复习指导)3.3 定积分与微积分基本定理含解析

3.3 定积分与微积分基本定理必备知识预案自诊知识梳理1.定积分的定义如果函数f (x )的图像在区间[a ,b ]上连续,用分点a=x 0<x 1<…<x i-1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i-1,x i ]上任取一点ξi (i=1,2,…,n ),作和式∑i=1nf (ξi )Δx=∑i=1n b -a nf (ξi ),当n →+∞时,上述和式无限接近某个常数,这个常数叫作函数f (x )在区间[a ,b ]上的定积分,记作∫baf (x )d x.2.定积分的几何意义(1)当函数f (x )的图像在区间[a ,b ]上连续且恒有f (x )≥0时,定积分∫baf (x )d x 的几何意义是由直线x=a ,x=b (a ≠b ),y=0和曲线y=f (x )所围成的曲边梯形(图①中阴影部分)的面积.图①图②(2)一般情况下,定积分∫baf (x )d x 的几何意义是介于x 轴、曲线y=f (x )以及直线x=a ,x=b之间的曲边梯形(图②中阴影部分)面积的代数和,其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数.3.定积分的性质(1)∫ba kf (x )d x= (k 为常数); (2)∫ba [f (x )±g (x )]d x= ;(3)∫baf (x )d x= (其中a<c<b ).4.微积分基本定理一般地,如果f (x )是图像在区间[a ,b ]上连续的函数,并且F'(x )=f (x ),那么∫baf (x )d x= .这个结论叫作微积分基本定理,又叫作牛顿—莱布尼茨公式,其中F(x)叫作f(x)的一个原函数.为了方便,我们常把F(b)-F(a)记作,即∫ba f(x)d x=F(x)|a b=F(b)-F(a).5.定积分在物理中的两个应用(1)变速直线运动的路程:如果变速直线运动物体的速度为v=v(t),那么从时刻t=a到t=b所经过的路程s=∫ba v(t)d t.(2)变力做功:某物体在变力F(x)的作用下,沿着与F(x)相同的方向从x=a移动到x=b时,力F(x)所做的功是W=∫baF(x)d x.1.定积分与曲边梯形的面积的关系:设图中阴影部分的面积为S,则(1)如图(1),S=∫baf(x)d x;(2)如图(2),S=-∫baf(x)d x;(3)如图(3),S=∫ca f(x)d x-∫bcf(x)d x;(4)如图(4),S=∫ba[f(x)-g(x)]d x.2.设函数f(x)在闭区间[-a,a]上连续,则有:(1)若f(x)是偶函数,∫a-a f(x)d x=2∫af(x)d x;(2)若f(x)是奇函数,则∫a-af(x)d x=0.考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)若函数y=f(x)的图像在区间[a,b]上连续,则∫ba f(x)d x=∫b a f(t)d t.()(2)若f(x)是图像连续的偶函数,则∫a-a f(x)d x=2∫af(x)d x;若f(x)是图像连续的奇函数,则∫a-af(x)d x=0.()(3)在区间[a,b]上连续的曲线y=f(x)和直线x=a,x=b(a≠b),y=0所围成的曲边梯形的面积S=∫ba|f(x)|d x.() (4)若∫baf(x)d x<0,则由y=f(x),x=a,x=b以及x轴所围成的图形一定在x轴下方.()(5)已知质点移动的速度v=10t,则质点从t=0到t=t0所经过的路程是∫t010t d t=5t02.()2.已知函数f(x)={√x,1<x≤4,x|x|,-1≤x≤1,则∫4-1f(x)d x=()A.14B.143C.7D.2123.汽车以v=(3t+2)m/s做变速运动时,在第1 s至2 s之间的1 s内经过的路程是()A.5 mB.112mC.6 mD.132m4.(2020湖南师大附中测试)直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为()A.2√2B.4√2C.2D.45.(2020江西南昌模拟)设a>0,若曲线y=√x与直线x=a,y=0所围成的封闭图形的面积为a2,则a=.关键能力学案突破考点定积分的计算【例1】计算下列定积分.(1)∫1(-x2+2x)d x;(2)∫π(sin x-cos x)d x;(3)∫21(e2x+1x)d x;(4)∫π2√1-sin2x d x.?解题心得计算定积分的步骤(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差.(2)把定积分变形为求被积函数为上述函数的定积分.(3)分别用求导公式的逆运算找到一个相应的原函数.(4)利用微积分基本定理求出各个定积分的值,然后求其代数和.对点训练1(1)∫3-1(3x2-2x+1)d x;(2)∫21(x-1x)d x;(3)∫π-π(x3cos x)d x;(4)∫2|1-x|d x.考点利用定积分的几何意义求定积分【例2】已知函数f(x)={-x+2,x≤2,√1-(x-3)2,2<x≤4,则定积分∫412f(x)d x的值为()A.9+4π8B.1+4π4C.1+π2D.3+2π4?解题心得当被积函数的原函数不易求,而被积函数的图像与直线x=a,x=b,y=0所围成的曲边图形形状规则,面积易求时,利用定积分的几何意义求定积分.对点训练2(2020四川成都一中测试)∫1-1(√1-x2+sin x)d x=()A.π4B.π2C.πD.π2+2考点定积分的应用(多考向探究)考向1求曲线围成的平面图形的面积【例3】(1)如图所示,曲线y=x2-1,x=2,x=0,y=0围成的阴影部分的面积为() A.∫2|x2-1|d xB.∫21(1-x2)d x+∫1(x2-1)d xC.∫2(x2-1)d xD.∫21(x2-1)d x+∫1(1-x2)d x(2)(2020云南昆明一中测试)如图是函数y=cos2x-5π6在一个周期内的图像,则阴影部分的面积是()A.34B.5 4C.3 2D.32−√34?2已知曲线围成的面积求参数【例4】(2020安徽合肥摸底)由曲线f(x)=√x与y轴及直线y=m(m>0)围成的图形的面积为83,则m的值为()B.3C.1D.8?3定积分在概率中的应用【例5】(2020山西太原联考)如图,在矩形ABCD中的曲线是y=sin x,y=cos x的一部分,点A(0,0),B(π2,0),D(0,1),在矩形ABCD内随机取一点,则此点取自阴影部分的概率是()A.4π(√3-1) B.4π(√2-1) √3-1)π D.4(√2-1)π?4定积分在物理中的应用【例6】(1)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v(t)=7-3t+251+t(t 的单位:s,v的单位:m/s)行驶至停止.在此期间汽车行驶的距离(单位:m)是()A.1+25ln 5B.8+25ln 113C.4+25ln 5D.4+50ln 2(2)一物体在力F (x )={5,0≤x ≤2,3x +4,x >2(单位:N )的作用下沿与力F 相同的方向从x=0处运动到x=4(单位:m)处,则力F (x )做的功为 J .?解题心得1.对于求平面图形的面积问题,应首先画出平面图形的大致图形,然后根据图形特点,选择相应的积分变量及被积函数,并确定被积区间.2.已知图形的面积求参数,一般是先画出它的草图;然后确定积分的上、下限,确定被积函数,由定积分求出其面积,再应用方程的思想建立关于参数的方程,从而求出参数的值.3.与概率相交汇问题.解决此类问题应先利用定积分求出相应平面图形的面积,再用相应概率公式进行计算.4.利用定积分解决变速运动问题和变力做功问题时,关键是求出物体做变速运动的速度函数和变力与位移之间的函数关系,确定好积分区间,得到积分表达式,再利用微积分基本定理计算即得所求.对点训练3(1)如图,由两条曲线y=-x 2,y=-14x 2及直线y=-1所围成的平面图形的面积为 .