传感器干扰问题及抗干扰措施详解

合集下载

传感器的问题解决方案

传感器的问题解决方案

传感器的问题解决方案简介:传感器是一种能够感知和测量环境中各种物理量的装置,广泛应用于工业自动化、环境监测、医疗设备等领域。

然而,传感器在使用过程中往往会遇到各种问题,如精度不许确、信号干扰、安装难点等。

本文将针对传感器常见的问题提供解决方案,匡助用户更好地应对和解决传感器问题。

一、精度不许确的解决方案1. 校准传感器:传感器在使用前需要进行校准,校准过程包括零点校准和量程校准。

通过校准可以提高传感器的精度,使其输出更加准确。

2. 选择合适的传感器:不同的应用场景需要不同类型的传感器。

根据实际需求选择合适的传感器,可以提高测量的精度。

二、信号干扰的解决方案1. 使用屏蔽线缆:传感器信号路线容易受到外界电磁干扰,使用屏蔽线缆可以有效减少干扰信号的影响。

2. 增加滤波器:在信号处理过程中添加滤波器可以滤除干扰信号,提高传感器信号的稳定性和准确性。

三、安装难点的解决方案1. 合理选择安装位置:传感器的安装位置对其测量结果有重要影响。

应选择远离干扰源和易受损的位置进行安装,以确保传感器的正常工作。

2. 使用合适的安装工具:根据传感器的类型和安装要求,选择合适的安装工具,如螺丝刀、扳手等,以便正确安装传感器。

四、传感器故障的解决方案1. 检查电源连接:传感器工作时需要稳定的电源供应。

检查电源连接是否松动或者接触不良,及时修复或者更换电源线。

2. 检查信号线连接:传感器的信号线连接不良会导致数据传输中断或者错误。

检查信号线连接是否坚固,如有问题及时修复或者更换信号线。

3. 检查传感器元件:传感器元件的老化或者损坏可能导致传感器故障。

定期检查传感器元件的状态,如有问题及时更换。

五、传感器数据异常的解决方案1. 检查数据采集系统:传感器数据异常可能是由数据采集系统的故障引起的。

检查数据采集系统的连接和设置,确保其正常工作。

2. 检查传感器参数设置:传感器参数设置错误会导致数据异常。

检查传感器参数设置是否正确,如有问题及时调整。

传感器及仪器仪表抗干扰的措施

传感器及仪器仪表抗干扰的措施

传感器及仪器仪表抗干扰的措施传感器及仪器仪表抗干扰的措施、供电系统的抗干扰设计1对传感器、仪器仪表正常工作危害最严重的是电网尖峰脉冲干扰,产生尖峰干扰的用电设备有:电焊机、大电机、可控机、继电接触器、带镇流器的充气照明灯,甚至电烙铁等。

尖峰干扰可用硬件、软件结合的办法来抑制。

用硬件线路抑制尖峰干扰的影响 (1) 常用办法主要有三种:①在仪器交流电源输入端串入按频谱均衡的原理设计的干扰控制器,将尖峰电压集中的能量分配到不同的频段上,从而减弱其破坏性;②在仪器交流电源输入端加超级隔离变压器,利用铁磁共振原理抑制尖峰脉冲;③在仪器交流电源的输入端并联压敏电阻,利用尖峰脉冲到来时电阻值减小以降低仪器从电源分得的电压,从而削弱干扰的影响。

(2)利用软件方法抑制尖峰干扰对于周期性干扰,可以采用编程进行时间滤波,也就是用程序控制可控硅导通瞬间不采样,从而有效地消除干扰。

.技术抑制尖峰脉冲的(3)(watchdog)采用硬、软件结合的看门狗影响访问一次定时器,让定时器 CPU 软件:在定时器定时到之前,重新开始计时,正常程序运行,该定时器不会产生溢出脉冲,也就不会起作用。

一旦尖峰干扰出现了“飞程序”,则watchdog就不会在定时到之前访问定时器,因而定时信号就会出现,从CPU 而引起系统复位中断,保证智能仪器回到正常程序上来。

实行电源分组供电,例如:将执行电机的驱动电源与控制电 (4) 源分开,以防止设备间的干扰。

采用噪声滤波器也可以有效地抑制交流伺服驱动器对其它设 (5) 备的干扰。

该措施对以上几种干扰现象都可以有效地抑制。

(6)采用隔离变压器考虑到高频噪声通过变压器主要不是靠初、次级线圈的互感耦合,而是靠初、次级寄生电容耦合的,因此隔离变压器的初、次级之间均用屏蔽层隔离,减少其分布电容,以提高抵抗共模干扰能力。

采用高抗干扰性能的电源,如利用频谱均衡法设计的高抗干(7)扰电源。

这种电源抵抗随机干扰非常有效,它能把高尖峰的扰动电的电压,但干扰TTL电压峰值小于电平)(压脉冲转换成低电压峰值脉冲的能量不变,从而可以提高传感器、仪器仪表的抗干扰能力。

如何解决无线传感器网络中的信号干扰问题

如何解决无线传感器网络中的信号干扰问题

如何解决无线传感器网络中的信号干扰问题无线传感器网络(Wireless Sensor Network,简称WSN)是一种由大量分布在空间中的无线传感器节点组成的网络系统。

