4-5解析几何吕林根第四版

合集下载

解析几何课件(吕林根许子道第四版)

解析几何课件(吕林根许子道第四版)

下一页
返回
定理1.4.2 如果向量e1, e2不共线,那么向量 r与
e1 , e2共面的充要条件是 r可以用向量 e1 , e2线性表示,
或者说向量 r可以分解成e1 , e2的线性组合,即
r xe1 ye2
(1.4-2)
并且系数x, y被e1 , e2 , r唯一确定. 这时e1 , e2叫做平面上向量的基底 . 定理1.4.3 如果向量e1 , e2 , e3不共面,那么空间
OC OA OB
下一页
返回
B
C
O
A
这种求两个向量和的方法叫做平行四边形法则
定理1.2.2 向量的加法满足下面的运算规律:
(1)交换律:
a

b

b

a.
(2)结合律:
a

b

c

(a

b)

c
a

(b

c).
(3)
a

(a)

0.
上一页 下一页
例2 证明四面体对边中点的连线交于一点,且
互相平分.
证 设四面体ABCD一组
D
对边AB,CD的中点E, F的连
线为EF ,它的中点为P1,其余
e3
两组对边中点分别为 P2 , P3 ,
下只需证P1 , P2 , P3三点重合
就可以了.取不共面的三向量 A
F
P1
e2
C
AB e1 , AC e2 , AD e3 ,
在不全为零的 n个数1 , 2 ,, n使得
1 a1 2 a2 n an=0,
(1.4 4)

解析几何课件(吕林根许子道第四版)(精)

解析几何课件(吕林根许子道第四版)(精)
上一页 下一页
返回
第一章 向量与坐标
§1.3 数乘向量
表示与非零向量 设ea a 同方向的单位向量,
按照向量与数的乘积的规定,
a | a | ea
a . ea |a |
上式表明:一个非零向量除以它的模的结果是 一个与原向量同方向的单位向量.
上一页下一页ຫໍສະໝຸດ §1.2 向量的加法定 义1.2.1 设 已 知 矢 量 a、 b ,以空间任意一点 O为 始 点 接连作矢量 OA a, AB b得 一 折 线 OAB, 从 折 线 的 端 点 O到 另 一 端 点 B的 矢 量 OB c , 叫 做 两 矢 量 a与b的 和 , 记 做 cab
(2)结合律: a b c (a b ) c a (b c ). (3) a ( a ) 0.
上一页
下一页
返回
第一章 向量与坐标
§1.2 向量的加法
有限个矢量 a1 , a2 ,an 相 加 可 由 矢 量 的 三 角 求 形和 法则推广
解析几何课件(第四版)
吕林根 许子道等编
解析几何的基本思想是用代数的方法来研究 几何,为将代数运算引导几何中,采用的最根本最 有效的做法----有系统的把空间的几何结构代数 化,数量化.
第一章 第二章 第三章 第四章 向量与坐标 轨迹与方程 平面与空间直线 柱面锥面旋转曲面与二次曲面
第五章 二次曲线的一般理论
下一页
返回
第一章 向量与坐标
§1.4向量的线性关系与向量的分解
定理1.4.2 如果向量 e1 , e 2 不共线,那么向量 r与 e1 , e2 共面的充要条件是 r可以用向量 e1 , e2线性表示, 或者说向量 r可以分解成 e1 , e2的线性组合,即 r x e1 y e2 并且系数 x , y被 e1 , e2 , r唯一确定 . 这时 e1 , e 2叫做平面上向量的基底 . 定理1.4.3 如果向量 e1 , e 2 , e 3 不共面,那么空间 任意向量 r可以由向量 e1 , e 2 , e 3线性表示,或说空间 ( ) 1.4-2

【推荐下载】解析几何第四版答案-推荐word版 (17页)

【推荐下载】解析几何第四版答案-推荐word版 (17页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==解析几何第四版答案篇一:解析几何第四版吕林根课后习题答案第三章第三章平面与空间直线3.1平面的方程1.求下列各平面的坐标式参数方程和一般方程:(1)通过点M1(3,1,?1)和点M2(1,?1,0)且平行于矢量{?1,0,2}的平面(2)通过点M1(1,?5,1)和M2(3,2,?2)且垂直于xoy坐标面的平面;(3)已知四点A(5,1,3),B(1,6,2),C(5,0,4)D(4,0,6)。

求通过直线AB且平行于直线CD的平面,并求通过直线AB且与?ABC平面垂直的平面。

解:(1)? M1M2?{?2,?2,1},又矢量{?1,0,2}平行于所求平面,故所求的平面方程为:?x?3?2u?v??y?1?2u?z??1?u?2v?一般方程为:4x?3y?2z?7?0(2)由于平面垂直于xoy面,所以它平行于z轴,即{0,0,1}与所求的平面平行,又M1M2?{2,7,?3},平行于所求的平面,所以要求的平面的参数方程为:?x?1?2u??y??5?7u ?z?1?3u?v?一般方程为:7(x?1)?2(y?5)?0,即7x?2y?17?0。

(3)(ⅰ)设平面?通过直线AB,且平行于直线CD: ?{?4,5,?1},?{?1,0,2} 从而?的参数方程为:?x?5?4u?v??y?1?5u?z?3?u?2v?一般方程为:10x?9y?5z?74?0。

(ⅱ)设平面??通过直线AB,且垂直于?ABC所在的平面? ?{?4,5,?1}, ??{?4,5,?1}?{0,?1,1}?{4,4,4}?4{1,1,1}均与??平行,所以??的参数式方程为:?x?5?4u?v??y?1?5u?v ?z?3?u?v?一般方程为:2x?y?3z?2?0.2.化一般方程为截距式与参数式: ?:x?2y?z?4?0. 解:?与三个坐标轴的交点为:(?4,0,0),(0?2,0),(0,0,4),xyz???1. ?4?24所以,它的截距式方程为:又与所给平面方程平行的矢量为:{4,?2,0},{4,0,4},? 所求平面的参数式方程为:?x??4?2u?v??y??u?z?v?3.证明矢量v?{X,Y,Z}平行与平面Ax?By?Cz?D?0的充要条件为:AX?BY?CZ?0. 证明:不妨设A?0,则平面Ax?By?Cz?D?0的参数式方程为:DBC?x???u?v?AAA??y?u?z?v??BC故其方位矢量为:{?,1,0},{?,0,1},AA从而平行于平面Ax?By?Cz?D?0的充要条件为:v,{?BC,1,0},{?,0,1}共面? AAXYB?1AC?0A? AX?BY?CZ?0.Z0?0 14. 已知连接两点A(3,10,?5),B(0,12,z)的线段平行于平面7x?4y?z?1?0,求B 点的z坐标.解: ??{?3,2,5?z} 而AB平行于7x?4y?z?1?0 由题3知:(?3)?7?2?4?(z?5)?0 从而z?18.5. 求下列平面的一般方程.⑴通过点?1?2,?1,1?和?2?3,?2,1?且分别平行于三坐标轴的三个平面; ⑵过点??3,2,?4?且在x轴和y轴上截距分别为?2和?3的平面; ⑶与平面5x?y?2z?3?0垂直且分别通过三个坐标轴的三个平面; ⑷已知两点?1?3,?1,2?,?2?4,?2,?1?,求通过?1且垂直于?1,?2的平面; ⑸原点?在所求平面上的正射影为??2,9,?6?;⑹求过点?1?3,?5,1?和?2?4,1,2?且垂直于平面x?8y?3z?1?0的平面.x?2解:平行于x轴的平面方程为y?1z?1?1000?0.即z?1?0.11同理可知平行于y轴,z轴的平面的方程分别为z?1?0,x?y?1?0. ⑵设该平面的截距式方程为xyz24???1,把点??3,2,?4?代入得c?? ?2?3c19故一般方程为12x?8y?19z?24?0.⑶若所求平面经过x轴,则?0,0,0?为平面内一个点,?5,1,?2?和?1,0,0?为所求平面的方位矢量,x?0∴点法式方程为y?0z?010?2?0 051∴一般方程为2y?z?0.同理经过y轴,z轴的平面的一般方程分别为2x?5z?0,x?5y?0.1,?1,?3?.?1?2垂直于平面?, ⑷?1?2??1,?1,?3?,平面?通过点?1?3,?1,2?, ∴该平面的法向量n??因此平面?的点位式方程为?x?3???y?1??3?z?2??0. 化简得x?y?3z?2?0.??. (5) op??2,9,?6?p?op????4?81?36?11.op?p?n0?11?cos?,cos?,cos????2,9,?6?. 296,cos??,cos???. 111111296y?z?11?0. 则该平面的法式方程为:x?111111∴ cos??既 2x?9y?6z?121?0.1,?8,3?,M1M2??(6)平面x?8y?3z?1?0的法向量为n??1,6,1?,点从?4,1,2? ?x?4写出平面的点位式方程为y?1z?2?863111?83?0,则A???26,61B?313?2,C??14,D??26?4?2?28??74, 111则一般方程Ax?By?Cz?D?0,即:13x?y?7z?37?0. 6.将下列平面的一般方程化为法式方程。

