六种基本初等函数(elementary function)
高数16个基本初等函数
高数是一门重要的数学课程,其中最基础的内容就是16个基本初等函数。
这些函数在数学和实际应用中都有着广泛的应用,下面我们将逐一介绍这16个函数。
一、常数函数常数函数是指函数f(x)=c,其中c为常数。
这个函数的图像是一条平行于x轴的直线,它的斜率为0。
常数函数在实际应用中常用于表示一些固定的量,如重力加速度g=9.8m/s²。
二、幂函数幂函数是指函数f(x)=x^a,其中a为常数。
幂函数的图像随着a的不同而变化,当a>1时,函数的图像呈现出上升的趋势,当0<a<1时,函数的图像呈现出下降的趋势。
幂函数在实际应用中常用于描述一些具有指数增长或衰减的现象,如人口增长、放射性衰变等。
三、指数函数指数函数是指函数f(x)=a^x,其中a为常数。
指数函数的图像随着a的不同而变化,当a>1时,函数的图像呈现出上升的趋势,当0<a<1时,函数的图像呈现出下降的趋势。
指数函数在实际应用中常用于描述一些具有指数增长或衰减的现象,如利息的复利计算、细胞的增长等。
四、对数函数对数函数是指函数f(x)=loga(x),其中a为常数。
对数函数的图像是一条上升的曲线,它的斜率在x=1处为1。
对数函数在实际应用中常用于描述一些量的倍数关系,如声音的强度、地震的震级等。
五、三角函数三角函数是指正弦函数、余弦函数和正切函数。
正弦函数和余弦函数的图像都是周期性波动的曲线,它们的周期为2π。
正切函数的图像则是一条无限延伸的曲线。
三角函数在实际应用中常用于描述周期性变化的现象,如天体运动、电流的交流等。
六、反三角函数反三角函数是指正弦函数的反函数、余弦函数的反函数和正切函数的反函数。
反三角函数的图像是一条上升或下降的曲线,它们的定义域和值域与对应的三角函数相反。
反三角函数在实际应用中常用于求解三角函数的反函数值,如角度的计算、电路的分析等。
七、双曲函数双曲函数是指双曲正弦函数、双曲余弦函数和双曲正切函数。
六大基本初等函数图像与其性质
六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C (其中 C 为常数);常数函数( y C )C 0yy Cy 0xO平行于 x 轴的直线定义域 R二、幂函数 y x, x 是自变量,是常数;1. 幂函数的图像:y y x3y x2y x1O2.幂函数的性质;性质y x y x2y x3函数定义域R R R值域R[0,+ ∞ )R奇偶性奇偶奇单调性增[0,+ ∞) 增增(-∞ ,0]减公共点( 1,1)C 0yOy轴本身定义域 Ry x1y x 2x1y x 2[0,+ ∞ )[0,+ ∞ )非奇非偶增xy x 1{x|x ≠ 0}{y|y ≠ 0}奇(0,+∞) 减(-∞ ,0) 减第 1 页1)当 α 为正整数时,函数的定义域为区间为x ( ,),他们的图形都经过原点,并当α >1 时在原点处与 x 轴相切。
且 α为奇数时,图形关于原点对称;α 为偶数时图形关于 y 轴对称;2)当 α 为负整数时。
函数的定义域为除去 x=0 的所有实数;3)当 α 为正有理数m时, n 为偶数时函数的定义域为(0, +∞), n 为奇数时函数的定义域为( -n∞ ,+∞),函数的图形均经过原点和( 1 ,1);4)如果 m>n 图形于 x 轴相切,如果m<n,图形于 y 轴相切,且 m 为偶数时,还跟y 轴对称; m , n均为奇数时,跟原点对称;5)当 α 为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数ya x(x 是自变量,a 是常数且a0 , a1 ),定义域是R ;[ 无界函数 ]1. 指数函数的图象 :yaxyyy ax(a 1)(0 a1)(0,1)y 1(0,1)y 1OxOx2. 指数函数的性质 ;性质y a x(a 1)y a x(0 a 1)函数定义域 R值域(0,+∞)奇偶性非奇非偶公共点过点 (0,1),即 x 0 时, y1单调性 在(, )是增函数 (, )在是减函数1 ) 当 a1时 函 数 为 单 调 增 , 当 0 a 1时函数为单调减;2 ) 不 论 x 为 何 值 , y 总 是 正 的 , 图 形 在 x 轴 上 方 ;3 ) 当 x 0 时 , y1,所以它的图形通过(0,1)点 。
六大基本初等函数图像及其性质
六大基本初等函数图像及其性质、常值函数(也称常数函数) y =C (其中 C 为常数);、幂函数 y x, x 是自变量, 是常数;1)当α为正整数时,函数的定义域为区间为x ( , ),他们的图形都经过原点,并当α >1 时在原点处与 x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于 y 轴对称;2)当α为负整数时。
函数的定义域为除去 x=0 的所有实数;函数的图形均经过原点和(1 ,1 ); 4)如果 m>n 图形于 x 轴相切,如果 m<n,图形于 y 轴相切,且 m 为偶数时,还跟 y 轴对称;m ,n 均为 奇数时,跟原点对称;5)当α为负有理数时, n 为偶数时, 函数的定义域为大于零的一切实数; n 为奇数时, 定义域为去除 x=03)当α为正有理数 时, n 为偶数时函数的定义域为n 0, +∞),n 为奇数时函数的定义域为 ∞,+∞性质函数定义域(0,1)R(0,1)值域(0, + ∞)奇偶性 非奇非偶公共点过点(0,1),即 x 0 时, y 1单调性在( , )是增函数在( , )是减函数1) 2) 3) 当x0时, y 1, 所以 它的图 形通过(0,1)3. (选,补充)指数函数值的大小比较a. 底数互为倒数的两个指数函数x x1 f (x) a x, f(x) a的函数图像关于 y 轴对称。
