2016年内蒙古自治区高考理科数学试题与答案
2016年高考新课标1卷(理科数学答案)
2016年普通高等学校招生全国统一考试理科数学 参考答案一、选择题:1—12:DBCBA ADCCB AB 二、填空题:(13)2- (14)10 (15)64 (16)216000 三、解答题:(17)解:(I )由2cos (cos cos )C a B+b A c =得2cos (cos cos )sin C sinA B+sinB A C =,即1cos 2C =,又(0,)C π∈,3C π∴=; (II )2271cos 22a b C ab +-==,1sin 2ABC S ab C ==,6ab ∴=,2213a b +=5a b ∴+==,所以ABC ∆的周长为5(18)解:(I ),AF FE AF FD ⊥⊥,F FD FE = ,⊥∴AF 平面EFDC ,又⊂AF 平面ABEF ,所以平面⊥ABEF 平面EFDC ;(II )以E 为坐标原点,EF ,EB 分别为x 轴和y 轴建立空间直角坐标系(如图), 设2AF =,则1FD =,因为二面角D -AF -E 与二面角C -BE -F 都是60, 即60oEFD FEC ∠=∠=,易得(0,2,0)B ,(2,2,0)A,1(2C ,1(0,2,0),(2,0,0),(,2EB BA BC ∴===-,设平面EBC 与平面ABCD 的法向量分别 为1111(,,)n x y z =和2222(,,)n x y z =,则111111111111(,,)(0,2,0)2011(,,)(,2022n EB x y z y n BC x y z x y ⎧⋅=⋅==⎪⎨⋅=⋅-=-=⎪⎩ 令11x =,则110,3y z ==-,1(1,0,3n ∴=-由222222222222(,,)(2,0,0)2011(,,)(,2,202222n BA x y z xn BC x y z xy z ⎧⋅=⋅==⎪⎨⋅=⋅-=-+=⎪⎩, 令22z =,则220,x y ==,13(0,n ∴=12(1,0,2)cos ,n n ⋅∴<>===, 所以二面角E -BC -A 的余弦值为.(19)解:(I )这100台机器更换的易损零件数为8,9,10,11时的频率为分别为15,25,15,15, 故1台机器更换的易损零件数为8,9,10,11时发生的概率分别为15,25,15,15,每台机器更换与否相互独立,16,17,18,19,20,21,22X =,(II )(1),(1)252252P X 8P X 9≤=<≤=≥,所以n 的最小值为19; (III )若买19件时费用期望为:4040251)150019200(252)100019200(255)50019200(251719200=⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯, 若买20件时费用期望为:4080251)100020200(252)50020200(252220200=⨯+⨯+⨯+⨯+⨯⨯, 所以应选用19n =.(20)解:(I )圆心为(1,0)A -,圆的半径为4AD =,AD AC =,ADC ACD ∴∠=∠,又//BE AC ,ACD EBD ADC ∴∠=∠=∠, BE ED =,4EA EB AD +==.所以点E 的轨迹是以点(1,0)A -和点(1,0)B 为焦点,以4为长轴长的椭圆,即2,1a c ==b ∴=所以点E 的轨迹方程为:221(0)43x y y +=≠. (II )当直线l 的斜率不存在时,直线l 的方程为1x =,3MN =,8PQ =, 此时四边形MPNQ 面积为12;当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,与椭圆22143x y +=联立得:2222(34)84120k x k x k +-+-=, 设1122(,),(,)M x y N x y ,则2122834k x x k +=+,212241234k x x k-⋅=+,|MN |=2212(1)34k k +=+,直线PQ 方程为1(1)y x k=--,即10x ky +-=, 所以圆心(1,0)A -到直线PQ的距离为d =,PQ ∴==,221112(1)2234MPNQ k S MN PQ k +=⋅===+四边形=, 综上可知四边形MPNQ面积的取值范围为.(21)解:(I )'()(2)2(1)(1)(2)x x xf x e x e a x x e a =+-+-=-+①当0a =时,()(2)xf x x e =-,此时函数()f x 只有一个零点,不符合题意舍去;②当0a >时,由'()01f x x >⇒>,由'()01f x x <⇒<,所以()f x 在(,1)-∞上递减,在(1,)+∞上递增,min ()(1)0f x f e ∴==-<,又(2)0f a =>,所以函数()f x 在(1,)+∞上只有一个零点,当x →-∞时,0xe →,此时,()f x →+∞,所以函数()f x 在(,1)-∞上只有一个零点 此时函数()f x 有两个零点.③当02ea -<<时,0ln(2)1a <-<, 由'()01ln(2)f x x x a >⇒><-或,由'()0ln(2)1f x a x <⇒-<< 所以()f x 在(,ln(2))a -∞-和(1,)+∞上递增,在(ln(2),1)a -上递减,()(1)0f x f e ∴==-<极小值,2()(ln(2))(ln(2)2)(2)(ln(2)1)0f x f a a a a a =-=---+--<极大值 此时函数()f x 至多一个零点,不符合题意,舍去;④当2e a =-时,'()(2)2(1)(1)()0x x xf x e x e a x x e e =+-+-=--≥恒成立,此时函数()f x 至多一个零点,不符合题意,舍去;⑤当2e a <-时,ln(2)1a ->,由'()01ln(2)f x x x a >⇒<>-或,由'()01ln(2)f x x a <⇒<<-所以()f x 在(,1)-∞和(ln(2),)a -+∞上递增,()f x 在(1,ln(2))a -上递减,()(1)0f x f e ∴==-<极大值,因为()f x 在(1,ln(2))a -上递减,所以()=(ln(2))0f x f a -<极小值, 此时函数()f x 至多一个零点,不符合题意,舍去. 综上可知(0,)a ∈+∞.(II )由(I )若x 1,x 2是()f x 的两个零点,则0a >,不妨令12x x <,则121x x <<要证122x x +<,只要证122x x <-,21x >,221x ∴-<,当0a >时,()f x 在(,1)-∞上递减, 且1()0f x =,(1)0f <所以,只要证2(2)0f x -<,222222(2)(1)x f x x e a x --=-+-,又22222()(2)(1)0x f x x e a x =-+-= 222222(2)(2)x x f x x e x e -∴-=---令2(2),(1)xx y xex e x -=--->22'22(2)(1)xxxxxxe e y exee x e x e ---=-+---=-,.221,10,x x x e e >∴-><,'0y ∴<2(2)x x y xe x e -∴=---在(1,)+∞上递减,当1x =时,0y = 1,0x y ><,即2(2)0f x -<成立, 122x x ∴+<成立.22.(本小题满分10分)选修4—1:几何证明选讲解:(Ⅰ)设E 是AB 的中点,连结OE .因为,120,OA OB AOB ︒=∠= 所以,60OE AB AOE ︒⊥∠=在Rt AOE ∆中,12OE AO =, 即O 到直线AB 的距离等于O 的半径, 所以直线AB 与O 相切.(Ⅱ)因为2OA OD =,所以O 不是,,,A B C D 四点所在圆的圆心, 设O '是,,,A B C D 四点所在圆的圆心,作直线OO '.由已知的O 在线段AB 的垂直平分线上,又O '在线段AB 的垂直平分线上,所以OO AB '⊥. 同理可证,OO CD '⊥,所以//AB CD .23.(本小题满分10分)选修4—4:坐标系与参数方程解:(Ⅰ)消去参数t 得到1C 的普通方程()2221x y a +-=.故1C 是以()0,1为圆心,a 为半径的圆.将cos ,sin x y ρθρθ==代入1C 的普通方程中,得到1C 的极坐标方程为222sin 10a ρρθ-+-=.(Ⅱ)曲线12,C C 的公共点的极坐标满足方程组:{222sin 104cos a ρρθρθ-+-==. 若0ρ≠,由方程组得2216cos 8sin cos 10a θθθ-+-=,由已知tan 2θ=,可得216cos 8sin cos 0θθθ-=,从而210a -=,解得1a =-(舍去),1a =. 1a =时,极点也为12,C C 的公共点,在3C 上. 所以1a =.24.(本小题满分10分)选修4—5:不等式选讲解:(Ⅰ)()4,1,332,1,234,,2x x f x x x x x ⎧⎪-≤-⎪=--<≤⎨⎪⎪-+>⎩()y f x =的图像如图所示.(Ⅱ)由函数()f x 的表达式及图像, 当()1f x =时,可得1x =,或3x =; 当()1f x =-时,可得13x =,或5x =. 故()1f x >的解集为}{13x x <<;()1f x <-的解集为{}1,53x x x <>或. 所以()1f x >的解集为{}11353x x x x <<<>或或.。
2016年全国高考理科数学试题及标准答案全国卷1
2016年全国高考理科数学试题及标准答案全国卷12016年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4.考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合$A=\{x|x-4x+30\}$,则$AB=$A)$(-\infty,-1)\cup(3,+\infty)$B)$(-\infty,-1)\cup(1,+\infty)$C)$(-\infty,-\frac{3}{4})\cup(\frac{3}{2},+\infty)$D)$(-\infty,-\frac{3}{4})\cup(\frac{3}{2},+\infty)$2.设$(1+i)x=1+yi$,其中$x,y$是实数,则$x+yi=$A)$1$B)$\frac{1}{2}+\frac{1}{2}i$C)$1+i$D)$\frac{1}{2}+\frac{1}{2}i$3.已知等差数列$\{a_n\}$前9项的和为27,$a_{10}=8$,则$a_{100}=$A)$100$B)$99$C)$98$D)$97$4.某公司的班车在7:00,8:00,8:30发车,XXX在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A)$\frac{1}{2}$B)$\frac{1}{3}$C)$\frac{2}{3}$D)$\frac{3}{4}$5.已知方程$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$表示双曲线,且该双曲线两焦点间的距离为4,则$n$的取值范围是A)$(-1,3)$B)$(-1,3]$C)$(0,3)$D)$(0,3]$6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径。
2016年新课标Ⅲ高考数学理科试题含答案(Word版)
绝密★启用前试题类型:2016年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{}{}(x 2)(x 3)0,T 0S x x x =--≥=> ,则S I T =( )(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =-( ) (A)1 (B) -1 (C) i (D)-i(3)已知向量13(,)22BA =uu v ,31(,),22BC =uu u v 则∠ABC=( ) (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是( )(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均最高气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= ( ) (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,254b =,1325c =,则( )(A )b a c << (B )a b c <<(C )b c a <<(D )c a b <<(7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =( )(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A = ( ) (A )31010 (B )1010 (C )1010- (D )31010-(9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )(A )18365+ (B )54185+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) (A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,ka a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )(A )18个 (B )16个 (C )14个 (D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分(13)若x ,y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩则z=x+y 的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。
2016年高考真题----理科数学(全国卷Ⅰ) Word版含答案
绝密★启封前试题类型:A2016年普通高等学校招生全国统一考试理科数学本试题卷共5页,24题(含选做题)。
全卷满分150分,考试用时150分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填在试题卷和答题卡上,并将条形码粘贴在答题卡的指定位置。
用2B铅笔将答题卡上试题类型A后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡的相应区域内,写在试题卷、草稿纸和答题卡非答题区域均无效。
4、选考题的作答:先把所选题的题号在答题卡的指定位置用2B铅笔涂黑,答案写在答题卡的相应区域内,写在试题卷、草稿纸和答题卡非答题区域均无效。