它可以实时监测环境信息,并将数据传输给中心节点或其他节点进行处理和分析。

然而,WSN在实际应用中常常面临着信号干扰的问题,这会影响到数据的准确性和可靠性。

因此,解决无线传感器网络中的信号干扰问题是一个重要的研究方向。

一、信号干扰的原因信号干扰是指在无线传感器网络中,由于多个节点同时发送或接收信号而产生的相互干扰现象。

信号干扰主要有以下几个原因:1. 多径效应:无线信号在传播过程中会经历多次反射、折射和散射,导致信号到达接收节点的路径不唯一,从而产生多径效应。

这会使得信号的相位和幅度发生变化,从而引起信号干扰。

2. 同频干扰:当多个节点在相同的频率上进行通信时,它们之间会相互干扰。

这是因为它们的信号在空间中传播时会相互叠加,导致信号的干扰。

3. 邻近节点干扰:由于节点的部署密度较高,相邻节点之间的距离较近,这会导致节点之间的信号相互干扰。

特别是当节点的发送功率较大时,邻近节点会收到较强的干扰信号。

二、解决信号干扰的方法为了解决无线传感器网络中的信号干扰问题,研究者们提出了许多方法。

下面介绍几种常见的方法:1. 功率控制:通过控制节点的发送功率,可以减小信号的传播范围,从而降低信号干扰的概率。

这种方法可以通过节点间的协调和调度来实现,从而使得网络中的节点能够以最佳的功率进行通信。

2. 频率选择:通过选择不同的频率,可以避免同频干扰的问题。

在无线传感器网络中,可以使用频率切换技术,使得节点在不同的时间段使用不同的频率进行通信,从而减小干扰的概率。

3. 自适应调制:通过自适应调制技术,可以根据信道的质量和干扰情况选择合适的调制方式。

这样可以提高信号的传输效率,减小信号干扰的影响。

4. 多天线技术:利用多天线技术可以提高信号的传输性能和抗干扰能力。

无线传感器网络如何应对信号干扰问题

无线传感器网络如何应对信号干扰问题

无线传感器网络如何应对信号干扰问题随着科技的不断进步,无线传感器网络在各个领域的应用日益广泛。

然而,信号干扰问题也随之而来,给网络的正常运行带来了一定的困扰。

本文将探讨无线传感器网络如何应对信号干扰问题,并提出一些解决方案。

一、信号干扰的原因及影响信号干扰是指无线传感器网络中,由于其他设备或信号源的存在,导致网络中的信号传输受到干扰或损失的现象。

信号干扰的原因有很多,例如其他无线设备的频率冲突、电磁波的干扰、多径效应等。

信号干扰会导致网络中的数据传输错误、延迟增加、能耗增加等问题,严重影响网络的性能和可靠性。

二、物理层方面的解决方案在物理层,我们可以采取一些措施来减少信号干扰。

首先,通过频率规划来避免频率冲突。

无线传感器网络中的设备通常会占用一定的频段进行通信,合理规划频率使用,避免频率冲突,可以减少信号干扰的发生。

其次,采用天线技术来提高信号的传输效果。

通过优化天线的设计和布局,可以提高信号的接收和发送效果,减少信号干扰的影响。

此外,还可以采用调制解调技术和编码解码技术等方法来提高信号的抗干扰能力。

三、网络层方面的解决方案在网络层,我们可以采取一些策略来应对信号干扰。

首先,采用分组转发技术来提高网络的健壮性。

分组转发技术可以将数据分成多个小包进行传输,当某个包受到干扰时,只需要重新发送该包,而不需要重新发送整个数据,从而减少了干扰对网络的影响。

其次,采用路由选择算法来优化网络的传输路径。

通过选择合适的传输路径,可以减少信号干扰的传播,提高网络的可靠性和性能。

另外,还可以采用多路径传输技术和网络编码技术等方法来提高网络的抗干扰能力。

四、应用层方面的解决方案在应用层,我们可以采取一些策略来应对信号干扰。

首先,采用信号处理技术来提高数据的可靠性。

信号处理技术可以通过滤波、降噪等方法,减少干扰对信号的影响,提高数据的可靠性和准确性。

其次,采用数据压缩和聚合技术来减少数据传输量。

通过对数据进行压缩和聚合,可以减少数据传输的次数,降低信号干扰的发生概率。

传感器的抗干扰能力应该如何改进传感器

传感器的抗干扰能力应该如何改进传感器

传感器的抗干扰力量应当如何改进 - 传感器传感器直接接触或接近被测对象而猎取信息。

传感器与被测对象同时都处于被干扰的环境中,不行避开地受到外界的干扰。

传感器实行的抗干扰措施依据传感器的结构、种类和特性而异。

㈠、微弱信号检测用传感器的抗干扰对于检测出的信号微弱而输出阻抗又很高这样的传感器(如压电、电容式等),抗干扰问题尤为突出,需要考虑的问题有:⑴传感器本身要实行屏蔽措施,防止电磁干扰。

同时要考虑分布电容的影响。

⑵由于传感器的输出信号微弱、输出阻抗很高,必需解决传感器的绝缘问题,包括印制电路板的绝缘电阻都必需满足要求。

⑶与传感器相连的前置电路必需与传感器相适应,即输入阻抗要足够高,并选用低噪声器件。

⑷信号的传输线,需要考虑信号的衰减和传输电缆分布电容的影响,必要时可考虑接受驱动屏蔽。

㈡、传感器结构的改进改进传感器的结构,在肯定程度上可避开干扰的引入,可有如下途径:⑴将信号处理电路与传感器的敏感元件做成一个整体,即一体化。

这样,需传输的信号增加,提高了抗干扰力量。

同时,由于是一体化的,也就削减了干扰的引入。

⑵集成化传感器具有结构紧凑、功能强的特点,有利于提高抗干扰力量。

⑶智能化传感器可以从多方面在软件上实行抗干扰措施,如数字滤波、定时自校、特性补偿等措施。

㈢、抗共模干扰措施⑴对于由敏感元件组成桥路的传感器,为减小供电电源所引起的共模干扰,可接受正负对称的电源供电,使电桥输出端形成的共模干扰电压接近于0。

(2)测量电路接受输入端对称电路或用差分放大器,来提高抑制共模干扰力量。

(3)接受合理的接地系统,削减共模干扰形成的干扰电流流入测量电路。

㈣、抗差模干扰措施(1)合理设计传感器结构并接受完全屏蔽措施,防止外界进入和内部寄生耦合干扰。

(2)信号传输实行抗干扰措施,如用双绞线、屏蔽电缆、信号线滤波等。

(3)接受电流或数字量进行信号传送。

影响模拟量传感器的外界干扰因素和抗干扰措施

影响模拟量传感器的外界干扰因素和抗干扰措施

影响模拟量传感器的外界干扰因素和抗干扰措施模拟量传感器信号传输过程中干扰的形成必需具备三项因素,即干扰源、干扰途径以及对噪声敏感性较高的接收电路。

影响模拟量传感器的外界干扰主要有以下几种:1、静电感应干扰静电感应是由于两条支电路或元件之间存在着寄生电容,使一条支路上的电荷通过寄生电容传送到另一条支路上去,有时候也被称为电容性耦合。

2、电磁感应干扰当两个电路之间有互感存在时,一个电路中电流的变化就会通过磁场耦合到另一个电路,这一现象称为电磁感应。

这种状况在传感器使用的时候常常遇到,尤为留意。

3、漏电流感应干扰由于电子线路内部的元件支架、接线柱、印刷电路板、电容内部介质或外壳等绝缘不良,特殊是传感器的应用环境湿度增大,导致绝缘体的绝缘电阻下降,这时漏电电流会增加,由此引发干扰。

