第九章土壤水溶性盐的测定
(完整版)土壤总盐量测定
土壤全盐量的测定中华人民共和国林业行业标准L Y / T 1 2 5 1 -1 9 9土壤浸出液的制备方法要点土壤水溶性盐可按一定的土水比例(通常采用1:5 ), 用平衡法浸出,然后侧定浸出液中的全盐量以及CO32-, HCO3-,Cl-, SO42-, C a2+, Mg2+,N a+,K+等8种主要离子的含量(可计算出离子总量) 。
测定结果均以千克土所含厘摩尔数( c mo l / k g ) 表示。
主要仪器真空泵往复式电动振荡机离心机(4000r/min)锥形瓶布氏漏斗或素瓷滤烛抽滤瓶锥形瓶。
测定步骤用台秤准确称取通过2mm筛孔的风干土样50.00g,放入干燥的500m L锥形瓶中。
用量筒准确加入无二氧化碳的纯水250mL,加塞,振荡3min,按土壤悬浊液是否易滤清的情况,选用下列方法之一过滤,以获得清亮的浸出液,滤液用干燥锥形瓶承接。
全部滤完后,将滤液充分摇匀,塞好,供测定用。
容易滤清的土壤悬浊液:用滤纸在7cm直径漏斗上过滤,或用布氏漏斗抽滤,滤斗上用表面皿盖好,以减少蒸发。
最初的滤液常呈浑浊状,必须重复过滤至清亮为止。
较难滤清的土壤悬浊液:用皱折的双层紧密滤纸在10cm直径漏斗上反复过滤。
碱化的土壤和全盐量很低的粘重土壤悬浊液,可用素瓷滤烛抽滤。
如不用抽滤,也可用离心分离,分离出的溶液也必须清晰透明。
注意事项①浸出液的土水比例和浸提时间:用水浸提土壤中易溶盐时,应力求将易溶盐完全溶解出来,同时又须尽可能使难溶盐和中溶盐(碳酸钙、硫酸钙等)不溶解或少溶解,并避免溶出的离子与土壤胶粒吸附的离子发生交换反应。
因此应选择适当的土水比例和振荡时间。
各种盐类的溶解度不同,有的相差悬殊,因而有可能利用控制水土比例的方法将易溶盐与中溶盐及难溶盐分离开。
采用加水量小的土水比例,较接近于田间实际情况,同时难溶盐和中溶盐被浸出的量也较少。
因此有人采用1:2.5,或1:1的土水比例,或采用饱和泥浆浸出液。
加水里小的土水比例,给操作带来的困难很大,特别难适用于粘重土壤。
一种土壤水溶性盐总量的快速测定方法[发明专利]
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 202010730009.3(22)申请日 2020.07.27(71)申请人 中国热带农业科学院分析测试中心地址 571101 海南省海口市龙华区学院路4号(72)发明人 苏冰霞 (74)专利代理机构 广州三环专利商标代理有限公司 44202代理人 文小花(51)Int.Cl.G01N 5/04(2006.01)G01N 1/40(2006.01)G01N 1/38(2006.01)(54)发明名称一种土壤水溶性盐总量的快速测定方法(57)摘要本发明提供一种土壤水溶性盐总量的快速测定方法,包括如下步骤:(1)土壤样本风干,粉碎(2)向称取的土壤样本中加水混合,在交变磁场的条件下,进行3000~3500r/min高速搅拌1~2min ,并在60~80s内过滤,得到分离液;(3)将分离液在静磁场的条件下,静置2~3min后,将分离液在11000~13000r/min转速下离心,过滤;(4)取待测液进行水浴蒸干至晶状物后,烘干至恒重,冷却,称重,得土壤水溶性盐的重量值;本发明的测定方法可将水溶性盐更加充分浸出和快速溶解的效果,并实现胶体微粒小团体与充分水溶性盐分离,从而有效提高土壤水溶性盐成分总量的测定的效率和准确度。
权利要求书1页 说明书5页CN 111829915 A 2020.10.27C N 111829915A1.一种土壤水溶性盐总量的快速测定方法,其特征在于:包括如下步骤:(1)细化:称取土壤样本进行粉碎,过10~20目筛,风干;(2)溶解与分离:按料液比为1:(5~8)g/ml,向土壤样本中加水混合,在交变磁场的条件下,进行3000~3500r/min高速搅拌1~2min,形成溶解液,并将溶解液在60~80s内过滤,得到分离液;(3)离心:将分离液在静磁场的条件下,于25~27℃恒温静置2~3min后,将分离液在11000~13000r/min的转速下离心,过滤,得到待测液;(4)干燥:取待测液进行水浴蒸干至晶状物后,放于120~130℃下热风烘干至恒重,由干燥箱中冷却后,称重,即得土壤水溶性盐的重量值。
第九章 土壤水溶性盐的测定
第九章 土壤水溶性盐的测定9.1概述土壤水溶性盐是盐碱土的一个重要属性,是限制作物生长的障碍因素。
我国盐碱土的分布广,面积大,类型多。
在干旱、半干旱地区盐渍化土壤,以水溶性的氯化物和硫酸盐为主。
滨海地区由于受海水浸渍,生成滨海盐土,所含盐分以氯化物为主。
在我国南方(福建、广东、广西等省、区)沿海还分布着一种反酸盐土。
盐土中含有大量水溶性盐类,影响作物生长,同一浓度的不同盐分危害作物的程度也不一样。
盐分中以碳酸钠的危害最大,增加土壤碱度和恶化土壤物理性质,使作物受害。
其次是氯化物,氯化物又以MgCl 2的毒害作用较大,另外,氯离子和钠离子的作用也不一样。
土壤(及地下水)中水溶性盐的分析,是研究盐渍土盐分动态的重要方法之一,对了解盐分、对种子发芽和作物生长的影响以及拟订改良措施都是十分必要的。