5、考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合2{|430}A x x x=-+<,{|230}B x x=->,则A B=(A)3(3,)2--(B)3(3,)2-(C)3(1,)2(D)3(,3)2(2)设(1i)1ix y+=+,其中x,y是实数,则i=x y+(A)1(B )2(C )3(D)2(3)已知等差数列{}na前9项的和为27,10=8a,则100=a(A)100(B)99(C)98(D)97(4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(A)13(B)12(C)23(D)34(5)已知方程222213x ym n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(A)(–1,3) (B)(–1,3) (C)(0,3) (D)(0,3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积为(A )17π(B )18π(C )20π(D )28π(7)函数y =2x 2–e |x |在[–2,2]的图像大致为(A )(B )(C )(D )(8)若101a b c >><<,,则 (A )c c a b <(B )c cab ba <(C )log log b a a c b c <(D )log log a b c c <(9)执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足(A )2y x =(B )3y x =(C )4y x =(D )5y x =(10)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的标准线于D 、E 两点.已知|AB |=42,|DE|=25,则C 的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8(11)平面a 过正方体ABCD -A 1B 1C 1D 1的顶点A ,a //平面CB 1D 1,a ⋂平面ABCD =m ,a ⋂平面ABA 1B 1=n ,则m 、n 所成角的正弦值为 (A)32(B)22 (C)33(D)13 12.已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点学.科网,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )5第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =. (14)5(2)x x +的展开式中,x 3的系数是.(用数字填写答案)(15)设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为。
2016年全国高考数学(理科)试题及答案-全国1卷(解析版)
绝密 ★ 启用前2016年普通高等学校招生全国统一考试(全国1卷)数学(理科)注意事项: 1。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2。
答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3。
全部答案在答题卡上完成,答在本试题上无效。
4。
考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合{}2430A x x x =-+< ,{}230x x ->,则A B =(A )33,2⎛⎫-- ⎪⎝⎭ (B)33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D)3,32⎛⎫⎪⎝⎭【答案】D考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题。
解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算. (2)设(1i)1i x y +=+,其中x ,y 实数,则i =x y + (A )1 (B 2 (3 (D)2 【答案】B 【解析】试题分析:因为(1)=1+,x i yi +所以=1+,=1,1,||=|1+|2,x xi yi x y x x yi i +==+=故选B.考点:复数运算【名师点睛】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题。
高考中复数考查频率较高的内容有:复数相等,复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题要注意运算的准确性.(3)已知等差数列{}n a 前9项的和为27,108a =,则100a = (A )100 (B )99 (C )98 (D )97 【答案】C 【解析】试题分析:由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+=故选C 。
16届理数参考答案及评分标准
2016届呼和浩特市高三一模考试理科数学参考答案及评分标准一、选择题1-5 BDCBC 6-10 BBA C B 11-12 DB二、填空题 13.34 14. 43π 15. -108 16.940π 三、解答题17. (1)证明: ∵0≠+n a n ………………………………………………1分 2)1()1(2)1()2(2)1(.11111=-+-+=-++-+=-++∴-----n a n a n a n n a n a n a n n n n n n)或者(0)),1((21≠+-+=+-n a n a n a n n n --------------------------------3分∴{}n a n +是首项为4,公比为2的等比列…………………………………5分(首项和公比各给1分)∴ 11224+-=⋅=+n n n n an a n n -=∴+12- -------------------------------------------------------------------------7分2341(2)(222.......2)(123......)n n S n +=+++-++++……………………9分(会分组给2分) 22822n n n +++=-……………………………………………………………………12分(两个和,每一个和给2分)18.(I )证明:过点Q 作QD ⊥BC 于点D ,∵平面QBC ⊥平面ABC ,∴QD ⊥平面ABC ,又∵PA ⊥平面ABC ,∴QD ∥PA ,………………………………………………..2分又∵QD ⊂平面QBC ,PA ⊄平面QBC ,∴PA ∥平面QBC………………………………….4分(Ⅱ)法一:∵PQ ⊥平面QBC ,∴∠PQB=∠PQC=90°,又∵PB=PC ,PQ=PQ ,∴△PQB ≌△PQC ,∴BQ=CQ .………………………….5分∴点D 是BC 的中点,连接AD ,则AD ⊥BC ,∴AD ⊥平面QBC ,………………………………………………….6分∴PQ ∥AD ,AD ⊥QD ,∴四边形PADQ 是矩形.……………………………………………7分.设PA=2a ,∴,PB=2a ,∴.过Q 作QR ⊥PB 于点R ,……………………………………………8分∴QR==, a PB PQ PR 222== 取PB 中点M ,连接AM ,取PA 的中点N ,连接RN ,∵PR=,,∴MA ∥RN .∵PA=AB ,∴AM ⊥PB ,∴RN ⊥PB .∴∠QRN 为二面角Q ﹣PB ﹣A 的平面角.--------------------------------------10分连接QN ,则QN===.又,∴cos ∠QRN===.即二面角Q ﹣PB ﹣A 的余弦值为.- ------------------------------------------12分(Ⅱ)法二:∵PQ ⊥平面QBC ,∴∠PQB=∠PQC=90°,又∵PB=PC ,PQ=PQ ,∴△PQB ≌△PQC ,∴BQ=CQ .∴点D 是BC 的中点,连接AD ,则AD ⊥BC ,∴AD ⊥平面QBC ,…………………………………………5分∴PQ ∥AD ,AD ⊥QD ,∴四边形PADQ 是矩形.…………………………………..6分.分别以AC 、AB 、AP 为x 、y 、z 轴建立空间直角坐标系O ﹣xyz .不妨设PA=2,则Q (1,1,2),B (0,2,0),P (0,0,2),设平面QPB 的法向量为.……………………..7分 ∵=(1,1,0),=(0,2,﹣2) ∴ ……………………………………………………..8分)1,1,1(--=∴n ……………………………………………………..9分又∵平面PAB 的法向量为.…………………..10分33,,cos =⋅>=<→→→→→→n m nm n m 所以二面角Q ﹣PB ﹣A 的余弦值为33-------------------------------------12分19. 解:(1)由已知在[70,80]之间的初中学生的人数为15人…………………1分记至少有1名女同学为事件A 则741)(215210=-=C C A p ……………………………………………………………4分(写出算式2分,结果1分)分(列联表完全正确才给分) ∴, ............. ........... ........ .10分(公式1分结果2分) ∴有99%的把握认为两个学段的学生对“四大名著”常识了解有差异”. ..... ........ ........ .................... 12分20.(1)设两圆切点为N ,|CN|+|CP|=4,|CN|=|CM|,所以所以圆心C 的轨迹是椭圆.且2a=22,2c=2 所以方程为1222=+y x ........................................................................................4分 (2)联立椭圆和直线方程得:0224)12(222=-+++m kmx x k.. ......... ......... ........................... 5分12,08816)22)(12(41622222222<->+-=-+-=∆k m m k m k m k 即 设交点),(),,(2221y x B y x A12222221+-=k m x x , 124221+-=+k km x x ,...........................................................................7分122))((2222121+-=++=k k m m kx m kx y y所以 21222.2222121-=--==m k m x x y y k k OB OA 即 2122=-k m ......................................................9分12124)(122212212++=-++=k k x x x x k AB ...................... ................................................... 10分 12+=k md ................... ...................... ..................... ................ ................ ............................................ 11分 所以 22.21==d AB s 所以为定值。
2016年高考理科数学全国1卷Word版(含详细答案)
绝密★ 启用前试题种类: A 2016 年一般高等学校招生全国一致考试理科数学本试题卷共 5 页, 24 题(含选考题 )。
全卷满分 150 分。
考试用时 120 分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考据号填写在试题卷和答题卡上,并将准考据号条形码粘贴在答题卡上的指定地点。
用2B 铅笔将答题卡上试卷种类 A 后的方框涂黑。
2、选择题的作答:每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、底稿纸和答题卡上的非答题地区内均无效。
3、填空题和解答题的作答:用署名笔挺接答在答题卡上对应的答题地区内。
写在试题卷、底稿纸和答题卡上的非答题地区均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的地点用2B 铅笔涂黑。
答案写在答题卡上对应的答题地区内,写在试题卷、底稿纸和答题卡上的非答题地区均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:此题共12 小题,每题5 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的。
(1)设会合A{ x x24x 30},B{ x 2x 3 0},则A B(A)( 3,3)(B)(3,3)(C)(1,3)(D)(3,3) 2222(2)设(1 i ) x1yi ,此中x, y是实数,则x yi(A)1(B)2(C)3(D)2(3)已知等差数列{ a n } 前9项的和为27 ,a108,则 a100( A)100(B)99(C)98(D)97(4)某公司的班车在7 : 30 , 8 : 00,8 : 30 发车,小明在 7 : 50 至 8 : 30之间抵达发车站乘坐班车,且抵达发车站的时候是随机的,则他等车时间不超出10 分钟的概率是(A)1(B)1(C)2(D)3 3234(5)已知方程x 2 y21 表示双曲线, 且该双曲线两焦点间的距离为 4 ,则 n 的2n 3m 2nm 取值范围是(A ) ( 1,3)(B ) ( 1, 3) ( C ) (0,3) ( D ) (0, 3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28,则它的3表面积是(A ) 17(B ) 18 (C ) 20(D ) 28(7)函数 y2x 2 e x 在 [ 2,2] 的图像大概为y y ( A )1( B )12 O2x2 O2xy y ( C )1( D )12O2x2 O2x(8)若 a b1, 0 c 1,则( A ) a cb c( B ) ab cba c ( C ) a log b c b log a c ( D ) log a c log b c(9)履行右边的程序框图,假如输入的x 0, y 1, n 1,则输出 x, y 的值知足( A ) y 2 x( B ) y 3x( C ) y 4x ( D ) y 5x( 10)以抛物线C 的极点为圆心的圆交 C 于 A, B 两点,交 C 的准线于 D, E 两点,已知AB 42,DE2 5 ,则 C 的焦点到准线的距离为(A )2(B )4(C )6 (D )8(11)平面过正方体 ABCDA 1B 1C 1D 1 的极点 A , // 平面 CB 1D 1 ,平面 ABCDm ,平面 ABB 1 A 1 n ,则 m,n 所成角的正弦值为32 ( C )31( A )(B )(D )2 23 3(12)已知函数f ( x)sin( x)(0,2) , x为 f ( x) 的零点,x为44y f ( x) 图像的对称轴,且 f ( x) 在( ,5) 单一,则的最大值为3618(A)11(B)9(C)7(D)5第II 卷本卷包含必考题和选考题两部分。
2016年高考全国2卷理科数学及答案
绝密★启用前2016年普通高等学校招生全国统一考试理科数学 全国II 卷(全卷共12页)(适用地区:贵州,甘肃,青海,西藏,黑龙江,吉林,辽宁,宁夏,新疆,内蒙古,云南,重庆,陕西,海南)注意事项:1. 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
2. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
3. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答案卡一并交回。
第I 卷一、 选择题:本题共12小题,每小题5分。
在每个小题给出的四个选项中, 只有一项是符合题目要求的。
(1) 已知i m m z )1()3(−++=在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(3−,1) (B )(1−,3) (C )(1,∞+) (D )(∞−,3−) (2) 已知集合{}3,2,1=A ,{}Z x x x x B∈<−+=,0)2)(1(,则=B A(A ){}1 (B ){}2,1 (C ){}3,2,1,0 (D ){}3,2,1,0,1− (3) 已知向量),1(m a =,)2,3(−=b 且b b a ⊥+)(,则=m(A )8− (B )6− (C )6 (D )8 (4) 圆0138222=+−−+y x y x的圆心到直线01=−+y ax 的距离为1,则=a(A )34−(B )43− (C )3 (D )2(5) 如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 (A )24 (B )18 (C )12 (D )9(6) 右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π(7) 若将函数x y 2sin 2=的图像向左平移12π个单位长度,则平移后图像的对称轴为 (A ))(62Z k k x ∈−=ππ (B ))(62Z k k x ∈+=ππ(C ))(122Z k k x ∈−=ππ (D ))(122Z k k x ∈+=ππ(8) 中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s(A )7 (B )12(C )17 (D )34(9) 若53)4cos(=−απ,则=α2sin(A )257(B )51(C )51− (D )257−(10) 以从区间[]1,0随机抽取n 2个数n n y y y x x x ,⋯⋯,,,,,,2121,构成n 个数对),(),,(),,(2211n n y x y x y x ,⋯,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 (A )n 4 (B )n 2 (C )m 4 (D )m 2否是 0,0==s kn k >输入n x ,输出s开始 结束输入a1+=+⋅=k k ax s s(11) 已知21,F F 是双曲线E :12222=−by a x 的左,右焦点,点M 在E 上,1MF 与x 轴垂直,31sin 12=∠F MF ,则E 的离心率为 (A )2 (B )23(C )3 (D )2(12) 已知函数))((R x x f ∈满足)(2)(x f x f −=−,若函数xx y 1+=与)(x f y =图像的交点为),(,),,(),,(2211m m y x y x y x ⋯,则=+∑=mi i i y x 1)((A )0 (B )m (C )m 2 (D )m 4第Ⅱ卷本卷包括必考题和选考题两部分。
2016年高考理科数学试题全国卷1及解析word完美版
2016年普通高等学校招生全国统一考试理科数学一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、设集合A={x|x2–4x+3<0},B={x|2x–3>0},则A∩B= ()A.(–3,–错误!)B.(–3,错误!)C.(1,错误!)D.(错误!,3)2、设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1 B.错误!C.错误!D.23、已知等差数列{a n}前9项的和为27,a10=8,则a100= ( )A.100 B.99 C.98 D.974、某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.错误!B.错误!C.错误!D.错误!5、已知方程错误!–错误!=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( )A.(–1,3) B.(–1,错误!) C.(0,3)D.(0,错误!)6、如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是错误!,则它的表面积是( )A.17π B.18π C.20π D.28π7、函数y=2x2–e|x|在[–2,2]的图像大致为( )A.B.C.D.8、若a〉b>1,0〈c〈1,则( )A.a c〈b c B.ab c〈ba c C.alog b c〈blog a c D.log a c〈log b c9、执行下左1图的程序图,如果输入的x=0,y=1,n=1,则输出x,y的值满足( )A.y=2x B.y=3x C.y=4x D.y=5x10、以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4错误!,|DE|=2错误!,则C的焦点到准线的距离为()A.2 B.4 C.6 D.811、平面a过正方体ABCD–A1B1C1D1的顶点A,a//平面CB1D1,a∩平面ABCD=m,a∩平面ABB1A1=n,则m、n所成角的正弦值为( )A.错误!B.错误!C.错误!D.错误!12、已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤错误!),x=–错误!为f(x)的零点,x=错误!为y=f(x)图像的对称轴,且f(x)在(错误!,错误!)单调,则ω的最大值为()A.11 B.9 C.7 D.5二、填空题:本大题共4小题,每小题5分13、设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=________________.14、(2x+错误!)5的展开式中,x3的系数是_________ (用数字填写答案).15、设等比数列满足{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为___________.16、某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1。
2016年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)
2016年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合S={x|(x﹣2)(x﹣3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(﹣∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)2.(5分)若z=1+2i,则=()A.1B.﹣1C.i D.﹣i3.(5分)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°4.(5分)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是()A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个5.(5分)若tanα=,则cos2α+2sin2α=()A.B.C.1D.6.(5分)已知a=,b=,c=,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b 7.(5分)执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()A.3B.4C.5D.68.(5分)在△ABC中,B=,BC边上的高等于BC,则cosA等于()A.B.C.﹣D.﹣9.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36B.54+18C.90D.8110.(5分)在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.C.6πD.11.(5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l 与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.12.(5分)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m 项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个二、填空题:本大题共4小题,每小题5分.13.(5分)若x,y满足约束条件,则z=x+y的最大值为.14.(5分)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.15.(5分)已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f (x)在点(1,﹣3)处的切线方程是.16.(5分)已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知数列{a n}的前n项和S n=1+λa n,其中λ≠0.(1)证明{a n}是等比数列,并求其通项公式;(2)若S5=,求λ.18.(12分)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1﹣7分别对应年份2008﹣2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;附注:参考数据:y i t i y i≈参考公式:相关系数r=,回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=﹣.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.20.(12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.21.(12分)设函数f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,记|f(x)|的最大值为A.(Ⅰ)求f′(x);(Ⅱ)求A;(Ⅲ)证明:|f′(x)|≤2A.请考生在第22-24题中任选一题做答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点.(1)若∠PFB=2∠PCD,求∠PCD的大小;(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OG⊥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.[选修4-5:不等式选讲]24.已知函数f(x)=|2x﹣a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.2016年全国统一高考数学试卷(理科)(新课标Ⅲ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合S={x|(x﹣2)(x﹣3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(﹣∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)【考点】1E:交集及其运算.【专题】37:集合思想;4O:定义法;5J:集合.【分析】求出S中不等式的解集确定出S,找出S与T的交集即可.【解答】解:由S中不等式解得:x≤2或x≥3,即S=(﹣∞,2]∪[3,+∞),∵T=(0,+∞),∴S∩T=(0,2]∪[3,+∞),故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)若z=1+2i,则=()A.1B.﹣1C.i D.﹣i【考点】A5:复数的运算.【专题】11:计算题;29:规律型;35:转化思想;5N:数系的扩充和复数.【分析】利用复数的乘法运算法则,化简求解即可.【解答】解:z=1+2i,则===i.故选:C.【点评】本题考查复数的代数形式混合运算,考查计算能力.3.(5分)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°【考点】9S:数量积表示两个向量的夹角.【专题】11:计算题;41:向量法;49:综合法;5A:平面向量及应用.【分析】根据向量的坐标便可求出,及的值,从而根据向量夹角余弦公式即可求出cos∠ABC的值,根据∠ABC的范围便可得出∠ABC的值.【解答】解:,;∴;又0°≤∠ABC≤180°;∴∠ABC=30°.故选:A.【点评】考查向量数量积的坐标运算,根据向量坐标求向量长度的方法,以及向量夹角的余弦公式,向量夹角的范围,已知三角函数值求角.4.(5分)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是()A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个【考点】F4:进行简单的合情推理.【专题】31:数形结合;4A:数学模型法;5M:推理和证明.【分析】根据平均最高气温和平均最低气温的雷达图进行推理判断即可.【解答】解:A.由雷达图知各月的平均最低气温都在0℃以上,正确B.七月的平均温差大约在10°左右,一月的平均温差在5°左右,故七月的平均温差比一月的平均温差大,正确C.三月和十一月的平均最高气温基本相同,都为10°,正确D.平均最高气温高于20℃的月份有7,8两个月,故D错误,故选:D.【点评】本题主要考查推理和证明的应用,根据平均最高气温和平均最低气温的雷达图,利用图象法进行判断是解决本题的关键.5.(5分)若tanα=,则cos2α+2sin2α=()A.B.C.1D.【考点】GF:三角函数的恒等变换及化简求值.【专题】11:计算题;35:转化思想;4R:转化法;56:三角函数的求值.【分析】将所求的关系式的分母“1”化为(cos2α+sin2α),再将“弦”化“切”即可得到答案.【解答】解:∵tanα=,∴cos2α+2sin2α====.故选:A.【点评】本题考查三角函数的化简求值,“弦”化“切”是关键,是基础题.6.(5分)已知a=,b=,c=,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b【考点】4Y:幂函数的单调性、奇偶性及其应用.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】b==,c==,结合幂函数的单调性,可比较a,b,c,进而得到答案.【解答】解:∵a==,b=,c==,综上可得:b<a<c,故选:A.【点评】本题考查的知识点是指数函数的单调性,幂函数的单调性,是函数图象和性质的综合应用,难度中档.7.(5分)执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()A.3B.4C.5D.6【考点】EF:程序框图.【专题】11:计算题;27:图表型;4B:试验法;5K:算法和程序框图.