《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程2.1平面曲线的方程

《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程2.1平面曲线的方程

[串点成面·握全局]
一、近代交通业发展的原因、特点及影响 1.原因 (1)先进的中国人为救国救民,积极兴办近代交通业,促 进中国社会发展。 (2)列强侵华的需要。为扩大在华利益,加强控制、镇压 中国人民的反抗,控制和操纵中国交通建设。 (3)工业革命的成果传入中国,为近代交通业的发展提供 了物质条件。
轮船正招式成商立局,标志着中国新式航运业的诞生。
(2)1900年前后,民间兴办的各种轮船航运公司近百家,几乎都是
在列强排挤中艰难求生。
2.航空
(1)起步:1918年,附设在福建马尾造船厂的海军飞机工程处开始
研制 。
(2)发展水:上1飞918机年,北洋政府在交通部下设“
”;此后十年间,航空事业获得较快发展。
曲线的参数方程与普通方程的互化
曲线的参数方程 ,是解析几何联系实际的 一个重 要工具.
(1)化参数方程为普通方程 时,关键在于消去参 数t.
此时,还应注意 ①同一条曲线可以有多种不 同形式的参数方程,如
x 1t,

y

2

t.

x 1 3t, y 2 3t.
在消去t后都表示同一直线 x y 3.
ct, c, t
(t 0)
则其上任意三点P, Q,
R的坐标可以分别取
y
Q

H R
P
o
x

c
c
c
P(ct1, t1 ), Q(ct2 , t2 ) R(ct3, t3 ),
历史ⅱ岳麓版第13课交通与通讯 的变化资料
精品课件欢迎使用
[自读教材·填要点]
一、铁路,更多的铁路 1.地位 铁路是 交通建运设输的重点,便于国计民生,成为国民经济 发展的动脉。 2.出现 1881年,中国自建的第一条铁路——唐山 至开胥平各庄铁 路建成通车。 1888年,宫廷专用铁路落成。

解析几何第四版吕林根-期末复习-课后习题(重点)详解

解析几何第四版吕林根-期末复习-课后习题(重点)详解

解析几何第四版吕林根-期末复习-课后习题(重点)详解第一章 矢量与坐标§1.3 数量乘矢量4、 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B、D 三点共线.证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382 ∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B、D 三点共线.6、 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量, BM , CN 可 以构成一个三角形. 证明: )(21AC AB AL += )(21+=)(21CB CA CN +=)(21=+++++=++∴7.、设L 、M 、N 是△ABC 的三边的中点,O 是任意一点,证明OB OA ++OC =OL ++.[证明] LA OL OA += += NC ON OC +=)(NC MB LA ON OM OL OC OB OA +++++=++∴ =)(CN BM AL ON OM OL ++-++由上题结论知:0=++ ON OM OL OC OB OA ++=++∴从而三中线矢量CN BM AL ,,构成一个三角形。

8.、如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明OA +OB +OC +=4.[证明]:因为=21(OA +OC ), =21(OB +OD ), 所以 2OM =21(OA +OB +OC +) 所以OA +OB +OC +=4. 10、 用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半.证明 已知梯形ABCD ,两腰中点分别为M 、N ,连接AN 、BN .→→→→→→++=+=DN AD MA AN MA MN ,→→→→→→++=+=CN BC MB BN MB MN ,∴ →→→+=BC AD MN ,即§1.4 矢量的线性关系与矢量的分解 3.、设一直线上三点A , B , P 满足AP =λ(λ≠-1),O 是空间任意一点,求证:OP =λλ++1 [证明]:如图1-7,因为图1-5=OP -, =-OP ,所以 -=λ (-), (1+λ)OP =+λ,从而 OP =λλ++1OB. 4.、在ABC ∆中,设,1e =2e =.(1) 设E D 、是边BC 三等分点,将矢量,分解为21,e e 的线性组合;(2)设AT 是角A 的平分线(它与BC 交于T 点),将AT 分解为21,e e 的线性组合解:(1)()12123131,e e e e -==-=-= ,2111231323131e e e e e +=-+=+=,同理123132e e+=(2)因为 ||||TC ||11e e , 且 BT 与方向相同, 所以 BT ||21e e . 由上题结论有AT||||1||212211e e e e e +||||21e e +.5.在四面体OABC 中,设点G 是ABC ∆的重心(三中线之交点),求矢量对于矢量,,,的分解式。