土壤中水溶性盐分析一般包括p H、全盐量、阴离子(Cl -、SO 42-、C O32-、HCO 3-、NO 3-等)和阳离子(Na +、K +、Ca 2+、Mg 2+)的测定,并常以离子组成作为盐碱土分类和利用改良的依据。
盐碱土是一种统称,包括盐土、碱土、和盐碱土。
美国农业部盐碱土研究室以饱和土浆电导率和土壤的p H与交换性钠不依据,对盐碱土进行分类(表9-1)。
我国滨海盐土则以盐分总含量为指标进行分类(表9-2)。
在分析土壤盐分的同时,需要对地下水进行鉴定(表9-3)。
当地下水矿化度达到2g·L -1时,土壤比较容易盐渍化。
所以,地下水矿化度大小可以作为土壤盐渍化程度和改良难易的依据。
用于灌溉的水,其导电率为0.1~0.75 d S·m。
测定土壤全盐量可以用不同类型的电感探测器在田间直接进行,如4联电极探针、素陶多孔土壤盐分测定器以及其它电磁装置,但测定土壤盐分的化学组成,则还需要用土壤水浸出液进行。
9.2土壤水溶性盐的浸提(1:1和5:1水土比及饱和土浆浸出液的制备)[1]土壤水溶性盐的测定主要分为两步:①水溶性盐的浸提;②测定浸出液中盐分的浓度。
土壤水溶性盐的测定
土壤水溶性盐的测定土壤水溶性盐的提取1 方法提要用除去二氧化碳的水浸提土壤中水溶性盐,水土比为5:1。
将水土混合液过滤,滤液作为待测液。
2 适用范围本方法适用于各类土壤水溶性盐的提取。
3 主要仪器设备3.1往复式或旋转式振荡器;满足180r/min±20r/min的振荡频率或达到相同效果;3.2真空泵(抽气用);3.3巴氏滤管或布氏漏斗(平板瓷漏斗);3.4广口瓶,500mL;3.5具塞三角瓶,500mL。
4 试剂4.1去除二氧化碳的水:将蒸馏水煮沸15min,冷却后立即使用。
5 分析步骤称取通过2mm孔径筛的风干试样50.00g,置于500mL广口瓶中,加250mL去除CO2的水,用橡皮塞塞紧瓶口,在振荡机上振荡3min,立即用抽气过滤装置(见图)或布氏漏斗抽滤于具塞三角瓶中,开始滤出的10mL滤液弃去,以获得清亮的滤液,加塞备用。
该浸出液可用于土壤水溶性盐总量(电导率法或重量法)、碳酸根和重碳酸根(电位滴定法或双指示剂中和法)、氯离子(硝酸银滴定法)、硫酸根离子(硫酸钡比浊法或EDTA间接滴定法)、水溶性钙和镁离子(原子吸收分光光度法)、水溶性钾和钠离子(火焰光度法或原子吸收分光光度计法)的测定。
电导、碳酸根和重碳酸根等测定应立即进行,其他离子的测定亦应在当天完成。
6 注释1)浸提时水土比例和浸提时间对盐分的浸出量都有一定的影响,必须统一规定,才便于分析结果相互比较。
本方法采用国内通用的5:1水土比例和振荡提取3min 的规定。
2) 除去二氧化碳的水可以有效地减小碳酸盐(碳酸钙、碳酸镁)和硫酸钙的溶解量,从而影响着水浸出液的盐分数量,因此,浸提时必须使用除去二氧化碳的水。
3) 待测液不可在室温下放置时间过长(一般不得超过1天),否则会影响钙、镁、碳酸根和重碳酸根的测定,可以将滤液储存在4℃条件下备用。
4) 巴氏滤管是用不同细度的陶瓷制成,其微孔大小分为6级。
号数越大,微孔越小,土壤盐分过滤可用1G 3或1G 4。
全盐测定
FHZDZTR0070 土壤 水溶性盐分全盐量的测定 质量法F-HZ-DZ-TR-0070土壤—水溶性盐分(全盐量)的测定—质量法1 范围本方法适用于土壤水溶性盐分(全盐量)的测定。
2 原理盐渍土含有的水溶性盐分主要是钾、钠、钙、镁的氯化物、硫酸盐、碳酸盐或重碳酸盐等,当其在土壤中积累到一定浓度时,就将危害作物生长,尤其是碱性钠盐的存在及其在土壤内的移动,还会造成土壤碱化。
对土壤进行水溶性盐分分析,是研究盐渍土的盐分状况及其对农业生产影响的重要方法。
土壤水溶性盐分分析包括全盐量、碳酸根、重碳酸根、氯根、硫酸根、钙、镁、钾、钠离子和离子总量。
土壤水溶性盐按一定的水土比例用水浸出,浸出液作全盐量、阴离子和阳离子含量的测定,离子总量由计算法求得,测定结果以cmol/kg 或g/kg 表示。
全盐量的测定一般采用质量法,吸取一定量土壤水浸出液,蒸干除去有机质后,烘干,称量测得全盐量。
3 试剂3.1 过氧化氢,1+1。
4 仪器4.1 振荡机。
4.2 离心机。
4.3 锥形瓶,500mL ,250mL 。
4.4 布氏漏斗和抽滤瓶。
4.5 玻璃蒸发皿,质量不超过20g 。
5 操作步骤5.1 待测液的制备:称取通过2mm 筛孔的风干土样50.000g(精确至0.001g)置于干燥的500mL 锥形瓶中,加入250.00mL 无二氧化碳的水,加塞,放在振荡机上振荡3min 。
同时做空白试验。
5.2 根据土样悬浊液能否滤清的情况,选用一种方法过滤,取得清亮的浸出液,滤液用250mL 干燥锥形瓶承接,滤完后将滤液摇匀,加塞,作全盐量、阴离子和阳离子含量测定用。
容易滤清的土样悬浊液用慢速滤纸过滤,也可用布氏漏斗慢速滤纸抽滤,过滤时漏斗上用表面皿盖好,减少溶液蒸发,最初滤液如有浑浊,必须重复过滤至清亮为止。
较难滤清的土样悬浊液用皱折的双层慢速滤纸反复过滤,也可用离心机离心分离,取得清亮的滤液。
5.3 吸取50.00mL 清亮的浸出液,置于已在105℃~110℃烘至恒量的玻璃蒸发皿中,放在水浴上蒸干。
