7.1不等式及其基本性质(1)

合集下载

bdsjqjbxz(素材文档)

bdsjqjbxz(素材文档)

不等式及其基本性质安徽省合肥润安公学 韩卫华一、教学目标1.通过实际问题中数量关系的分析,体会到现实世界中有各种各样的数量关系存在,不等关系是其中的一种。

2.了解不等式及其概念;会用不等式表示数量之间的不等关系。

3.掌握不等式的基本性质1和2,并能利用不等式的基本性质对不等式进行变形。

4.培养学生从实际生活实例中抽象出数学问题的能力,进一步培养学生观察、思考、探究、交流、比较、概括、归纳的能力,引导学生运用数学思想方法探求新知,感受数学知识间的内在联系。

5.从学生的生活实际问题出发,让学生感受数学就在我们的身边。

通过观察、思考、探究、交流的学习过程,让学生体验数学发现的乐趣。

二、重点难点1.教学重点:不等式的概念和不等式的基本性质。

2.教学难点:正确分析实际问题中的不等关系并用不等式表示。

三、教材分析事物之间的数量关系有两种:相等关系和不等关系。

以前通过一次方程(组)对相等关系进行了探讨,从本节开始将研究不等关系。

教材从生活实际出发,让学生通过观察、思考、探究等活动,了解到现实世界中除了相等现象外,还存在着许多的不等关系,要想合理地解释这些现象,就需要对不等关系进行讨论,而不等式的概念和不等式的基本性质又是研究一元一次不等式(组)的前提和基础。

由于学生已经掌握了研究相等关系的方法,教材在研究不等式的基本性质时,通过与等式的基本性质类比的方式,利用知识的正向迁移,引导学生归纳不等式的基本性质。

其中,分析实际问题中的不等关系并用不等式表示是学生认知理解上的难点,教学中采取学生讨论交流、教师分析的师生互动形四、教学过程(一)创设情景,导入新课1.投影:显示跷跷板、倾斜天平图片后,提问:跷跷板两端的人或天平左右两边的砝码质量相等吗?你能分别比较它们质量的大小吗?【设计意图】通过学生熟知的实例,让学生发现数学,使学生感受到在现实生活中的数量关系除了相等之外,还存在大量的不等关系。

不等关系广泛应用在日常生活实际当中,教师再举出如下两个实际问题。

7.1不等式及其基本性质教案+学案

7.1不等式及其基本性质教案+学案

7.1不等式及其基本性质(1)一、教学目标:1.通过实际问题中数量关系的分析,体会到现实世界中有各种各样的数量关系存在,不等关系是其中的一种。

2.了解不等式及其概念;会用不等式表示数量之间的不等关系。

二、教学重、难点:1.本节课的重点是不等式的概念。

2.本节课的难点是正确分析实际问题中的不等关系并用不等式表示。

三、教具准备:多媒体课件四、学情分析:对于等量关系是学生比较熟悉的,会用等式(方程)进行.表达不等关系虽然大量存在,但用数学方法表达学生还比较陌生.需要引导学生通过对实际问题的认真观察,仔细分析,抓住反映不等关系的关键词语(如多于、少于、不高于、不低于、最多、最少等),结合已有的数的大小比较、方程等知识,用不等式正确反映实际问题中的不等关系。

五、教学过程:1.回顾与提问:什么是等式?你能举个表示等式关系的例子吗?等式用什么符号连接?2.情境引入:[问题1]用适当的符号表示下列关系:(1)2x与3的和不大于-6;(2)x 的5倍与1的差小于x 的3倍;(3)a与b的差是负数。

[问题2]雷电的温度大约是28000℃,比太阳表面温度的4.5倍还要高。

设太阳表面温度为t℃,那么t应该满足怎样的关系式?[问题3]一种药品每片为0.25g,说明书上写着:“每日用量0.75~2.25g,分3次服用”。

设某人一次服用 x 片,那么 x 应满足怎样的关系?通过两个实际问题:太阳表面温度和药品问题让学生体会到实际生活中广泛存在的不等关系。

3.新课讲解:(1)不等式的定义:用不等号(>、≥、<、≤或≠)表示不等关系的式子叫做不等式注意:不大于,即小于或等于,用“≤”表示(“≤” 也可以说成“至多”“不多于”;不小于,即大于或等于,用“≥”表示(“≥”也可以说成“至少”“不少于”)。

(2)知识巩固:判断下列式子是不是不等式:(1)3>0;(2)4x+3y=0;(3)x=3;(4) x-1;(5)x+2 ≤3;(6)a≠54.深化提高例1:列不等式(1)x的5倍与y的一半的差不大于1(2)x的4倍不大于x的3倍与7的差(3)代数式2y-3的值至少比y-2大3例2:爆破施工时导火索的燃烧速度是0.06米/秒,人离开的速度是4.8米/秒。