(2)已知t>1,若∫t1(2x+1)d x=t 2,则t= .(3)如图所示,在一个边长为1的正方形AOBC 内,曲线y=x 3(x>0)和曲线y=√x 围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )A.512B.16C.14D.13(4)汽车以36 km/h 的速度行驶,到某处需要减速停车,设汽车以加速度a=-2 m/s 2刹车,则从开始刹车到停车,汽车走的距离是 m .(5)设变力F (x )作用在质点M 上,使M 沿x 轴正向从x=1运动到x=10,已知F (x )=x 2+1,且方向和x 轴正向相同,则变力F (x )对质点M 所做的功为 J(x 的单位:m;力的单位:N).1.求定积分的方法:(1)利用定义求定积分,可操作性不强. (2)利用微积分基本定理求定积分的步骤如下: ①求被积函数f (x )的一个原函数F (x );②计算F (b )-F (a ).(3)利用定积分的几何意义求定积分. 2.定积分∫baf (x )d x 的几何意义是x 轴、曲线f (x )以及直线x=a ,x=b 围成的曲边梯形的面积的代数和.在区间[a ,b ]上连续的曲线y=f (x )和直线x=a ,x=b (a ≠b ),y=0所围成的曲边梯形的面积S=∫ba |f (x )|d x.1.被积函数若含有绝对值号,应去掉绝对值号,再分段积分.2.若积分式子中有几个不同的参数,则必须分清谁是被积变量.3.定积分式子中隐含的条件是积分上限大于积分下限.4.定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负.3.3 定积分与微积分基本定理必备知识·预案自诊知识梳理3.(1)k ∫ba f (x )d x(2)∫ba f (x )d x ±∫ba g (x )d x (3)∫c af (x )d x+∫bcf (x )d x4.F (b )-F (a ) F (x )|ab 考点自诊1.(1)√ (2)√ (3)√ (4)× (5)√2.B 函数f (x )={√x ,1<x ≤4,x |x |,-1≤x ≤1,则∫4-1f (x )d x=∫1-1x|x|d x+∫41√x d x=0+23x 3214=143.故选B .3.D S=∫21(3t+2)d t=(32t 2+2t) 12=92+2=132.故选D .4.D 由{y =4x ,y =x 3,得x=0或x=2或x=-2(舍),∴S=∫2(4x-x 3)d x=2x 2-14x 402=4.5.49 封闭图形如图阴影部分所示,则∫a√x d x=23x 32 0a =23a 32=a 2,解得a=49.关键能力·学案突破例1解(1)∫1(-x 2+2x )d x=∫1(-x 2)d x+∫12x d x=(-13x 3) 01+(x 2) 01=-13+1=23. (2)∫π0(sinx-cosx )dx=∫π0sinxd x-∫πcos x d x=(-cos x ) π0-sin x π0=2.(3)∫21(e 2x +1x )dx=∫21e 2x dx+∫211x x=12e d 2x12ln x 12=12e+4-12e 2+ln2ln1=e-4-12e 122+ln2. (4)∫π2√1-sin2x dx=∫π2|sinx-cos x|d x=∫π4(cos x-sin x )d x+∫π2π4(sin x-cos x )d x=(sinx+cos x ) 0π4+(-cos x-sin x ) π4π2=√2-1+(-1+√2)=2√2-2.对点训练1解(1)∫3-1(3x 2-2x+1)d x=(x 3-x 2+x )|-13=24. (2)∫21(x -1x )d x=12x 2-ln x 12=32-ln2.(3)因为y=x 3cos x 为奇函数, 所以∫π-π(x 3cos x )d x=0.(4)∫2|1-x|dx=∫1(1-x)dx+∫21(x-1)d x=(x -12x 2) 01+12x 2-x 12=(1-12)-0+12×22-2-12×12-1=1.例2A 因为f (x )={-x +2,x ≤2,√1-(x -3)2,2<x ≤4,所以∫412f (x )dx=∫212(-x+2)dx+∫42√1-(x -3)2d x ,∫212(-x+2)d x=-12x 2+2x122=98. ∫42√1-(x -3)2d x 的几何意义为以(3,0)为圆心,以r=1为半径的圆在x 轴上方的部分,因而S=12×π×12=π2, 所以∫412f (x )d x=98+π2=9+4π8.故选A .对点训练2B ∫1-1(√1-x 2+sin x )d x=∫1-1√1-x 2d x+∫1-1sin x d x ,∵y=sin x 为奇函数,∴∫1-1sin x d x=0. 又∫1-1√1-x 2d x 表示以坐标原点为圆心,以1为半径的圆的上半圆的面积,∴∫1-1√1-x 2d x=π2. ∴∫1-1(√1-x 2+sin x )d x=π2.例3(1)A (2)B (1)由曲线y=x 2-1,直线x=0,x=2和x 轴围成的封闭图形的面积为S=∫1(1-x 2)d x+∫21(x 2-1)d x.根据对称性,它和函数y=|x 2-1|,直线x=0,x=2和x 轴围成的封闭图形的面积相等,如图所示,即S=∫2|x 2-1|d x.(2)阴影部分的面积为S=-∫π6cos 2x-5π6d x+∫2π3π6cos 2x-5π6d x =-12sin 2x-5π60π6+12sin 2x-5π6π62π3= -12sin -π2-12sin -5π6+12sin π2−12sin -π2=14+1=54.故选B .例4A 由题知曲线f (x )=√x 与直线y=m 的交点为(m 2,m ),则∫m 20(m-√x )d x=mx-23x 320m 2=m 3-23m 3=83,解得m=2.例5BS 阴影=2∫π4(cos x-sin x )d x=2[sin x+cos x ] 0π4=2(√2-1),S ABCD =π2×1=π2,由测度比是面积比可得,此点取自阴影部分的概率是P=S 阴影SABCD=2(√2-1)π2=4π(√2-1).故选B .例6(1)C (2)36 (1)由v (t )=7-3t+251+t =0,可得t=4,t=-83(舍去),因此汽车从刹车到停止一共行驶了4s,此期间行驶的距离为∫40v (t )d t=∫47-3t+251+t d t=7t-32t 2+25ln(1+t )04=4+25ln5(m).(2)由题意知,力F (x )所做的功为W=∫42F (x )d x=∫425d x+∫42(3x+4)d x=5×2+32x 2+4x 24=10+32×42+4×4-32×22+4×2=36(J).对点训练3(1)43 (2)2 (3)A (4)25(5)342 (1)由{y =-x 2,y =-1得交点A (-1,-1),B (1,-1).由{y =-14x 2,y =-1得交点C (-2,-1),D (2,-1).所以所求面积S=2∫2(-14x 2+1)−∫1(-x 2+1)=43.(2)∫t1(2x+1)d x=(x 2+x ) 1t =t 2+t-2,从而得方程t 2+t-2=t 2,解得t=2.(3)此题为关于面积的几何概型,边长为1的正方形AOBC 的面积为1,叶形图(阴影部分)的面积S (A )=∫1(√x -x 3)d x=(23x 32-14x 4) 01=512. 所以所求概率P (A )=512.故选A .(4)t=0时,v 0=36km/h=10m/s ,刹车后,汽车减速行驶,速度为v(t)=v 0+at=10-2t ,由v (t )=0得t=5s,所以从刹车到停车,汽车所走过的路程为∫5v(t)dt=∫5(10-2t )d t=(10t-t 2)05=25(m).(5)变力F (x )=x 2+1使质点M 沿x 轴正向从x=1运动到x=10所做的功为W=∫101F (x )d x=∫101(x 2+1)d x=(13x 3+x) 110=342(J).。