土壤水溶性盐测定方法比较分析
测定次数 1
电导法测试水溶性盐精密度
样 1(g/ kg)
样 2(g/ kg)
样 3(g/ kg)
样 4(g/ kg)
0.44
0.75
1.22
2.13
样 5(g/ kg)
4.97
2
0.36
0.83
1.15
1.95
4.94
3
0.35
0.94
1.54
1.89
5.62
4
0.41
0.85
1.58
2.44
5.28
质量法测试水溶性盐精密度
测定次数
样 1(g/ 样 2(g/
kg)
kg)
样 3(g/ kg)
样 4(g/ kg)
样 5(g/ kg)
1
0.36
0.91
1.32
2.06
4.75
2
0.40
0.78
1.362.27Fra bibliotek4.82
3
0.41
0.90
1.37
2.07
5.04
4
0.37
0.90
1.52
2.29
4.19
5
2.02 2.32 2.20 0.23
4.56 4.31 4.85 0.48
相对标准偏 差
0.13
0.087
0.12
0.11
0.099
(3)从实验数据可以可以看出,两种方法各有利弊。质量 法是传统的经典方法,测定的数据也比较准确,样 1 的相对标准 偏差为 0.077;而电导法测定的样 1 的相对标准偏差为 0.13. 其 缺点就是过程繁琐,测定设施设备不利于就地操作,而且测定 时间较长,测定的效果和质量还受实验室的条件限制,不利于 远距离的流动作业,对于大面积的盐碱地开发不实用。电导法 测定土壤中的水溶性盐成分,可直接从电导仪上读出,测定过 程短,操作简单。缺点是测定数据需要综合分析,一次性的数 据不是很准确。还就是我国还没有制定统一的盐碱地水溶性 盐成分成分的电导率标准,不同类型、不同地方的电导率不一 样,制定改良方案时,还需要对具体的电导率数据,进行必要的 换算,才能参考应用。
土壤水溶性盐的测定西北农林科技大学张富仓
(3)为打井或了解灌溉水质时,可以测定水的矿化
度(水中易溶盐的总量,g/L)。
测定值的表示方法
土样:cmol/kg土(cmol· kg-1土);
g/kg土(g· kg-1土)
水样:g/L(g· L-1)
土壤水溶性盐的测定主要分两步: (1)用一定水土比制备浸出液,以提取盐分; (2)测定浸出液中的盐分。
(1)Ca2+的测定:
用NaOH调节试液pH为12,使Mg2++2OH-Mg(OH)2, 再用钙指示剂(简写NN,又叫钙红)或紫脲酸胺作指 示剂,用EDTA标准液滴定至溶液颜色由酒红纯兰, 即为终点。 Ca2+ + In(指示剂,兰色) CaIn(酒红色) CaIn + EDTA Ca-EDTA + In
用离子总量计算全盐量
先用化学方法测定各离子的含量,计算出的离子总 量作为全盐量。离子总量与全盐量之间的相对误差 通常小于10%,重量法结果往往大于离子总量计算 法,但它们都在盐分分析的允许误差范围之内。
土壤水溶性盐离子组成的测定
一、CO32-、HCO3-:
CO32-、HCO3-的测定也叫总碱度的测定,这是碱化
1.8-2.0ds/m
2.0 ds/m
可疑盐渍化土
盐渍化土
(2)把电导率换算成土壤含盐量的% (3)土壤溶液的电导率与离子浓度的换算 总盐, mg/L = 640 Ec (经验公式)
重量法(干残渣法)
取一定量的清亮的盐分浸出液,蒸干,用H2O2 除去干残渣中的有机质后,在105-110C下烘干, 称重,求出土壤水溶性盐总量。 此为经典方法,结果准确度高,但操作繁琐,费
浸出液中Mn4+稍多时,能催化EBT指示剂被空 气氧化而失效,加入盐酸羟胺或抗坏血酸等还原剂 可防止其氧化(使Mn4+Mn2+)。 Fe3+、Al3+稍多时,能封闭指示剂,可加三乙醇
土壤水溶性盐的测定
土壤水溶性盐的测定土壤水溶性盐的提取1 方法提要用除去二氧化碳的水浸提土壤中水溶性盐,水土比为5:1。
将水土混合液过滤,滤液作 为待测液。
2 适用范围本方法适用于各类土壤水溶性盐的提取。
3 主要仪器设备3.1 往复式或旋转式振荡器;满足180r/min ±20r/min 的振荡频率或达到相同效果; 3.2 真空泵(抽气用);3.3 巴氏滤管或布氏漏斗(平板瓷漏斗); 3.4 广 口瓶,500mL ; 3.5 具塞三角瓶,500mL 。
4 试剂4.1 去除二氧化碳的水:将蒸馏水煮沸15min ,冷却后立即使用。
5 分析步骤称取通过2mm 孔径筛的风干试样50.00g ,置于500mL 广口瓶中,加250mL 去除CO 2 的水,用橡皮塞塞紧瓶口,在振荡机上振荡3min ,立即用抽气过滤装置(见图)或布氏漏斗抽 滤于具塞三角瓶中,开始滤出的10mL 滤液弃去,以获得清亮的滤液,加塞备用。
该浸出液 可用于土壤水溶性盐总量(电导率法或重量法)、碳酸根和重碳酸根(电位滴定法或双指示 剂中和法)、氯离子(硝酸银滴定法)、硫酸根离子(硫酸钡比浊法或EDTA 间接滴定法)、水 溶性钙和镁离子(原子吸收分光光度法)、水溶性钾和钠离子(火焰光度法或原子吸收分光 光度计法)的测定。
电导、碳酸根和重碳酸根等测定应立即进行,其他离子的测定亦应在当 天完成。
6 注释二通活零巴氏丁号型管 _____ 橡声管真空泵抽气1)浸提时水土比例和浸提时间对盐分的浸出量都有一定的影响,必须统一规定,才便 于分析结果相互比较。