解析几何第四版吕林根课后习题答案第五章

解析几何第四版吕林根课后习题答案第五章

解析⼏何第四版吕林根课后习题答案第五章第五章⼆次曲线⼀般的理论§5.1⼆次曲线与直线的相关位置1. 写出下列⼆次曲线的矩阵A 以及1(,)F x y ,2(,)F x y 及3(,)F x y .(1)22221x y a b +=;(2)22221x y a b -=;(3)22y px =;(4)223520;x y x -++=(5)2226740x xy y x y -+-+-=.解:(1)22100100001a A b ?? ?= - ;121(,)F x y x a =221(,)F x y y b=3(,)1F x y =-;(2)22100100001a A b ?? ?=- -;121(,)F x y x a =221(,)F x y y b =-;3(,)1F x y =-.(3)0001000p A p -??= ? ?-??;1(,)F x y p =-;2(,)F x y y =;3(,)F x y px =-;(4)51020305022A ?? ?=-;15(,)2F x y x =+;2(,)3F x y y =-;35(,)22F x y x =+;(5)1232171227342A ??-- ? ? ?=---;11(,)232F x y x y =--;217(,)22F x y x y =-++;37(,)342F x y x y =-+-. 2. 求⼆次曲线22234630x xy y x y ----+=与下列直线的交点.(1)550x y --=(2)220x y ++=;(3)410x y +-=;(4)30x y -=;(5)2690x y --=.提⽰:把直线⽅程代⼊曲线⽅程解即可,详解略(1)15(,),(1,0)22-;(2??,??;(3)⼆重点(1,0);(4)11,26??;(5)⽆交点.3. 求直线10x y --=与222210x xy y x y -----=的交点. 解:由直线⽅程得1x y =+代⼊曲线⽅程并解⽅程得直线上的所有点都为交点. 4 .试确定k 的值,使得(1)直线50x y -+=与⼆次曲线230x x y k -+-=交于两不同的实点;(2)直线1,{x kt y k t=+=+与⼆次曲线22430x xy y y -+-=交于⼀点;(3)10x ky --=与⼆次曲线22(1)10xy y k y -+---=交于两个相互重合的点;(4)1,{1x t y t=+=+与⼆次曲线222420x xy ky x y ++--=交于两个共轭虚交点.解:详解略.(1)4k <-;(2)1k =或3k =(3)1k =或5k =;(4)4924k >. §5.2⼆次曲线的渐进⽅向、中⼼、渐进线1. 求下列⼆次曲线的渐进⽅向并指出曲线属于何种类型的(1)22230xxy y x y ++++=;(2)22342250x xy y x y ++--+=;(3)24230xy x y --+=.解:(1)由22(,)20X Y X XY Y φ=++=得渐进⽅向为:1:1X Y =-或1:1-且属于抛物型的;(2)由22(,)3420X Y X XY Y φ=++=得渐进⽅向为:(2:3X Y =-且属于椭圆型的;(3)由(,)20X Y XY φ==得渐进⽅向为:1:0X Y =或0:1且属于双曲型的.2. 判断下列曲线是中⼼曲线,⽆⼼曲线还是线⼼曲线.(1)22224630x xy y x y -+--+=;(2)22442210x xy y x y -++--=;(3)2281230y x y ++-=;(4)2296620x xy y x y -+-+=.解:(1)因为2111012I -==≠-,所以它为中⼼曲线;(2)因为212024I -==-且121241-=≠--,所以它为⽆⼼曲线;(3)因为200002I ==且004026=≠,所以它为⽆⼼曲线;(4)因为293031I -==-且933312--==-,所以它为线⼼曲线; 3. 求下列⼆次曲线的中⼼.(1)225232360x xy y x y -+-+-=;(2)222526350x xy y x y ++--+=;(3)22930258150x xy y x y -++-=.解:(1)由510,3302x y x y --=-++=??得中⼼坐标为313(,)2828-;(2)由5230,2532022x y x y ?+-=+-=??得中⼼坐标为(1,2)-;(3)由91540,15152502x y x y -+=??-+-=知⽆解,所以曲线为⽆⼼曲线. 4. 当,a b 满⾜什么条件时,⼆次曲线226340x xy ay x by ++++-=(1)有唯⼀中⼼;(2)没有中⼼;(3)有⼀条中⼼直线.解:(1)由330,2302x y b x ay ?++=++=??知,当9a ≠时⽅程有唯⼀的解,此时曲线有唯⼀中⼼;(2)当9,9a b =≠时⽅程⽆解,此时曲线没有中⼼;(3)当9a b ==时⽅程有⽆数个解,此时曲线是线⼼曲线.5. 试证如果⼆次曲线22111222132333(,)2220F x y a x a xy a y a x a y a =+++++= 有渐进线,那么它的两个渐进线⽅程是Φ00(,)x x y y --=221101200220()2()()()0a x x a x x y y a y y -+--+-=式中00(,)x y 为⼆次曲线的中⼼.证明:设(,)x y 为渐进线上任意⼀点,则曲线的的渐进⽅向为00:():()X Y x x y y =--,所以Φ00(,)x x y y --=221101200220()2()()()0a x x a x x y y a y y -+--+-=.6. 求下列⼆次曲线的渐进线.(1)226310x xy y x y --++-=;(2)2232340x xy y x y -++-+=;(3)2222240x xy y x y ++++-=.解:(1)由1360,2211022x y x y ?-+=--+=??得中⼼坐标13(,)55-.⽽由2260X XY Y --=得渐进⽅向为:1:2X Y =或:1:3X Y =-,所以渐进线⽅程分别为210x y -+=与30x y += (2)由310,22332022x y x y ?-+=-+-=??得中⼼坐标13(,)55-.⽽由22320X XY Y -+=得渐进⽅向为:1:1X Y =或:2:1X Y =,所以渐进线⽅程分别为20x y -+=与210x y --=(3)由10,10x y x y ++=??++=?知曲线为线⼼曲线,.所以渐进线为线⼼线,其⽅程为10x y ++=.7. 试证⼆次曲线是线⼼曲线的充要条件是230I I ==,成为⽆⼼曲线的充要条件是230,0I I =≠. 证明:因为曲线是线⼼曲线的充要条件是131112122223a a a a a a ==也即230I I ==;为⽆⼼曲线的充要条件是131112122223a a a a a a =≠也即230,0I I =≠. 8. 证明以直线1110A x By C ++=为渐进线的⼆次曲线⽅程总能写成111()()0A x By C Ax By C D +++++=. 证明:设以1110A x By C ++=为渐进线的⼆次曲线为 22111222132333(,)2220F x y a x a xy a y a x a y a =+++++=,则它的渐进线为Φ00(,)x x y y --=221101200220()2()()()0a x x a x x y y a y y -+--+-=,其中00(,)x y 为曲线的中⼼,从⽽有Φ00(,)x x y y --=111()()0A x By C Ax By C ++++= ,⽽Φ00(,)x x y y --=0 因为00(,)x y 为曲线的中⼼,所以有11012013a x a y a +=-,12022023a x a y a +=- 因此Φ000033(,)(,)(,)x x y y F x y x y a φ--=+-,令0033(,)x y a D φ-=-,代⼊上式得即111(,)()()F x y A x By C Ax By C D =+++++,所以以1110A x By C ++=为渐进线的⼆次曲线可写为111()()0A x By C Ax By C D +++++=.9.求下列⼆次曲线的⽅程.(1)以点(0,1)为中⼼,且通过(2,3),(4,2)与(-1,-3);(2)通过点(1,1),(2,1),(-1,-2)且以直线10x y +-=为渐进线. 解:利⽤习题8的结论即可得:(1)40xy x --=;(2)2223570x xy y x ---+=.§5.3⼆次曲线的切线1. 求以下⼆次曲线在所给点或经过所给点的切线⽅程.(1)曲线223457830x xy y x y ++---=在点(2,1);(2)曲线曲线223457830x xy y x y ++---=在点在原点;(3)曲线22430x xy y x y +++++=经过点(-2,-1);(4)曲线225658x xy y ++=经过点();(5)曲线222210x xy y x y -----=经过点(0,2).解:(1)910280x y +-=;(2)20x y -=;(3)10,30y x y +=++=;(4)1150,0x y x y +-=-+=;(5)0x =.2. 求下列⼆次曲线的切线⽅程并求出切点的坐标.(1)曲线2243530x xy y x y ++--+=的切线平⾏于直线40x y +=;(2)曲线223x xy y ++=的切线平⾏于两坐标轴.解:(1)450x y +-=,(1,1)和480x y +-=,(4,3)-;(2)20y ±=,(1,2),(1,2)--和20x ±=,(2,1),(2,1)--. 3. 求下列⼆次曲线的奇异点.(1)22326410x y x y -+++=;(2)22210xy y x +--=;(3)2222210x xy y x y -+-++=.解:(1)解⽅程组330,220x y +=??-+=?得奇异点为(1,1)-;(2)解⽅程组10,0y x y -=??+=?得奇异点为(1,1)-.4.试求经过原点且切直线4320x y ++=于点(1,-2)及切直线10x y --=于点(0,-1)的⼆次曲线⽅程. 解:利⽤(5.3-5)可得226320x xy y x y +-+-=.5.设有共焦点的曲线族2222221x y a h b h+=++,这⾥h 是⼀个变动的参数,作平⾏于已知直线y mx =的曲线的切线,求这些切线切点的轨迹⽅程. 解:设切点坐标为00(,)x y ,则由(5.3-4)得曲线的切线为0022221x x y ya hb h+=++,因为它平⾏与y m x =,所以有2220000x b my a h x my +=-+,代⼊220022221x y a h b h +=++整理得222220000(1)()0m x m x y m y m a b +----=,所以切点的轨迹为22222(1)()0mx m xy my m a b +----=.§5.4⼆次曲线的直径1. 已知⼆次曲线223754510x xy y x y +++++=.求它的(1)与x 轴平⾏的弦的中点轨迹;(2)与y 轴平⾏的弦的中点轨迹;(3)与直线10x y ++=平⾏的弦的中点轨迹.解:(1)因为x 轴的⽅向为:1:0X Y =代⼊(5.4-3)得中点轨迹⽅程6740x y ++=;(2)因为y 轴的⽅向为:0:1X Y =代⼊(5.4-3)得中点轨迹⽅程71050x y ++=;(3)因为直线10x y ++=的⽅向为:1:1X Y =-代⼊(5.4-3)得中点轨迹⽅程310x y ++=. 