【分析】模拟执行程序,根据赋值语句的功能依次写出每次循环得到的a,b,s,n的值,当s=20时满足条件s>16,退出循环,输出n的值为4.【解答】解:模拟执行程序,可得a=4,b=6,n=0,s=0执行循环体,a=2,b=4,a=6,s=6,n=1不满足条件s>16,执行循环体,a=﹣2,b=6,a=4,s=10,n=2不满足条件s>16,执行循环体,a=2,b=4,a=6,s=16,n=3不满足条件s>16,执行循环体,a=﹣2,b=6,a=4,s=20,n=4满足条件s>16,退出循环,输出n的值为4.故选:B.【点评】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的a,b,s的值是解题的关键,属于基础题.8.(5分)在△ABC中,B=,BC边上的高等于BC,则cosA等于()A.B.C.﹣D.﹣【考点】HT:三角形中的几何计算.【专题】35:转化思想;44:数形结合法;58:解三角形.【分析】作出图形,令∠DAC=θ,依题意,可求得cosθ===,sinθ=,利用两角和的余弦即可求得答案.【解答】解:设△ABC中角A、B、C、对应的边分别为a、b、c,AD⊥BC于D,令∠DAC=θ,∵在△ABC中,B=,BC边上的高AD=h=BC=a,∴BD=AD=a,CD=a,在Rt△ADC中,cosθ===,故sinθ=,∴cosA=cos(+θ)=cos cosθ﹣sin sinθ=×﹣×=﹣.故选:C.【点评】本题考查解三角形中,作出图形,令∠DAC=θ,利用两角和的余弦求cosA 是关键,也是亮点,属于中档题.9.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36B.54+18C.90D.81【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离;5Q:立体几何.【分析】由已知中的三视图可得:该几何体是一个以主视图为底面的直四棱柱,进而得到答案.【解答】解:由已知中的三视图可得:该几何体是一个以主视图为底面的直四棱柱,其底面面积为:3×6=18,侧面的面积为:(3×3+3×)×2=18+18,故棱柱的表面积为:18×2+18+18=54+18.故选:B.【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.10.(5分)在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4πB.C.6πD.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;5F:空间位置关系与距离;5Q:立体几何.【分析】根据已知可得直三棱柱ABC﹣A1B1C1的内切球半径为,代入球的体积公式,可得答案.【解答】解:∵AB⊥BC,AB=6,BC=8,∴AC=10.故三角形ABC的内切圆半径r==2,又由AA1=3,故直三棱柱ABC﹣A1B1C1的内切球半径为,此时V的最大值=,故选:B.【点评】本题考查的知识点是棱柱的几何特征,根据已知求出球的半径,是解答的关键.11.(5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l 与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【专题】34:方程思想;48:分析法;5D:圆锥曲线的定义、性质与方程.【分析】由题意可得F,A,B的坐标,设出直线AE的方程为y=k(x+a),分别令x=﹣c,x=0,可得M,E的坐标,再由中点坐标公式可得H的坐标,运用三点共线的条件:斜率相等,结合离心率公式,即可得到所求值.【解答】解:由题意可设F(﹣c,0),A(﹣a,0),B(a,0),设直线AE的方程为y=k(x+a),令x=﹣c,可得M(﹣c,k(a﹣c)),令x=0,可得E(0,ka),设OE的中点为H,可得H(0,),由B,H,M三点共线,可得k BH=k BM,即为=,化简可得=,即为a=3c,可得e==.另解:由△AMF∽△AEO,可得=,由△BOH∽△BFM,可得==,即有=即a=3c,可得e==.故选:A.【点评】本题考查椭圆的离心率的求法,注意运用椭圆的方程和性质,以及直线方程的运用和三点共线的条件:斜率相等,考查化简整理的运算能力,属于中档题.12.(5分)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m 项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个【考点】8B:数列的应用.【专题】16:压轴题;23:新定义;38:对应思想;4B:试验法.【分析】由新定义可得,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,当m=4时,数列中有四个0和四个1,然后一一列举得答案.【解答】解:由题意可知,“规范01数列”有偶数项2m项,且所含0与1的个数相等,首项为0,末项为1,若m=4,说明数列有8项,满足条件的数列有:0,0,0,0,1,1,1,1;0,0,0,1,0,1,1,1;0,0,0,1,1,0,1,1;0,0,0,1,1,1,0,1;0,0,1,0,0,1,1,1;0,0,1,0,1,0,1,1;0,0,1,0,1,1,0,1;0,0,1,1,0,1,0,1;0,0,1,1,0,0,1,1;0,1,0,0,0,1,1,1;0,1,0,0,1,0,1,1;0,1,0,0,1,1,0,1;0,1,0,1,0,0,1,1;0,1,0,1,0,1,0,1.共14个.故选:C.【点评】本题是新定义题,考查数列的应用,关键是对题意的理解,枚举时做到不重不漏,是压轴题.二、填空题:本大题共4小题,每小题5分.13.(5分)若x,y满足约束条件,则z=x+y的最大值为.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】首先画出平面区域,然后将目标函数变形为直线的斜截式,求在y轴的截距最大值.【解答】解:不等式组表示的平面区域如图阴影部分,当直线经过D点时,z最大,由得D(1,),所以z=x+y的最大值为1+;故答案为:.【点评】本题考查了简单线性规划;一般步骤是:①画出平面区域;②分析目标函数,确定求最值的条件.14.(5分)函数y=sinx﹣cosx的图象可由函数y=sinx+cosx的图象至少向右平移个单位长度得到.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】33:函数思想;4R:转化法;57:三角函数的图像与性质.【分析】令f(x)=sinx+cosx=2sin(x+),则f(x﹣φ)=2sin(x+﹣φ),依题意可得2sin(x+﹣φ)=2sin(x﹣),由﹣φ=2kπ﹣(k∈Z),可得答案.【解答】解:∵y=f(x)=sinx+cosx=2sin(x+),y=sinx﹣cosx=2sin(x﹣),∴f(x﹣φ)=2sin(x+﹣φ)(φ>0),令2sin(x+﹣φ)=2sin(x﹣),则﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ(k∈Z),当k=0时,正数φmin=,故答案为:.【点评】本题考查函数y=sinx的图象变换得到y=Asin(ωx+φ)(A>0,ω>0)的图象,得到﹣φ=2kπ﹣(k∈Z)是关键,也是难点,属于中档题.15.(5分)已知f(x)为偶函数,当x<0时,f(x)=ln(﹣x)+3x,则曲线y=f (x)在点(1,﹣3)处的切线方程是2x+y+1=0.【考点】6H:利用导数研究曲线上某点切线方程.【专题】34:方程思想;51:函数的性质及应用;52:导数的概念及应用.【分析】由偶函数的定义,可得f(﹣x)=f(x),即有x>0时,f(x)=lnx﹣3x,求出导数,求得切线的斜率,由点斜式方程可得切线的方程.【解答】解:f(x)为偶函数,可得f(﹣x)=f(x),当x<0时,f(x)=ln(﹣x)+3x,即有x>0时,f(x)=lnx﹣3x,f′(x)=﹣3,可得f(1)=ln1﹣3=﹣3,f′(1)=1﹣3=﹣2,则曲线y=f(x)在点(1,﹣3)处的切线方程为y﹣(﹣3)=﹣2(x﹣1),即为2x+y+1=0.故答案为:2x+y+1=0.【点评】本题考查导数的运用:求切线的方程,同时考查函数的奇偶性的定义和运用,考查运算能力,属于中档题.16.(5分)已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=4.【考点】J8:直线与圆相交的性质.【专题】11:计算题;35:转化思想;49:综合法;5B:直线与圆.【分析】先求出m,可得直线l的倾斜角为30°,再利用三角函数求出|CD|即可.【解答】解:由题意,|AB|=2,∴圆心到直线的距离d=3,∴=3,∴m=﹣∴直线l的倾斜角为30°,∵过A,B分别作l的垂线与x轴交于C,D两点,∴|CD|==4.故答案为:4.【点评】本题考查直线与圆的位置关系,考查弦长的计算,考查学生的计算能力,比较基础.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知数列{a n}的前n项和S n=1+λa n,其中λ≠0.(1)证明{a n}是等比数列,并求其通项公式;(2)若S5=,求λ.【考点】87:等比数列的性质;8H:数列递推式.【专题】34:方程思想;4R:转化法;54:等差数列与等比数列.【分析】(1)根据数列通项公式与前n项和公式之间的关系进行递推,结合等比数列的定义进行证明求解即可.(2)根据条件建立方程关系进行求解就可.【解答】解:(1)∵S n=1+λa n,λ≠0.∴a n≠0.当n≥2时,a n=S n﹣S n﹣1=1+λa n﹣1﹣λa n﹣1=λa n﹣λa n﹣1,即(λ﹣1)a n=λa n﹣1,∵λ≠0,a n≠0.∴λ﹣1≠0.即λ≠1,即=,(n≥2),∴{a n}是等比数列,公比q=,当n=1时,S1=1+λa1=a1,即a1=,∴a n=•()n﹣1.(2)若S5=,则若S5=1+λ[•()4]=,即()5=﹣1=﹣,则=﹣,得λ=﹣1.【点评】本题主要考查数列递推关系的应用,根据n≥2时,a n=S n﹣S n﹣1的关系进行递推是解决本题的关键.考查学生的运算和推理能力.18.(12分)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1﹣7分别对应年份2008﹣2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;附注:参考数据:y i t i y i≈参考公式:相关系数r=,回归方程=+t中斜率和截距的最小二乘估计公式分别为:=,=﹣.【考点】BK:线性回归方程.【专题】11:计算题;35:转化思想;5I:概率与统计.【分析】(1)由折线图看出,y与t之间存在较强的正相关关系,将已知数据代入相关系数方程,可得答案;(2)根据已知中的数据,求出回归系数,可得回归方程,2016年对应的t值为9,代入可预测2016年我国生活垃圾无害化处理量.【解答】解:(1)由折线图看出,y与t之间存在较强的正相关关系,理由如下:∵r==≈≈≈∵>故y与t之间存在较强的正相关关系;(2)==≈≈=﹣≈×4≈∴y关于t的回归方程+2016年对应的t值为9,故×9+【点评】本题考查的知识点是线性回归方程,回归分析,计算量比较大,计算时要细心.19.(12分)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面PAB;(2)求直线AN与平面PMN所成角的正弦值.【考点】LS:直线与平面平行;MI:直线与平面所成的角.【专题】15:综合题;35:转化思想;44:数形结合法;5F:空间位置关系与距离;5G:空间角.【分析】(1)法一、取PB中点G,连接AG,NG,由三角形的中位线定理可得NG∥BC,且NG=,再由已知得AM∥BC,且AM=BC,得到NG∥AM,且NG=AM,说明四边形AMNG为平行四边形,可得NM∥AG,由线面平行的判定得到MN∥平面PAB;法二、证明MN∥平面PAB,转化为证明平面NEM∥平面PAB,在△PAC中,过N作NE⊥AC,垂足为E,连接ME,由已知PA⊥底面ABCD,可得PA∥NE,通过求解直角三角形得到ME∥AB,由面面平行的判定可得平面NEM∥平面PAB,则结论得证;(2)连接CM,证得CM⊥AD,进一步得到平面PNM⊥平面PAD,在平面PAD 内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN 所成角.然后求解直角三角形可得直线AN与平面PMN所成角的正弦值.【解答】(1)证明:法一、如图,取PB中点G,连接AG,NG,∵N为PC的中点,∴NG∥BC,且NG=,又AM=,BC=4,且AD∥BC,∴AM∥BC,且AM=BC,则NG∥AM,且NG=AM,∴四边形AMNG为平行四边形,则NM∥AG,∵AG⊂平面PAB,NM⊄平面PAB,∴MN∥平面PAB;法二、在△PAC中,过N作NE⊥AC,垂足为E,连接ME,在△ABC中,由已知AB=AC=3,BC=4,得cos∠ACB=,∵AD∥BC,∴cos,则sin∠EAM=,在△EAM中,∵AM=,AE=,由余弦定理得:EM==,∴cos∠AEM=,而在△ABC中,cos∠BAC=,∴cos∠AEM=cos∠BAC,即∠AEM=∠BAC,∴AB∥EM,则EM∥平面PAB.由PA⊥底面ABCD,得PA⊥AC,又NE⊥AC,∴NE∥PA,则NE∥平面PAB.∵NE∩EM=E,∴平面NEM∥平面PAB,则MN∥平面PAB;(2)解:在△AMC中,由AM=2,AC=3,cos∠MAC=,得CM2=AC2+AM2﹣2AC•AM•cos∠MAC=.∴AM2+MC2=AC2,则AM⊥MC,∵PA⊥底面ABCD,PA⊂平面PAD,∴平面ABCD⊥平面PAD,且平面ABCD∩平面PAD=AD,∴CM⊥平面PAD,则平面PNM⊥平面PAD.在平面PAD内,过A作AF⊥PM,交PM于F,连接NF,则∠ANF为直线AN与平面PMN所成角.在Rt△PAC中,由N是PC的中点,得AN==,在Rt△PAM中,由PA•AM=PM•AF,得AF=,∴sin.∴直线AN与平面PMN所成角的正弦值为.【点评】本题考查直线与平面平行的判定,考查直线与平面所成角的求法,考查数学转化思想方法,考查了空间想象能力和计算能力,是中档题.20.(12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅱ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.【考点】J3:轨迹方程;K8:抛物线的性质.【专题】15:综合题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)连接RF,PF,利用等角的余角相等,证明∠PRA=∠PQF,即可证明AR∥FQ;(Ⅱ)利用△PQF的面积是△ABF的面积的两倍,求出N的坐标,利用点差法求AB中点的轨迹方程.【解答】(Ⅰ)证明:连接RF,PF,由AP=AF,BQ=BF及AP∥BQ,得∠AFP+∠BFQ=90°,∴∠PFQ=90°,∵R是PQ的中点,∴RF=RP=RQ,∴△PAR≌△FAR,∴∠PAR=∠FAR,∠PRA=∠FRA,∵∠BQF+∠BFQ=180°﹣∠QBF=∠PAF=2∠PAR,∴∠FQB=∠PAR,∴∠PRA=∠PQF,∴AR∥FQ.(Ⅱ)设A(x1,y1),B(x2,y2),F(,0),准线为x=﹣,S△PQF=|PQ|=|y1﹣y2|,设直线AB与x轴交点为N,=|FN||y1﹣y2|,∴S△ABF∵△PQF的面积是△ABF的面积的两倍,∴2|FN|=1,∴x N=1,即N(1,0).