本方法采用国内通用的5: 1水土比例和振荡提取3min 的规定。
2)除去二氧化碳的水可以有效地减小碳酸盐(碳酸钙、碳酸镁)和硫酸钙的溶解量, 从而影响着水浸出液的盐分数量,因此,浸提时必须使用除去二氧化碳的水。
3) 待测液不可在室温下放置时间过长(一般不得超过1天),否则会影响钙、镁、 碳酸根和重碳酸根的测定,可以将滤液储存在4℃条件下备用。
土壤水溶性盐分析
土壤水溶性盐分析张连第 方建安(南京传滴滴仪器设备有限公司)受中科院东北地理研究所的委托,对所提供的土壤水浸出液样品(有色溶液,水土比为5:1)用FJA-2型微机控制自动滴定系统进行Ca 2+、Mg 2+、CO 32-、HCO 3-、SO 42-、Cl -滴定。
一、具体方法与测定结果1、Ca 2+测定:吸取浸出液50ml 于100ml 烧杯中,加入1+1盐酸10滴进行酸化,再加入饱和氢氧化钠10滴,以钙电极为指示电极,银-氯化银电极为参比电极。
在FJA-2型微机控制自动滴定系统上用EDTA 标准溶液[C(EDTA )=0.00892mol/L ]进行自动滴定,滴定体积为3.261ml 。
滴定曲线如图所示。
2、Ca 、Mg 测定:另吸取50ml 浸出液50ml 于100ml 烧杯中,加入1+1盐酸10滴进行酸化,再加入pH10缓冲溶液3 ml ,以钙电极为指示电极,银氯化银电极为参比电极。
用EDTA 标准溶液[C(EDTA )=0.00892mol/L ]进行自动滴定,滴定体积为3.869ml 。
滴定曲线如图所示。
计算Ca 、Mg 滴定出现两个终点取第二个终点为Ca 、Mg 终点1/2Ca2+cmol/Kg=0.00892×3.261×2×1000/(10×10)=0.5818Ca %=0.5818×0.02=0.01161/2Mg2+cmol/Kg=0.00092×(3.869-3.261)×2×1000/(10×10)=0.01085Mg %=0.1085×0.012=0.00133、CO 32-、HCO 3-测定:吸取浸出液20ml 于100ml 烧杯中,插入pH复合电极用盐酸标准溶液[C(HCL)=0.02206mol/L ]为滴定剂滴定,滴定体积V 1=6.725ml ,V 2=19.754mv 。
水溶性盐分全盐量的测定电导法2014-12-15 20.8.28
FHZDZTR0071 土壤 水溶性盐分全盐量的测定 电导法F-HZ-DZ-TR-0071土壤—水溶性盐分(全盐量)的测定—电导法1 范围本方法适用于土壤水溶性盐分(全盐量)的测定。
2 原理土壤中的水溶性盐是强电介质,其水溶液具有导电作用,导电能力的强弱可用电导率表示。
在一定浓度范围内,溶液的含盐量与电导率呈正相关,含盐量愈高,溶液的渗透压愈大,电导率也愈大。
土壤水浸出液的电导率用电导仪测定,直接用电导率数值表示土壤的含盐量。
3 试剂3.1 氯化钾标准溶液:0.0200mol/L ,称取1.4910g (精确至0.0001g )于105℃烘4h 的氯化钾(KCl )溶于无二氧化碳的水中,并稀释至1000mL 。
4 仪器4.1 电导仪。
4.2 铂电极。
4.3 温度计。
5 操作步骤5.1 待测液的制备:称取通过2mm 筛孔的风干土样50.000g(精确至0.001g)置于干燥的500mL 锥形瓶中,加入250.00mL 无二氧化碳的水,加塞,放在振荡机上振荡3min ,然后干过滤或离心分离,取得清亮的待测浸出溶液。
也可以吸取水溶性盐分(全盐量)的测定—质量法待测液制备得到的清亮溶液测定,同时做空白试验。
5.2 将铂电极引线接到电导仪相应的接线柱上,接通电源,打开电源开关。
5.3 调节电导仪至工作状态。
5.4 将铂电极用待测液冲洗几次后插入待测液中,打开测量开关,读取电导数值。
5.5 取出铂电极,用水冲洗,用滤纸吸干,再作下一土样测定。
同时测量待测液温度。
注:电导法测定全盐量时,最好用清亮的待测液。
如用悬浊液,应先澄清,并在测定时不再搅动,以免损坏电极的铂黑层。
6 结果计算按下式计算25℃时1∶5土壤水浸出液的电导率:K f C L t ××=式中:L ——25℃时1∶5土壤水浸出液的电导率,mS/cm ;C ——测得的电导值,mS/cm ;f t ——温度校正系数;K ——电极常数(电导仪上如有补偿装置,不需乘电极常数)。
全盐量测定质量法
FHZDZTR0070 土壤 水溶性盐分全盐量的测定 质量法F-HZ-DZ-TR-0070土壤—水溶性盐分(全盐量)的测定—质量法1 范围本方法适用于土壤水溶性盐分(全盐量)的测定。
2 原理盐渍土含有的水溶性盐分主要是钾、钠、钙、镁的氯化物、硫酸盐、碳酸盐或重碳酸盐等,当其在土壤中积累到一定浓度时,就将危害作物生长,尤其是碱性钠盐的存在及其在土壤内的移动,还会造成土壤碱化。
对土壤进行水溶性盐分分析,是研究盐渍土的盐分状况及其对农业生产影响的重要方法。
土壤水溶性盐分分析包括全盐量、碳酸根、重碳酸根、氯根、硫酸根、钙、镁、钾、钠离子和离子总量。
土壤水溶性盐按一定的水土比例用水浸出,浸出液作全盐量、阴离子和阳离子含量的测定,离子总量由计算法求得,测定结果以cmol/kg 或g/kg 表示。