第52讲 定积分与微积分的基本定理(解析版)

第52讲 定积分与微积分的基本定理(解析版)

0 0∣ 2∣ 简单 已测:424次 正确率:91.8 %1. 定积∫ 2 2xdx 的值是() A. 1B. 2C. 3D. 4考点:⽤定义求定积分、微积分基本定理求定积分知识点:定积分的概念、微积分基本定理 答案:D 解析: 22 ∣2∫ 02xdx = x故选:D .∣= 4, ∣⼀般已测:3296次 正确率:69.9 % π 2. 计算∫ 2 (1 − cos x)dx =( ) π 2A. π + 2B. π − 2C. πD. −2考点:利⽤定积分的⼀何意义解题、微积分基本定理求定积分知识点:定积分的概念、定积分的⼀何意义 答案:Bπ π 解析: ∫ 2π (1 − cos x)dx = (x − sin x)∣ 2 π= π − 2.选B.− ∣ − 2⼀般已测:4642次 正确率:87.5 %3.若S 1 = ∫ 2 x 2dx ,S 2 = ∫ 2 1dx ,S 3 = ∫ 2 e x dx 则S 1,S 2,S 3的⼀⼀关系为( )1A. S 1<S 2<S 3B. S 2<S 1<S 3C. S 2<S 3<S 1D. S 3<S 2<S 11 x1考点:⽤定义求定积分、微积分基本定理求定积分知识点:定积分的基本性质、定积分的常⽤结论答案:B解析:由于S 1 = ∫ 2 x 2dx = 1 x 3∣2 = 8 − 1 = 7,S 2 = ∫ 2 1 dx = lnx∣2 = ln2,1 3 1 3 3 3 1 x 1 S 3 = ∫2 e x dx = e x ∣2 = e 2 − e ,且ln2< 7 <e 2 − e ,所以S 2<S 1<S 3,故选B .1 1 3−⼀般已测:3883次正确率:75.3 %4. 若f (x) = x2+ 2 ∫ 1 f (x)dx,则∫ 1 f (x)dx =( )0 0−322633346A.−1B.1C.1D.1考点:微积分基本定理求定积分、运⽤定积分的相关性质解题知识点:被积函数的原函数、微积分基本定理答案:B解析:令∫1 f (x)dx = m(常数),则f (x) = x2 + 2m,所以m = ∫ 1 f (x)dx = ( 1 x3 + 2mx) ∣1= 1 + 2m,解得m = − 1 ,故选:B.0 3 ∣0 3中等已测:4750次正确率:71.2 %5.在如图所⽰平⾯直⻆坐标系中,正⽅形OABC的边⼀为1,曲线m是函数y = a(x − 1)2 + b图象位于正⽅形内的部分,直线AC恰好是函数y = a(x −1)2 + b在x = 0处的切线,现从正⽅形内任取⼀点P ,那么点P 取⾃阴影部分的概率等于()112B.1C.1D.1考点:利⽤定积分的⼀何意义解题、微积分基本定理求定积分知识点:曲边梯形的⾯积、定积分的⼀何意义答案:D解析:∵ 正⽅形OABC的边⼀为1, ∴ S正方形OABC = 1,由函数y = a(x − 1)2 + b,得y′ = 2a(x − 1),则y′∣x=0 = −2a = −1,得a = 1 .⼀当x = 0时,y = a + b = 1,可得b = 1 ,∴ 曲线m的解析式为y = 1 (x −1)2 + 1 ,2 2∴ 阴影部分⾯积S = ∫ 1[ 1 (x −1)2 + 1 −(−x+ 1)]dx= ∫ 1 1 x2dx = 1 x3∣1 = 1 .0 2 2 0 2 6 0 6∴ 点P 取⾃阴影部分的概率等于1 .故选:D.A.5 x⼀般已测:4665次正确率:92.6 %6.已知a = ∫ e1 dx ,则⼀项式(1 − a )5的展开式中x −3的系数为( )e xA. 160B. 80C. −80D. −160考点:利⽤定积分的性质解题、微积分基本定理求定积分知识点:定积分的概念、微积分基本定理答案:C 解析:∵a = ∫ e 1dx = lne − ln 1 = 2, 1 x ee 5 2 5 rr∴(1 − a ) = (1 − ) 的展开式的通项公式为T r+1 = C 5(−2) x −r ,x x令−r = −3得,r = 3,∴展开式中x −3的系数为C 3(−2)3 = −80.⼀般已测:2948次 正确率:92.5 %7. 实数a 使得复数a+i 是纯虚数,b = ∫ 1 xdx, c = ∫ 1 1 − x 2 dx 则a, b, c 的⼀⼀关系是( )1−i 0 0A. a<b<cB. a<c<bC. b<c<aD. c<b<a考点:⽤定义求定积分、⽤所求定积分的⼀何意义求定积分知识点:定积分的概念、复数的概念 答案:C解析: a+i = (a+i)(1+i) = a−1+(a+1)i,它为纯虚数,所以a = 1, 1−i (1−i)(1+i) 2 b = ∫ 1 xdx = x 2 ∣1 = 1 , c = ∫ 11 − x2 dx ,表⽰单位圆的四分之⼀的⾯积为π ,所以b<c<a ,应选C .0 2 0 2 0 4中等已测:3726次正确率:56.3 %8. 若f (x) + ∫ 1 f (x) dx = x ,则∫ 1 f (x) dx =( )14 2A. 1B. 10000002C.1D.2考点:⽤定义求定积分、利⽤定积分的性质解题知识点:定积分的基本性质、基本积分公式答案:A解析:由f (x) + ∫ 1 f (x) dx = x,则f (x) = x −∫ 1 f (x) dx,0 0则∫ 1 f (x) dx = ∫ 1 (x − ∫ 1 f (x) dx) dx=∫1x d x−∫1[∫1f(x)d x]d x=1−∫1f(x)d x,∴ ∫ 1 f (x) dx = 1 −∫1 f (x) dx,0 2 0则∫ 1 f (x) dx = 1 ,0 4故选A.⼀般已测:2708次正确率:72.5 %9.⼀个⼀骑⼀以6⽶/秒的速度匀速追赶停在交通信号灯前的汽⼀,当他离汽⼀25⽶时,交通信号灯由红变绿,汽⼀开始做变速直线⾏驶(汽⼀与⼀的前进⽅向相同),若汽⼀在时刻t的速度v(t) = t⽶/ 秒,那么此⼀().A.可在7秒内追上汽⼀B.不能追上汽⼀,但其间最近距离为16⽶C.不能追上汽⼀,但其间最近距离为14⽶D.不能追上汽⼀,但其间最近距离为7⽶考点:⼀次函数的单调性、利⽤定积分的⼀何意义解题知识点:微积分基本定理、基本积分公式答案:D解析:设该⼀骑⼀⾏驶距离和汽⼀⾏驶距离的差为S(t),则S(t) = ∫ t (6 −t) dt = 6t −1 t2,0 2所以S(t)max = S(6) = 36 −18 = 18,所以该⼀不能追上汽⼀,但其间最近距离为7⽶⼀般已测:391次正确率:82.7 %10.甲、⼀两⼀从同⼀起点出发按同⼀⽅向⾏⼀,已知甲、⼀⾏⼀的速度与⾏⼀的时间分别为v甲= t,v乙= t2(如图),当甲⼀⾏⼀的速度相同(不为零)时刻( )A.甲⼀两⼀再次相遇B.甲⼀两⼀加速度相同4 −1 −1 −1 0 −1 −1 −1 −1 −1 −1 C. 甲在⼀前⽅ D. ⼀在甲前⽅考点:微积分基本定理求定积分、运⽤定积分的相关性质解题知识点:定积分的物理意义、变速运动问题 答案:C解析:由v 甲 = v 乙,得= t 2,解得t = 0(舍),或t = 1.1 2 3 1 2由∫0 tdt = 3 t 2 ∣0 = 3 . ∫ 1 t 2dt = 1 t 3∣1 = 1 .0 3 0 3所以当甲⼀⾏⼀的速度相同(不为零)时刻甲在⼀前⽅. 故选:C .中等已测:1818次正确率:73.8 %11. 已知a<b ,若函数f (x), g(x)满⾜∫ b f (x)dx = ∫ b g(x)dx ,则称f (x), g(x)为区间[a, b]上的aa⼀组``等积分''函数,给出四组函数:①f (x) = 2∣x∣, g(x) = x + 1;②f (x) = sinx, g(x) = cosx ; ③f (x) =1 − x2 , g(x) = 3πx 2;④函数f (x), g(x)分别是定义在[−1, 1]上的奇函数且积分值存在. 其中为区间[−1, 1]上的“等积分”函数的组数是( )A. 1B. 2C. 3D. 4考点:利⽤定积分的⼀何意义解题、微积分基本定理求定积分知识点:定积分的基本性质、微积分基本定理 答案:C解析:本题是新定义问题,主要考查对定义的理解和定积分的计算.