尤其当漏电流流入到测量电路的输入级时,其影响就特殊严峻。

4、射频干扰干扰主要是大型动力设备的启动、操作停止时产生的干扰以及高次谐波干扰。

5、其他干扰主要指的是系统工作环境差,还简单受到机械干扰、热干扰和化学干扰等等。

通过以上概述,我们了解传感器的干扰来源主要有两种途径:一是由电路感应产生干扰;二是由外围设备以及通信线路的感应引入干扰。

我们得认真分析外界干扰的来源,信号传输线路以及敏感程度,做好接地处理和传感器信号线屏蔽措施,有可能的话远离干扰源。

模拟量传感器抗干扰技术1、屏蔽技术利用金属材料制成容器。

将需要爱护的电路包在其中,可以有效防止电场或磁场的干扰,此种方法称为屏蔽。

屏蔽又可分为静电屏蔽、电磁屏蔽和低频磁屏蔽等。

2、静电屏蔽依据电磁学原理,置于静电场中的密闭空心导体内部无电场线,其内部各点等电位。

用这个原理,以铜或铝等导电性良好的金属为材料,制作密闭的金属容器,并与地线连接,把需要爱护的电路值r其中,使外部干扰电场不影响其内部电路,反过来,内部电路产生的电场也不会影响外电路。

这种方法就称为静电屏蔽。

3、电磁屏蔽对于高频干扰磁场,利用电涡流原理,使高频干扰电磁场在屏蔽金属内产生电涡流,消耗干扰磁场的能量,涡流磁场抵消高频干扰磁场,从而使被爱护电路免受高频电磁场的影响。

传感器抗干扰技术

传感器抗干扰技术

抑制电磁干扰的技术
屏蔽技术 用低电阻材料或高磁导率材料制成容器,将需要防护 的部分包起来。这种防静电或电磁感应所采取的措 施称为“屏蔽”。屏蔽的目的是隔断场的耦合,既抑 制各种场的干扰。屏蔽可分为静电屏蔽、电磁屏蔽 和磁屏蔽。 导电涂料 采用导电涂料作为塑料机箱或塑料部件的电磁屏蔽 涂层。这种导电涂料稀释后可喷涂、刷涂,屏蔽效率 高,耐性好、附着力强,在形状复杂的表面同样可以 获得优良的屏蔽涂层。
(4) 从干扰对电路作用的形式分类 ①差模干扰:这种干扰和有用信号叠加起来直 接作用于输入端,它直接影响到测量结果。 ②共模干扰:不直接对测量结果造成影响,但当 信号输入电路不对称时,它会转化为差模干扰, 对测量产生更为严重的影响。
抑制干扰的基本方法
①对于机械干扰,主要是采取减振措施来解决。 ②对于热干扰,通常采取的方法有热屏蔽、恒温措施、对称平 衡结构、温度补偿技术等。 ③对于光干扰,可以对半导体元器件用光屏蔽来抑制。 ④对于湿度干扰,可以采取防潮措施,如浸漆、环氧树脂或硅 橡胶封灌等。 ⑤对于尘埃干扰,可以采取将传感器密封起来,以及增加其它 的防尘措施。 ⑥对于化学干扰,一般采取的措施是密封和保持传感器的清洁。 ⑦对于射线辐射干扰,主要是对射线进行防护,国家有专门的 规范。 ⑧对于电和磁的干扰,针对不同的电磁干扰类型采取不同相应 措施。
(2) 从干扰的表现形式分类 ①规则干扰: 电源的波纹、放大器的自激振荡等形成有一定规律 的干扰。 ②不规则干扰: 有些元器件的额定值和特性随使用条件而变形成不 规则的干扰。 ③随机干扰: 接触不良、空间电磁耦合等引起随机的干扰。
(3) 从干扰出现的区域分类 ①内部干扰:电路的过度过程、寄生反馈等引 起的干扰属于内部干扰。 ②外部干扰:电网电压波动、电磁辐射等属于 外部干扰。