设AB中点为M(x,y),由得=2(x1﹣x2),又=,∴=,即y2=x﹣1.∴AB中点轨迹方程为y2=x﹣1.【点评】本题考查抛物线的方程与性质,考查轨迹方程,考查学生的计算能力,属于中档题.21.(12分)设函数f(x)=acos2x+(a﹣1)(cosx+1),其中a>0,记|f(x)|的最大值为A.(Ⅰ)求f′(x);(Ⅱ)求A;(Ⅲ)证明:|f′(x)|≤2A.【考点】6B:利用导数研究函数的单调性.【专题】32:分类讨论;35:转化思想;4J:换元法;51:函数的性质及应用;53:导数的综合应用;56:三角函数的求值.【分析】(Ⅰ)根据复合函数的导数公式进行求解即可求f′(x);(Ⅱ)讨论a的取值,利用分类讨论的思想方法,结合换元法,以及一元二次函数的最值的性质进行求解;(Ⅲ)由(I),结合绝对值不等式的性质即可证明:|f′(x)|≤2A.【解答】(I)解:f′(x)=﹣2asin2x﹣(a﹣1)sinx.(II)当a≥1时,|f(x)|=|acos2x+(a﹣1)(cosx+1)|≤a|cos2x|+(a﹣1)|(cosx+1)|≤a|cos2x|+(a﹣1)(|cosx|+1)|≤a+2(a﹣1)=3a﹣2=f(0),因此A=3a﹣2.当0<a<1时,f(x)=acos2x+(a﹣1)(cosx+1)=2acos2x+(a﹣1)cosx﹣1,令g(t)=2at2+(a﹣1)t﹣1,则A是|g(t)|在[﹣1,1]上的最大值,g(﹣1)=a,g(1)=3a﹣2,且当t=时,g(t)取得极小值,极小值为g()=﹣﹣1=﹣,(二次函数在对称轴处取得极值)令﹣1<<1,得a<(舍)或a>.①当0<a≤时,g(t)在(﹣1,1)内无极值点,|g(﹣1)|=a,|g(1)|=2﹣3a,|g(﹣1)|<|g(1)|,∴A=2﹣3a,②当<a<1时,由g(﹣1)﹣g(1)=2(1﹣a)>0,得g(﹣1)>g(1)>g(),又|g()|﹣|g(﹣1)|=>0,∴A=|g()|=,综上,A=.(III)证明:由(I)可得:|f′(x)|=|﹣2asin2x﹣(a﹣1)sinx|≤2a+|a﹣1|,当0<a≤时,|f′(x)|<1+a≤2﹣4a<2(2﹣3a)=2A,当<a<1时,A==++>1,∴|f′(x)|≤1+a≤2A,当a≥1时,|f′(x)|≤3a﹣1≤6a﹣4=2A,综上:|f′(x)|≤2A.【点评】本题主要考查函数的导数以及函数最值的应用,求函数的导数,以及换元法,转化法转化为一元二次函数是解决本题的关键.综合性较强,难度较大.请考生在第22-24题中任选一题做答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,⊙O中的中点为P,弦PC,PD分别交AB于E,F两点.(1)若∠PFB=2∠PCD,求∠PCD的大小;(2)若EC的垂直平分线与FD的垂直平分线交于点G,证明:OG⊥CD.【考点】NC:与圆有关的比例线段.【专题】35:转化思想;49:综合法;5M:推理和证明.【分析】(1)连接PA,PB,BC,设∠PEB=∠1,∠PCB=∠2,∠ABC=∠3,∠PBA=∠4,∠PAB=∠5,运用圆的性质和四点共圆的判断,可得E,C,D,F共圆,再由圆内接四边形的性质,即可得到所求∠PCD的度数;(2)运用圆的定义和E,C,D,F共圆,可得G为圆心,G在CD的中垂线上,即可得证.【解答】(1)解:连接PB,BC,设∠PEB=∠1,∠PCB=∠2,∠ABC=∠3,∠PBA=∠4,∠PAB=∠5,由⊙O中的中点为P,可得∠4=∠5,在△EBC中,∠1=∠2+∠3,又∠D=∠3+∠4,∠2=∠5,即有∠2=∠4,则∠D=∠1,则四点E,C,D,F共圆,可得∠EFD+∠PCD=180°,由∠PFB=∠EFD=2∠PCD,即有3∠PCD=180°,可得∠PCD=60°;(2)证明:由C,D,E,F共圆,由EC的垂直平分线与FD的垂直平分线交于点G可得G为圆心,即有GC=GD,则G在CD的中垂线,又CD为圆G的弦,则OG⊥CD.【点评】本题考查圆内接四边形的性质和四点共圆的判断,以及圆的垂径定理的运用,考查推理能力,属于中档题.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P的直角坐标.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】34:方程思想;48:分析法;5D:圆锥曲线的定义、性质与方程;5S:坐标系和参数方程.【分析】(1)运用两边平方和同角的平方关系,即可得到C1的普通方程,运用x=ρcosθ,y=ρsinθ,以及两角和的正弦公式,化简可得C2的直角坐标方程;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,代入椭圆方程,运用判别式为0,求得t,再由平行线的距离公式,可得|PQ|的最小值,解方程可得P的直角坐标.另外:设P(cosα,sinα),由点到直线的距离公式,结合辅助角公式和正弦函数的值域,即可得到所求最小值和P的坐标.【解答】解:(1)曲线C1的参数方程为(α为参数),移项后两边平方可得+y2=cos2α+sin2α=1,即有椭圆C1:+y2=1;曲线C2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+cosθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,即有C2的直角坐标方程为直线x+y﹣4=0;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2﹣3=0,由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,解得t=±2,显然t=﹣2时,|PQ|取得最小值,即有|PQ|==,此时4x2﹣12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).【点评】本题考查参数方程和普通方程的互化、极坐标和直角坐标的互化,同时考查直线与椭圆的位置关系,主要是相切,考查化简整理的运算能力,属于中档题.[选修4-5:不等式选讲]24.已知函数f(x)=|2x﹣a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】11:计算题;35:转化思想;49:综合法;59:不等式的解法及应用.【分析】(1)当a=2时,由已知得|2x﹣2|+2≤6,由此能求出不等式f(x)≤6的解集.(2)由f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3,得|x﹣|+|x﹣|≥,由此能求出a的取值范围.【解答】解:(1)当a=2时,f(x)=|2x﹣2|+2,∵f(x)≤6,∴|2x﹣2|+2≤6,|2x﹣2|≤4,|x﹣1|≤2,∴﹣2≤x﹣1≤2,解得﹣1≤x≤3,∴不等式f(x)≤6的解集为{x|﹣1≤x≤3}.(2)∵g(x)=|2x﹣1|,∴f(x)+g(x)=|2x﹣1|+|2x﹣a|+a≥3,2|x﹣|+2|x﹣|+a≥3,|x﹣|+|x﹣|≥,当a≥3时,成立,当a<3时,|x﹣|+|x﹣|≥|a﹣1|≥>0,∴(a﹣1)2≥(3﹣a)2,解得2≤a<3,∴a的取值范围是[2,+∞).【点评】本题考查含绝对值不等式的解法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意不等式性质的合理运用.。
2016 年普通高等学校招生全国统一考试理科数学试题(1、2、3卷)参考答案
2262016年普通高等学校招生全国统一考试 理科数学(Ⅰ)参考答案第Ⅰ卷(选择题 共60分) 一、选择题 (60分) 1—12 DBCBA ADCCB AB 第Ⅱ卷(非选择题 90分)二、填空题:本大题共4小题,每小题5分13.2- 14.10 15.64 16.216000三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分为12分) 解:(I )由已知及正弦定理得, ()2cosC sin cos sin cos sinC A B+B A =, 即()2cosCsin sinC A+B =.∴2sinCcosC sinC =.可得1cosC 2=,所以C 3π=. (II)由已知,1sin C 2ab =.又C 3π=,所以6ab =.由已知及余弦定理得, 222cosC 7a b ab +-=.∴2213a b +=,从而()225a b +=.∴C ∆AB的周长为5.18.(本小题满分为12分) 解:(I )由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ⊂平面F ABE ,∴平面F ABE ⊥平面FDC E .(II )过D 作DG F ⊥E ,垂足为G ,由(I )知DG ⊥平面F ABE .以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长度,建立如图所示的空间直角坐标系G xyz -. 由(I )知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =,则DF 2=,DG =可得()1,4,0A ,()3,4,0B -,()3,0,0E -,(D .由已知,//F AB E ,所以//AB 平面FDC E . 又平面CD AB 平面FDC DC E =, ∴//CD AB ,CD//F E . 由//F BE A ,可得BE ⊥平面FDC E ,∴C F ∠E 为二面角C F -BE-的平面角,C F60∠E =.从而可得(C -.∴(C E =,()0,4,0EB =,(C 3,A =--,()4,0,0AB =-.设(),,n x y z =是平面C B E 的法向量,则C 00n n ⎧⋅E =⎪⎨⋅EB =⎪⎩,即040x y ⎧=⎪⎨=⎪⎩, ∴可取(3,0,n =. 设m 是平面CD AB 的法向量,则C 0m m ⎧⋅A =⎪⎨⋅AB =⎪⎩, 同理可取()0,3,4m =.则219cos ,19n m n m n m ⋅==-∴二面角C E -B -A 的余弦值为19-. 19.(本小题满分12分) 解:(Ⅰ)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而04.02.02.0)16(=⨯==X P ;22716.04.02.02)17(=⨯⨯==X P ;24.04.04.02.02.02)18(=⨯+⨯⨯==X P ; 24.02.04.022.02.02)19(=⨯⨯+⨯⨯==X P ; 2.02.02.04.02.02)20(=⨯+⨯⨯==X P ; 08.02.02.02)21(=⨯⨯==X P ; 04.02.02.0)22(=⨯==X P . 所以X 的分布列为(Ⅱ)由(Ⅰ)知44.0)18(=≤X P ,68.0)19(=≤X P ,故n 的最小值为19. (Ⅲ)记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当19=n 时,192000.68(19200500)0.2EY =⨯⨯+⨯+⨯(192002500)0.08+⨯+⨯⨯+(192003500)0.044040⨯+⨯⨯=; 当20=n 时,202000.88(202002500)0.08EY =⨯⨯+⨯+⨯⨯(202002500)0.044080+⨯+⨯⨯=. 可知当19=n 时所需费用的期望值小于20=n 时所需费用的期望值,故应选19=n .20.(本小题满分12分) 解:(Ⅰ)因为||||AC AD =,AC EB //,∴ADC ACD EBD ∠=∠=∠, ∴||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA . 由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为:13422=+y x (0≠y ). (Ⅱ)当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N . 由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得01248)34(2222=-+-+k x k x k .则3482221+=+k k x x ,341242221+-=k k x x . ∴34)1(12||1||22212++=-+=k k x x k MN .过点)0,1(B 且与l 垂直的直线m :)1(1--=x ky ,A 到m 的距离为122+k , ∴1344)12(42||22222++=+-=k k k PQ .∴四边形MPNQ 的面积341112||||212++==k PQ MN S . 可得当l 与x 轴不垂直时,四边形MPNQ面积的取值范围为(.当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为)38,12[.21.(本小题满分12分)解:(Ⅰ)()(1)2(1)x f x x e a x '=-+-(1)(2)x x e a =-+.(i )设0a =,则()(2)xf x x e =-,()f x 只有一个零点. (ii )设0a >,则当(,1)x ∈-∞时,'()0f x <;当(1,)x ∈+∞时,'()0f x >.∴()f x 在(,1)-∞上单调递减,在(1,)+∞上单调递增.又(1)f e =-,(2)f a =,取b 满足0b <且ln2ab <,则 223()(2)(1)()022a fb b a b a b b >-+-=->,228∴()f x 存在两个零点.(iii )设0a <,由'()0f x =得1x =或ln(2)x a =-.若2ea ≥-,则ln(2)1a -≤,∴当(1,)x ∈+∞时,'()0f x >,因此()f x 在(1,)+∞上单调递增. 又当1x ≤时,()0f x <, ∴()f x 不存在两个零点.若2ea <-,则ln(2)1a ->,∴当(1,ln(2))x a ∈-时,'()0f x <; 当(ln(2),)x a ∈-+∞时,'()0f x >. ∴()f x 在(1,ln(2))a -单调递减,在(ln(2),)a -+∞单调递增. 又当1x ≤时,()0f x <, ∴()f x 不存在两个零点.综上,a 的取值范围为(0,)+∞. (Ⅱ)不妨设12x x <,由(Ⅰ)知 12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,()f x 在(,1)-∞上单调递减,∴122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<. 由于222222(2)(1)x f x x e a x --=-+-,而22222()(2)(1)0x f x x e a x =-+-=,∴222222(2)(2)x x f x x e x e --=---.设2()(2)xx g x xex e -=---,则2'()(1)()x x g x x e e -=--.∴当1x >时,'()0g x <,而(1)0g =, ∴当1x >时,()0g x <. 从而22()(2)0g x f x =-<,∴122x x +<.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22.(本小题满分10分)选修4-1:几何证明选讲 解:(Ⅰ)设E 是AB 的中点,连结OE , ∵,120OA OB AOB =∠=︒, ∴OE AB ⊥,60AOE ∠=︒. 