对于①,∫ 1 f (x) dx = ∫ 1 2 ∣x∣ dx = ∫ 0 2 (−x) dx + ∫ 12xdx = 2,⽽ ∫ 1 g (x) dx = ( 1 x 2+ x ) ∣1 = 2,所以①是⼀组“等积分”函数;−1 对于②,∫ 1 2 f (x)dx = ∫ 1−1 sinxdx = 0,⽽∫ 1 g (x) dx = ∫1c o s xd x = 2 s in 1=0,所以②不是⼀组`` 等积分''函数; 对于③,函数f (x)的图像是以原点为圆⼼,1为半径的半圆,故∫ 1f (x) dx = ∫1 1 − x2 dx = π ,⽽∫ 1 g (x) dx = 1 πx 3∣1−1 −1 2= π ,所以③是⼀组``等积分''函数;−1 4 −1 2对于④,由于函数f (x), g(x)分别是定义在[−1, 1]上的奇函数且积分值存在,利⽤奇函数的图像关于原点对称和定积分的⼀何意义,可以求得函数的定积分∫ 1 f (x)dx = ∫ 1g (x) dx = 0,所以④是⼀组``等积 分''函数.故选C .简单 已测:3293次正确率:86.3 %πt12.∫ 2π(sinx + c osx)dx = .−22n × m m 2n14 4 m + π n−2 −2 π π −2 π 2 m n 考点:⽤定义求定积分、微积分基本定理求定积分知识点:定积分的概念、被积函数的原函数答案:2π π解析:∫ 2π (sinx + cosx)dx = (−cosx + sinx ) ∣ 2 π− 2 − 2= 1 + 1 = 2;故填2.⼀般已测:4543次正确率:94.5 %13. ∫ 2 ( 1 − (x − 1)2)dx= .考点:利⽤定积分的⼀何意义解题 知识点:定积分的概念、定积分的⼀何意义答案:π 解析:函数y = 1 − (x − 1)2 即:(x − 1)2 + y 2 = 1(x≥1, y≥0),表⽰以(1, 0)为圆⼼,1为半径的圆在x 轴上⽅横坐标从1到2的部分,即四分之⼀圆,结合定积分的⼀何意义可得∫ 2 ( 1 − (x − 1)2 )dx = 1 ×π×12 = π.1 4 4故答案为π .⼀般已测:2478次正确率:65.4 %14. ⼀辆汽⼀在⾏驶中由于遇到紧急情况⽽刹⼀,以速度v(t) = 7 − 3t + 期间汽⼀继续⾏驶的距离是.考点:定积分在求⾯积中的应⽤、微积分基本定理求定积分知识点:定积分的物理意义、基本积分公式 答案:4 + 25ln525⾏驶⾄停⽌,在此1+t 解析:本题考查定积分的概念.令v(t) = 7 − 3t + 25 1+t = 0,化为3t 2 − 4t − 32 = 0,⼀t > 0,解得t = 4.汽⼀继 续⾏驶的距离S = ∫ 4(7 − 3t + 25 )dt = (7t − 3 t 2+25ln(1+t))∣4 = 4+25ln5.1+t 2 0⼀般已测:4698次正确率:91.6 %15. 若正实数m, n 满⾜ 2 1 2 (x + 1 4 − x 2 )dx ,则log 2(m + 2n)的最⼀值为.考点:利⽤基本不等式求最值、利⽤公式求定积分知识点:定积分的基本性质、基本积分公式 答案:2解析:由题意得∫ 2 (x 1 4 − x 2 )dx = 1 ∫ 2 4 − x 2 dx = 1 × 1 π × 22 = 2;即 2 + 1 = 2,所以 m + 2n = (m + 2n)( 1 + 1 ) = 2n + m + 2 ≥ 2 + 2 = 4(当且仅当m = 2n 时等号成m 2n m 2n ⼀).所以log 2 (m + 2n) ≥ log 2 4 = 2,即log 2(m + 2n)的最⼀值为2.简单 已测:1192次 正确率:87.8 %= ∫16.有⼀⾮均匀分布的细棒,已知其线密度为ρ(x) = x3,棒⼀为2,则细棒的质量M = .考点:⽤定义求定积分、微积分基本定理求定积分0 3知识点:定积分的物理意义、定积分的常⽤结论答案:4 解析:依题意有:∫ 2 x 3dx = x 4 ∣2 = 4.0 4 0⼀般 已测:3051次 正确率:65.2 %17. 在区间[0, 1]上给定曲线y = x 2.试在此区间内确定点t 的值,使图中的阴影部分的⾯积S 1与S 2之和最⼀,并求最⼀值.考点:导数在最⼀值、最⼀值问题中的应⽤、定积分在求⾯积中的应⽤知识点:利⽤导数求函数的最值、微积分基本定理答案:t = 1 时,S(t)最⼀,且最⼀值为12 4解析:S 1⾯积等于边⼀分别为t 与t 2的矩形⾯积去掉曲线y = x 2与x 轴、直线x = t 所围成的⾯积,即 S 1 = t ⋅ t 2 − ∫ tx 2dx = 2 t 3 .0 3 S 2的⾯积等于曲线y = x 2与x 轴,x = t ,x = 1围成的⾯积去掉矩形边⼀分别为t 2,1 −t ⾯积,即S 2 = ∫ 1 x 2dx − t 2(1 − t) = 2 t 3 − t 2 + 1 .t 3 3 所以阴影部分的⾯积S(t) = S 1 + S 2 = 4 t 3 − t 2 + 1 (0 ≤ t ≤ 1).3 3 令S ′(t) = 4t 2 − 2t = 4t(t − 1 ) = 0,得t = 0或t =1 .2 2 t = 0时,S(t) = 1 ;t = 1 时,S(t) = 1 ;t = 1时,S(t) = 2. 3 2 4 3所以当t = 1 时,S(t)最⼀,且最⼀值为1.2 4 ⼀般 已测:401次 正确率:92.8 %18. 已知F (x) = ∫ x (t 2 + 2t − 8)dt, (x>0).(1) 求F (x)的单调区间;(2) 求函数F (x)在[1, 3]上的最值.考点:利⽤导数研究函数的单调性、利⽤导数求闭区间上函数的最值知识点:函数单调性和导数的关系、利⽤导数求函数的最值(1) 答案:单调调增区间是(2, +∞),单调递减区间是(0, 2).解析:依题意得,F (x) = ∫ x (t 2 + 2t − 8)dt = ( 1 t 3 + t 2 − 8t)∣x = 1 x 3 + x 2 − 8x ,0 定义域是(0, +∞).(1)F ′(x) = x 2 + 2x − 8,3 0 3令F ′(x)>0,得x>2或x< − 4; 令F ′(x)<0,得−4<x<2,且函数定义域是(0, +∞),∴函数F (x)的单调增区间是(2, +∞),单调递减区间是(0, 2).(2) 答案:最⼀值是F (3) = −6,最⼀值是F (2) = − 28 .解析:由(1)知函数F (x)在区间(0, 2)上为减函数,区间(2, 3)上为增函数, 且F (1) = − 20 , F (2) = − 28 , F (3) = −6,3 3∴F (x)在[1, 3]上的最⼀值是F (3) = −6,最⼀值是F (2) = − 28 .32 3 3中等 已测:3275次 正确率:52.7 %19. 已知⼀次函数f (x) = ax 2 + bx + c ,直线l 1 : x = 2,直线l 2 : y = −t 2 + 8t (其中 0 ≤ t ≤ 2,t 为常数),若直线l 1,l 2与函数f (x)的图象以及l 1,l 2、y 轴与函数f (x)的图象所围成的封闭图形(阴影部分)如图所⽰.(1) 求a ,b ,c 的值;(2) 求阴影⾯积S 关于t 的函数S(t)的解析式.考点:求函数解析式的常⽤⽅法、利⽤定积分的⼀何意义解题知识点:⼀次函数的解析式、⼀次函数的图象(1) 答案:a = −1, b = 8, c = 0解析:由图形可知⼀次函数的图象过点(0, 0),(8, 0),并且f (x)的最⼀值为16,⎧ c = 0, ⎧ a = −1 则 ⎨ a ⋅ 82 + b ⋅ 8 + c = 0 解得⎨ b = 8 ,4ac−b 2 4a = 16 ⎩ c = 0∴ 函数f (x)的解析式为f (x) = −x 2 + 8x .(2) 答案:S(t) = − 4 t 3 + 10t 2 − 16t + 40解析:由{ 3 y = −t + 8t 2 3 得x2− 8x − t(t − 8) = 0,y = −x + 8x ∴ x 1 = t ,x 2 = 8 − t ,∵ 0 ≤ t ≤ 2,∴ 直线l 2 与f (x)的图象的交点坐标为(t, −t 2 + 8t)由定积分的⼀何意义知: S(t) = ∫ t [(−t 2 + 8t ) − (−x 2 + 8x )] dx + ∫ 2[(−x 2 + 8x) − (−t 2 + 8t)]dx0 3 t 3 t 2= [(−t 2+ 8t)x − (− x + 4x 2)]∣0 + [(− x + 4x 2) − (−t 2 + 8t)x]∣t= − 4 t 3 + 10t 2 − 16t + 40 .3 3 ⎩。