传感器的问题解决方案

传感器的问题解决方案

传感器的问题解决方案一、引言传感器作为现代工业自动化和智能化领域中不可或缺的组成部分,广泛应用于各个行业。

然而,传感器在使用过程中常常会遇到各种问题,如精度不准确、信号干扰、寿命短等。

本文将针对传感器常见的问题,提供一些解决方案,帮助用户更好地解决传感器问题。

二、问题一:精度不准确1. 问题描述:传感器输出的测量值与实际值存在一定的偏差,精度不够高。

2. 解决方案:a. 校准传感器:通过校准传感器,使其输出值与实际值相符合。

可以使用标准仪器或者校准装置对传感器进行校准。

b. 选择合适的传感器:根据实际需求选择合适精度的传感器,避免使用精度不够高的传感器。

三、问题二:信号干扰1. 问题描述:传感器输出的信号受到外部干扰,导致信号质量下降,影响传感器的正常工作。

2. 解决方案:a. 屏蔽传感器:使用屏蔽罩或屏蔽材料将传感器与外部干扰源隔离,减少信号干扰。

b. 优化布线:合理布置传感器与信号采集设备之间的电缆,避免与高功率设备或电磁干扰源靠近,减少信号干扰。

c. 使用滤波器:在信号采集设备中添加滤波器,滤除干扰信号,提高传感器信号的质量。

四、问题三:寿命短1. 问题描述:传感器的使用寿命较短,需要频繁更换,增加了维护成本和工作量。

2. 解决方案:a. 选择优质传感器:选择具有较长寿命的传感器,尽量避免使用低质量、不可靠的传感器。

b. 定期维护保养:定期对传感器进行维护保养,清洁传感器表面的污物,检查传感器的连接线路是否松动或损坏。

c. 合理使用传感器:避免超过传感器的额定工作范围,避免过载和过压等操作,延长传感器的使用寿命。

五、问题四:温度漂移1. 问题描述:传感器在温度变化的环境下,输出的测量值发生偏差,影响测量结果的准确性。

2. 解决方案:a. 温度补偿:在传感器设计中加入温度补偿电路,通过对温度变化的补偿,减小温度对传感器测量值的影响。

b. 定期校准:定期对传感器进行校准,根据温度变化的情况进行校准,保证传感器的准确性。

传感器在测量中产生干扰的原因及处理方法

传感器在测量中产生干扰的原因及处理方法

1、机械干扰这类干扰包括振动和冲击,它们对于具有相对运动元件的传感器有很大影响。

防范措施是设法阻止来自振动源的能量的传递。

采用重量大的工作台是吸收振动的有效方法。

也可为传感器配用质量大的基座,以造成阻抗失配,进而防止振动,但应注意增加传感器重量对被测对象带来的附加影响。

2、音响干扰音响干扰一般功率不大,尤其是在医院和生物医学实验室环境下下,故这类干扰较易抑制,必要时可用隔音材料作传感器的壳体,或将其放在真空容器中使用。

3、热干扰由热辐射造成的热膨胀,会使传感器内部元件间发生相对位移,或使得元件性能发生变化。

易受此类干扰影响的传感器有电容式传感器、电感式传感器等。

另外,两种不同种类金属的接触处的温差也会产生寄生热电势,受此类干扰影响较大的传感器有金属热电阻式传感器、热电偶式传感器等。

为传感器加上温度补偿电路、保持测量童电路为恒定温度场等方法是常用的减小温度影响的有效方法。

4、电磁干扰(1)静电干扰电子设备大多把整机装入金属壳,该壳接地便对外部干扰起屏蔽作用。

静电感应一般在高频时造成危害,因此静电屏蔽大多用来抑制高频干扰。

(2)电磁干扰由于我们所处社会的电器化程度越来越高,各种各样的电子仪器在空中造成的电磁波污染也大量增加。

如果不加小心,这些电磁波会由于电磁感应而对传感器输出信号产生严重干扰。

对于此类干扰,除可用电磁屏蔽外,还可用滤波的方法来消除,后者对于已知干扰信号频率时尤为有效。

另外,尽量缩短导线长度(它们的作用就像天线一样)、减小引线面积、将导线拧合在一起布线等措施也是推荐使用的。

在使用传感器的电子仪器中,电源的交流声是一种影响很大的电磁干扰,多用滤波器来消除。

艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

传感器的问题解决方案

传感器的问题解决方案

传感器的问题解决方案概述:传感器是一种用于测量和检测环境中各种物理量的设备。

它们在各个领域中扮演着重要的角色,如工业自动化、医疗设备、汽车工程等。

然而,传感器在使用过程中可能会遇到各种问题,例如精度下降、噪声干扰、故障等。

本文将介绍一些常见的传感器问题,并提供相应的解决方案。

一、精度下降问题:传感器的精度是其测量结果与真实值之间的误差。

在长期使用过程中,由于环境变化、磨损等原因,传感器的精度可能会下降。

为了解决这个问题,可以采取以下措施:1. 定期校准传感器:通过与已知准确值进行比较,校准传感器的输出值,以保持其精度。

2. 优化传感器的环境条件:传感器的工作环境对其精度有重要影响。

可以通过控制温度、湿度、电磁干扰等因素,提高传感器的测量精度。

二、噪声干扰问题:传感器在测量过程中可能会受到噪声的干扰,导致测量结果不准确。

为了减少噪声干扰,可以考虑以下解决方案:1. 信号滤波:使用数字滤波器对传感器输出的信号进行滤波处理,去除噪声成分。

2. 屏蔽传感器:在传感器周围设置屏蔽罩或屏蔽材料,阻挡外部电磁干扰,减少噪声对传感器的影响。

三、故障问题:传感器在使用过程中可能会出现各种故障,如断线、短路等。

为了解决这些故障,可以采取以下措施:1. 定期检查传感器的连接:检查传感器与测量系统之间的连接是否正常,确保传感器能够正常工作。

2. 替换故障传感器:如果传感器发生故障无法修复,应及时更换新的传感器。

四、数据处理问题:传感器输出的原始数据可能需要进行处理,以满足特定的需求。

为了解决数据处理问题,可以考虑以下解决方案:1. 数据滤波和平滑:对传感器输出的数据进行滤波和平滑处理,去除异常值和波动,得到更加可靠的数据。

2. 数据校正和校准:根据传感器的特性和实际需求,对传感器输出的数据进行校正和校准,以提高数据的准确性和可靠性。

五、能耗优化问题:传感器在某些应用场景下需要长时间运行,因此能耗优化是一个重要的问题。

为了降低能耗,可以考虑以下解决方案:1. 优化传感器的工作模式:根据实际需求,选择合适的工作模式,降低传感器的功耗。

影响模拟量传感器的外界干扰因素和抗干扰措施

影响模拟量传感器的外界干扰因素和抗干扰措施

影响模拟量传感器的外界干扰因素和抗干扰措施外界干扰是指在模拟量传感器工作过程中,来自外部环境的电磁干扰或其它因素对传感器测量信号的附加影响。

外界干扰会引起传感器输出信号的波动、偏移甚至失真,降低传感器的测量精度和稳定性。

为了减少或消除外界干扰对传感器的影响,可以采取一系列的抗干扰措施。

一、影响模拟量传感器的外界干扰因素:1.电磁干扰:电磁辐射、电磁感应、电源电磁干扰等会导致传感器信号干扰;2.温度变化:温度变化会导致传感器材料的热胀冷缩,从而影响传感器的准确度;3.行程限制:在使用位置或环境中,由于传感器的安装或固定存在行程限制,会使得传感器的测量范围受限;4.液体介质:液体介质对传感器的影响由介质的种类、温度、压力、浓度、酸碱程度等因素决定;5.机械振动:传感器受到机械振动时,易产生误差,使传感器输出信号出现偏差;6.光照强度:光照强度的变化会对一些光电传感器产生影响,如光敏电阻、光电二极管等。

二、抗干扰措施:1.选择合适的传感器:根据实际应用场景和环境的特点,选择适合的传感器类型,例如抗干扰能力较强的电磁屏蔽传感器、温度补偿能力较强的温度传感器等;2.屏蔽设计:在传感器电缆、电源线等连接线路上进行屏蔽,减少电磁辐射和感应的干扰;3.地线连接:传感器与测量设备之间应有良好的地线连接,以减少干扰电压和电流的影响;4.使用滤波器:在传感器信号线路上加装滤波器,用于滤除高频干扰信号;5.增加隔离:在传感器与测量设备之间加装隔离设备以消除接地环路的干扰;6.电源稳定化:使用稳定、纹波小的电源,保持传感器工作的电源稳定;7.加装抗干扰电路:在接触式传感器的输入端加装适当的抗干扰电路,提高传感器的抗干扰能力;8.密封防护:对于受液体介质影响的传感器,采用密封防护措施,避免介质对传感器的侵蚀和干扰;9.防止机械振动:采用固定牢固、减振措施等方式,防止传感器受到机械振动的干扰;10.具体环境调整:针对不同的外界干扰因素,可针对具体环境进行调整,例如对温度进行补偿、增加隔离物等。