全盐量的测定一般采用质量法,吸取一定量土壤水浸出液,蒸干除去有机质后,烘干,称量测得全盐量。
3 试剂3.1 过氧化氢,1+1。
4 仪器4.1 振荡机。
4.2 离心机。
4.3 锥形瓶,500mL ,250mL 。
4.4 布氏漏斗和抽滤瓶。
4.5 玻璃蒸发皿,质量不超过20g 。
5 操作步骤5.1 待测液的制备:称取通过2mm 筛孔的风干土样50.000g(精确至0.001g)置于干燥的500mL 锥形瓶中,加入250.00mL 无二氧化碳的水,加塞,放在振荡机上振荡3min 。
同时做空白试验。
5.2 根据土样悬浊液能否滤清的情况,选用一种方法过滤,取得清亮的浸出液,滤液用250mL 干燥锥形瓶承接,滤完后将滤液摇匀,加塞,作全盐量、阴离子和阳离子含量测定用。
容易滤清的土样悬浊液用慢速滤纸过滤,也可用布氏漏斗慢速滤纸抽滤,过滤时漏斗上用表面皿盖好,减少溶液蒸发,最初滤液如有浑浊,必须重复过滤至清亮为止。
较难滤清的土样悬浊液用皱折的双层慢速滤纸反复过滤,也可用离心机离心分离,取得清亮的滤液。
5.3 吸取50.00mL 清亮的浸出液,置于已在105℃~110℃烘至恒量的玻璃蒸发皿中,放在水浴上蒸干。
实验八土壤可溶性盐分的测定
实验八土壤可溶性盐分的测定实验八土壤可溶性盐分的测定土壤水溶性盐是盐碱土的一个重要属性,是限制作物生长的一个障碍因素。
分析土壤中可溶性盐分的阴、阳离子含量,和由此确定的盐分类型和含量,可以判断土壤的盐渍化状况和盐分动态,以作为盐碱土分类和利用改良的依据。
待测液的制备方法原理土壤样品和水按一定的水土比例混合,经过一定时间振荡后,将土壤中可溶性盐分提取到溶液中,然后将水土混合液进行过滤,滤液可做为土壤可溶盐分测定的待测液。
主要仪器往复式电动振荡机;天平;巴氏漏斗;广口塑料瓶。
操作步骤称取通过1mm筛孔的风干土样20.0g放入250ml三角瓶中,加入去CO2水100ml,用橡皮塞塞紧瓶口,在振荡机上振荡10分钟,立即过滤,最初约10ml滤液弃去。
如滤液浑浊,则应重新过滤,直到获得清亮的浸出液。
清液存于干净的玻璃瓶或塑料瓶中,不能久放。
电导、pH、CO2-3、HCO-3离子等项测定,应立即进行,其它离子的测定最好都能在当天做完。
水溶性盐分总量的测定(重量法)方法原理取一定量的待测液蒸干后,再在105—110℃烘干,称至恒重,称为“烘干残渣总量”,它包括水溶性盐类及水溶性有机质等的总和。
用H2O2除去烘干残渣中的有机质后,即为水溶性盐总量。
主要仪器电热板;干燥器;烧杯;分析天平。
试剂15%H2O2。
操作步骤:吸出清晰的待测液50ml,放入已知重量的烧杯或瓷蒸发皿(W1)中,放在电热板上蒸干后,放入烘箱,在105—110℃烘干4小时。
取出,放在干燥器中冷却约30分钟,在分析天平上称重。
再重复烘2小时,冷却,称至恒重(W2),前后两次重量之差不得大于1mg。
计算烘干残渣总量。
在上述烘干残渣中滴加15%H2O2溶液,使残渣湿润,再放在沸水浴上蒸干,如此反复处理,直至残渣完全变白为止,再按上法烘干后,称至恒重(W3),计算水溶性盐总量。
结果计算水溶性盐总量%= (W3-W1)/W×100式中,W—与吸取浸出液相当的土壤样品重(g)。
土壤农化分析各章复习要点
第一章土壤农化分析基本知识1、名词解释:空白试验回收率有效数字精密度准确度绝对误差对照试验相对偏差平行性重复性2、应掌握内容:1)、误差来源问题土壤农化分析的误差来源于三个方面,即采样误差、称量误差和分析误差,误差主要来源于采样误差,其次是分析误差;其中分析误差包括系统误差和偶然误差;分析结果的准确度由系统误差决定,分析结果的精密度由偶然误差决定。
系统误差和偶然误差产生的原因。
2)偶然误差和系统误差的检验和校正方法3)有效数字的保留问题4)我国试剂的规格:第二章土壤样品采集与制备1、名词解释:风干土烘干土土壤质量含水量2、土壤样品采集中应注意的问题每一点采取的土样厚度、深浅、宽狭应大体一致。
各点都是随机决定的,在田间观察了解情况后,随机定点可以避免主观误差,提高样品的代表性,一般按S形线路采样。
采样地点应避免田边、路边、沟边和特殊地形的部位以及堆过肥料的地方。
一个混合样品是由均匀一致的许多点组成的,各点的差异不能太大,不然就要根据土壤差异情况分别采集几个混合土样,使分析结果更能说明问题。
一个混合样品重在1kg左右。
3、土壤样品的保存时样品瓶上的标签应包含的内容4、耕层混合样品采集的原则5、样品采集与制备的方法6、掌握烘干法测定土壤含水量的方法与条件7、风干样品处理时,测定项目与土壤过筛粒径之间的关系。
第三章土壤有机质测定1、土壤有机质的概念2、土壤有机质测定的常用方法有哪些?(干烧法、湿烧法、容量法、比色法、直接灼烧法)3、干烧法和湿烧法的优缺点4、重铬酸钾容量法可分为几种?重铬酸钾外加热法与的稀释热法比较优缺点。
5、两种容量法原理,测定条件(反应温度、时间、指示剂的选择及颜色变化、校正系数、注意事项等)第四章土壤氮素分析1、名词:土壤有效氮土壤无机氮、土壤碱解氮开氏法2、开氏法原理及优点3、开氏法测定土壤全氮消煮时的条件1)加速剂的主要成分及各成分所起作用,成分选择,用量等。