在Rt AOE ∆中,12OE AO =,即O 到直线AB 的距离等于圆O 的半径, ∴直线AB 与⊙O 相切.(Ⅱ)∵2OA OD =,∴O 不是,,,A B C D 四点所在圆的圆心,设'O 是,,,A B C D 四点所在圆的圆心,作直线'OO .由已知得O 在线段AB 的垂直平分线上,又'O 在线段AB 的垂直平分线上, ∴'OO AB ⊥.同理可证,'OO CD ⊥. ∴//AB CD . 23.(本小题满分10分)解:(I )由cos 1sin x a ty a t =⎧⎨=+⎩ (t 均为参数)消去参数t 得1C 的普通方程为 ()2221x y a +-= ①∴1C 为以()01,为圆心,a 为半径的圆. 方程为222210x y y a +-+-= ∵222sin x y y ρρθ+==,∴222sin 10a ρρθ-+-= 即为1C 的极坐标方程(II )24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+=,224x y x ∴+=,即()2224x y -+= ②3C :化为普通方程为2y x =.229由题意:1C 和2C 的公共方程所在直线即为3C .①—②得:24210x y a -+-=,即为3C ,∴210a -=∴1a =或1a =-(舍去).24.(本小题满分10分)解:(I )()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥()y f x =如图所示:(II )由⑴及()1f x >得当1x -≤时,由41x ->,解得5x >或3x <, 1x -∴≤;当312x -<<时,由321x ->,解得1x >或13x <,113x -<<∴或312x <<.当32x ≥,41x ->,解得5x >或3x <,332x <∴≤或5x >. 综上,13x <或13x <<或5x >, ()1f x >∴的解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭,,,.2302016年普通高等学校招生全国统一考试理科数学(Ⅱ)参考答案 第Ⅰ卷(选择题 共60分) 一、选择题 (60分)1—12 ACDAB CBCDC AB第Ⅱ卷(非选择题 90分)二、填空题13.211314.②③④ 15.1和3 16.1ln2-三.解答题17.(本题满分12分) 解:(I )设{}n a 的公差为d ,72874S a ==,∴44a =,∴4113a ad -==,∴1(1)n a a n d n =+-=. ∴[][]11lg lg10b a ===, [][]1111lg lg111b a ===, [][]101101101lg lg 2b a ===.(II )记{}n b 的前n 项和为n T ,则 1000121000T b b b =++⋅⋅⋅+[][][]121000lg lg lg a a a =++⋅⋅⋅+.当0lg 1n a <≤时,129n =⋅⋅⋅,,,;当1lg 2n a <≤时,101199n =⋅⋅⋅,,,; 当2lg 3n a <≤时, 100101999n =⋅⋅⋅,,,; 当lg 3n a =时,1000n =.∴1000091902900311893T =⨯+⨯+⨯+⨯=. 18.(本题满分12分) 解:(I )设续保人本年度的保费高于基本保费为事件A ,()1()1(0.300.15)0.55P A P A =-=-+=. (II )设续保人保费比基本保费高出60%为事件B ,()0.100.053()()0.5511P AB P B A P A +===.(Ⅲ)设本年度所交保费为随机变量X .平均保费0.850.300.15 1.250.20EX a a =⨯++⨯1.50.20 1.750.1020.05a a a +⨯+⨯+⨯0.2550.150.250.3a a a a =+++0.1750.1 1.23a a a ++=,∴平均保费与基本保费比值为1.23. 19.(本小题满分12分)解:(I )证明:∵54AE CF ==,∴AE CF AD CD =,∴EF AC ∥.∵四边形ABCD 为菱形, ∴AC BD ⊥,∴EF BD ⊥, ∴EF DH ⊥,∴EF D H '⊥. ∵6AC =,∴3AO =; 又5AB =,AO OB ⊥,∴4OB =,∴1AEOH OD AO=⋅=, ∴3DH D H '==,∴222'OD OH D H '=+,∴'D H OH ⊥.又∵OH EF H =I ,∴'D H ⊥面ABCD . (II )建立如图坐标系H xyz -. ()500B ,,,()130C ,,,()'003D ,,,()130A -,,, ()430AB =uu u r ,,,()'133AD =-uuur,,,()060AC =uuu r,,,设面'ABD 法向量()1n x y z =,,u r,由1100n AB n AD ⎧⋅=⎪⎨'⋅=⎪⎩得430330x y x y z +=⎧⎨-++=⎩,取345x y z =⎧⎪=-⎨⎪=⎩,∴()1345n =-u r ,,. 同理可得面'AD C 的法向量 ()2301n =u u r,,,∴1212cosn nn nθ⋅==u r u u ru r u u r,∴sinθ.20.(本小题满分12分)解:(I)当4t=时,椭圆E的方程为22143x y+=,A点坐标为()20-,.由已知条件及椭圆的对称性知,直线AM的倾斜角为4π,直线AM的方程为2y x=+.将2x y=-代入22143x y+=,并整理得27120y y-=,解得0y=或127y=,∴1127y=.∴AMN△的面积为11212144227749AMNS∆=⨯⨯⨯=.(II)由已知条件知,3,0,(t k A>>,直线AM的方程为(y k x=.联立(2213x yty k x⎧+=⎪⎨⎪=+⎩并整理,得()222223230tk x x t k t+++-=,解得x=x=∴AM=+=由已知条件知,直线AN的方程为(1y xk=-,∴同理可得AN=.由2AM AN=得22233ktk k t=++,即23632k ktk-=-.∵椭圆E的焦点在x轴,所以3t>,即236332k kk->-,整理得()()23122k kk+-<-2k<.21.(本小题满分12分)解:(I)()f x的定义域为()()22,-∞--+∞,.()()()22224ee222xxx xf xx x x⎛⎫-' ⎪=+=⎪+++⎝⎭.∵当x∈()()22,-∞--+∞,时,()0f x'>,∴()f x在()()22,-∞--+∞,和上单调递增,∴0x>时,()2e0=12xxfx->-+,∴()2e20xx x-++>.(II)()()()24e2ex xa x x ax ag xx----'=()4e2e2x xx x ax ax-++=()322e2xxx axx-⎛⎫+⋅+⎪+⎝⎭=,[)01a∈,.由(I)知,当0x>时,()2e2xxf xx-=⋅+的值域为()1-+∞,,只有唯一解使得2e2ttat-⋅=-+,(]02t∈,.当(0,)x t∈时()0g x'<,()g x单调减;当(,)x t∈+∞时()0g x'>,()g x单调增.()()()222e1ee1e22t tt ttta t th at t t-++⋅-++===+.记()e2tk tt=+.231232在(]0,2t ∈时,()()()2e 102t t k t t +'=>+,∴()k t 单调递增,∴()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号 22.(本小题满分10分) 解:(I )∵DF EC ⊥, ∴,DEF CDF ∆~∆∴GDF DEF FCB ∠=∠=∠,DF DE DGCF CD CB ==, ∴,DGF CBF ∆~∆由此可得,DGF CBF ∠=∠由此0180,CGF CBF ∠+∠= ∴,,,B C G F 四点共圆.(II )由,,,B C G F 四点共圆,CG CB ⊥知FG FB ⊥.连结GB .由G 为Rt DFC ∆斜边CD 的中点,知GF GC =,故,Rt BCG Rt BFG ∆~∆ ∴四边形BCGF 的面积S 是GCB ∆面积GCB S ∆的2倍,即111221.222GCB S S ∆==⨯⨯⨯=23.(本小题满分10分)解:(I )由c o s ,s i nx y ρθρθ==可得C的极坐标方程212cos 110.ρρθ++= (II )在(I )中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈ 由,A B 所对应的极径分别为12,,ρρ将l 的极坐标方程代入C 的极坐标方程得212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-= 12||||AB ρρ=-==由||AB =得23cos ,tan 8αα==,所以l 的斜率为3或3-.24.(本小题满分10分)解:(I )12,,211()1,,2212,.2x x f x x x x ⎧-≤-⎪⎪⎪=-<<⎨⎪⎪≥⎪⎩当12x ≤-时,由()2f x <得22,x -<解得1x >-,∴112x -<≤-;当1122x -<<时,()2f x <恒成立;当12x ≥时,由()2f x <得22,x <解得1x <, ∴112x ≤<.综上可得,()2f x <的解集{|11}M x x =-<<.(II )由(I )知,当,a b M ∈时, 11,11a b -<<-<<,∴222222()(1)1a b ab a b a b +-+=+-- 22(1)(1)0a b =--<, ∴|||1|.a b ab +<+2332016年普通高等学校招生全国统一考试理科数学(Ⅲ)参考答案 第Ⅰ卷(选择题 共60分) 一、选择题(60分)1—12 DCADA ABCBB A C第Ⅱ卷(非选择题 90分)二、填空题:本大题共3小题,每小题5分 13.32 14.32π 15.21y x =-- 16.4 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 解:(Ⅰ)由题意得1111a S a λ==+,∴1≠λ,λ-=111a ,01≠a .由n n a S λ+=1,111+++=n n a S λ得 n n n a a a λλ-=++11,即n n a a λλ=-+)1(1.由01≠a ,0≠λ得0≠n a , ∴11n n a a λλ+=-. ∴}{n a 是首项为λ-11,公比为1-λλ的等比数列, ∴1)1(11---=n n a λλλ. (Ⅱ)由(Ⅰ)得n n S )1(1--=λλ, 由32315=S 得3231)1(15=--λλ,即=-5)1(λλ321,解得1λ=-.18.(本小题满分12分) 解:(Ⅰ)由折线图中数据和附注中参考数据得4=t ,28)(712=-∑=i i t t ,55.0)(712=-∑=i iy y,=40.1749.32 2.89=-⨯=,99.0646.2255.089.2≈⨯⨯≈r .因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关相当高,从而可以用线性回归模型拟合y 与t 的关系.(Ⅱ)由331.1732.9≈=y 及(Ⅰ)得103.02889.2)())((ˆ71271≈=---=∑∑==i ii i it ty y t tb, 92.04103.0331.1ˆˆ≈⨯-≈-=t b y a. ∴y 关于t 的回归方程为: t y10.092.0ˆ+=. 将2016年对应的9=t 代入回归方程得:82.1910.092.0ˆ=⨯+=y. ∴预测2016年我国生活垃圾无害化处理量将约1.82亿吨. 19.(本小题满分12分)解:(Ⅰ)由已知得232==AD AM . 取BP 的中点T ,连接TN AT ,. 由N 为PC 中点知BC TN //,221==BC TN .又BC AD //,∴TN AM ,四边形AMNT 为平行四边形,∴AT MN //.∵⊂AT 平面PAB ,⊄MN 平面PAB ,∴//MN 平面PAB .(Ⅱ)取BC 的中点E ,连结AE . 由AC AB =得BC AE ⊥,从而 AD AE ⊥,且5)2(2222=-=-=BC AB BE AB AE .234以A 为坐标原点,AE 的方向为x 轴正方向,建立如图所示的空间直角坐标系xyz A -,由题意知,)4,0,0(P ,)0,2,0(M ,)0,2,5(C ,)2,1,25(N , (0,2,4)PM =-,)2,1,25(-=PN ,)2,1,25(=AN .设(,,)n x y z =为平面PMN 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅00PN n PM n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x , 可取(0,2,1)n =,∴2558|||||,cos |==><AN n AN n . 20.解:由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且221(,0),(,),(,),222a b A B b P a - 11(,),(,)222a b Q b R +--.记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x . (Ⅰ)由于F 在线段AB 上,故01=+ab . 记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b a aba ab a b a a b a k =-=-==--=+-=. ∴FQ AR ∥.(Ⅱ)设l 与x 轴的交点为)0,(1x D ,则1111222ABF S b a FD b a x ∆=-=--,2PQF a bS ∆-=.由题设可得221211ba x ab -=--,∴01=x (舍去),11=x .设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x yb a . 而y b a =+2,所以)1(12≠-=x x y .当AB 与x 轴垂直时,E 与D 重合.∴所求轨迹方程为12-=x y . 21.(本小题满分12分)解:(Ⅰ)'()2sin 2(1)sin f x a x a x =---. (Ⅱ)当1a ≥时,'|()||sin 2(1)(cos 1)|f x a x a x =+-+2(1)a a ≤+-32a =-(0)f = ∴32A a =-.当01a <<时,将()f x 变形为2()2c o s (1)c o s 1f x a x a x =+--. 令2()2(1)1g t at a t =+--,则A 是|()|g t 在[1,1]-上的最大值, (1)g a -=,(1)32g a =-,且当14a t a -=时,()g t 取得极小值,极小值为221(1)61()1488a a a a g a a a --++=--=-. 令1114a a--<<,解得13a <-(舍去),15a >.235(ⅰ)当105a <≤时,()g t 在(1,1)-内无极值点,|(1)|g a -=,|(1)|23g a =-,|(1)||(1)|g g -<,所以23A a =-.(ⅱ)当115a <<时,由(1)(1)2(1)0g g a --=->,知1(1)(1)()4ag g g a-->>.又1(1)(17)|()||(1)|048a a a g g a a --+--=>,∴2161|()|48a a a A g a a-++==. 