定积分与微积分基本定理答案与解析

定积分与微积分基本定理答案与解析

定积分与微积分基本定理答案和解析第1题:【答案】B【解析】,二项式的通项公式为, 令可得,所以所求常数项为,故选B.第2题:【答案】C【解析】因为,而,令,故,故,常数项为.第3题:【答案】A【解析】表示半径为的圆面积的,所以面积为.第4题:【答案】A【解析】.第5题:【答案】A【解析】曲线,,交点为:,,围成图形的面积:.第6题:【答案】B【解析】阴影部分的面积:.第7题:【答案】A【解析】.第8题:【答案】D【解析】由定积分的几何意义及数形结合可知阴影部分的面积.第9题:【答案】B【解析】可表示为以原点为圆心,以为半径的半圆,则.第10题:【答案】C【解析】作出两个曲线的图象,由,解得或,则曲线与所围图形的面积为.第11题:【答案】C【解析】显然是以原点为圆心,以为半径的圆的四分之一,所以定积分为半径为的圆面积的四分之一,故选择C.第12题:【答案】A【解析】图中阴影部分的面积为,矩形面积为,∴豆子落在图中阴影部分的概率为.第13题:【答案】D【解析】定积分的几何意义是求函数与之间的阴影部分的面积,必须注意的图象要在的图象上方,对照各选项,知D中的图象不全在的图象上方.第14题:【答案】D【解析】由得,,∴,,因此曲线与直线所围成图形的面积为.第15题:【答案】见解析【解析】由曲线,,可得交点横坐标为,∴所求面积为.第16题:【答案】【解析】由,解得,,.交点为,,.所求面积为:.第17题:【答案】见解析【解析】由解得或,从而所求图形的面积.第18题:【答案】【解析】(1)分割:将区间等分成个小区间,每个小区间的长度为,过各区间端点作轴的垂线,从而得到个小曲边梯形,它们的面积分别记作(2)近似代替:对区间上的小曲边梯形,以区间左端点对应的函数值为一边的长,以为邻边的长的小矩形面积近似代替小曲边梯形的面积,即. (3)求和:(4)取极限:当时,趋近于,即。