传感器的问题解决方案

传感器的问题解决方案

传感器的问题解决方案概述:传感器是一种能够感知和测量环境中各种物理量的装置。

在各个领域中,传感器扮演着至关重要的角色,用于采集数据、监测环境以及控制系统。

然而,传感器在使用过程中可能会遇到各种问题,如精度不许确、信号干扰、灵敏度不稳定等。

本文将介绍一些常见的传感器问题,并提供相应的解决方案。

一、精度不许确的问题:传感器的精度是指其测量结果与真实值之间的偏差。

如果传感器的精度不许确,将会导致测量结果的误差。

以下是一些可能导致精度不许确的原因以及相应的解决方案:1. 传感器老化:随着时间的推移,传感器的性能可能会下降。

解决方案是定期检查和维护传感器,更换老化的部件。

2. 环境温度变化:温度的变化可能会影响传感器的精度。

解决方案是使用温度补偿技术,根据环境温度对传感器进行校准。

3. 供电电压波动:供电电压的波动可能会影响传感器的精度。

解决方案是使用稳定的电源,并添加电压稳定器以保持传感器的工作稳定。

4. 传感器本身的设计缺陷:某些传感器可能存在设计缺陷,导致精度不许确。

解决方案是选择质量可靠的传感器,并在购买前进行充分的调研和测试。

二、信号干扰的问题:传感器信号的干扰可能会导致测量结果的失真。

以下是一些可能导致信号干扰的原因以及相应的解决方案:1. 电磁干扰:来自电磁场的干扰可能会影响传感器信号的稳定性。

解决方案是将传感器与其他电磁干扰源隔离,使用屏蔽材料包裹传感器以减少干扰。

2. 电源干扰:不稳定的电源可能会引入噪声干扰。

解决方案是使用稳定的电源,并在传感器电路中添加滤波器以降低干扰。

3. 传输线干扰:长距离传输线上的电磁干扰可能会影响传感器信号的质量。

解决方案是使用屏蔽传输线,并保持传输线的良好接地。

4. 信号线杂散电流:传感器信号线上的杂散电流可能会干扰传感器信号。

解决方案是使用屏蔽信号线,并将其与电源线分开布置,以减少杂散电流的影响。

三、灵敏度不稳定的问题:传感器的灵敏度是指其对输入信号的响应程度。

传感器的问题解决方案

传感器的问题解决方案

传感器的问题解决方案简介:传感器是一种能够感知、接收和转换物理量或者化学量等信息的装置。

它在各个领域中起着至关重要的作用,例如工业自动化、环境监测、医疗设备等。

然而,传感器在使用过程中可能会遇到各种问题,如精度降低、响应速度变慢、信号干扰等。

本文将介绍一些常见的传感器问题,并提供相应的解决方案。

一、精度降低的问题解决方案:1. 定期校准传感器:传感器在长期使用后可能会浮现精度下降的情况,因此定期进行校准是必要的。

校准可以通过与标准设备进行比对,调整传感器的输出值来实现。

2. 保持传感器的清洁:灰尘、油污等污染物可能会降低传感器的精度。

因此,保持传感器的清洁非常重要。

可以使用清洁剂或者柔软的布进行清洁,但要避免使用腐蚀性物质。

3. 避免温度变化:温度的变化可能会对传感器的精度产生影响。

在使用传感器时,尽量避免暴露于极端的温度环境,或者使用温度补偿技术来消除温度对传感器精度的影响。

二、响应速度变慢的问题解决方案:1. 优化传感器的电路设计:传感器的响应速度与电路设计密切相关。

通过优化电路设计,例如减小电阻、电容的数值,可以提高传感器的响应速度。

2. 使用高速采样器:传感器的信号采集也会影响响应速度。

使用高速采样器可以提高传感器的响应速度,确保及时捕捉到信号变化。

3. 选择合适的传感器类型:不同类型的传感器具有不同的响应速度。

根据具体应用需求,选择响应速度较快的传感器类型,以满足实时性要求。

三、信号干扰的问题解决方案:1. 防止电磁干扰:电磁干扰是传感器信号干扰的常见原因之一。

可以采取屏蔽措施,例如使用屏蔽罩、增加地线,以减少电磁干扰对传感器的影响。

2. 使用滤波器:滤波器可以滤除传感器信号中的噪声和干扰,提高信号的质量。

根据具体情况选择合适的滤波器类型和参数进行配置。

3. 优化传感器布线:传感器布线不当也可能引起信号干扰。

合理布置传感器与信号采集设备之间的路线,避免与其他电源线或者高频干扰源过近接触,减少信号干扰的可能性。

模拟传感器有哪些干扰现象及抗干扰措施

模拟传感器有哪些干扰现象及抗干扰措施

模拟传感器有哪些干扰现象及抗干扰措施传感器作为工业自动化领域中的重要设备,常常会面临各种干扰现象,这些干扰现象可能会影响其正常工作和准确度。

为了保证传感器的正常工作,需要采取一系列的抗干扰措施。

下面将介绍一些常见的传感器干扰现象以及相应的抗干扰措施。

1.电磁干扰:电磁干扰是指外部电磁场对传感器信号的干扰。

常见的电磁干扰源包括高压设备、电磁炉、电缆等。

电磁干扰会引起传感器输出信号的波动和误差。

抗干扰措施:1)电磁屏蔽:通过在传感器周围设置金属屏蔽罩,阻挡外部电磁场的干扰。

可以采用金属盖、金属箱体等形式进行屏蔽。

2)绝缘隔离:采用光电隔离、电磁隔离等方式,将传感器与干扰源进行隔离,减少电磁干扰的影响。

3)过滤器:通过在传感器输入和输出端口添加低通滤波器、带通滤波器等,减少高频电磁干扰的影响。

2.温度变化:温度变化会导致传感器内部零件的膨胀和收缩,从而影响传感器的准确度和灵敏度。

特别是一些精度要求较高的传感器,对温度变化的敏感性更高。

抗干扰措施:1)温度补偿:通过在传感器的设计中引入温度传感器或温度补偿器件,对温度变化引起的误差进行补偿,提高传感器的精度和稳定性。