2.求曲线224260x xy x y +---=通过点(8,0)的直径⽅程,并求其共轭直径. 解:(1)把点(8,0)代⼊(2)(21)0X x Y y -+-= 得:1:6X Y =,再代⼊上式整理得直径⽅程为1280x y +-=,其共轭直径为122230x y --=.3.已知曲线22310xy y x y --+-=的直径与y 轴平⾏,求它的⽅程,并求出这直径的共轭直径. 解:直径⽅程为10x -=,其共轭直径⽅程为230x y -+=.4.已知抛物线28y x =-,通过点(-1,1)引⼀弦使它在这点被平分. 解:430x y ++=.5. 求双曲线22164x y -=⼀对共轭直径的⽅程,已知两共轭直径间的⾓是45度. 解:设直径和共轭直径的斜率分别为',k k ,则'23kk =.⼜因为它们交⾓45度,所以''11k k kk -=+,从⽽13k =-或2,'2k =-或13,故直径和共轭直径的⽅程为30x y +=和20x y -=或20x y +=和30x y -=.6.求证:通过中⼼曲线的直线⼀定为曲线的直径;平⾏于⽆⼼曲线渐进⽅向的直线⼀定为其直径. 证明:因为中⼼曲线直径为中⼼线束,因此过中⼼的直线⼀定为直径;当曲线为⽆⼼曲线时,它们的直径属于平⾏直线束,其⽅向为渐进⽅向,所以平⾏于⽆⼼曲线渐进⽅向的直线⼀定为其直径. 7.求下列两条曲线的公共直径.(1)223234440x xy y x y -+++-=与2223320x xy y x y --++=;(2)220x xy y x y ----=与2220x xy y x y ++-+=. 解:(1)210x y -+=;(2)5520x y ++=.8.已知⼆次曲线通过原点并且以下列两对直线 320,5540x y x y --=??--=?与530,210y x y +=??--=?为它的两对共轭直径,求该⼆次曲线的⽅程. 解:设曲线的⽅程为22111222132333(,)2220F x y a x a xy a y a x a y a=+++++=,则由(5.4-3)和(5.4-5)可得1112221323331111,,1,,,0222a a a a a a ==-=-=-=-=,所以曲线的⽅程为220x xy y x y ----=.§5.5⼆次曲线的主直径与主⽅向1.分别求椭圆22221x y a b +=,双曲线22221x y a b-=,抛物线22y px =的主⽅向与主直径.解:椭圆的主⽅向分别为1:0和0:1,主直径分别为0,0x y ==;双曲线的主⽅向分别为1:0和0:1,主直径分别为0,0x y==;抛物线的主⽅向分别为0:1和1:0,主直径分别为0y =. 2.求下列⼆次曲线的主⽅向与主直径. (1)22585181890x xy y x y ++--+=;(2)22210xy x y -+-=;(3)229241618101190x xy y x y -+--+=.解:(1)曲线的主⽅向分别为1:(-1)和1:1,主直径分别为0,20x y x y -=+-=;(2)其主⽅向分别为1:1和1:(-1),主直径分别为0,20x y x y +=-+=;(3)其主⽅向分别为3:(-4)和4:3,主直径分别为3470x y -+=;(4)任何⽅向都是其主⽅向,过中⼼的任何直线都是其主直径.3.直线10x y ++=是⼆次曲线的主直径,点(0,0),(1,-1),(2,1)在曲线上,求该曲线的⽅程.解:设⼆次曲线⽅程为22111222132333(,)2220F x y a x a xy a y a x a y a =+++++=,把点坐标(0,0),(1,-1),(2,1)分别代⼊上⾯⽅程同时利⽤直线10x y ++=为其主直径可得111222132333774,,4,,4,022a a a a a a ==-==-==,所以所求曲线⽅程为22474780x xy y x y -+-+=.4.试证⼆次曲线两不同特征根确定的主⽅向相互垂直.证明:设12,λλ分别曲线的两不同特征根,由它们确定的主⽅向分别为11:X Y 与22:X Y 则1111211112122111,,a X a Y X a X a Y Y λλ+=??+=?与1121222212222222,a X a Y X a X a Y Y λλ+=??+=?,所以11211211112121212212()()X X YY a X a Y X a X a Y Y λλ+=+++11212211222221221221()(),a X a Y X a X a Y X X X Y Y λλ=+++=+从有121212()()0X X YY λλ-+=,因为12λλ≠,所以12120X X YY +=,由此两主⽅向11:X Y 与22:X Y 相互垂直.§5.6⼆次曲线⽅程的化简与分类1. 利⽤移轴与转轴,化简下列⼆次曲线的⽅程并写出它们的图形.(1)225422412180x xy y x y ++--+=;(2)222410x xy y x y ++-+-=;(3)25122212190x xy x y +---=;(4)222220x xy y x y ++++=. 解(1)因为⼆次曲线含xy 项,我们先通过转轴消去xy ,设旋转⾓为α,则324ctg α=,即21324tg tg αα-=,所以12tg α=或-2.取2tg α=-,那么sin α=,cos α=,所以转轴公式为''''2),2).x x y y x y ?=+??=-+代⼊原⽅程化简再配⽅整理得新⽅程为''2''26120x y +-=;类似的化简可得(2)''2''250y +=;(3)''2''294360x y --=;(4)''2210x -=.2.以⼆次曲线的主直径为新坐标轴,化简下列⽅程,并写出的坐标变换公式与作出它们的图(1)22845816160x xy y x y +++--=;(2)22421040x xy y x y --++=;(3)22446830x xy y x y -++-+=;(4)2244420x xy y x y -++-=. 解:(1)已知⼆次曲线的距阵是 8242584816?? ?- ? ?--??, 18513I =+=,2823625I ==,所以曲线的特征⽅程为213360λλ-+=,其特征根为14λ=,29λ=,两个主⽅向为11:1:2X Y =-,22:2:1X Y =;其对应的主直径分别为8200x y -+=,7740x y +-=. 取这两条直线为新坐标轴得坐标变换公式'''')1,2) 2.x x y y x y ?=--??=++代⼊已知曲线⽅程并整理得曲线在新坐标系下的⽅程为 '2'294360x y +-=.(2)已知⼆次曲线的距阵是 225222520-?? ?- ? ???坐标变换公式''''2)1,) 2.x x y y x y ?=--??=++代⼊已知曲线⽅程并整理得曲线在新坐标系⽅程为'2'23210-+-=. (3)已知⼆次曲线的距阵是423214343----,坐标变换公式''''92),101).5 x x yy x y=--=++代⼊已知曲线⽅程并整理得曲线在新坐标系下的⽅程为'2' 50-=. (4)坐标变换公式''''22),51).5x x yy x y=--=++代⼊已知曲线⽅程并整理得曲线在新坐标系下的⽅程为'2510y-=.3.试证在任意转轴下,⼆次曲线的新旧⽅程的⼀次项系数满⾜关系式'2'222 13231313a a a a+=+.证明:设旋转⾓为α,则''131323cos sina a aαα=-,''231323sin cosa a aαα=+,两式平⽅相加得'2'22213231313a a a a+=+.4.试证⼆次曲线222ax hxy ay d++=的两条主直径为220x y-=,曲线的两半轴的长分别为. 证明:求出曲线的两主直径并化简即可得.§5.7应⽤不变量化简⼆次曲线的⽅程1. 利⽤不变量与半不变量,判断下列⼆次曲线为何种曲线,并求出它的化简⽅程与标准⽅程. (1)22 66210x xy y x y++++-=;(2)223234440x xy y x y-+++-=;(3)2243220x xy y x y-++-=;(4)22442210x xy y x y-++--=;(5)222246290x xy y x y-+--+=;(6);(7)22 22240x xy y x y++++-=;(8)22 4412690x xy y x y-++-+=.解:(1)因为12I=,213831I==-,13331116311=-,322II=-,⽽特征⽅程2280λλ--=的两根为124,2λλ==-,所以曲线的简化⽅程(略去撇号)为224220x y --=曲线的标准⽅程为 2221012x y --=,曲线为双曲线;类似地得下⾯:(2)曲线的简化⽅程(略去撇号)为 222480x y +-=,曲线的标准⽅程为 22142x y +=,曲线为椭圆;(3)曲线的简化⽅程(略去撇号)为22(2(20x y +=,曲线的标准⽅程为22011x y -=,曲线为两相交直线;(4)曲线的简化⽅程(略去撇号)为250y -=,双曲线的标准⽅程为2y =,曲线为抛物线;(5)曲线的简化⽅程(略去撇号)为2233((022x y +=,曲线的标准⽅程为220x y +=,曲线为⼀实点或相交与⼀实点的两虚直线;(6)曲线的简化⽅程(略去撇号)为220,0,0)y x a y a -=≤≤≤≤(,曲线的标准⽅程为2y =,0,0)x a y a ≤≤≤≤(曲线为抛物线的⼀部分;(7)曲线的简化⽅程(略去撇号)为 2250y -=,曲线的标准⽅程为 252y =,曲线为两平⾏直线;(8)曲线的简化⽅程(略去撇号)为 250y =,曲线的标准⽅程为 20y =,曲线为两重合直线.2. 当λ取何值时,⽅程 2244230x xy y x y λ++---= 表⽰两条直线.解:⽅程 2244230x xy y x y λ++---=表⽰两条直线当且仅当3222110213I λ-=-=---,即4λ=.3. 按实数λ的值讨论⽅程2222250x xy y x y λλ-+-++= 表⽰什么曲线.解:因为12I λ=,2(1)(1)I λλ=-+,3(53)(1)I λλ=+-,12(51)K λ=-,所以当λ的值变化时,1231,,,I I I K 也随着变化,它们的变化关系如下表:4. 设221112221323332220a x a xy a y a x a y a +++++= 表⽰两条平⾏直线,证明这两条直线之间的距离是d = . 证明:曲线的⽅程可简化为:这⾥当曲线表⽰两条平⾏的实直线时,10K <.所以这两条直线之间的距离是d =5. 试证⽅程 221112221323332220a x a xy a y a x a y a +++++= 确定⼀个实圆必须且只须212124,0I I I I =<.证明:当曲线 221112221323332220a x a xy a y a x a y a +++++=表⽰⼀个实圆的充要条件是其特征⽅程2120I I λλ-+=有相等实根且120I I <,即21240I I ?=-=且120I I <,从⽽⽅程确定⼀个实圆必须且只须212124,0I I I I =<.6. 试证如果⼆次曲线的10I =,那么20I <. 证明:因为111220I a a =+=即1122a a =-,所以1112222211221211121222()a a I a a a a a a a==-=-+,⽽11122,,a a a 不全0,所以有20I <. 7. 试证如果⼆次曲线的230,0I I =≠,那么10I ≠,⽽且120I I <.证明:当230,0I I =≠时,由5.2节习题7知,曲线为⽆⼼曲线,从⽽有10I ≠,⽽且120I I <.。