(沪教版七年级)7.1不等式及其基本性质

(沪教版七年级)7.1不等式及其基本性质

x <- — .
3
2
随堂练习
1、将下列不等式化成“ x > a” 或“x < a”的形式:
(1)x – 1 > 2 ; (2) -x ﹤ 5 ;(3)1 x 3
6
2
解:(1)根据不等式的基本性质1,两边都加上1,
得 x > 2 + 1 ,即 x > 3 ;
(2)根据不等式的基本性质3,两边都除以 -1,得
cc
不等式的基本性质 3 :
不等式的两边都பைடு நூலகம்以(或除以)同一个
负数,不等号的方向 改变.
即a : b , 若 ac 则 bc, abc0
cc
在上一节课中,我们猜想,无论绳长l取何值,
圆的面积总大于正方形的面积,即
l2 l2
4 16
你相信这个结论吗?你能利用不等式的基本性质
解释这一结论吗?
4 16
(1)如果在不等式8>0的两边都乘以―8可得到
-64 < 0
(2)如果-3x>9,那么两边都除以―3可得到
x < -3
(3)设m>n,用“>”或“<”填空:
m-5 > n-5(根据不等式的性质 1 ) -6m < -6n(根据不等式的性质 3 )
我是最棒的☞
• 例1 利用不等式的性质 解下列不等式用数轴表示 解集.
• (1) x-7>26
0
33
解:根据不等式性质1,得
X-7+7>26+7
X>33
(2) -4x﹥3
解:根据不等式性质3,得
4x 3 4 4
3
X<― 4

7.1 不等式的基本性质、基本不等式

7.1 不等式的基本性质、基本不等式

7.1 不等式的基本性质、基本不等式【考纲要求】1.掌握不等式的性质及应用,明确各性质中结论成立的前提条件,2.了解基本不等式的证明过程,能够利用基本不等式求函数的最值,3.用不等式的性质判断不等式是否成立,比较大小,利用基本不等式求函数的最值、限值范围,利用基本不等式解决实际问题【命题规律】对于不等式性质的考查,多以填空题为主,题目比较简单,而基本不等式是高考的重点主要考查命题的判定,不等式的证明及求最值等问题,尤其是应用基本不等式求最值的问题,更是高考的重点,此类问题常与实际问题相结合,以解答题形式出现,另处,不等式的证明经常与数列、函数等知识综合考查,难度一般较大。

【考点梳理】 一.不等式的性质1.实数比较大小的方法 (1)求差比较法:0ab a b >⇔->;0a b a b =⇔-=;0a b a b <⇔-<.(2)作商比较法:若,0a b >,则1a a b b >⇔>;1a a b b <⇔<;1aa b b=⇔=.2.不等式的性质(1)对称性:若a b >,则b a <;若b a <,则a b >.即a b >⇔b a <。

(2)传递性:若a b >,且b c >,则a c >;a b b c a c <<<且,则。

(3)加法法则:若ab >,则ac b c +>+.(不等式的两边都加上同一个实数,不等式方向不变)推论1:移项法则:若a b c +>,则a c b >-.(不等式中任何一项改变符号后,可以把它从一边移到另一边) 推论2:同向可加性:若a b c d >>且,则a c b d +>+说明:①推广:任意有限个同向不等式两边分别相加,所得不等式与原不等式同向;②同向不等式:两个不等号方向相同的不等式;异向不等式:两个不等号方向相反的不等式. (4)乘法法则:若b a>且0>c ,那么bc ac >;如果b a >且0<c ,那么bc ac <.推论1:同向可乘性:如果0>>b a 且0>>d c ,那么bd ac >.推论2:乘方法则:如果0>>b a , 那么nn b a > )1(>∈n N n 且. 推论3:开方法则:如果0>>b a ,那么n n b a > )1(>∈n N n 且.说明:①不等式两端乘以同一个正数,不等号方向不变;乘以同一个负数,不等号方向改变;②两边都是正数的同向不等式的两边分别相乘,所得不等式与原不等式同向;③推论1可以推广:两个或更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向。