2)精确匹配:在传感器的制造过程中,采用合适的材料和工艺,保证传感器零件的尺寸和性能能够在不同温度下保持匹配,减小温度变化对传感器的影响。

3.电源波动:传感器的正常工作需要稳定的电源供应,然而电源波动可能会导致传感器输出信号的不稳定和误差。

抗干扰措施:1)电源滤波:在传感器电源输入端添加电源滤波器,滤除电源中的高频噪声,提供稳定的电源给传感器。

2)稳压电源:使用稳压电源来为传感器供电,保证电源的稳定性和可靠性。

3)函数隔离:通过采用电隔离等技术手段,将传感器与电源进行隔离,减少电源波动对传感器的影响。

4.光干扰:对于光学传感器而言,光干扰可能会导致传感器误判或误触发。

抗干扰措施:1)屏蔽罩:在传感器光学部分周围设置屏蔽罩,防止外部光线干扰传感器的正常工作。

传感器的问题解决方案

传感器的问题解决方案

传感器的问题解决方案概述:传感器是一种能够感知和测量环境中各种物理量的设备,广泛应用于工业控制、自动化系统和物联网等领域。

然而,传感器在使用过程中可能会遇到各种问题,如精度下降、信号干扰、故障等。

本文将针对传感器常见的问题提供解决方案,以帮助用户更好地应对和解决传感器相关的技术难题。

问题一:传感器精度下降解决方案:1. 校准传感器:定期对传感器进行校准,以确保其输出值与实际值一致。

2. 温度补偿:对于温度敏感的传感器,使用温度补偿技术来消除温度变化对传感器精度的影响。

3. 选择合适的传感器:根据具体应用需求选择精度更高的传感器型号,以提高测量的准确性。

问题二:传感器信号干扰解决方案:1. 屏蔽传感器线缆:使用屏蔽线缆来减少外界电磁干扰对传感器信号的影响。

2. 增加滤波器:在信号处理电路中添加滤波器,以滤除高频噪声和干扰信号。

3. 优化布线:合理布置传感器和信号线,避免与其他电源线或高功率设备靠近,减少干扰。

问题三:传感器故障解决方案:1. 检查供电电源:确保传感器供电电源正常工作,检查电压和电流是否符合要求。

2. 检查连接线路:检查传感器与控制器或数据采集设备之间的连接线路是否良好,排除接触不良或断线等问题。

3. 更换传感器:如果经过检查确认传感器故障无法修复,需要更换新的传感器。

问题四:传感器灵敏度不足解决方案:1. 调整增益:根据实际需求,调整传感器的增益以增加灵敏度。

2. 优化信号处理算法:通过改进信号处理算法,提高对传感器输出信号的分析和处理能力,以提高灵敏度。

3. 使用放大器:在传感器输出信号与控制器或数据采集设备之间加入放大器,增强信号的幅度。

问题五:传感器响应时间过长解决方案:1. 优化传感器设计:采用更快的传感器响应原理或改进传感器结构,以提高响应时间。

2. 优化信号处理电路:通过优化信号处理电路的设计,减少信号传输和处理的延迟,以提高响应速度。

3. 选择合适的采样频率:根据实际需求选择合适的采样频率,避免过高的采样频率导致响应时间延长。

传感器的问题解决方案

传感器的问题解决方案

传感器的问题解决方案一、引言传感器作为现代智能化系统的重要组成部分,在各个领域中起着至关重要的作用。

然而,在传感器的使用过程中,常常会遇到一些问题,如精度不准确、信号干扰、稳定性差等。

本文将针对传感器常见的问题提供解决方案,以帮助用户更好地解决传感器问题。

二、传感器精度不准确的解决方案1. 校准传感器:传感器在生产过程中会存在一定的误差,因此在使用前需要进行校准。

校准的方法可以是通过专业的校准设备进行,也可以通过与已知值进行比对来进行手动校准。

2. 检查供电电压:传感器的精度与供电电压有关,如果供电电压不稳定或超出传感器的额定范围,会导致精度下降。

因此,需要检查供电电压是否符合传感器的要求,并采取相应的措施进行调整。

三、传感器信号干扰的解决方案1. 隔离传感器与干扰源:将传感器与可能引起信号干扰的设备或电源进行隔离,可以有效减少干扰对传感器信号的影响。

2. 使用屏蔽线:对于长距离传输的传感器信号,可以使用屏蔽线来减少外界干扰。

屏蔽线的接地端需要与传感器的接地端连接,以形成完整的屏蔽。

四、传感器稳定性差的解决方案1. 优化传感器安装位置:传感器的安装位置对其稳定性有很大影响。

应选择远离振动源、温度变化较小的位置进行安装,避免传感器受到外界干扰。

2. 定期维护与保养:传感器需要定期进行维护与保养,如清洁传感器表面、检查传感器连接线路等,以确保其正常工作。

五、传感器故障排除的解决方案1. 检查供电电源:传感器故障的原因之一可能是供电电源异常。

可以通过检查供电电源的电压、电流是否正常来判断是否存在供电问题。

2. 检查传感器连接:传感器连接线路松动或接触不良会导致传感器故障,因此需要仔细检查传感器的连接情况,并重新插拔连接线路以确保连接良好。

六、结论本文针对传感器常见的问题,提供了相应的解决方案。

通过校准传感器、隔离信号干扰、优化安装位置等方法,可以有效解决传感器的精度、信号干扰、稳定性等问题。

此外,定期维护与保养传感器,并及时排除故障,也是保证传感器正常工作的重要措施。

怎样避开传感器电路噪声干扰 传感器常见问题解决方法

怎样避开传感器电路噪声干扰 传感器常见问题解决方法

怎样避开传感器电路噪声干扰传感器常见问题解决方法电路设计是传感器是否优越的关键因素,由于传感器输出端都是很微小的信号,假如由于噪声导致有用的信号被淹没,那就得不偿失了,所以加强传感器电路的抗干扰设计尤为紧要。