《解析几何》(第四版)吕林根许子道编第一章向量与坐标小结

《解析几何》(第四版)吕林根许子道编第一章向量与坐标小结

一组数x, y,使 r xe1 ye2 .
3)若e1, e2 , e3不共面,则 r可表示为
r
xe1
ye2
ze3
(系数x,
y,
z被e1
,
e2
,
e3
,
r唯一确定
).
关于线性相关性的几个重要定理:
1) a1, a2,, an (n 2)线性相关 其中有一个矢量 是其余矢量的线性组合.
2)若一组矢量中的一部分 矢量线性相关 ,则这一
(a (ba)aa) (c0a()aaa0;);(b(c)a);
( )a a a
(a
b)
a
b
多边形法则
OA OA1 A1A2 An1An .
3、向量的分解与线性关系
关于矢量分解的几个重要结论:
1)若e 0,则r与e共线 存在唯一实
数x,使r=xe,
2)若e1, e2不共线,则 r与e1, e2共面 存在唯一
组矢3)量一线个性矢相量关a线. 性相关
a
0,
两a,个b共矢量 线线性存相 关在不 全两为矢零 量共的线数,, ,使 a b 0.
三个矢量线性相关 三矢量共面.
a,
b,
c共面
存在不全 为0的数,
,
,
使
a b c 0.
4) 空间中任意四个矢量总 是线性相关的.
即存在线性关系
a b c d 0.
4、向量在轴上的射影
点在轴上的射影 (点) 向量在轴上的射影 (数)
射影定理
Pr ju AB | AB | cos(AB,u);
Pr j(a1 a2 ) Pr ja1 Pr ja2 .
Pr
ju a Pr

解析几何第四版吕林根课后习题答案第一章

解析几何第四版吕林根课后习题答案第一章

第一章矢量与坐标§1.1 矢量的概念1.下列情形中的矢量终点各构成什么图形?(1)把空间中一切单位矢量归结到共同的始点;(2)把平行于某一平面的一切单位矢量归结到共同的始点;(3)把平行于某一直线的一切矢量归结到共同的始点;(4)把平行于某一直线的一切单位矢量归结到共同的始点.[解]:(1)单位球面;(2)单位圆(3)直线;(4)相距为2的两点2. 设点O是正六边形ABCDEF的中心,在矢量OA、OB、OC、OD、OE、OF、AB、BC、CD、DE、EF和FA中,哪些矢量是相等的?[解]:如图1-1,在正六边形ABCDEF中,相等的矢量对是:图1-1.DEOFCDOEABOCFAOBEFOA和;和;和;和;和3. 设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:KL=NM. 当ABCD是空间四边形时,这等式是否也成立?[证明]:如图1-2,连结AC, 则在∆BAC中,21AC. KL与AC方向相同;在∆DAC中,21AC. NM与AC方向相同,从而KL=NM且KL与NM方向相同,所以KL=NM.4. 如图1-3,设ABCD-EFGH是一个平行六面体,在下列各对矢量中,找出相等的矢量和互为相反矢量的矢量:(1) AB、CD; (2) AE、CG; (3) AC、EG;(4) AD、GF; (5) BE、CH.[解]:相等的矢量对是(2)、(3)和(5);互为反矢量的矢量对是(1)和(4)。