§7.1 不等式的概念及性质、一元二次不等式

§7.1 不等式的概念及性质、一元二次不等式

b m
b <⑦ a m ; b > b m (b-m>0);
a
a am
a m
a > a m ; a <⑧ b m (b-m>0).
b bm b
4
考向突破
考向 利用不等式性质比较大小
例1 (2017山东烟台模拟,9)若a,b为非零实数,且a<b,则下列判断正确的
是 ( )
解析 原不等式变形为ax2+(a-2)x-2≥0.
①当a=0时,x≤-1.
②当a≠0时,不等式即为(ax-2)(x+1)≥0.
当a>0时,x≥ 2 或x≤-1.
a
当a<0时,由于 2 -(-1)= a 2 ,
a
a
于是,当-2<a<0时, 2 ≤x≤-1;
a
当a=-2时,x=-1;
当a<-2时,-1≤x≤ 2 .
ab2 a2b
ab
答案 C
5
考点二 一元二次不等式
考向基础 1.一元二次不等式与相应的二次函数及一元二次方程的关系
6
在不等式ax2+bx+c>0(a≠0)中,如果二次项系数a<0,则可先根据不 等式的性质,将二次项系数转化为正数,再对照上表求解. 2.含参一元二次不等式的解法 (1)若二次项含有参数,则应先讨论参数是等于0,小于0,还是大于0,然后 整理不等式. (2)当二次项系数不为0时,讨论判别式Δ与0的关系,判断相应一元二次 方程的根的个数. (3)确定无根时直接写出解集,确定方程有两个实根时,要讨论两根的大 小关系,从而确定解集的形式.
a
9
综上所述,当a=0时,不等式的解集为{x|x≤-1};当a>0时,不等式的解集为

7.1+不等式及其基本性质++同步练习++2023—2024+学年沪科版七年级数学下册+

7.1+不等式及其基本性质++同步练习++2023—2024+学年沪科版七年级数学下册+

7.1 不等式及其基本性质一、单选题 1.若x y +□5是不等式,则符号“□”不能是( )A .-B .≠C .>D .≤2.下列结论中正确的有( )①若a b >,且c d =,则ac bd >①若0a b ->,0c ≠,则ac bc >①若0ab <,则,a b 异号 ①若22ac bc >,则a b >A .1个B .2个C .3个D .4个3.若a <b ,则下列结论不一定成立的是( )A .a −1<b −1B .2a <2bC .−a 3>−b3 D .a 2<b 24. 2 月 1 日某市最高气温是 8∘C ,最低气温是 −2∘C ,则当天该市气温 t (∘C ) 的变化范围为 ( ) A . t >8 B . t <2 C . −2<t <8 D . −2≤t ≤8 5.下列四个数轴上的点A 表示的数都是a ,其中一定满足2a ->的是( )A .(1)(3)B .(2)(3)C .(1)(4)D .(2)(4)6. 不等式−2x +1≤4的最小整数解是( )A. 1B. 2C. −1D. −27.若a >b ,则下列不等式中,错误的是( )A .3a >3bB .−a 3<−b3 C .4a −3>4b −3 D .ac 2>bc 28.满足m >|√10−1|的整数m 的值可能是( )A .3B .2C .1D .0二、填空题1.用不等式表示x 减去y 大于2-: .2.若x >y ,且(a +3)x <(a +3)y ,求a 的取值范围______.3.已知(|x +1|+|x +3|)+(|y −2|+|y +3|)=20,则x +y 的最大值与最小值的差为__________.4.用不等式表示:x 减去2的差的绝对值不大于32_________________.5.若a >0 > b >c ,a +b +c =−1,M =b+c a ,N =a+c b ,P =a+b c ,则M 、N 、P 之间的大小关系是________.三、解答题 1.判断下列各式哪些是等式,哪些是不等式,哪些既不是等式也不是不等式.(1)x y +;(2)37x >;(3)523x =+;(4)20x >;(5)231x y -=;(6)52;(7)23<.2.根据等式和不等式的性质,可以得到:若a ﹣b >0,则a >b ;若a ﹣b =0,则a =b ;若a ﹣b <0,则a <b ,这是利用“作差法”比较两个数或两个代数式值的大小.(1)试比较代数式5m 2﹣4m +2与4m 2﹣4m ﹣7的值之间的大小关系;(2)已知A =5m 2﹣4(74m ﹣12),B =7(m 2﹣m )+3,请你运用前面介绍的方法比较代数式A 与B 的大小.(3)比较3a +2b 与2a +3b 的大小.3.已知y =ax 2+bx +2,当x =1时,y =4;当x =-2 时,y =-8.(1)求a 、b 的值.(2)若p =m(1−m)−6,当x=m 时,y=n ,且m <-4,试比较n 与p 的大小,请说明理由. 4已知关于x 的不等式(1−x )x >2两边都除以1−x ,得x <21−x ,试化简:|x −1|+|x +2|. 5根据不等式的基本性质,把下列不等式化成“x >x ”或“x <x ”的形式.(1)5x −1<−6;(2)−12x >−1;(3)3x +5>4−x .。