2)温度、时间,溶液清亮后为什么要后煮30分钟等4、消煮液中铵的测定有哪些方法?5、蒸馏法测定消煮液中铵的原理、吸收液的选择(硼酸、硫酸)、指示剂6、土壤有效氮测定方法有哪些(生物方法(好奇培养、厌气培养)、化学方法(酸水解、碱水解))7、碱解蒸馏法测定土壤有效氮的方法、原理、及注意事项8、土壤中无机氮的测定方法有哪些?1)铵态氮的测定方法2)硝态氮的测定方法8、蒸馏法测定无机氮时,包括硝态氮时可用那些还原剂9、开氏法测定的全氮中是否包含硝态氮?如要包括该如何处理?第五章土壤磷素分析1、土壤中有效磷含量、土壤中磷的有效性2、土壤全磷的测定分为两步:样品的分解;待测液中P的定量3、样品分解的方法1)样品分解可分为碱熔法和酸溶法,碱熔法有哪些,优缺点;酸溶法有哪些,优缺点,常用的酸溶法是什么?2)硫酸-高氯酸法测定土壤全磷的原理4、待测液中磷的测定1)磷的测定方法有哪些,各方法的使用范围如何?土壤待测液中磷的测定选用哪种方法?2)钼锑抗比色法测定P的原理、工作范围,优点(表5-1)5、如何选择合适的土壤有效磷提取剂?讨论影响有效磷浸提的因素?6、0.5 mol L-1 NaHCO3溶液法(又称Olsen 法)测定石灰性土壤有效磷的原理及测定条件。
土壤中盐分含量测定
土壤中可溶性盐分是用一定的水土比例和在一定时间内浸提出来的土壤中所含有的水溶性盐分。
分析土壤中可溶性盐分的阴、阳离子组成,和由此确定的盐分类型和含量,可以判断土壤的盐渍状况和盐分动态,因为土壤所含的可溶性盐分达一定数量后,会直接影响作物的发芽和正常生长。
当然,盐分对作物生长的影响,主要决定于土壤可溶性盐分的含量及其组成,和不同作物的耐盐程度。
就盐分组成而言:苏打盐分(碳酸钠、碳酸氢钠)对作物的危害最大,氯化钠次之,硫酸钠相对较轻。
当土壤中可溶性镁增高时,也能毒害作物。
因此,定期测定土壤中可溶性盐分总量及其盐分组成,可以了解土壤的盐渍程度和季节性盐分动态,据此拟订改良利用盐碱土的措施。
通常,用水浸提液的烘干残渣量来表示土壤中水溶性物质的总量,烘干残渣量不仅包括矿质盐分量,尚有可溶性有机质以及少量硅、铝等氧化物。
盐分总量通常是盐分中阴、阳离子的总和,而烘干残渣量一般都高于盐分总量,因而应扣除非盐分数量。
此外,所测得的可溶性盐分总量,尚可验证系统分析中各种阴阳离子分量的分析结果。
可溶性盐分总量的测定方法很多,有重量法、电导法、比重计法,还有阴阳离子总合计算法等,由于比重计法比较粗放,而阴阳离子总和计算法又比较费时,所以在这里只重点介绍通用的重量法。
1待测液的制备1. 1 原理土壤样品与水按一定的水土比例混合,经过一定时间振荡后,将土壤中的可溶性盐分提取到溶液中,然后将水土混合液进行过滤,滤液可作为土壤可溶性盐分测定的待测液。
1. 2 仪器电动振荡机,真空泵(抽气用),大口塑料瓶(1000 mL),巴士滤管和平板瓷漏斗,抽气瓶(1000mL)。
1. 3 操作步骤1. 3. 1 称取通过18号筛(1mm筛孔)风干土壤样品100g(精确到0.1 g),放入1000mL大口塑料瓶中,加入500m L二氧化碳蒸馏水。
土壤全盐量
土壤全盐量土壤中可溶性盐分的测定重量法土壤中可溶性盐分是用一定的水土比例和在一定时间内浸提出来的土壤中所含有的水溶性盐分。
分析土壤中可溶性盐分的阴、阳离子组成,和由此确定的盐分类型和含量,可以判断土壤的盐渍状况和盐分动态,因为土壤所含的可溶性盐分达一定数量后,会直接影响作物的发芽和正常生长。
当然,盐分对作物生长的影响,主要决定于土壤可溶性盐分的含量及其组成,和不同作物的耐盐程度。
就盐分组成而言:苏打盐分(碳酸钠、碳酸氢钠)对作物的危害最大,氯化钠次之,硫酸钠相对较轻。
当土壤中可溶性镁增高时,也能毒害作物。
因此,定期测定土壤中可溶性盐分总量及其盐分组成,可以了解土壤的盐渍程度和季节性盐分动态,据此拟订改良利用盐碱土的措施。
通常,用水浸提液的烘干残渣量来表示土壤中水溶性物质的总量,烘干残渣量不仅包括矿质盐分量,尚有可溶性有机质以及少量硅、铝等氧化物。
盐分总量通常是盐分中阴、阳离子的总和,而烘干残渣量一般都高于盐分总量,因而应扣除非盐分数量。
此外,所测得的可溶性盐分总量,尚可验证系统分析中各种阴阳离子分量的分析结果。
可溶性盐分总量的测定方法很多,有重量法、电导法、比重计法,还有阴阳离子总合计算法等,由于比重计法比较粗放,而阴阳离子总和计算法又比较费时,所以在这里只重点介绍通用的重量法。
1待测液的制备1. 1 原理土壤样品与水按一定的水土比例混合,经过一定时间振荡后,将土壤中的可溶性盐分提取到溶液中,然后将水土混合液进行过滤,滤液可作为土壤可溶性盐分测定的待测液。
1. 2 仪器电动振荡机,真空泵(抽气用),大口塑料瓶(1000 mL),巴士滤管和平板瓷漏斗,抽气瓶(1000mL)。
1. 3 操作步骤1. 3. 1 称取通过18号筛(1mm筛孔)风干土壤样品100g(精确到0(1 g),放入1000mL大口塑料瓶中,加入500mL二氧化碳蒸馏水。
1. 3(2 将塑料瓶用橡皮塞塞紧后在振荡机上振荡8min。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 土壤水溶性盐的测定9.1概述土壤水溶性盐是盐碱土的一个重要属性,是限制作物生长的障碍因素。