定积分与微积分基本定理理含答案版

定积分与微积分基本定理理含答案版

定积分与微积分基本定理(理)基础巩固强化1.求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( ) A .S =⎠⎛01(x 2-x )d xB .S =⎠⎛01(x -x 2)d xC .S =⎠⎛01(y 2-y )d yD .S =⎠⎛01(y -y )d y[答案] B[分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图形的面积S =⎠⎛01(x -x 2)d x .2.如图,阴影部分面积等于( )A .2 3B .2-3[答案] C[解析] 图中阴影部分面积为S =⎠⎛-31 (3-x 2-2x )d x =(3x -13x 3-x 2)|1-3=323.4-x 2d x =( ) A .4π B .2π C .π[答案] C[解析] 令y =4-x 2,则x 2+y 2=4(y ≥0),由定积分的几何意义知所求积分为图中阴影部分的面积,∴S =14×π×22=π.4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是( )A .在t 1时刻,甲车在乙车前面B .在t 1时刻,甲车在乙车后面C .在t 0时刻,两车的位置相同D .t 0时刻后,乙车在甲车前面 [答案] A[解析] 判断甲、乙两车谁在前,谁在后的问题,实际上是判断在t 0,t 1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间内行驶的路程就是该时间段内速度函数的定积分,即速度函数v (t )的图象与t 轴以及时间段围成区域的面积.从图象知:在t 0时刻,v 甲的图象与t 轴和t =0,t =t 0围成区域的面积大于v 乙的图象与t 轴和t =0,t =t 0围成区域的面积,因此,在t 0时刻,甲车在乙车的前面,而且此时乙车的速度刚刚赶上甲车的速度,所以选项C ,D 错误;同样,在t 1时刻,v 甲的图象与t 轴和t =t 1围成区域的面积,仍然大于v 乙的图象与t 轴和t =t 1围成区域的面积,所以,可以断定:在t 1时刻,甲车还是在乙车的前面.所以选A.5.向平面区域Ω={(x ,y )|-π4≤x ≤π4,0≤y ≤1}内随机投掷一点,该点落在曲线y =cos2x 下方的概率是( )-1[答案] D[解析] 平面区域Ω是矩形区域,其面积是π2,在这个区6.的值是( )A .0 C .2 D .-2 [答案] D[解析] 2(cos sin )2x x ππ---=2(cos sin )2x x ππ---=-2. 7.⎠⎛02(2-|1-x |)d x =________.[答案] 3[解析] ∵y =⎩⎪⎨⎪⎧1+x 0≤x ≤13-x 1<x ≤2,∴⎠⎛02(2-|1-x |)d x =⎠⎛01(1+x )d x +⎠⎛12(3-x )d x=(x +12x 2)|10+(3x -12x 2)|21=32+32=3. 9.已知a =20(sin cos )x x dx π+⎰,则二项式(a x -1x)6的展开式中含x 2项的系数是________.[答案] -192[解析] 由已知得a =20(sin cos )x x dx π+⎰=(-cos x +sin x )|π20=(sin π2-cos π2)-(sin0-cos0)=2,(2x -1x)6的展开式中第r +1项是T r +1=(-1)r ×C r 6×26-r ×x 3-r,令3-r =2得,r =1,故其系数为(-1)1×C 16×25=-192.10.有一条直线与抛物线y =x 2相交于A 、B 两点,线段AB 与抛物线所围成图形的面积恒等于43,求线段AB 的中点P 的轨迹方程.[解析] 设直线与抛物线的两个交点分别为A (a ,a 2),B (b ,b 2),不妨设a <b ,则直线AB 的方程为y -a 2=b 2-a2b -a(x -a ),即y =(a +b )x -ab .则直线AB 与抛物线围成图形的面积为S =⎠⎛ab [(a +b )x -ab -x 2]d x=(a +b 2x 2-abx -x 33)|b a =16(b -a )3,∴16(b -a )3=43,解得b -a =2.设线段AB 的中点坐标为P (x ,y ),其中⎩⎨⎧x =a +b 2,y =a 2+b22.将b -a =2代入得⎩⎪⎨⎪⎧x =a +1,y =a 2+2a +2. 消去a 得y =x 2+1.∴线段AB 的中点P 的轨迹方程为y =x 2+1.能力拓展提升11.等比数列{a n }中,a 3=6,前三项和S 3=⎠⎛034x d x ,则公比q 的值为( )A .1B .-12C .1或-12 D .-1或-12[答案] C[解析] 因为S 3=⎠⎛34x d x =2x 2|30=18,所以6q +6q 2+6=18,化简得2q 2-q -1=0,解得q =1或q =-12,故选C.12.已知(x ln x )′=ln x +1,则⎠⎛1e ln x d x =( )A .1B .eC .e -1D .e +1 [答案] A[解析] 由(x ln x )′=ln x +1,联想到(x ln x -x )′=(ln x +1)-1=ln x ,于是⎠⎛1e ln x d x =(x ln x -x )|e 1=(e ln e -e )-(1×ln1-1)=1.13.抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积为________.[答案] 18[解析] 由方程组⎩⎪⎨⎪⎧y 2=2x ,y =4-x ,解得两交点A (2,2)、B (8,-4),选y 作为积分变量x=y 22、x =4-y ,∴S =⎠⎛-42 [(4-y )-y 22]dy =(4y -y 22-y36)|2-4=18.14.已知函数f (x )=e x -1,直线l 1:x =1,l 2:y =e t -1(t 为常数,且0≤t ≤1).直线l 1,l 2与函数f (x )的图象围成的封闭图形如图中区域Ⅱ所示,其面积用S 2表示.直线l 2,y 轴与函数f (x )的图象围成的封闭图形如图中区域Ⅰ所示,其面积用S 1表示.当t 变化时,阴影部分的面积的最小值为________.[答案] (e -1)2[解析] 由题意得S 1+S 2=⎠⎛0t (e t -1-e x +1)d x +⎠⎛t1(e x -1-e t +1)d x =⎠⎛0t (e t -e x )d x +⎠⎛t1(e x -e t )d x =(xe t -e x )|t 0+(e x -xe t )|1t =(2t -3)et+e +1,令g (t )=(2t -3)e t +e +1(0≤t ≤1),则g ′(t )=2e t +(2t -3)e t =(2t -1)e t,令g ′(t )=0,得t =12,∴当t ∈[0,12)时,g ′(t )<0,g (t )是减函数,当t ∈(12,1]时,g ′(t )>0,g (t )是增函数,因此g (t )的最小值为g (12)=e +1-2e 12=(e -1)2.故阴影部分的面积的最小值为(e -1)2.15.求下列定积分.(1)⎠⎛1-1|x |d x; (2)⎠⎛0πcos 2x2d x ; (3)∫e +121x -1d x . [解析] (1)⎠⎛1-1|x |d x =2⎠⎛01x d x =2×12x 2|10=1.(2)⎠⎛0πcos 2x 2d x =⎠⎛0π1+cos x 2d x =12x |π0+12sin x |π0=π2. (3)∫e +121x -1d x =ln(x -1)|e +12=1.16.已知函数f(x)=-x3+ax2+bx(a,b∈R)的图象如图所示,它与x轴在原点处相切,且x轴与函数图象所围区域(图中阴影部分)的面积为112,求a的值.[解析]f′(x)=-3x2+2ax+b,∵f′(0)=0,∴b=0,∴f(x)=-x3+ax2,令f(x)=0,得x=0或x=a(a<0).∴S阴影=⎠⎛a0[0-(-x3+ax2)]d x=(14x4-13ax3)|0a=112a4=112,∵a<0,∴a=-1.1.已知函数f(x)=sin5x+1,根据函数的性质、积分的性质和积分的几何意义,探求22()f x dxππ-⎰的值,结果是()+π2B.πC.1 D.0[答案]B[解析]22()f x dxππ-⎰=22ππ-⎰sin5x d x+22ππ-⎰1d x,由于函数y=sin5x是奇函数,所以22ππ-⎰sin5x d x=0,而22ππ-⎰1d x=x|π2-π2=π,故选B.2.若函数f (x )=⎩⎨⎧-x -1 -1≤x <0,cos x 0≤x <π2,的图象与坐标轴所围成的封闭图形的面积为a ,则a 的值为( )C .1[答案] D[解析] 由图可知a =12+⎠⎜⎜⎛0π2cos x d x =12+sin x |π20=32.3.对任意非零实数a 、b ,若ab 的运算原理如图所示,则2⎠⎛0πsin x d x =________.[答案] 22[解析] ∵⎠⎛0πsin x d x =-cos x |π0=2>2,∴2⎠⎛0πsin x d x =22=2-12=22.4.设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________.[答案] 33[解析] ⎠⎛01f (x )d x =⎠⎛01(ax 2+c )d x =(ax 33+cx )|10=a 3+c ,故a 3+c =ax 20+c ,即ax 20=a 3,又a ≠0,所以x 20=13,又0≤x 0≤1,所以x 0=33.故填33. 5.设n =⎠⎛12(3x 2-2)d x ,则(x -2x )n展开式中含x 2项的系数是________.[答案] 40[解析] ∵(x 3-2x )′=3x 2-2, ∴n =⎠⎛12(3x 2-2)d x =(x 3-2x )|21 =(23-2×2)-(1-2)=5.∴(x -2x )5的通项公式为T r +1=C r 5x 5-r (-2x)r =(-2)r C r 5x 5-3r 2 ,令5-3r 2=2,得r =2, ∴x 2项的系数是(-2)2C 25=40.。