§1.2 矢量的加法1.要使下列各式成立,矢量ba,应满足什么条件?(1=+(2+=+(3-=+(4+=C(5=[解]:(1)b a ,-=+;(2)b a ,+=+(3≥且b a ,-=+ (4)b a ,+=(5)b a ,≥-=-§1.3 数量乘矢量1 试解下列各题.⑴ 化简)()()()(→→→→-⋅+--⋅-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从矢量方程组⎪⎩⎪⎨⎧=-=+→→→→→→by x ay x 3243,解出矢量→x ,→y .解 ⑴→→→→→→→→→→→→→→-=+-+---+=-⋅+--⋅-ay b x b y a y b x a x b y a y b x a x b a y x b a y x 22)()()()(⑵ →→→→→→→→→→+=+-+-+=+3132132142232e e e e e e e e b a ,→→→→→→→→→→→-+-=+---+=-321321321342)223(2e e e e e e e e e b a , →→→→→→→→→→→-+-=+---+=-3213213217103)223(2)2(323e e e e e e e e e b a . 2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF .解 →→→→→→→→→→→-+=-+-+=+=c b a c a c b a AB CD EF 533)2(21)865(212121.3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.4 在四边形ABCD 中,→→→+=b a AB 2,→→→--=b a BC 4,→→→--=b a CD 35,证明ABCD 为梯形.证明∵→→→→→→→→→→→→→=--=-+--++=++=BC b a b a b a b a CD BC AB AD 2)4(2)35()4()2( ∴→AD ∥→BC ,∴ABCD 为梯形.6. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM ,CN 可 以构成一个三角形.[证明]: )(21AC AB AL +=)(21BC BA BM +=)(21CB CA CN +=0)(21=+++++=++∴CB CA BC BA AC AB CN BM AL从而三中线矢量CN BM AL ,,构成一个三角形。

解析几何课件(第四版)

解析几何课件(第四版)

交线为椭圆.
上一页
下一页
返回
z a2 x2 y2 2 表示怎样的曲线? 例2 方程组 a 2 a 2 ( x ) y 2 4

z a x y
2 2
2
上半球面,
a 2 a 2 圆柱面, ( x ) y2 2 4
交线如图.
上一页
返回
§2.2
曲面的方程
下一页
返回
以下给出几例常见的曲面.
例 1 建立球心在点 M 0 ( x0 , y0 , z 0 ) 、半径为 R 的球面方程.

设 M ( x , y , z ) 是球面上任一点,
根据题意有
| MM 0 | R
x x0 2 y y0 2 z z0 2 R
所求方程为 x x0 y y0 z z0 R 2
.
旋转一周得旋转曲面 S
M(x,y,z) S
f (y1, z1)=0
z1 z
| y 1 | MP
S
x y2 2zFra bibliotekz1C
o
y1
y
.
x
上一页 下一页
返回
f ( y, z ) 0 曲线 C x 0
旋转一周得旋转曲面 S
绕 z轴
P M
z
N (0, y1 , z1 )
.
z
x2 2 y
y
o
平面
y
o
x
抛物柱面 抛物柱面方程:
x
y x
平面方程:
x 2y
2
下一页
y x
返回
只含 x, y 而缺 z 的方程 F ( x , y ) 0 ,在 空间直角坐标系中表示母线平行于 z 轴的柱 面,其准线为 xoy 面上曲线 C :F ( x , y ) 0 .

解析几何第四版吕林根 期末复习 课后习题(重点)详解

解析几何第四版吕林根 期末复习 课后习题(重点)详解

第一章 矢量与坐标§ 数量乘矢量4、 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.6、 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM , CN 可 以构成一个三角形. 证明: )(21AC AB AL +=Θ )(21+=)(21CB CA CN +=0)(21=+++++=++∴7.、设L 、M 、N 是△ABC 的三边的中点,O 是任意一点,证明 OB OA ++OC =OL ++.[证明] LA OL OA +=Θ MB OM OB += NC ON OC +=)(OM +++++=++∴ =)(CN BM AL ON OM OL ++-++ 由上题结论知:0=++ ON OM OL OC OB OA ++=++∴ 从而三中线矢量,,构成一个三角形。

8.、如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明OA +OB ++OD =4OM .[证明]:因为OM =21(OA +), OM =21(OB +OD ), 所以 2=21(OA +OB +OC +) 所以OA +OB ++OD =4OM .10、用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半.图1-5证明 已知梯形ABCD ,两腰中点分别为M 、N ,连接AN 、BN . →→→→→→++=+=DN AD MA AN MA MN ,→→→→→→++=+=CN BC MB BN MB MN ,∴ →→→+=BC AD MN ,即§ 矢量的线性关系与矢量的分解3.、设一直线上三点A , B , P 满足AP =(-1),O 是空间任意一点,求证:OP =λλ++1[证明]:如图1-7,因为=-OA ,PB =OB -,所以 -OA = (OB -),(1+)OP =+,从而 OP =λλ++1OB.4.、在ABC ∆中,设,1e =2e =.(1) 设E D 、是边BC 三等分点,将矢量,分解为21,e e 的线性组合; (2)设AT 是角A 的平分线(它与BC 交于T 点),将分解为21,e e 的线性组合 解:(1)()12123131,e e e e -==-=-=Θ, 2111231323131e e e e e BD AB AD +=-+=+=,同理123132e e AE +=(2)因为||||TC ||11e e , 且 BT 与方向相同, 所以 BT ||21e e .由上题结论有AT ||||1||212211e e e e e +||||212112e e e e e e +.5.在四面体OABC 中,设点G 是ABC ∆的重心(三中线之交点),求矢量对于矢量,,,的分解式。

(完整版)解析几何课件(吕林根许子道第四版)(精)

(完整版)解析几何课件(吕林根许子道第四版)(精)

任意向量 r可以由向量 e1 , e2 , e3线性表示,或说空间
任意向量 r可以分解成向量 e1 , e2 , e3的线性组合,即
r xe1 ye2 ze3 ,
(1.4 3) 上一页 下一页
并且其中系数 x, y, z被e1 , e2 , e3 , r唯一确定.
返回
第一章 向量与坐标 §1.4向量的线性关系与向量的分解
这时e1 , e2 , e3叫做空间向量的基底 .
例2 证明四面体对边中点的连线交于一点,且
互相平分.
证 设四面体ABCD一组
D
对边AB,CD的中点E, F的连
线为EF ,它的中点为P1,其余
e3
两组对边中点分别为 P2 , P3 ,
下只需证P1 , P2 , P3三点重合
就可以了.取不共面的三向量 A
设 是一个数,向量a与 的乘积a规定为
(1) 0, (2) 0,
aa与a0同向,| a| | a|
(3) 0, a与a反向,| a|| | | a|
a 2a
1 a 2
下一页
返回
第一章 向量与坐标 §1.3 数乘向量

|
a a|

ea .
上式表明:一个非零向量除以它的模的结果是 一个与原向量同方向的单位向量.
上一页 下一页
返回
第一章 向量与坐标 §1.3 数乘向量
例1设AM是三角形ABC的中线,求证:
uuuur AM

1
uuur ( AB

uuuur AC)
2
如图

uuuur uuur uuuur uuuur uuur uuuur
D

解析几何第四版吕林根课后习题答案第四章

解析几何第四版吕林根课后习题答案第四章

第四章 柱面、锥面、旋转曲面与二次曲面§ 4.1柱面1、已知柱面的准线为:⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x 且(1)母线平行于x 轴;(2)母线平行于直线c z y x ==,,试求这些柱面的方程。

解:(1)从方程⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x 中消去x ,得到:25)2()3()3(222=-+++--z y y z 即:0235622=----+z y yz z y 此即为要求的柱面方程。

(2)取准线上一点),,(0000z y x M ,过0M 且平行于直线⎩⎨⎧==c z yx 的直线方程为:⎪⎩⎪⎨⎧=-=-=⇒⎪⎩⎪⎨⎧=+=+=z z t y y tx x zz t y y tx x 000000 而0M 在准线上,所以⎩⎨⎧=+--+=-++-+--02225)2()3()1(222t z y x z t y t x 上式中消去t 后得到:02688823222=--+--++z y x xy z y x此即为要求的柱面方程。