在这之前,我们必需了解传感器电路噪声的来源,以便找出更好的方法来降低噪声。

总的来说,传感器电路噪声紧要有一下七种:低频噪声低频噪声紧要是由于内部的导电微粒不连续造成的。

特别是碳膜电阻,其碳质材料内部存在很多微小颗粒,颗粒之间是不连续的,在电流流过时,会使电阻的导电率发生变化引起电流的变化,产生仿佛接触不良的闪爆电弧。

另外,晶体管也可能产生相像的爆裂噪声和闪亮噪声,其产生机理与电阻中微粒的不连续性相近,也与晶体管的掺杂程度有关。

半导体器件产生的散粒噪声由于半导体 PN 结两端势垒区电压的变化引起累积在此区域的电荷数量更改,从而显现出电容效应。

当外加正向电压上升时,N 区的电子和 P 区的空穴向耗尽区运动,相当于对电容充电。

当正向电压减小时,它又使电子和空穴阔别耗尽区,相当于电容放电。

当外加反向电压时,耗尽区的变化相反。

当电流流经势垒区时,这种变化会引起流过势垒区的电流产生微小波动,从而产生电流噪声。

其产生噪声的大小与温度、频带宽度△f 成正比。

高频热噪声高频热噪声是由于导电体内部电子的无规定运动产生的。

温度越高,电子运动就越激烈。

导体内部电子的无规定运动会在其内部形成很多微小的电流波动,因其是无序运动,故它的平均总电流为零,但当它作为一个元件(或作为电路的一部分)被接入放大电路后,其内部的电流就会被放大成为噪声源,特别是对工作在高频频段内的电路高频热噪声影响尤甚。

通常在工频内,电路的热噪声与通频带成正比,通频带越宽,电路热噪声的影响就越大。

以一个 1k的电阻为例,假如电路的通频带为 1MHz,则呈现在电阻两端的开路电压噪声有效值为 4V(设温度为室温 T=290K)。

看起来噪声的电动势并不大,但假设将其接入一个增益为 106 倍的放大电路时,其输出噪声可达 4V,这时对电路的干扰就很大了。

传感器的干扰及抗干扰措施

传感器的干扰及抗干扰措施

传感器的干扰及抗干扰措施一、前言模拟传感器的应用非常广泛,不论是在工业、农业、国防建设,还是在日常生活、教育事业以及科学研究等领域,处处可见模拟传感器的身影。

但在模拟传感器的设计和使用中,都有一个如何使其测量精度达到最高的问题。

而众多的干扰一直影响着传感器的测量精度,如:现场大耗能设备多,特别是大功率感性负载的启停往往会使电网产生几百伏甚至几千伏的尖脉冲干扰;工业电网欠压或过压,常常达到额定电压的35%左右,这种恶劣的供电有时长达几分钟、几小时,甚至几天;各种信号线绑扎在一起或走同一根多芯电缆,信号会受到干扰,特别是信号线与交流动力线同走一个长的管道中干扰尤甚;多路开关或保持器性能不好,也会引起通道信号的窜扰;空间各种电磁、气象条件、雷电甚至地磁场的变化也会干扰传感器的正常工作;此外,现场温度、湿度的变化可能引起电路参数发生变化,腐蚀性气体、酸碱盐的作用,野外的风沙、雨淋,甚至鼠咬虫蛀等都会影响传感器的可靠性。

模拟传感器输出的一般都是小信号,都存在小信号放大、处理、整形以及抗干扰问题,也就是将传感器的微弱信号精确地放大到所需要的统一标准信号(如1VDC~5VDC或4mADC~20mADC),并达到所需要的技术指标。

这就要求设计制作者必须注意到模拟传感器电路图上未表示出来的某些问题,即抗干扰问题。

只有搞清楚模拟传感器的干扰源以及干扰作用方式,设计出消除干扰的电路或预防干扰的措施,才能达到应用模拟传感器的最佳状态。

二、干扰源、干扰种类及干扰现象传感器及仪器仪表在现场运行所受到的干扰多种多样,具体情况具体分析,对不同的干扰采取不同的措施是抗干扰的原则。

这种灵活机动的策略与普适性无疑是矛盾的,解决的办法是采用模块化的方法,除了基本构件外,针对不同的运行场合,仪器可装配不同的选件以有效地抗干扰、提高可靠性。

在进一步讨论电路元件的选择、电路和系统应用之前,有必要分析影响模拟传感器精度的干扰源及干扰种类。

1、主要干扰源(1)静电感应静电感应是由于两条支电路或元件之间存在着寄生电容,使一条支路上的电荷通过寄生电容传送到另一条支路上去,因此又称电容性耦合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模拟传感器在现代化工农业生产,消防应急,国防建设及科学研究中有重非常重要的作用。

作为传感器最重要的指标是测量精度,现实环境又对传感器测量精度产生了很大的干扰,如果降低干扰是各传感器行业的命脉所在。

那么我们就了解一下传感器的干扰及抗干扰措施。

干扰源、干扰种类及干扰现象
传感器及仪器仪表在现场运行所受到的干扰多种多样,具体情况具体分析,对不同的干扰采取不同的措施是抗干扰的原则。

这种灵活机动的策略与普适性无疑是矛盾的,解决的办法是采用模块化的方法,除了基本构件外,针对不同的运行场合,仪器可装配不同的选件以有效地抗干扰、提高可靠性。

在进一步讨论电路元件的选择、电路和系统应用之前,有必要分析影响模拟传感器精度的干扰源及干扰种类。

1、主要干扰源
(1)静电感应
静电感应是由于两条支电路或元件之间存在着寄生电容,使一条支路上的电荷通过寄生电容传送到另一条支路上去,因此又称电容性耦合。

(2)电磁感应
当两个电路之间有互感存在时,一个电路中电流的变化就会通过磁场耦合到另一个电路,这一现象称为电磁感应。

例如变压器及线圈的漏磁、通电平行导线等。

(3)漏电流感应
由于电子线路内部的元件支架、接线柱、印刷电路板、电容内部介质或外壳等绝缘不良,特别是传感器的应用环境湿度较大,绝缘体的绝缘电阻下降,导致漏电电流增加就会引起干扰。

尤其当漏电流流入测量电路的输入级时,其影响就特别严重。

(4)射频干扰
主要是大型动力设备的启动、操作停止的干扰和高次谐波干扰。

如可控硅整流系统的干扰等。

(5)其他干扰
现场安全生产监控系统除了易受以上干扰外,由于系统工作环境较差,还容易受到机械干扰、热干扰及化学干扰等。

2、干扰的种类
(1)常模干扰
常模干扰是指干扰信号的侵入在往返2条线上是一致的。

常模干扰来源一般是周围较强的交变磁场,使仪器受周围交变磁场影响而产生交流电动势形成干扰,这种干扰较难除掉。

(2)共模干扰
共模干扰是指干扰信号在2条线上各流过一部分,以地为公共回路,而信号电流只在往返2个线路中流过。

共模干扰的来源一般是设备对地漏电、地电位差、线路本身具有对地干扰等。

由于线路的不平衡状态,共模干扰会转换成常模干扰,就较难除掉了。

(3)长时干扰
长时干扰是指长期存在的干扰,此类干扰的特点是干扰电压长期存在且变化不大,用检测仪表很容易测出,如电源线或邻近动力线的电磁干扰都是连续的交流50 Hz工频干扰。