高考数学微积分(附答案解析

高考数学微积分(附答案解析

定积分与微积分基本定理【考点导读】1. 了解定积分的实际背景,初步掌握定积分的相关概念,体会定积分的基本方法。

2. 了解微积分基本定理的含义,能利用微积分基本定理计算简单的定积分,解决一些简单的几何和物理问题。

【基础练习】1.下列等于1的积分是 (3) 。

(1)dx x ⎰10 (2)dx x ⎰+10)1( (3)dx ⎰101 (4)dx ⎰10212.曲线3cos (0)2y x x π=≤≤与坐标轴围成的面积是 52。

3.已知自由落体运动的速率v gt =,则落体运动从0t =到0t t =所走的路程为 220gt。

4.如果10N 的力能使弹簧压缩10cm ,为在弹性限度内将弹簧拉长6cm ,则力所做的功为 0.18J 。

5.220(3)10,x k dx k +==⎰则1 , 8-=⎰__454 。

【范例导析】例1.计算下列定积分的值: (1)⎰--312)4(dx x x ;(2)⎰-215)1(dx x ;(3)dx x x ⎰+20)sin (π;(4)dx x ⎰-222cos ππ;分析:求函数()f x 在某一区间上的定积分,常用的方法有两种:一是利用定积分的几何意义,转化为曲边梯形的面积来处理;二是应用微积分基本定理,关键在于找到()F x ,使()()F x f x '=。

解:(1)3223311120(4)(2)|33x x dx x x ---=-=⎰ (2)因为56)1(])1(61[-='-x x ,所以61|)1(61)1(216215=-=-⎰x dx x ;(3)222200(sin )(cos )|128x x x dx x πππ+=-=+⎰ (4)22222221cos 2sin 2cos |2242x x x xdx dx πππππππ---+==+=⎰⎰dx x ⎰-222cos ππ点评:除了题目有明确要求之外,在求定积分的两种方法中我们基本上选用微积分基本定理解决问题,避免每次都要进行“分割、以直代曲、作和、逼近”的操作,不过有时候我们不容易找到比较()F x ,这时候用定义或者其几何意义就显得方便了。