沪科版数学七年级下册7.1《不等式及其基本性质》教学设计

沪科版数学七年级下册7.1《不等式及其基本性质》教学设计

沪科版数学七年级下册7.1《不等式及其基本性质》教学设计一. 教材分析《不等式及其基本性质》是沪科版数学七年级下册第七章的第一节内容。

本节主要介绍不等式的概念、不等式的性质以及不等式的运算。

教材通过生活实例引入不等式的概念,让学生感受不等式在实际生活中的应用,培养学生的数学应用意识。

同时,通过探究不等式的性质,使学生掌握不等式的基本运算方法,为学生后续学习更高级的数学知识打下基础。

二. 学情分析学生在学习本节内容前,已经掌握了整数、实数的基本概念,具备了一定的逻辑思维能力。

但他们对不等式的认识尚浅,对不等式的性质和运算方法较为陌生。

因此,在教学过程中,教师需要从学生的实际出发,循序渐进地引导学生掌握不等式的基本概念和性质,培养学生解决实际问题的能力。

三. 教学目标1.了解不等式的概念,掌握不等式的基本性质。

2.学会不等式的基本运算方法,能运用不等式解决实际问题。

3.培养学生的数学思维能力,提高学生的数学应用意识。

四. 教学重难点1.不等式的概念及其性质。

2.不等式的基本运算方法。

五. 教学方法1.情境教学法:通过生活实例引入不等式概念,激发学生的学习兴趣。

2.启发式教学法:引导学生探究不等式的性质,培养学生的逻辑思维能力。

3.实践操作法:让学生通过动手操作,掌握不等式的基本运算方法。

六. 教学准备1.教学课件:制作课件,展示不等式的概念、性质和运算方法。

2.练习题:准备适量练习题,巩固所学知识。

3.教学道具:准备一些实物道具,辅助讲解不等式的概念。

七. 教学过程1.导入(5分钟)利用生活实例,如身高、体重等,引导学生认识不等式。

让学生体会不等式在实际生活中的应用,激发学生的学习兴趣。

2.呈现(10分钟)讲解不等式的概念,引导学生理解不等式的含义。

通过示例,让学生了解不等式的基本性质。

3.操练(10分钟)让学生分组讨论,探究不等式的性质。

每组选择一个实例,进行操作验证,总结不等式的性质。

4.巩固(10分钟)出示练习题,让学生运用所学知识解决问题。

7.1不等式及其基本性质(第1课时)沪科版七年级数学下册优秀教学案例

7.1不等式及其基本性质(第1课时)沪科版七年级数学下册优秀教学案例
3.鼓励学生进行自我评价,让他们认识到自己的优点和不足,激发他们不断努力的动力。
(五)作业小结
1.布置具有针对性的课后作业,让学生巩固所学知识,提高他们的数学思维能力和解决问题的能力。
2.要求学生认真完成作业,并进行批改和反馈,及时了解学生的学习情况,为下一步教学做好准备。
3.鼓励学生进行作业总结,让他们在总结中提高自己的学习方法和策略。
7.1不等式及其基本性质(第1课时)沪科版七年级数学下册优秀教学案例
一、案例背景
本节课的教学内容是沪科版七年级数学下册的“7.1不等式及其基本性质(第1课时)”。不等式是初中数学中的重要概念,也是学生容易混淆的知识点。在实际教学中,我发现很多学生在理解不等式时存在困难,主要是因为他们没有真正掌握不等式的基本性质。因此,我制定了本节优秀教学案例,旨在通过生动的教学方式和实用的教学内容,帮助学生深入理解不等式的基本性质,提高他们的数学素养。
2.引导学生运用不等式的基本性质,共同解决小组内的数学问题,提高他们的团队协作能力。
3.选取小组的优秀解题方法进行全班分享,促进学生之间的相互学习和借鉴。
(四)总结归纳
1.让学生自主总结不等式的基本性质和解题方法,培养他们的自主学习能力和总结归纳能力。
2.教师对学生的学习情况进行评价,关注他们的学习进步和个体差异,给予及时的反馈和指导。
五、案例亮点
1.生活实例导入:通过生活实例引入不等式概念,使学生能够直观地感受到不等式在实际生活中的应用,提高了学生的学习兴趣和积极性。
2.问题导向:教师引导学生提出问题,激发学生的思考,使学生在解决问题的过程中深入理解不等式的基本性质,提高了学生的思维能力和解决问题的能力。
3.小组合作:组织学生进行小组讨论和合作,培养了学生的团队协作能力和自主学习能力,使学生在交流和讨论中更好地理解和掌握不等式的基本性质。

7.不等式的基本性质PPT课件(沪科版)

7.不等式的基本性质PPT课件(沪科版)