(4)意外的瞬时干扰
意外瞬时干扰主要在电气设备操作时发生,如合闸或分闸等,有时也在伴随雷电发生或无线电设备工作瞬间产生。

干扰可粗略地分为3个方面:
(a)局部产生(即不需要的热电偶);
(b)子系统内部的耦合(即地线的路径问题);
(c)外部产生(Bp电源频率的干扰)。

3、干扰现象
在应用中,常会遇到以下几种主要干扰现象:
(1)发指令时,电机无规则地转动;
(2)信号等于零时,数字显示表数值乱跳;
(3)传感器工作时,其输出值与实际参数所对应的信号值不吻合,且误差值是随机的、无规律的;
(4)当被测参数稳定的情况下,传感器输出的数值与被测参数所对应的信号数值的差值为一稳定或呈周期性变化的值;
(5)与交流伺服系统共用同一电源的设备(如显示器等)工作不正常。

干扰进入定位控制系统的渠道主要有两类:信号传输通道干扰,干扰通过与系统相
联的信号输入通道、输出通道进入;供电系统干扰。

信号传输通道是控制系统或驱动器接收反馈信号和发出控制信号的途径,因为脉冲波在传输线上会出现延时、畸变、衰减与通道干扰,所以在传输过程中,长线的干扰是主要因素。

任何电源及输电线路都存在内阻,正是这些内阻才引起了电源的噪声干扰,如果没有内阻,无论何种噪声都会被电源短路吸收,线路中也不会建立起任何干扰电压;此外,交流伺服系统驱动器本身也是较强的干扰源,它可以通过电源对其它设备进行干扰。

传感器的干扰及抗干扰措施
抗干扰的措施
1、供电系统的抗干扰设计
对传感器、仪器仪表正常工作危害最严重的是电网尖峰脉冲干扰,产生尖峰干扰的用电设备有:电焊机、大电机、可控机、继电接触器、带镇流器的充气照明灯,甚至电烙铁等。

尖峰干扰可用硬件、软件结合的办法来抑制。

(1)用硬件线路抑制尖峰干扰的影响
常用办法主要有三种:
①在仪器交流电源输入端串入按频谱均衡的原理设计的干扰控制器,将尖峰电压集中的能量分配到不同的频段上,从而减弱其破坏性;
②在仪器交流电源输入端加超级隔离变压器,利用铁磁共振原理抑制尖峰脉冲;
③在仪器交流电源的输入端并联压敏电阻,利用尖峰脉冲到来时电阻值减小以降低仪器从电源分得的电压,从而削弱干扰的影响。

(2)利用软件方法抑制尖峰干扰
对于周期性干扰,可以采用编程进行时间滤波,也就是用程序控制可控硅导通瞬间不采样,从而有效地消除干扰。

(3)采用硬、软件结合的看门狗(watchdog)技术抑制尖峰脉冲的影响
软件:在定时器定时到之前,CPU访问一次定时器,让定时器重新开始计时,正常程序运行,该定时器不会产生溢出脉冲,watchdog也就不会起作用。

一旦尖峰干扰出现了“飞程序”,则CPU就不会在定时到之前访问定时器,因而定时信号就会出现,从而引起系统复位中断,保证智能仪器回到正常程序上来。

(4)实行电源分组供电,例如:将执行电机的驱动电源与控制电源分开,以防止设
备间的干扰。

(5)采用噪声滤波器也可以有效地抑制交流伺服驱动器对其它设备的干扰。

该措施对以上几种干扰现象都可以有效地抑制。

(6)采用隔离变压器
考虑到高频噪声通过变压器主要不是靠初、次级线圈的互感耦合,而是靠初、次级寄生电容耦合的,因此隔离变压器的初、次级之间均用屏蔽层隔离,减少其分布电容,以提高抵抗共模干扰能力。

(7)采用高抗干扰性能的电源,如利用频谱均衡法设计的高抗干扰电源。

这种电源抵抗随机干扰非常有效,它能把高尖峰的扰动电压脉冲转换成低电压峰值(电压峰值小于TTL电平)的电压,但干扰脉冲的能量不变,从而可以提高传感器、仪器仪表的抗干扰能力。

2、信号传输通道的抗干扰设计
(1)光电耦合隔离措施
在长距离传输过程中,采用光电耦合器,可以将控制系统与输入通道、输出通道以及伺服驱动器的输入、输出通道切断电路之间的联系。

如果在电路中不采用光电隔离,外部的尖峰干扰信号会进入系统或直接进入伺服驱动装置,产生第一种干扰现象。

光电耦合的主要优点是能有效地抑制尖峰脉冲及各种噪声干扰,使信号传输过程的信噪比大大提高。

干扰噪声虽然有较大的电压幅度,但是能量很小,只能形成微弱电流,而光电耦合器输入部分的发光二极管是在电流状态下工作的,一般导通电流为10mA~15mA,所以即使有很大幅度的干扰,这种干扰也会由于不能提供足够的电流而被抑制掉。

(2)双绞屏蔽线长线传输
信号在传输过程中会受到电场、磁场和地阻抗等干扰因素的影响,采用接地屏蔽线可以减小电场的干扰。

双绞线与同轴电缆相比,虽然频带较差,但波阻抗高,抗共模噪声能力强,能使各个小环节的电磁感应干扰相互抵消。

另外,在长距离传输过程中,一般采用差分信号传输,可提高抗干扰性能。

采用双绞屏蔽线长线传输可以有效地抑制前文提到的干扰现象中的(2)、(3)、(4)种干扰的产生。

3、局部产生误差的消除
在低电平测量中,对于在信号路径中所用的(或构成的)材料必须给予严格的注意,在简单的电路中遇到的焊锡、导线以及接线柱等都可能产生实际的热电势。

由于它们经常是
成对出现,因此尽量使这些成对的热电偶保持在相同的温度下是很有效的措施,为此一般用热屏蔽、散热器沿等温线排列或者将大功率
仪器仪表世界网:。

相关文档
最新文档