定积分与微积分基本定理

定积分与微积分基本定理

定积分与微积分基本定理1.定积分的概念 在⎰b af (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.2.定积分的性质 (1)⎰b akf (x )d x =k⎰b af (x )d x (k 为常数);(2)⎰b a[f 1(x )±f 2(x )]d x =⎰baf 1(x )d x ±⎰b af 2(x )d x ;(3⎰b af (x )d x =⎰b af (x )d x +⎰b af (x )d x (其中a <c <b ).3.微积分基本定理一般地,如果f (x )是在区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎰baf (x )d x =F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.其中F (x )叫做f (x )的一个原函数. 为了方便,常把F (b )-F (a )记作F (x )|b a ,即f ⎰b a(x )d x =F (x ) |b a =F (b )-F (a ).基本积分公式表⑴C dx =⎰0 ⑵C x m dx x m m++=+⎰111 ⑶C x dx x+=⎰ln 1⑷C e dx e xx+=⎰⑸C aa dx a xx+=⎰ln ⑹⎰+=C x xdx sin cos ⑺⎰+-=C x x cos sin ⑻⎰+-=C x x x xdx ln ln 1.(2013·江西高考)若S 1=⎰21x 2d x ,S 2=⎰211xd x ,S 3=⎰21e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3 .C .S 2<S 3<S 1D .S 3<S 2<S 12.(2013北京,5分)直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直, 则l 与C 所围成的图形的面积等于( ) A.43B .2 C.83 . D. 16233.(2013湖南,5分)若∫T 0x 2d x =9,则常数T 的值为________.4.(2012福建,5分)如图所示,在边长为1的正方形OABC 中任取 一点P ,则点P 恰好取自阴影部分的概率为( ) A.14 B.15 C.16 D.175.(2012湖北,5分)已知二次函数y =f (x )的图象如图所示,则它与x 轴所围图形的面积为( ) A.2π5 B.43 . C.32 D.π26.(2011湖南,5分)由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A.12B .1 C.32D.3. 7.(2010山东,5分)由曲线y =x 2,y =x 3围成的封闭图形面积为( )A.112B.14C.13D.712 8.(2010湖南,5分)⎰421xd x 等于( ) A .-2ln2 B .2ln2 C .-ln2 D .ln2.9.(2009·福建,5分)⎰-22ππ(1+cos x )d x 等于( )A .πB .2C .π-2D .π+2.10.(2011陕西,5分)设f (x )=⎪⎩⎪⎨⎧≤+>⎰0,30,lg 2x dt t x x x a 若f (f (1))=1,则a =________. 11、(2008海南)由直线21=x ,x=2,曲线x y 1=及x 轴所围图形的面积为( ) A.415B. 417 C. 2ln 21 D. 2ln 2.12、(2010海南)设()y f x =为区间[0,1]上的连续函数,且恒有0()1f x ≤≤,可以用随机模拟方法近似计算积分1()f x dx ⎰,先产生两组(每组N 个)区间[0,1]上的均匀随机数12,,N x x x …和12,,N y y y …,由此得到N 个点11(,)(1,2,)x y i N =…,,再数出其中满足11()(1,2,)y f x i N ≤=…,的点数1N ,那么由随机模拟方案可得积分10()f x dx ⎰的近似值为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定积分与微积分基本定理(理)基础巩固强化1.求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( )A .S =⎠⎜⎛01(x 2-x )d x B .S =⎠⎜⎛01(x -x 2)d x C .S =⎠⎜⎛01(y 2-y )d y D .S =⎠⎜⎛1(y -y )d y[答案] B[分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图形的面积S =⎠⎜⎛01(x -x 2)d x . 2.如图,阴影部分面积等于( )A .2 3B .2-3[答案] C[解析] 图中阴影部分面积为S =⎠⎜⎛-31(3-x 2-2x )d x =(3x -13x 3-x 2)|1-3=323. 4-x 2d x =( ) A .4π B .2π C .π[答案] C[解析] 令y =4-x 2,则x 2+y 2=4(y ≥0),由定积分的几何意义知所求积分为图中阴影部分的面积,∴S=14×π×22=π.4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v甲和v乙(如图所示).那么对于图中给定的t0和t1,下列判断中一定正确的是( )A.在t1时刻,甲车在乙车前面B.在t1时刻,甲车在乙车后面C.在t0时刻,两车的位置相同D.t0时刻后,乙车在甲车前面[答案]A[解析]判断甲、乙两车谁在前,谁在后的问题,实际上是判断在t0,t1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间内行驶的路程就是该时间段内速度函数的定积分,即速度函数v(t)的图象与t轴以及时间段围成区域的面积.从图象知:在t0时刻,v甲的图象与t轴和t=0,t=t0围成区域的面积大于v乙的图象与t轴和t=0,t=t0围成区域的面积,因此,在t0时刻,甲车在乙车的前面,而且此时乙车的速度刚刚赶上甲车的速度,所以选项C,D错误;同样,在t1时刻,v甲的图象与t轴和t=t1围成区域的面积,仍然大于v乙的图象与t轴和t=t1围成区域的面积,所以,可以断定:在t1时刻,甲车还是在乙车的前面.所以选A.5.向平面区域Ω={(x,y)|-π4≤x≤π4,0≤y≤1}内随机投掷一点,该点落在曲线y=cos2x下方的概率是( )-1[答案] D[解析] 平面区域Ω是矩形区域,其面积是π2,在这个区6.的值是( )A .0 C .2 D .-2 [答案] D[解析] 2(cos sin )2x x ππ---=2(cos sin )2x x ππ---=-2. 7.⎠⎜⎛2(2-|1-x |)d x =________.[答案] 3[解析] ∵y =⎩⎪⎨⎪⎧1+x 0≤x ≤13-x 1<x ≤2,∴⎠⎜⎛02(2-|1-x |)d x =⎠⎜⎛01(1+x )d x +⎠⎜⎛12(3-x )d x =(x +12x 2)|10+(3x -12x 2)|21=32+32=3.9.已知a =2(sin cos )x x dx π+⎰,则二项式(a x -1x)6的展开式中含x 2项的系数是________.[答案] -192 [解析] 由已知得a =20(sin cos )x x dx π+⎰=(-cos x +sin x )|π20=(sin π2-cos π2)-(sin0-cos0)=2,(2x -1x)6的展开式中第r +1项是T r +1=(-1)r ×C r6×26-r ×x 3-r,令3-r =2得,r =1,故其系数为(-1)1×C 16×25=-192.10.有一条直线与抛物线y =x 2相交于A 、B 两点,线段AB 与抛物线所围成图形的面积恒等于43,求线段AB 的中点P 的轨迹方程.[解析] 设直线与抛物线的两个交点分别为A (a ,a 2),B (b ,b 2),不妨设a <b ,则直线AB 的方程为y -a 2=b 2-a2b -a(x -a ),即y =(a +b )x -ab .则直线AB 与抛物线围成图形的面积为S =⎠⎜⎛ab[(a +b )x -ab -x 2]d x =(a +b 2x 2-abx -x 33)|ba =16(b -a )3,∴16(b -a )3=43, 解得b -a =2.设线段AB 的中点坐标为P (x ,y ),其中⎩⎪⎨⎪⎧x =a +b2,y =a 2+b22.将b -a =2代入得⎩⎪⎨⎪⎧x =a +1,y =a 2+2a +2.消去a 得y =x 2+1.∴线段AB 的中点P 的轨迹方程为y =x 2+1.能力拓展提升11.等比数列{a n }中,a 3=6,前三项和S 3=⎠⎜⎛34x d x ,则公比q 的值为( )A .1B .-12C .1或-12D .-1或-12[答案] C[解析] 因为S 3=⎠⎜⎛34x d x =2x 2|30=18,所以6q +6q 2+6=18,化简得2q 2-q -1=0,解得q =1或q =-12,故选C.12.已知(x ln x )′=ln x +1,则⎠⎜⎛1eln x d x =( )A .1B .eC .e -1D .e +1 [答案] A[解析] 由(x ln x )′=ln x +1,联想到(x ln x -x )′=(ln x +1)-1=ln x ,于是⎠⎜⎛1eln x d x =(x ln x -x )|e 1=(e ln e -e )-(1×ln1-1)=1.13.抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积为________.[答案] 18[解析] 由方程组⎩⎪⎨⎪⎧y 2=2x ,y =4-x ,解得两交点A (2,2)、B (8,-4),选y 作为积分变量x =y 22、x =4-y ,∴S =⎠⎜⎛-42[(4-y )-y 22]dy =(4y -y 22-y 36)|2-4=18. 14.已知函数f (x )=e x -1,直线l 1:x =1,l 2:y =e t -1(t 为常数,且0≤t ≤1).直线l 1,l 2与函数f (x )的图象围成的封闭图形如图中区域Ⅱ所示,其面积用S 2表示.直线l 2,y 轴与函数f (x )的图象围成的封闭图形如图中区域Ⅰ所示,其面积用S 1表示.当t 变化时,阴影部分的面积的最小值为________.[答案] (e -1)2[解析] 由题意得S 1+S 2=⎠⎜⎛0t(e t -1-e x +1)d x +⎠⎜⎛t1(e x -1-e t +1)d x =⎠⎜⎛0t(e t -e x )d x +⎠⎜⎛t1(e x -e t )d x =(xe t -e x )|t 0+(e x -xe t )|1t =(2t -3)e t +e +1,令g (t )=(2t -3)e t +e +1(0≤t ≤1),则g ′(t )=2e t +(2t -3)e t=(2t -1)e t,令g ′(t )=0,得t =12,∴当t ∈[0,12)时,g ′(t )<0,g (t )是减函数,当t ∈(12,1]时,g ′(t )>0,g (t )是增函数,因此g (t )的最小值为g (12)=e +1-2e 12=(e -1)2.故阴影部分的面积的最小值为(e -1)2.15.求下列定积分.(1)⎠⎛1-1|x |d x; (2)⎠⎜⎛0πcos 2x2d x ; (3)∫e +121x -1d x . [解析] (1)⎠⎛1-1|x |d x =2⎠⎜⎛1x d x =2×12x 2|10=1. (2)⎠⎜⎛0πcos 2x2d x =⎠⎜⎛0π1+cos x 2d x =12x |π0+12sin x |π0=π2.(3)∫e +121x -1d x =ln(x -1)|e +12=1. 16.已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴在原点处相切,且x 轴与函数图象所围区域(图中阴影部分)的面积为112,求a 的值.[解析] f ′(x )=-3x 2+2ax +b ,∵f ′(0)=0,∴b =0, ∴f (x )=-x 3+ax 2,令f (x )=0,得x =0或x =a (a <0).∴S 阴影=⎠⎜⎛a[0-(-x 3+ax 2)]d x =(14x 4-13ax 3)|0a=112a 4=112, ∵a <0,∴a =-1.1.已知函数f (x )=sin 5x +1,根据函数的性质、积分的性质和积分的几何意义,探求22()f x dx ππ-⎰的值,结果是( )+π2 B .π C .1 D .0 [答案] B[解析] 22()f x dx ππ-⎰=22ππ-⎰sin 5x d x +22ππ-⎰1d x ,由于函数y =sin 5x是奇函数,所以22ππ-⎰sin 5x d x =0,而22ππ-⎰1d x =x |π2-π2=π,故选B.2.若函数f (x )=⎩⎪⎨⎪⎧-x - 1 -1≤x <0,cos x 0≤x <π2,的图象与坐标轴所围成的封闭图形的面积为a ,则a 的值为( )C .1[答案] D[解析] 由图可知a =12+⎠⎜⎜⎛0π2cos x d x =12+sin x |π20=32.3.对任意非零实数a 、b ,若a ⊗b 的运算原理如图所示,则2⊗⎠⎜⎛πsin x d x =________.[答案] 22[解析] ∵⎠⎜⎛0πsin x d x =-cos x |π0=2>2, ∴2⊗⎠⎜⎛πsin x d x =2⊗2=2-12=22. 4.设函数f (x )=ax 2+c (a ≠0),若⎠⎜⎛1f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________.[答案] 33[解析] ⎠⎜⎛01f (x )d x =⎠⎜⎛01(ax 2+c )d x =(ax 33+cx )|10=a 3+c ,故a3+c=ax 2+c ,即ax 20=a3,又a ≠0,所以x 20=13,又0≤x 0≤1,所以x 0=33.故填33. 5.设n =⎠⎜⎛12(3x 2-2)d x ,则(x -2x)n 展开式中含x 2项的系数是________.[答案] 40[解析] ∵(x 3-2x )′=3x 2-2,∴n =⎠⎜⎛12(3x 2-2)d x =(x 3-2x )|21 =(23-2×2)-(1-2)=5. ∴(x -2x)5的通项公式为T r +1=C r 5x 5-r(-2x)r=(-2)r C r 5x5-3r2 ,令5-3r 2=2,得r =2, ∴x 2项的系数是(-2)2C 25=40.。

相关文档
最新文档