知识总结
不等式的基 不等式的两边都乘以(或除以)同 本性质3 一个负数,不等号的方向改变.
变号
不等式的基 本性质4
不等式的基 本性质5
如果a>b,那么b<a 如果a>b,b>c,那么a>c
变号
注意传递 性
方法规律总结: 不等式的基本性质与等式的基本性质的区分和联系. 区分:等式两边都乘(或除以)同一个负数时,等式仍然
性质5 如果a>b, b>c那么a>c. 例如,由∠A>∠B,∠B>30°,可得∠A>30°.
(来自《教材》)
例4•〈绵阳〉设“▲”“●”“■”分别表示三种不同的 物体,现用天平称两次,情况如图所示,那 么▲,●,■这三种物体按质量从大到小排列 应为( ) C
•A.■,●,▲
B.▲,■,●
•C.■,▲,●
cc
(来自《教材》)
知2-讲
例2 已知实数a、b ,若a>b ,则下列结论正确
的是( D )
A.a-5<b-5
a
C.3

b 3
B.2+a<2+b D.3a>3b
知2-讲
导引:不等式的两边同时加上或减去一个数,不等号 的方向不变,不等式的两边同时除以或乘以一 个正数,不等号的方向也不变,所以A、B、C 错误,选D.
• 这样,对于不等式a>b,两边同乘以-3, 会得到什么结果呢?
知3-导
×(-1)
×3
a>b a×(-1)<b×(-1) a×(-3)<b×(-3).
×(-3)
3. 如果a>b,c<0,那么ac与bc有怎样的大小关系?
(来自《教材》)
归纳
知3-导
性质3 不等式的两边都乘以(或除以)同一个负 数,不等号的方向改变.即 如果a>b,c<0,那么ac<bc,a < b .

7.1不等式及其基本性质(第一课时)

7.1不等式及其基本性质(第一课时)
(1)x取-4.5时不等式成立吗?要使不等 (1)x取何值是时方程成立? 式成立,x可取何值? (2)什么叫不等式的解? (2)什么叫方程的解?什么又叫解方程? 一般地,能够使不等式成立的未知数的 值,叫做这个不等式的解.
所有这些解的全体称为这个不等式的解集。
7
求不等式解集的过程叫做解不等式。
问题4
小练笔
3、用不等式表示下列关系。
(1)a是正数; (2)b是负数; (3)c是非负数; (4)x是非正数; (5)非负数y的算术平方根是一个非负数; (6)z的平方与1的和是正数;
12
课堂练习
( P23练习)
1、提示:-1≤t≤5 2、提示:30/t≤60
13
课堂小结
1、什么叫不等式?表示不等关系的符号有哪些?
8
200+1.8x=245
一元一次不等式
200+1.8x>245
只含有一个未知数(元),未知数的次数 是1、且等式两边都是整式的方程叫做一元 一次方程. 只含有一个未知数(元),未知数的次数 是1、且不等号两边都是整式的不等式叫做 一元一次不等式.
9
小练笔
1、判断下列式子是不是不等式:
(1)-3<0; (3)x=3; (5)x≠5;
事物之间的数量关系,除了“相等”之外, 还会有“不相等”的情况.在解决实际问题时,对于等量关系, 可以利用等式(包括方程、方程组)来刻画;对于不等量之 间的关系,我们则用不等式来刻画。
“不相等”处处可见。从今天起,我们开始学习一 类新的数学知识:不等式. 1
7.1.1不等式及其基本性质 (第一课时)
是 是 (2)4x+3>0; 不是 (4) X2+xy+y2; 不是 是 (6)X+2>y+5; 是