2、设柱面的准线为⎩⎨⎧=+=z x z y x 222,母线垂直于准线所在的平面,求这柱面的方程。

解:由题意知:母线平行于矢量{}2,0,1- 任取准线上一点),,(0000z y x M ,过0M 的母线方程为:⎪⎩⎪⎨⎧+==-=⇒⎪⎩⎪⎨⎧-==+=t z z yy tx x tz z y y tx x 2200000而0M 在准线上,所以:⎩⎨⎧+=-++=-)2(2)2(22t z t x t z y t x 消去t ,得到:010*******22=--+++z x xz z y x此即为所求的方程。

3、求过三条平行直线211,11,-=+=--==+==z y x z y x z y x 与的圆柱面方程。

解:过原点且垂直于已知三直线的平面为0=++z y x :它与已知直线的交点为())34,31,31(),1,0,1(,0,0,0--,这三点所定的在平面0=++z y x 上的圆的圆心为)1513,1511,152(0--M ,圆的方程为: ⎪⎩⎪⎨⎧=++=-++++07598)1513()1511()152(222z y x z y x 此即为欲求的圆柱面的准线。

解析几何吕林根第四版

解析几何吕林根第四版

解析几何吕林根第四版简介《解析几何》是解析几何学的经典教材之一,已经出版了多个版本。

其中,《解析几何吕林根第四版》是该教材的最新版本。

本文将对该版本进行详细解析,介绍其内容和特点。

第一章探索解析几何本章从引入几何、解析几何的定义和发展历程开始,引导读者了解解析几何的基本概念和研究方法。

主要内容包括:•几何与解析几何的区别•坐标系的使用和意义•向量的基本性质和运算法则•点、线、面的表示和方程通过本章的学习,读者能够建立起对解析几何的基本认知,并具备了解几何对象解析性质的能力。

第二章坐标系和变换本章介绍了坐标系的不同类型和变换方法,为后续章节的学习打下坚实的基础。

主要内容包括:•直角坐标系、极坐标系、三维坐标系的概念和表示方法•坐标变换的基本原理和应用•坐标系的旋转、平移和缩放等变换方法通过学习本章,读者可以熟练使用不同类型的坐标系,并能够进行各种坐标变换操作。

第三章直线和曲线本章介绍了直线和曲线的解析几何表示以及相关性质。

主要内容包括:•直线的一般方程和参数方程•曲线的参数方程和隐式方程•圆、椭圆、双曲线和抛物线的解析几何表示和性质•椭圆的焦点和准线通过学习本章,读者可以准确地描述直线和曲线,并能够分析其性质和特点。

第四章曲面和空间曲线本章介绍了曲面和空间曲线的解析几何表示和性质。

主要内容包括:•曲面的方程和类型•空间曲线的参数方程和表示方法•平面、二次曲面、旋转曲面的解析几何特征和性质通过学习本章,读者可以了解不同类型的曲面和曲线,并能够进行相关分析和计算。

第五章空间直线和平面本章介绍了空间直线和平面的解析几何表示和性质。

主要内容包括:•空间直线的一般方程和参数方程•平面的一般方程和参数方程•直线和平面的位置关系和交点计算•点到直线和平面的距离计算通过学习本章,读者可以准确地描述空间中的直线和平面,并能够进行相关计算和分析。

第六章空间几何与向量代数本章介绍了空间几何和向量代数的关系和应用。

主要内容包括:•空间向量的模长、方向和运算法则•空间向量的线性相关性和线性独立性•向量的点积和叉积•向量在空间几何中的应用通过学习本章,读者可以将空间几何问题转化为向量代数问题,并能够进行向量相关的计算和分析。

解析几何课件(吕林根+许子道第四版)

解析几何课件(吕林根+许子道第四版)

从而得
AP1

1 2
1 2
e1

1 2
(e2

e3 )

1 4
(e1

e2

e3 ),
同理可得
APi

1 4
(e1

e2

e3 ),(i

2,3)
所以
AP1=AP2=AP3
上一页
从而知P1, P2 , P3三点重合,命题得证 .
下一页
返回
定义1.4.2 对于n(n 1)个向量a1 , a2 ,, an,如果存
叫 做 矢 量a1, a2 ,, an的 线 性 组 合. 定理1.4.1 如果矢量e 0,那么矢量r与矢量e共
线 的 充 要 条 件 是r可 以 用 矢 量e线 性 表 示 , 或 者 说r
是e的 线 性 组 合 , 即r=xe,
(1.4 1)
并且系数x被e, r唯一确定.
这时e称为用线性组合来表示共线矢量的基底.
向M量1为的起大点小,.M| a2|为或终| 点M的1M有2 |向线段.
下一页
返回
单位向量:模为1的向量.
零向量:模为0的向量.0

e
a

e
M1M2
相同,定那义a么1.叫1.做2 =相如等果向两量个b.向记量为的模a 相b等 且方向
所有的零向量都相等.
定义1.1.3 两个模相等,方向相反的向
返回
§1.3 数乘向量
定义1.3.1 实数与矢量a的乘积是一个矢量,记做 a,它的
模是 a a ;a的方向,当 0时与a相同,当 0时与a
相反.我们把这种运算叫做数量与矢量的乘法,简称为数乘.

解析几何课件(吕林根许子道第四版)(精)

解析几何课件(吕林根许子道第四版)(精)