综上,2123,05611,18532,1a a a a A a a a a ⎧-<≤⎪⎪++⎪=<<⎨⎪-≥⎪⎪⎩. (Ⅲ)由(Ⅰ)得'|()||2sin 2(1)sin |f x a x a x =--- 2|1|a a ≤+-.当105a <≤时,'|()|1242(23)2f x a a a A ≤+≤-<-=. 当115a <<时,131884a A a =++≥, ∴'|()|12f x a A ≤+<. 当1a ≥时,'|()|31642f x a a A ≤-≤-=,∴'|()|2f x A ≤.22.(本小题满分10分) 解:(Ⅰ)连结BC PB ,,则,BFD PBA BPD ∠=∠+∠ PCD PCB BCD ∠=∠+∠.∵AP BP =,∴PCB PBA ∠=∠, 又BCD BPD ∠=∠, ∴PCD BFD ∠=∠.又180PFD BFD ∠+∠=, 2PFB PCD ∠=∠,∴1803=∠PCD , ∴ 60=∠PCD .(Ⅱ)∵BFD PCD ∠=∠, ∴ 180=∠+∠EFD PCD ,由此知E F D C ,,,四点共圆,其圆心既在CE 的垂直平分线上,又在DF 的垂直平分线上,∴G 就是过E F D C ,,,四点的圆的圆心, ∴G 在CD 的垂直平分线上, ∴CD OG ⊥.23.(本小题满分10分)解:(I )1C 的普通方程为2213x y +=, 2C 的直角坐标方程为40x y +-=.(Ⅱ)由题意,可设点P的直角坐标为,sin )αα,因为2C 是直线,所以||PQ 的最小值即为P 到2C 的距离()d α的最小值,()d α=sin()2|3πα=+-.当且仅当2()6k k Z παπ=+∈时,()d α,此时P 的直角坐标为31(,)22.24.(本小题满分10分) 解:(Ⅰ)当2a =时,()|22|2f x x =-+. 解不等式|22|26x -+≤,得13x -≤≤. ∴()6f x ≤的解集为236 {|13}x x -≤≤.(Ⅱ)当x R ∈时,()()|2||12|f x g x x a a x +=-++- |212|x a x a ≥-+-+|1|a a =-+, 当12x =时等号成立, ∴当x R ∈时,()()3f xg x +≥等价于|1|3a a -+≥. ① 当1a ≤时,①等价于13a a -+≥,无解. 当1a >时,①等价于13a a -+≥,解得2a ≥.∴a 的取值范围是[2,)+∞.。
2016年高考全国1卷理科数学试题及答案(word精校解析版)(1)
2016年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.用2B 铅笔将答题卡上试卷类型A 后的方框涂黑.2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域内均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑.答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效.5、 考试结束后,请将本试题卷和答题卡一并上交.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}2430A x x x =-+<,{}230x x ->,则AB =(A )33,2⎛⎫-- ⎪⎝⎭ (B)33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭ (D )3,32⎛⎫ ⎪⎝⎭2。
设yi x i +=+1)1(,其中y x ,是实数,则=+yi x (A)1(B )2(C )3(D )23.已知等差数列{}n a 前9项的和为27,108a =,则100a = (A )100 (B )99 (C )98 (D )974。
某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 (A )错误! (B )错误! (C )错误! (D )错误!5.已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )()1,3- (B)(- (C )()0,3 (D)(6。
2016年高考全国卷I卷(理科数学word版)答案解析版
绝密★启封并使用完毕前试题类型:A2016年普通高等学校招生全国统一考试理科数学详细解析注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B = (A )3(3,)2--(B )3(3,)2-(C )3(1,)2(D )3(,3)2【答案】D【详细解答】{|13}A x x =<<,3{|}2B x x =>,3{|3}2AB x x ∴=<< 【试题评析】考察集合运算和简单不等式解法,属于必考题型,难易程度:易. (2)设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +(A )1(B )2(C )3(D )2 【答案】B【详细解答】由题意知:1x y ==,i =1i 2x y ∴++=【试题评析】考察复数相等条件和复数的模,属于必考题型,难易程度:易. (3)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a(A )100(B )99(C )98(D )97【答案】C【详细解答】解法1:199599272a a S a +===,53a ∴= 1051105a ad -∴==- 10010(10010)89098a a d ∴=+-=+=.解法2:91989272S a d ⨯=+=,即143a d +=,又10198a a d =+=,解得 11,1a d =-=,1001(1001)19998a a d ∴=+-=-+=【试题评析】考察等差数列的基本性质、前n 项和公式和通项公式,属于必考题型,难易程度:易.(4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 (A )13 错误!未指定书签。
2016全国卷高考理科数学试卷及答案word版
2016年普通高等学校招生全统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,共150分第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知i m m z )1()3(-++=在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(3-,1) (B )(1-,3) (C )(1,∞+) (D )(∞-,3-)(2)已知集合{}3,2,1=A ,{}Z x x x x B ∈<-+=,0)2)(1(,则=B A (A ){}1 (B ){}2,1 (C ){}3,2,1,0 (D ){}3,2,1,0,1- (3)已知向量),1(m a =,)2,3(-=b 且b b a ⊥+)(,则=m(A )8- (B )6- (C )6 (D )8 (4)圆0138222=+--+y x y x 的圆心到直线01=-+y ax 的距离为1,则=a(A )34-(B )43- (C )3 (D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 (A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π(C )28π (D )32π (7)若将函数x y 2sin 2=的图像向左平移12π个单位长度,则平移后图像的对称轴为 (A ))(62Z k k x ∈-=ππ (B ))(62Z k k x ∈+=ππ 44423(C ))(122Z k k x ∈-=ππ (D ))(122Z k k x ∈+=ππ (8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的2=x ,2=n ,依次输入的a 为2,2,5,则输出的=s (A )7 (B )12 (C )17 (D )34 (9)若53)4cos(=-απ,则=α2sin (A )257 (B )51 (C )51- (D )257-(10)以从区间[]1,0随机抽取n 2个数n n y y y x x x ,⋯⋯,,,,,,2121,构成n 个数对),(),,(),,(2211n n y x y x y x ,⋯,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 (A )m n 4 (B )m n 2 (C )n m 4 (D )nm 2 (11)已知21,F F 是双曲线E :12222=-by a x 的左,右焦点,点M 在E 上,1MF 与x 轴垂直,31sin 12=∠F MF ,则E 的离心率为 (A )2 (B )23(C )3 (D )2 (12)已知函数))((R x x f ∈满足)(2)(x f x f -=-,若函数xx y 1+=与)(x f y =图像的交点为),(,),,(),,(2211m m y x y x y x ⋯,则=+∑=mi i iy x1)((A )0 (B )m (C )m 2 (D )m 4第Ⅱ卷本卷包括必考题和选考题两部分。
(完整word)2016年高考全国Ⅲ理科数学试题及答案(word解析版),推荐文档
2016年普通高等学校招生全国统一考试(全国Ⅲ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年全国Ⅲ,理1,5分】设集合()(){}{}|230,|0S x x x T x x =--≥=> ,则S T =I ( )(A )[]2,3 (B )(][),23,-∞+∞U (C )[)3,+∞ (D )(][)0,23,+∞U 【答案】D【解析】由()()230x x --≥解得3x ≥或2x ≤,{}23S x x ∴=≤≥或,所以{}023S T x x x =<≤≥I 或,故选D . 【点评】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.(2)【2016年全国Ⅲ,理2,5分】若i 12z =+,则4i1zz =-( )(A )1 (B )1- (C )i (D )i - 【答案】C【解析】4i 4ii (12i)(12i)11zz ==+---,故选C . 【点评】复数的加、减法运算中,可以从形式上理解为关于虚数单位“i ”的多项式合并同类项,复数的乘法与多项式的乘法相类似,只是在结果中把2i 换成1-.复数除法可类比实数运算的分母有理化.复数加、减法的几何意义可依平面向量的加、减法的几何意义进行理解.(3)【2016年全国Ⅲ,理3,5分】已知向量13(,)2BA =uu v ,31(,)2BC =uu u v ,则ABC ∠=( )(A )30︒ (B )45︒ (C )60︒ (D )120︒ 【答案】A【解析】由题意,得133132222cos 11BA BC ABC BA BC⨯+⨯⋅∠===⨯u u u r u u u r u u u r u u u r ,所以30ABC ∠=︒,故选A . 【点评】(1)平面向量a r 与b r 的数量积为·cos a b a b θr r r r=,其中θ是a r 与b r 的夹角,要注意夹角的定义和它的取值范围:0180θ︒≤≤︒;(2)由向量的数量积的性质有||=a a a ·r r r ,·cos a ba b θ=r rr r ,·0a b a b ⇔⊥r r r r =,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.(4)【2016年全国Ⅲ,理4,5分】某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15C ︒,B 点表示四月的平均最低气温约为5C ︒.下面叙述不正确的是( )(A )各月的平均最低气温都在0C ︒以上 (B )七月的平均温差比一月的平均温差大 (C )三月和十一月的平均最高气温基本相同(D )平均气温高于20C ︒的月份有5个 【答案】D【解析】由图可知0C ︒均在虚线框内,所以各月的平均最低气温都在0C ︒以上,A 正确;由图可在七月的平均温差大于7.5C ︒,而一月的平均温差小于7.5C ︒,所以七月的平均温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在5C ︒,基本相同,C 正确;由图可知平均最高气温高于20C ︒的月份有3个或2个,所以不正确,故选D .【点评】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B .(5)【2016年全国Ⅲ,理5,5分】若3tan 4α=,则2cos 2sin 2αα+=( ) (A )6425(B )4825(C )1 (D )1625【答案】A 【解析】由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .【点评】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系. (6)【2016年全国Ⅲ,理6,5分】已知432a =,254b =,1325c =,则( )(A )b a c << (B )a b c << (C )b c a << (D )c a b << 【答案】A【解析】因为422335244a b ==>=,1223332554c a ==>=,所以b a c <<,故选A .【点评】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.(7)【2016年全国Ⅲ,理7,5分】执行下图的程序框图,如果输入的46a b ==,,那么输出的n =( )(A )3 (B )4 (C )5 (D )6 【答案】B【解析】第一循环,得2,4,6,6,1a b a s n =====;第二循环,得2,6,4,10,2a b a s n =-====;第三循环,得2,4,6,16,3a b a s n =====;第四循环,得2,6,4,2016,4a b a s n =-===>=; 退出循环,输出4n =,故选B .【点评】解决此类型时要注意:第一,要明确是当型循环结构,还是直到型循环结构.根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体.(8)【2016年全国Ⅲ,理8,5分】在ABC D 中,π4B =,BC 边上的高等于13BC ,则cos A = ( )(A )310 (B )10 (C )10- (D )310-【答案】C【解析】设BC 边上的高线为AD ,则3BC AD =,所以225AC AD DC AD =+=,2AB AD =.由余弦定理,知22222210cos 2225AB AC BC A AB AC AD AD+-===-⋅⨯⨯,故选C .【点评】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.(9)【2016年全国Ⅲ,理9,5分】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18365+ (B )54185+ (C )90 (D )81 【答案】B【解析】由三视图该集合体是以侧视图为底面的斜四棱柱,所以该几何体的表面积236233233554185S =⨯⨯+⨯⨯+⨯⨯=+,故选B .