不等式及其性质(基础)知识讲解

不等式及其性质(基础)知识讲解

不等式及其性质(基础)知识讲解知识梳理要点一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)五种不等号的读法及其意义:(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.要点二、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点诠释:对不等式的基本性质的理解应注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变.【典型例题】类型一、不等式的概念1.用不等式表示:(1)x与-3的和是负数;(2)x与5的和的28%不大于-6;(3)m除以4的商加上3至多为5.【思路点拨】列不等式时,应抓住“大于”、“不大于”、“不是”、“至多”、“非负数”等表示不等关系的关键性词语,进而根据这些关键词的内涵列出不等式.【答案与解析】解:(1)x-3<0;(2)28%(x+5)≤-6;(3)34m +≤5. 【总结升华】在不等式及其应用的题目中,经常会出现一些表示不等关系的词语.正确理解这些关键词很重要.如:若x 是非负数,则x ≥0;若x 是非正数,则x ≤0;若x 大于y ,则有x-y >0;若x 小于y ,则有x-y <0等.举一反三:【变式】a a +的值一定是( ).A.大于零B.小于零C.不大于零D. 不小于零【答案】D.2.下列叙述:①a 是非负数则a ≥0;②“a 2减去10不大于2”可表示为a 2-10<2; ③“x 的倒数超过10”可表示为1x >10;④“a ,b 两数的平方和为正数”可表示为a 2+b 2>0.其中正确的个数是( ).A.1个B.2个C.3个D. 4个【答案与解析】①非负数是大于等于零的实数,即a ≥0.故①正确;②“a 2减去10不大于2”可表示为a 2-10≤2;故②错误;③“x 的倒数超过10”就是“③“x 的倒数大于10”,可表示为1x>10.故③正确;④“a ,b 两数的平方和为正数”,即“;④“a ,b 两数的平方和大于零”,可表示为a 2+b 2>0.故④正确.综上所述,正确的说法有3个.故选C .【总结升华】考查了不等式的定义.一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:>、<、≤、≥、≠. 类型二、不等式的基本性质3.(2015春•天津期末)判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若 b ﹣3a <0,则b <3a ;(2)如果﹣5x >20,那么x >﹣4;(3)若a >b ,则 ac 2>bc 2;(4)若ac 2>bc 2,则a >b ;(5)若a >b ,则 a (c 2+1)>b (c 2+1).(6)若a >b >0,则<. .【答案与解析】解:(1)若由b ﹣3a <0,移项即可得到b <3a ,故正确;(2)如果﹣5x >20,两边同除以﹣5不等号方向改变,故错误;(3)若a >b ,当c=0时则 ac 2>bc 2错误,故错误;(4)由ac 2>bc 2得c 2>0,故正确;(5)若a >b ,根据c 2+1,则 a (c 2+1)>b (c 2+1)正确.(6)若a>b>0,如a=2,b=1,则<正确.故答案为:√、×、×、√、√、√.【总结升华】本题考查了不等式的性质,两边同乘以或除以一个不为零的负数,不等号方向改变.4.如果a>b,c<0,那么下列不等式成立的是( ).A.a+c>b+c B.c-a>c-b C.ac>bc D.a b c c【思路点拨】根据不等式的性质分析判断.【答案】A.【解析】A、在不等式的两边同时加上c不等号方向不变,故本选项正确;B、在不等式的两边同时乘以-1,加上c后不等号方向改变,故本选项错误;C、两边同时乘以负数c,不等号方向改变,故本选项错误;D、两边同时除以负数c,不等号方向改变,故本选项错误;【总结升华】不等式的性质是不等式变形的重要依据.关键要注意不等号的方向.性质1和性质2类似于等式的性质但性质3中,当不等式两边乘以或除以同一个负数时,不等号的方向要改变.举一反三:【变式】(2015春•秦淮区期末)根据不等式的基本性质,将“mx<3”变形为“x>3m”,则m的取值范围是.【答案】m<0.解:∵将“mx<3”变形为“x>3m”,∴m的取值范围是m<0.故答案为:m<0.。

沪科版数学七年级下册7.1《不等式及其基本性质》教学设计

沪科版数学七年级下册7.1《不等式及其基本性质》教学设计

沪科版数学七年级下册7.1《不等式及其基本性质》教学设计一. 教材分析《不等式及其基本性质》这一节的内容主要涉及不等式的概念、不等式的基本性质以及不等式的解法。

这是初中学段数学的重要内容,对于学生来说,理解并掌握不等式的相关知识,对于后续学习函数、方程等数学概念有着重要的基础作用。

二. 学情分析学生在学习这一节的内容之前,已经学习了有理数、方程等基础知识,对于一些基本的数学运算和概念有一定的了解。

但是,对于不等式的概念和性质,可能还比较陌生,需要通过具体的教学活动来引导学生理解和掌握。

三. 教学目标1.知识与技能:使学生理解不等式的概念,掌握不等式的基本性质,学会解不等式。

2.过程与方法:通过实例的展示和学生的自主探究,培养学生的观察能力、思考能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作意识和自主学习能力。

四. 教学重难点1.重点:不等式的概念、不等式的基本性质。

2.难点:不等式的解法和不等式问题的解决。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,通过引导学生观察、思考和讨论,让学生在实践中学习和掌握不等式的相关知识。

六. 教学准备1.准备相关的教学案例和实例。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备教学用的黑板和粉笔。

七. 教学过程1.导入(5分钟)通过一个实际问题,引入不等式的概念,激发学生的兴趣。

2.呈现(10分钟)用多媒体展示不等式的相关案例,引导学生观察和思考,从而总结出不等式的基本性质。

3.操练(15分钟)让学生通过具体的例子,运用不等式的基本性质进行计算和解决问题,加深学生对知识的理解。

4.巩固(10分钟)通过一些练习题,让学生独立完成,检验学生对知识的掌握情况。

5.拓展(10分钟)引导学生思考不等式在实际生活中的应用,让学生感受到数学与生活的紧密联系。

6.小结(5分钟)对本节课的内容进行总结,强调不等式的概念和基本性质。

不等式及其基本性质

不等式及其基本性质

7.1不等式及其基本性质教学目标1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯.教学重点难点重点:寻找实际问题中的不等关系,建立数学模型;难点:弄清列不等式解决实际问题的思想方法,用去括号解一元一次不等式.教学过程我们已学过等式,不等式,现在我们来看两组式子,请同学们观察,哪些是等式?哪些是不等式?第一组:1+2=3; a+b=b+a; S = ab; 4+x = 7第二组:-7 < -5; 3+4 > 1+4; 2x ≤6,a+2 ≥0; 3≠4第一组都是等式,第二组都是不等式。