空间中点与平面的关系
点在平面内:点 位于平面内满足 平面的定义和性 质
点在平面外:点 不在平面内与平 面平行或与平面 相交
点的轨迹:点按 照某种规律在平 面上移动形成轨 迹
点的射影:点在 平面上的投影与 原点连线与平面 的夹角关系
空间中直线与平面的关系
直线与平面的位置关系:直线要么在平面上要么与平面平行要么与平面相交 直线与平面的交点:直线与平面的交点称为直线在平面上的投影 直线与平面的角度:直线与平面之间的角度称为线面角可以通过几何或向量方法求解 直线与平面的距离:直线到平面的最短距离称为线到面的距离可以通过几何或向量方法求解
05
解析几何中的投影与透视
投影的基本概念
投影的定义:通过光线将物体投射到平面上生成影子。 投影的分类:中心投影、平行投影。 投影的应用:建筑设计、工程制图、动画制作等领域。 投影的性质:与光源、物体和投影面的位置关系有关。
透视的基本概念
透视的定义:通过透明平面观察物体研究物体在平面上的投影从而表现出物体的三维空间 感。
应用:在解析几何中坐标变换被广泛应用于解决各种实际问题如平面几何、 立体几何、曲线和曲面等。 意义:通过坐标变换可以深入理解几何图形的内在性质和规律进一步探索 几何图形的变换和对称等特性。
图形变换
平移变换:将图形在平面内沿某一方向移动一定的距离而不改变其形状和大小。 旋转变换:将图形绕某一点旋转一定的角度而不改变其形状和大小。 伸缩变换:将图形按一定的比例进行放大或缩小而不改变其形状和大小。 对称变换:将图形关于某一直线或点进行翻转或反射而不改变其形状和大小。
第四 版)(精).ppt
单击此处添加副标题
汇报人:
目录
01 课件概览 02 解析几何基础知识 03 解析几何中的曲线与方程 04 解析几何中的平面与空间 05 解析几何中的投影与透视 06 解析几何中的变换与对称
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y 0.
③用x = 0 截曲面
z2 Cx0: c 2
y2 b2
1,双曲线
x
x 0.
z
o
y
ⅱ) 用平行于坐标面的平面截割
(1)用 z h h c 截曲面
②当 h c 时,
x2 Czh: a2
y 22 b 22
hh22 cc22
11,,
z h.
结①论当:h双叶c双时曲,面可看
2 轴、顶点
与 x 轴、 y 轴无交点;交点 0,0, c 称为顶点.
与 z 轴相交,
3 范围 方程(4.5-2)表示的曲面分成 z c 与 z c 两叶.
六、双叶双曲面的图形
ⅰ) 用坐标面截割
①用z = 0 截曲面 无交点
②用y = 0 截曲面
z2 C y0: c 2
x2 a2
1,双曲线
y2
:
b2
z2 c2
1,
x 0
x
绕虚轴(即 z 轴)旋转形成的.
单叶旋转双曲面
o
b
y
二、单叶双曲面的性质 1 对称性 关于三坐标平面对称; 关于三坐标轴对称;
关于坐标原点对称,(0,0,0)为其对称中心. 2 顶点
与 z 轴无交点;交点 a,0,0 ,0, b,0 称为顶点.
与 x 轴与 y 轴相交,
§4.5 双曲面
一、单叶双曲面的概念
定义 4.5.1 在直角坐标系下,由方程
x2 a2
y2 b2
z2 c2
1
(4.5-1)
所表示的曲面叫做单叶双曲面,方程(4.5-1)叫做单叶双
曲面的标准方程,其中 a,b, c 是任意的正常数.
当 z2 1 a2 b2 c2
4
x k
为使交线(*)为二相交直线,则须:1 k 2 0,即 k 2
4
所以,要求的平面方程为: x 2
同理,平行于 xoy 的平面要满足它与单叶双曲面的
交线为二相交直线,则该平面为:y 3
例:设直线 l,m为互不垂直的两条异面直线,C 是l 与 m
的公垂线的中点,A, B 两点分别在直线 l,m 上滑动,且
x2 a2
y2 b2
z2 c2
1
当取 a b 时,
x2 y2 b2
z2 c2
1
z
c
O
y
z
例3 (2)
y2 z2
将双曲线
:
b2
c2
1
x 0
(即 z 轴)旋转
绕实轴
b
O
y
x2 b2
y2
z2 c2
1
x
双叶旋转双曲面
五、双叶曲面的性质 1 对称性 关于三坐标平面对称; 关于三坐标轴对称; 关于坐标原点对称,(0,0,0)为其对称中心.
当三平方项系数 A, B,C 中只有一项为正,另两项为负,(1) 表示双叶双曲面;
而当 A, B,C 均为负时,方程(1)不表示任何图形,或者称 它为虚曲面.
例如当 A 0, B 0,C 0 时,方程(1)可改写为
x2 a2
y2 b2
z2 c2
1,
其中 1 A, 1 B, 1 C ,这是单叶双曲面的标准方程.
y2 Cx0: b2
z2 c2
1,双曲线
x 0.
z
ⅱ) 用平行于坐标面的平面截割
(1)用z = h 截曲面
x2 Czh: a2
y2 b2
1+
h2 c2
, 椭圆
z h.
结论:单叶双曲面可看 作由一个椭圆的变动 (大小位置都改变)而 产生,该椭圆在变动中,
保持所在平面与xOy 面
平行,且两对顶点分别 在两定双曲线上滑动.
定义 4.5.2 在直角坐标系下,由方程
x2 y2 z2 a2 + b2 c2 1
(4.5-2)
所表示的曲面叫做双叶双曲面,方程(4.5-2)叫做双叶双
曲面的标准方程,其中 a,b, c 是任意的正常数.
例3 (2)
y2 z2
将双曲线
:
b2
c2
1
x 0
(即 z 轴)旋转
绕实轴
双叶双曲面
截线为双曲线
ⅱ) 用平行于坐标面的平面截割 (2)用y = h 截曲面
x2 C yh: a2
z2 c2
1
h2 , b2
y h.
②当 h b 时
x
截线为双曲线
z
o
y
ⅱ) 用平行于坐标面的平面截割
(2)用y = h 截曲面
x2 C yh: a2
z2 c2
1
h2 , b2
y h.
②当 h b时
ACB 90o,试证直线A, B的轨迹是一个单叶双曲面。
证明:以 l, m 的公垂线作为 z 轴 C 作为坐标原点,再令
x 轴与l,m的夹角均为 ,公垂线的长为2c
若设 tg l,m的方程分别为:
yx 0
l : z c yx 0
m : z c
lA
x O (C)
y
xB m
令 A( x1, y1, c) ,B( x2 , y2 , c)
③当 h =b 时
x2 C yh: a2
z2 c2
0,
y h.
注:在直角坐标系下,方程
x2 a2
y2 b2
z2 c2
1,
x2 a2
y2 b2
z2 c2
1
所表示的图形也是单叶双曲面.
例 用一组平行平面 z h ( h 为任意实数)截割单叶双曲面
x2 a2
y2 b2
z2 c2
1a b 得一族椭圆,求这些椭圆焦点的轨迹.
3 范围 方程(4.5-1)表示的图形是无界曲面.
z
三、单叶双曲面的图形(平行截割法) ⅰ) 用坐标面截割
(1) 用z = 0 截曲面
x2 y2
Cz0: a2 b2 1, 腰椭圆
z 0;
O
(2) 用y = 0 截曲面
x2 C y0: a2
z2 c2
1, 双曲线
x
y
y 0;
(3) 用x = 0 截曲面
z2 c2
0,
y h.
③当 h =b时
截线为直线
(0 , b , 0)
单叶双曲面: x 2
a2
y2 b2
z2 c2
1
用y = h 截曲面
①当 h b 时
x2 C yh: a2
z2 c2
1
h2 , b2
y h.
②当 h b 时
x2 C yh: a2
z2 c2
1
h2 , b2
y h.
例、已知单叶双曲面 x2 y2 z2 1 ,试求平面的方程,
4 94
使这平面平行于 yoz 面(或 xoz 面)且与曲面的交线
是一对相交直线。
解:设所求的平面为 x k
则该平面与单叶双曲面的交线为: x2 y2 z2 1
(*) 4 9 4 x k
亦即
y2 z2
k2
1
9 4
a2
b2
c2
例 给定方程
x2 y2 z2 1 A B C 0 ,
A B C
试问当 取异于 A, B,C 的各种数值时,它表示怎样的曲面?
分析:
ⅰ)当 A , B ,C 都取正,即 C 时,表示椭球面; ⅱ)当 A , B ,C 中有一项为负,即 C B 时,表示单叶双曲面; ⅲ)当 A , B ,C 中有两项为负,即 B A时,表示双叶双曲面; ⅳ)当 A , B ,C 都取负, 即 A 时,不表示任何图形.
截线为双曲线
ⅱ) 用平行于坐标面的平面截割
(2)用y = h 截曲面
x2 C yh: a2
z2 c2
1
h2 , b2
y h.
③当 h =b 时
x2 C yh: a2
z2 c2
0,
x
y h.
截线为直线
z
o
y
ⅱ) 用平行于坐标面的平面截割
(2)用y = h 截曲面
x2 C yh: a2
x2 y2
h2
分析:
这一族的椭圆方程为
a2
b2
1
c2
,
z h,
x2

a2
1
z h.
h2 c2
y2
b2
1
h2 c2
1,
x
从而, 椭圆焦点坐标为 y 0,
z h.
a2 b2
1
h2 c2
,
消去参数
h

x2
a2
b2
z2 c2
1,
y 0.
四、双叶双曲面的概念
变为
x2 y2 b2
z2 c2
1.
此时的单叶双曲面是双曲线
o
b
y
y2
:
b
2
z2 c2
1,
x 0
绕虚轴(即 z 轴)旋转形成的.
单叶旋转双曲面是单叶双曲面的特殊情形. z
当 a b时, 方程
x2 a2
y2 b2
z2 c2
1
变为
x2 y2 b2
z2 c2
1.
此时的单叶双曲面是双曲线
则有: y1 x1 0, y2 x2 0
又 AC CB,所以:
(1)
x12 y12 c2 x22 y22 c2 ( x1 x2 )2 ( y1 y2 )2 (2c)2
亦即
x1 x2 y1 y2 c2 0
(2)
又设 M( x, y, z) 为 AB 上任一点,则
双曲面及其渐进锥面
相关文档
最新文档