【点评】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立 未知量与已知量间的关系,进行求解.(10)【2016年全国Ⅲ,理10,5分】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π (C )6π (D )323π【答案】B【解析】要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B .【点评】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.(11)【2016年全国Ⅲ,理11,5分】已知O 为坐标原点,F 是椭圆2222:1(0)x y C a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12 (C )23 (D )34【答案】A 【解析】由题意设直线l 的方程为()y k x a =+,分别令x c =-与0x =得点()FM k a c =-,OE ka =,由~OBE ∆CBM ∆,得12OE OB FM BC=,即()2ka a k a c a c =-+,整理得13c a =,所以椭圆离心率为1e 3=,故选A . 【点评】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得ba或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .(12)【2016年全国Ⅲ,理12,5分】定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有( ) (A )18个 (B )16个 (C )14个 (D )12个【答案】C【解析】由题意,得必有0a =,1a =,则具体的排法列表如下:,故选C .往往利用表格法、树枝法将其所有可能一一列举出来,常常会达到岀奇制胜的效果.第II 卷本卷包括必考题和选考题两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年内蒙古自治区高考理科数学试题与答案(满分150分,时间120分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共24题,共5页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本题共12小题 ,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知Z=(m+3)+(m-1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(-3,1) (B )(-1,3) (C )()1,+∞ (D )(),3-∞-(2)已知集合{}1,2,3A =,{}|(1)(2)0,B x x x x Z =+-<∈,则A B U =(A ){1} (B ){1,2} (C ){0,1,2,3} (D ){-1,0,1,2,3}(3)已知向量a=(1,m ),b=(3,-2),且(a+b )⊥b ,则m=(A )-8 (B )-6 (C )6 (D )8(4)圆22x +y -2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=(A )4-3 (B )3-4(C )3 (D )2 (5)如图,小明从街道的E 处出发,先到F 处与小明回合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π (7)若将函数2sin 2y x = 的图像向左平移12π个单位长度,则平移后的图像对称轴为 (A )()26k x k Z ππ=-∈(B )()26k x k Z ππ=+∈ (C )()212k x k Z ππ=-∈(D )()212k x k Z ππ=+∈(8)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图。
执行该程序框图,若输入的 x=2,n=2,依次输入的a 为2,2,5,则输入的s=(A )7 (B )12 (C )17 (D )34 (9)若cos (4π-α)=35,则sin2α= (A )725 (B )15 (C )-15 (D )-725(10)从区间[]0,1随机抽取2n 个数12,,...,nx x x , 12,,...,n y y y 构成n 个数对11,x (y ),22,x (y ),…,,n n x (y ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2mn(11 1F ,2F 是双曲线E :22221a x y b+=的左、右焦点,点M 在E 上,1MF 与x 轴垂直,121sin 3MF F ∠=,则E 的离心率为(A (B )32(C (D )2(12)已知函数f x ∈()(R )满足f x =f x (-)2-(),若函数x 1y=x+与y=f x ()图像的x 1y=f x x +()交点为(1x ,1y );(2x ,2y ),…,(m x ,m y ),则1()mi i i x y =+=∑ (A )0 (B)m (C)2m (D)4m第II 卷本卷包括必考题和选考题两部分,第13~21题为必考题,每个试题考生都必须作答。
第22~24题为选考题,考生根据要求作答。
二、填空题:本题共4小题,每小题5分。
(13)△ABC 的内角A ,B ,C 的对边分别为a,b,c 若cosA=45,cosC=513,a=1,则b= 。
(14)α,β是两个平面,m ,n 是两条直线,有下列四个命题: ①如果m ⊥n ,m ⊥α,n//β,那么α⊥β. ②如果m ⊥α,n//α,那么m ⊥n. ③如果α//β,m ⊂α,那么m//β④如果m//n ,α//β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 ___________ (填写所有正确的命题序号)。
(15)有三张卡片,分别写有1和2,1和3,2和3。
甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是_____________。
(16)若直线y=kx b +的曲线,y=1nx+2的切线,也是曲线y=1n(x+1)的切线,则b=_________三、解答题:解答应写出文字说明、证明过程或演算步骤。
(17)(本小题满分12分)n S 为等差数列{}n a 的的前n 项和,且1a =1,7S =28,记n b =[]lg n a ,其中[x]表示不超过显得最大整数,如[0.9]=0,[lg99]=1. (Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列{n b }的前1000项和. (18)(本小题满分12分)某种保险的基本保费为a (单位:元),继续购买该保险的投保人成为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(Ⅰ)求一续保人本年度的保费高于基本保费的概率;(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (Ⅲ)求续保人本年度的平均保费与基本保费的比值.(19)(本小题满分12分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD ,CD 上,AE=CF=,EF 交于BD 于点H ,将DEF 沿EF 折到 D ′EF 的位置,OD ’=.(Ⅰ)证明:D ′H ⊥平面ABCD; (Ⅱ)求二面角B- D ′A-C 的正弦值。
(20)(本小题满分12分)已知椭圆E:2xt+23y=1的焦点在X轴上,A是E的左顶点,斜率为K(K>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,|AM|=|AN|时,求△AMN的面积;(Ⅱ)当2|AM|=|AN|时,求K的取值范围。
(21)(本小题满分12分)(Ⅰ)讨论函数f(X)=且f(X)>0,并证明当x>0时,(x-2)+ x+2>0;(Ⅱ)证明:当a[0,1)时,函数g(X)=(x>0)有最小值。
设g(X)的最小值为h(a),求函数h(a)的值域。
请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分.(22)(本小题满分10分)选修4-1:几何证明选讲如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.(Ⅰ)证明:B,C,G,F四点共圆;(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为22(+6)+=25x y .(Ⅰ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是(t 为参数),l 与C 交于A ,B 两点,10AB =,求l 的斜率.(24)(本小题满分10分)选修4-5:不等式选讲已知函数11()22f x x x =-++,M 为不等式()2f x <的解集. (Ⅰ)求M ; (Ⅱ)证明:当a ,bM 时,1a b ab +<+.答案:一、1.A 2.C 3.D 4.A 5.B 6.C 7.B 8.C 9.D 10.C 11.A 12.C 二、13.132114. ② ③ ④ 15.1和3 16.1-1n2 三、解答题:解答应写出文字说明、证明过程或演算步骤。
17.(Ⅰ)nan =,[lg ][lg ]n n b a n ==,10b =,11[lg11]1b ==,101[lg101]2b ==.(Ⅱ)因为lg10=,lg101=,lg1002=,lg10003=.所以19n ≤≤时,[lg ]0n =. 当100999n ≤≤时,[lg ]2n =.当999n =时,[lg ]3n =. 所以数列{}nb 的前1000项和1000121000[lg1][lg2][lg3][lg1000]0901900231893T b b b =+++=++++=+⨯+⨯+=L L .18.(Ⅰ)设一续保人本年度的保费高于基本保费的概率为1p ,则10.200.200.100.050.55p =+++=.(Ⅱ)设所求概率为2p ,则20.100.050.1530.200.200.100.050.5511p+===+++.(Ⅲ)续保人本年度的平均保费0.850.300.15 1.250.20 1.50.20 1.750.1020.05 1.23a a a a a a a ⨯+⨯+⨯+⨯+⨯+⨯=, 所以续保人本年度的平均保费1.23a 与基本保费a 的比值为1.23 1.23a a=.19.(Ⅰ)略.295.20.(Ⅰ)当||||AM AN =时,1k =,直线:2l y x =+.代入椭圆方程整理得271640x x ++=.因为直线l 与椭圆E 的交点为(2,0)A -,0(,)M x y ,所以01627x-+=-,得027x=-,所以点212(,)77M -,又212(,)77N --,所以△AMN 的面积1242144(2)27749S =⨯⨯-+=.(Ⅱ)令2t a =,则直线AM 方程()y k x a =+.联立椭圆直线方程,消去y 整理得22223222(3)2(3)0a k xk a x a a k +++-=.于是2302223k a a xa k -+=-+,所以2323022222333k a a k a xa a k a k -=-=++,所以226||3a AM a k +,222266||133a ak AN k a a k++.因为2||||AM AN =,所以22226633a aka k k a ++,即232(2)63a kk k-=-.所以23632kk t k -=-,因为3t >,所以236332kkk ->-,整理得3202k k ->-2k k <,所以k 的取值范围是.21.(Ⅰ)对2()e 2xx f x x -=+求导,得22()e (2)xx f x x '=+.当(0,)x ∈+∞时,()0f x '>,函数()f x 在区间(0,)+∞内单调递增, 所以()(0)f x >. 因为(0)1f =-,所以2e12xx x ->-+,所以(2)e 20xx x -++>.(Ⅱ)对2e ()x ax ag x x --=求导,得332(2)[e ]e (2)(2)2()xxx x a x a x x g x x x -++-+++'==,0x >.记2()e 2xx x a x ϕ-=++,0x >.由(Ⅰ)知函数()x ϕ区间(0,)+∞内单调递增,所以()(0)x ϕϕ>, 又(0)10a ϕ=-+<,(2)0a ϕ=>,所以存在唯一正实数0x ,使得002()e 02x xx a x ϕ-=+=+.于是,当0(0,)x x ∈时,()0x ϕ<,()0g x '<,函数()g x 在区间0(0,)x 内单调递减;当0(,)x x ∈+∞时,()0x ϕ>,()0g x '>,函数()g x 在区间0(,)x +∞内单调递增.所以()g x 在(0,)+∞内有最小值00020e()x ax a g x x --=,由题设0020e ()x ax ah a x --=.又因为002e 2x xa x --=+.所以001()e 2x g x x =+.根据(Ⅰ)知,()f x 在(0,)+∞内单调递增,0002e (1,0]2x x a x -=-∈-+, 所以002x <≤.令1()e (02)2xu x x x =<≤+,则1()e2xx u x x +'=>+,函数()u x 在区间(0,2)内单调递增,所以(0)()(2)u u x u <≤,即函数()h a 的值域为21e (,]24.22.(Ⅰ)在Rt △DEC 中,因为DF EC ⊥, 所以90FDC DCE FCB ∠=︒-∠=∠,且DF CF DEDC=,因为DE DG =,BC CD =,所以DF FC DGCB=,所以△DFG ∽△CFB .所以DGF CBF ∠=∠.所以180FGC CBF ∠+∠=︒. 所以B ,C ,G ,F 四点共圆.(Ⅱ)因为12DE AD =,DG DE =,所以12DG DC =.因为B ,C ,G ,F 四点共圆,所以90GFB GCB ∠=∠=︒. 所以△GFB ≌△GCB .所以△GCB 的面积1111224S =⨯⨯=.23.(Ⅰ)由圆C 的标准方程22(6)25x y ++=,得221290x y x +++=,所以圆C 的极坐标方程为212cos 90ρρθ++=.(Ⅱ)将cos ,sin x t y t αα=⎧⎨=⎩代入22(6)25x y ++=,整理得212cos 110tt α++=.设A ,B 两点对应参数值分别为1t ,2t ,则1212cos t tα+=-,1211t t=.所以12||||AB tt =-23cos 8α=,解得cos α=,所以tan α或tan α=.24.(Ⅰ)函数12,,211()1,,2212,.2x x f x x x x ⎧-≤-⎪⎪⎪=-<<⎨⎪⎪≥⎪⎩,则不等式()2f x <可化为1,222,x x ⎧≤-⎪⎨⎪-<⎩或11,2212,x ⎧-<<⎪⎨⎪<⎩或1,222,x x ⎧≥⎪⎨⎪<⎩解得11x -<<.所以不等式()2f x <的解集为(1,1)-. (Ⅱ)由(Ⅰ)可知(1,1)a ∈-,(1,1)b ∈-,所以210a->,210b ->,于是22(1)(1)0a b -->,即22(1)()0ab a b +-+>,所以|1|||ab a b +>+.。