问:什么叫做等式?什么叫做不等式?答:表示相等关系的式子叫做等式;表示不等关系的式子叫做不等式。

在数学中,我们用等号“=”来表示相等关系,用不等号“>”、“<”或“≠”表示不等关系,其中“>”和“<”表示大小关系。

表示大小关系的不等式是我们本章所要研究的。

前面我们学过了等式,同学们还记得等式的性质吗?等式有这样的性质:等式两边都加上,或都减去,或都乘以,或都除以(除数不为零)同一个数,所得到的结果仍是等式。

如果在不等式的两边都加上,或都减去,或都乘以,或都除以(除数不为零)同一个数,结果将会如何呢?让我们先做一些试验练习。

练习1: (回答)用小于号“<”或大于号“>”填空。

(1)7 ___ 4; (2)- 2____6;(3)- 3_____ -2;(4)- 4_____-6练习2(口答)对练习1中四个不等式,进行下面的运算。

(1)两边都加上(或都减去)5,结果怎样?不等号的方向改变了吗?(2)两边都乘以(或都除以)5,结果怎样?不等号的方向改变了吗?(3)两边都乘以(或都除以)(-5),结果怎样?不等号的方向改变了吗?大家再思考一下,在什么情况下不等号的方向就会发生改变呢?在原不等式的两边都乘以(或除以)一个负数的情况下,不等号的方向要改变。

不等式及其基本性质(1)

不等式及其基本性质(1)

判断下列式子是不是不等式:
(1)-3<0; (2)4x+3y>0 (3)x=3;(4) X2+xy+y2 (5)x≠5; (6)X+2>y+5;
不等式的性质
等式具有那些性质?
不等式是否具有这些类似性质?
等式基本性质1:
等式的两边都加上(或减去)同一个整 式,等式仍旧成立
如果 a = b,那么 a ± c= b ± c 等式基本性质2: 等式的两边都乘以(或除以)同一个不 为0的数,等式仍旧成立 a b 如果 a = b,那么 ac = bc 或 (c≠0), c c
a b c c
不等式基本性质3:
如果a>b,c<0 那么ac<bc(或 )就是说不等式 的两边都乘以(或除以)同一个负数,不等号的方向 改变。 不等式的对称性:
a b c c
如果a>b,那么b<a
不等式同向传递性:
如果a>b,b>c,那么a>c
作业布置:
教科书:习题7.1第2、3、5题
针对练习
1、若m>n,判断下列不等式是否正确:
(1)m-7<n-7
(2)3m<3n (3)-5m>-5n m n (4) 9 9 (5) m+5≥n+5
(
( ( ( (
)
) ) ) )
针对练习
2、填空
(1)如果x-5>4,那么两边都 可得到x>9
加上5 2 < 17
(2)如果在-7<8的两边都加上9可得到
7 ÷ (-5)____3 < ÷ (-5) -1÷2____3 < ÷2,

7.1不等式及其基本性质(1)教案_沪科版

7.1不等式及其基本性质(1)教案_沪科版

7.1不等式及其基本性质一、教学目标(一)知识目标1.理解不等式的意义.2.能根据条件列出不等式;3.探索并掌握不等式的基本性质;4.理解不等式与等式性质的联系与区别.(二)能力目标通过列不等式,训练学生的分析判断能力和逻辑推理能力.通过对比不等式的性质和等式的性质,培养学生的求异思维,提高学生的辨别能力.(三)情感、态度与价值观通过观察、思考、探究、交流的学习过程,体验数学发现的乐趣。