我国盐碱土的分布广,面积大,类型多。
在干旱、半干旱地区盐渍化土壤,以水溶性的氯化物和硫酸盐为主。
滨海地区由于受海水浸渍,生成滨海盐土,所含盐分以氯化物为主。
在我国南方(福建、广东、广西等省、区)沿海还分布着一种反酸盐土。
盐土中含有大量水溶性盐类,影响作物生长,同一浓度的不同盐分危害作物的程度也不一样。
盐分中以碳酸钠的危害最大,增加土壤碱度和恶化土壤物理性质,使作物受害。
其次是氯化物,氯化物又以MgCl 2的毒害作用较大,另外,氯离子和钠离子的作用也不一样。
土壤(及地下水)中水溶性盐的分析,是研究盐渍土盐分动态的重要方法之一,对了解盐分、对种子发芽和作物生长的影响以及拟订改良措施都是十分必要的。
土壤中水溶性盐分析一般包括pH 、全盐量、阴离子(Cl -、SO 42-、CO 32-、HCO 3-、NO 3-等)和阳离子(Na +、K +、Ca 2+、Mg 2+)的测定,并常以离子组成作为盐碱土分类和利用改良的依据。
盐碱土是一种统称,包括盐土、碱土、和盐碱土。
美国农业部盐碱土研究室以饱和土浆电导率和土壤的pH 与交换性钠不依据,对盐碱土进行分类(表9-1)。
我国滨海盐土则以盐分总含量为指标进行分类(表9-2)。
在分析土壤盐分的同时,需要对地下水进行鉴定(表9-3)。
当地下水矿化度达到2g·L -1时,土壤比较容易盐渍化。
所以,地下水矿化度大小可以作为土壤盐渍化程度和改良难易的依据。
表9-2 我国滨海盐土的分级标准用于灌溉的水,其导电率为0.1~0.75 dS·m 。
测定土壤全盐量可以用不同类型的电感探测器在田间直接进行,如4联电极探针、素陶多孔土壤盐分测定器以及其它电磁装置,但测定土壤盐分的化学组成,则还需要用土壤水浸出液进行。
9.2土壤水溶性盐的浸提(1:1和5:1水土比及饱和土浆浸出液的制备)[1]土壤水溶性盐的测定主要分为两步:①水溶性盐的浸提;②测定浸出液中盐分的浓度。
制备盐渍土水浸出液的水土比例有多种,例如1:1、2:1、5:1、10:1和饱和土浆浸出液等。
一般来讲,水土比例愈大,分析操作愈容易,但对作物生长的相关性差。
因此,为了研究盐分对植物生长的影响,最好在田间湿度情况下获得土壤溶液;如果研究土壤中盐分的运动规律或某种改良措施对盐分变化的影响,则可用较大的水土比(5:1)浸提水溶性盐。
浸出液中各种盐分的绝对含量和相对含量受水土比例的影响很大。
有些成分随水分的增加而增加,有些则相反。
一般来讲,全盐量是随水分的增加而增加。
含石膏的土壤用5:1的水土比例浸提出来的Ca2+和SO42-数量是用1:1的水土比的5倍,这是因为水的增加,石膏的溶解量也增加;又如含碳酸钙的盐碱土,水的增加,Na+和HCO3-的量也增加。
Na+的增加是因为CaCO3溶解,钙离子把胶体上Na+置换下来的结果。
5:1的水土比浸出液中的Na+比1:1浸出液中的大2倍。
氯根和硝酸根变化不大。
对碱化土壤来说,用高的水土比例浸提对Na+的测定影响较大,故1∶1年浸出液更适用于碱土化学性质分析方面的研究。
水土比例、震荡时间和浸提方式对盐份的溶出量都有一定的影响。
试验证明,如Ca(HCO3)2和CaSO4这样的中等溶性和难溶性盐,随着水土比例的增大和浸泡时间的延长,溶出量逐渐增大,致使水溶性盐的分析结果产生误差。
为了使各地分析资料便于相互交流比较,必须采用统一的水土比例、震荡时间和提取方法,并在资料交流时应加以说明。
我国采用5:1浸提法较为普遍,在此重点介绍1:1、5:1浸提法和饱和土浆浸提法,以便在不同情况下选择使用。
9.2.1主要仪器(1)布氏漏斗(如图9.1),或其它类似抽滤装置。
(2)平底漏斗、抽气装置、抽滤瓶等。
9.2.2试剂1g·L-1六偏磷酸钠溶液。
称取(NaPO3)60.1g溶于100L水中。
9.2.3操作步骤(1)1:1水土比浸出液的制备。
称取通过1mm筛孔相当于100.0g烘干土的风干土,例如风干土含水量为3%,则称取103g风干土放入500mL的三角瓶中,加刚沸过的冷蒸馏水97mL,则水土比为1:1。
盖好瓶塞,在振荡机上振荡15min。
用直径11cm的瓷漏斗过滤,用密实的滤纸,倾倒土液时应摇浑泥浆,在抽气情况下缓缓倾入漏斗中心。
当滤纸全部湿润并与漏斗底部完全密接时再继续倒入土液,这样可避免滤液浑浊。
如果滤液浑浊应倒回重新过滤或弃去浊液。
如果过滤时间长,用表玻璃盖上以防水分蒸发。
将清亮液收集在250mL细口瓶中,每250mL加1g·L-1六偏磷酸钠一滴,储存在4℃备用。
(2)5:1水土比浸出液的制备。
称取通过1mm筛孔相当于50.0g烘干土的风干土,放入500mL的三角瓶中,加水250mL(如果土壤含水量为3%时,加水量应加以校正)(注1,2)。
盖好瓶塞,在振荡机上振荡3min(注3)。
或用手摇荡3min(注3)。
然后将布氏漏斗与抽气系统相连,铺上与漏斗直径大小一致的紧密滤纸,缓缓抽气,使滤纸与漏斗紧贴,先倒少量土液于漏斗中心,使滤纸湿润并完全贴实在漏斗底上,再将悬浊土浆缓缓倒入,直至抽滤完毕。
如果滤液开始浑浊应倒回重新过滤或弃去浊液。
将清亮滤液收集备用(注4)。