二、重点难点1.重点:不等式的概念和不等式的性质;2.难点:不等式的性质3以及正确分析实际问题中的不等关系并用不等式表示。

三、教学过程一.交流预习1.认真看书23-26页内容2.举出生活中一个不等量关系的例子。

3.注意表示不等关系的词语如“不大于”,“不高于”等等。

4.熟练掌握不等式基本性质1、基本性质2和基本性质3。

二.合作学习:1.如图,a与b的大小关系如何?a>b a+c>b+c不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.2.观察:用“<”或“>”填空,并找一找其中的规律8__12 8×4__12×4 8÷4__12÷4(-4)__(-6) (-4)×2__(-6)×2 (-4)÷2__(-6)÷28×(-4)__12×(-4) 8÷(-4)__12÷(-4)(-4)×(-2)__(-6)×(-2) (-4)÷(-2)__(-6)÷(-2)想一想: 你发现了什么规律?不等式的两边都乘以(或除以)同一个正数,不等号的方向____;而乘以(除以)同一个负数,不等号的方向_____.不等式的基本性质1:不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.思考:不等式具有对称性和传递性吗?三.例题讲解例1:设a >b ,用“<”或“>”填空并口答是根据哪一条不等式基本性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:第7章一元一次不等式与不等式组
7.1 不等式及其基本性质
主备人:王刚喜审核人:杨明使用时间:2011年2月日
年级班姓名:
学习目标:
1.通过实际问题中的数量关系的分析,体会到现实世界中有各种各样的数量关系的存在,不等关系是其中的一种;
2.了解不等式及其概念;会用不等式表示数量之间的不等关系;
3.掌握不等式的基本性质,并能利用不等式的基本性质对不等式进行变形;学习重点:
不等式的概念和不等式的性质
学习难点:
不等式的性质3以及正确分析实际问题中的不等关系并用不等式表示。

一、学前准备
(一)自学提纲
1.认真看书24-26页内容
2.举出生活中一个不等量关系的例子。

3.填空:
(1)不等式:;(2)不等式的基本性质:





(二)自学检测
1.用不等式表示下列关系
①亮亮的年龄(记为x)不到14岁。

_________ ____
②七年级(1)班的男生数(记为y)不超过30人。

_______
③某饮料中果汁的含量(记为x)不低于20%.________
2.试一试选择适当的不等号填空:
(1) 2____3 (2) - 2 ____-3 (3)2a
____ 0
(4) a2+b2 ____ 0 (5) 若x≠y,则 -x____-y
二、探究活动
(一)探究性质1
1.明确定义
2.不等式的意义:表示生活中量与量之间不等关系的式子。

例题:1.“神七”速度v超过11200米/秒,才能脱离地球引力,飞入太空,怎样表示v和11200之间的关系?
3.想一想:(1)如果a<b,用不等号连接下列各式的两边.
① a + 2 b + 2 ② a – 5 b – 5
(2)如果2x-8≥3 ,那么2x 11.
4.小结:不等式性质1:

(二)探究性质2和性质3
1.用不等号填空:
①已知5<8,则5×3 8×3;5×(-3) 8×(-3)
②已知 -5>-8,则-5×3 -8×3;-5×(-3) -8×(-3)
归纳:不等式两边同时乘以一个正数,不等号方向;
不等式两边同时乘以一个负数,不等号方向。

2.用不等号填空:
①已知6<8,那么6÷2 8÷2;6÷(-2) 8÷(-2)
②已知-6>-8,那么-6÷2 -8÷2;6÷(-2) -8÷(-2)
归纳:不等式两边同时除以一个正数,不等号方向 ;
不等式两边同时除以一个负数,不等号方向 。

3.归纳不等式性质
性质2:
性质3
(三)例题分析
例1.(1)若x+1>3,则x_____________.根据___________ __.
(2)2x >-6, 则x_____________.根据_______ _____.
(3)-3y ≤5,则y .根据 。

例2.如果m > n 。

判断下列不等式是否正确
(1)m+7 < n+7 ( ) (2)m -2 < n -2 ( )
(3)3m < 3n ( ) (4)99n
m
> ( )
例3.利用不等式的基本性质,将下列各不等式化为“x a >”或“x a <”的形式.
(1)546x x <- (2)5621x x -+<+
(四)课堂练习
1. 用代数式表示:比x 的5倍大1的数不小于x 的
21与4的差_____________. 2.若a>b.下列各不等式中正确的是( ) A.a-1<b-1 B.b a 81
81
-<- C.8a<8b D.-a+1<-b-1
3.下列四个命题中,正确的有 。

①若a>b,则a+1>b+1 ② 若a>b,则a-1>b-1
③若a>b,则-2a<-2b ④ 若a>b,则2a<2b
三、自我测试
1.如果a <b ,用不等号连接下列各式的两边。

(1)4a___4b (2)a-10___b-10 (3) a 31 ___ b 31
(4)-2a -2b 2.若2x ->,则下列各式错误的是( )
A 、2x >-
B 、2x <-
C 、13x -+>
D 、24x ->
3. 利用不等式的基本性质,将下列各不等式化为“x a >”或“x a <”的形式.
(1)x-1<3 (2)53
<x (3)-4x>3
四、应用与拓展
1.已知32y -<<,化简:|2||3||39||24|y y y y -++-+--。

相关文档
最新文档