如果遇到碱性土壤,分散性很强或质地粘重的土壤,难以得到清亮滤液时,最好用素陶瓷中孔(巴斯德)吸滤管减压过滤(图9-2)(注5),或用改进的抽滤装置过滤(图9-3)。
如用巴氏滤管过滤应加大土液数量,过滤时可用几个吸滤瓶连结在一起(图9-4)。
(3)饱和土浆浸出液的制备。
本提取方法长期不能得到广泛应用的主要原因是由于手工加水混合难于确定一个正确的饱和点,重现性差,特别是对于质地细的和含钠高的土壤,要确定一个正确的饱和点是困难的。
现介绍一种比较容易掌握的加水混合法,操作步骤如下:称取风干土样(1mm)20.0~25.0g,用毛管吸水饱和法制成饱和土浆,放在105~110℃烘箱中烘干、称重。
计算出饱和土浆含水量。
制备饱和土浆浸出液所需的土样重与土壤质地有关。
一般制备25~30mL饱和土浆浸出液需要土样重:壤质砂土400~600g,砂壤土250~400g,壤土150~250g,粉砂壤土和粘土100~150g,粘土50~100g。
根据此标准,称取一定量的风干土样,放入一个带盖的塑料杯中,加入计算好的所需水量,充分混合成糊状,加盖防止蒸发。
放在低温处过夜(14~16h),次日再充分搅拌。
将此饱和土浆在4000r·min-1速度下离心,提取土壤溶液,或移入预先铺有滤纸的砂芯漏斗或平瓷漏斗中(用密实的滤纸,先加少量泥浆湿润滤纸,抽气使滤纸与漏斗紧贴在漏斗上,继续倒入泥浆),减压抽滤,滤液收集在一个干净的瓶中,加塞塞紧,供分析用。
浸出液的pH、CO32-、HCO3-和电导率应当立即测定。
其余的浸出液,每25mL溶液加1g·L-1六偏磷酸钠一滴,以防在静置时CaCO3从溶液中沉淀。
塞紧瓶口,留待分析用。
注释注1.水土比例大小直接影响土壤可溶性盐分的提取,因此提取的水土比例不要随便更改,否则分析结果无法对比。
注2.空气中的二氧化碳分压大小以及蒸馏水中溶解的二氧化碳都会影响碳酸钙、碳酸镁和硫酸钙的溶解度,相应地影响着水浸出液的盐分数量,因此,必须使用无二氧化碳的蒸馏水来提取样品。
注3.土壤可溶性盐分浸提(振荡)时间问题,经试验证明,水土作用2min,即可使土壤可溶性的氯化物、碳酸盐与硫酸盐等全部溶于水中,如果延长时间,将有中溶性盐和难溶性盐(硫酸钙和碳酸钙等)进入溶液。
因此,建议采用振荡3min立即过滤的方法,振荡和放置时间越长,对可溶性盐的分析结果误差也越大。
注4.待测液不可在室温下放置过长时间(一般不得超过一天),否则会影响钙、镁、碳酸根和重碳酸根的测定。
可以将滤液储存4℃条件下备用。
注5.对于难以过滤的碱化度高或质地粘重的土壤可用巴氏滤管抽滤。
巴氏滤管是用不同细度的陶瓷制成,其微孔大小分为6级。
号数越大,微孔越小,土壤盐分过滤可用1G3或1G4。
也有的巴氏滤管微孔大小分为粗、中、细三级,土壤盐分过滤可用粗号或中号。
9.3土壤可溶性盐总量的测定测定土壤可溶性盐总量有电导法和残渣洪干法。
电导法比较简便、方便、快速。
残渣洪干法比较准确,但操作繁琐、费时,另外它也可用于阴阳离子总量相加计算。
9.3.1电导法[1]9.3.1.1方法原理土壤可溶性盐是强电解质,其水溶液具有导电作用。
以测定电解质溶液的电导为基础的分析方法,称为电导分析法。
在一定浓度范围内,溶液的含盐量与电导率呈正相关。
因此,土壤浸出液的电导率的数值能反映土壤含盐量的高低,但不能反映混合盐的组成。
如果土壤溶液中几种盐类彼此间的比值比较固定时,则用电导率值测定总盐分浓度的高低是相当准确的。
土壤浸出液的电导率可用电导仪测定,并可直接用电导率的数值来表示土壤含盐量的高低。
将连接电源的两个电极插入土壤浸出液(电解质溶液)中,构成一个电导池。
正负两种离子在电场作用下发生移动,并在电极上发生电化学反应而传递电子,因此电解质溶液具有导电作用。
根据欧姆定律,当温度一定时,电阻与电极间的距离(L )成正比,与电极的截面积(A )成反比。
AL R ρ=式中:R ——电阻(欧姆); ρ——电阻率。
当L =,A =1cm 2则R =ρ,此时测得的电阻称为电阻率ρ。
溶液的电导是电阻的倒数,溶液的电阻率(EC )则是电阻率的倒数。
ρ1=EC电阻率的单位常用西门子·米-1(S·m -1)。
土壤溶液的电阻率一般小于1个S·m -1,因此常用d S·m -1 (分西门子·米-1)表示。
两电极片间的距离和电极片的截面积难以精确测量,一般可用标准KCl 溶液(其电导率在一定温度下是已知的)求出电极常数(1)。
K S KC KClKCl= K 为电极常数,EC KCl 为标准KCl 溶液(0.02mol·L -1)的电阻率(dS·m -1),18℃时EC KCl =2.397dS·m -1,25℃时为2.765dS·m -1。
S KCl 为同一电极在相同条件下实际测得的电导度值。
那么,待测液测得的电导度乘以电极常数就是待测液的电导率。
KS EC =大多数电导仪有电极常数调节装置,可以直接读出待测液的电阻率,无需再考虑用电极常数进行计算结果。
9.3.1.2仪器(1)电导仪。
目前在生产科研应用较普遍的是DDSJ-308型等电导仪。
此外还有适于野外工作需要的袖珍电导仪。
(2)电导电极。
一般多用上海雷磁仪器厂生产的DJS-1C 型等电导电极。
这种电极使用前后应浸在蒸馏水内,以防止铂黑的惰化。