a N*(1) ma n a mn a (2) m a n a mn a以外的一切实数三、指数函数 y a x( x 是自变量 , a 是常数且 a 0,a 1 ) ,定义域是 R ; [ 无界函数 ]1. 指数函数的图象 :y2. 指数函数的性质 ;x当a不论 1时 函 数 为 单 调 增 , 当 0 a 1时 函 数 为单 调 减 ; x 为何值 , y 总是正 的, 图形在 x 轴x1. 对数的概念: 如果 a(a >0,a ≠1)的 b 次幂等于 N ,就是 a bN ,那么数 b 叫做以 a 为底 N 的对作log a N b , 其中 a 叫做对数的底数, N 叫做真数,式子 log a N 叫做对数式对数函数 y log a x 与指数函数 y a x互为反函数,所以 y log a x 的图象与 y a x的图象关于直线 y x 对称。
六种基本初等函数定义域
六种基本初等函数定义域六种基本初等函数定义域是数学中一个重要的概念,它对人们的理解、应用和建立函数模型都有重要的意义。
本文的目的是通过介绍六种基本函数的定义域,帮助读者更加清楚地了解和理解这些函数的定义域。
首先,我们讨论的六种函数是指对数函数、反比例函数、平方根函数、立方根函数、倒数函数和平方函数。
1.数函数的定义域是所有大于零的实数。
这是因为当x为正时,logx可以求出;当x为零时,logx非常大,因此没有定义;当x为负时,logx没有意义,因此也没有定义。
2.比例函数的定义域是所有实数,除了零。
这是因为当x不为零时,可以求出1/x;而当x等于零时,1/x的值将无限大,因此没有定义。
3.方根函数的定义域是所有非负实数。
这是因为当x为正时,可以求出其平方根;当x为负时,因为无法求出它的平方根(根号里放负数),所以没有定义。
4.方根函数的定义域是所有非负实数。
这是因为当x为正时,可以求出其立方根;当x为负时,因为无法求出它的立方根(立方根里放负数),所以没有定义。
5.倒数函数的定义域是所有非零实数。
这是因为当x不为零时,可以求出1/x;而当x等于零时,1/x的值将无限大,因此没有定义。
6.平方函数的定义域是所有实数。
以上就是六种基本初等函数定义域的介绍。
至此,读者应该可以更加清楚地了解和理解这些函数的定义域了。
任何函数的定义域都有助于研究函数的性质和特征,从而可以在数学建模中有更加科学、准确、可靠的解决方案。
为了使函数模型更准确,人们有必要熟练掌握这些基本函数的定义域,从而在分析问题时更加有针对性和准确性。
此外,掌握基本函数的定义域还有助于加深对数学的理解,可以更好地用数学工具来分析正确的问题。
因此,在学习数学的过程中,一定要把握好六种基本初等函数定义域的知识点,才能在今后对数学的学习、研究和掌握中事半功倍。
由此可见,六种基本初等函数定义域对人们理解函数、应用函数以及建立函数模型,有着很重要的意义。
基本初等函数、初等函数
(5)反三角函数(Anti-Trigonometric Function)
以上列举的5类函数统称为基本初等函数.
目录 上一页 下一页 退 出
(1)幂函数(Power Function) 定义1 函数y x( 是常数)称为幂函数
.
幂函数y x 在 0, 总有定义 当> 0时,y x 在0, 上是单调 增加的,其图像过点 0,0 及1,1 y y x 当 0 时,y x 在 [0,) y x2 y x 1 是单调减少的,其图像 (1,1) 通过点 (1,1) o 1 x 几个常用的幂
目录 上一页 下一页 退 出
例 2 指出下列函数是由哪些简单函数复合而成的
(3) y arctan sin e
3
(1)y sin 5x ;(2)y ln 1 1 x2
3
4x
3 解: (1)y sin 5 x 是由y u , u sin v, v 5 x复合而成
值域 , ,以 为周期的奇函数
(4)余切函数
y cot x
.
cos x y cot x 的定义域是 sin x D f x x R, x n , n为整数, 值域 , ,以 为周期的奇函数
目录 上一页 下一页 退 出
正切函数和余切函数的图像如下:
而构成,并能用一个解析式表示的函数,称为初等函数. 1 sin x 2 1 x2 例如y x ,y 3xe 2都是初等函数 1 sin x x, x 0, 函数f x 可用y x 2 表示,故是初等函数 x, x 0.
x 3, x 0, 函数f x 2 不是初等函数 x , x 0. 由基本初等函数经过有限次四则运算后所成的函数 称为初等函数
六大基本初等函数图像及其性质
六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(其中C 为常数);α1)当α为正整数时,函数定义域为区间为),(+∞-∞∈x ,他们图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.1)2)3)1(3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ⎪⎭⎫ ⎝⎛=1)(的函数图像关于y 轴对称。
b.1.当1>a 时,a 值越大,xa y =的图像越靠近y 轴;b.2.当10<<a 时,a 值越大,x a y =的图像越远离y 轴。
4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) n m n m a a a +=⋅(2)nm n m aa a -=÷(3)()()mn nm n m aa a ==(4) ()nnnba ab =b.根式的性质; (1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,⎩⎨⎧<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a a n m nm(2))1,,,0(11*>∈>==-n Z n m a a aanmnm nm yxf x xxx g ⎪⎫⎛=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。
六种基本初等函数(elementaryfunction)
六种基本初等函数(elementary function)
一、常数函数(constant function)
因为f映射任意的值到4,因此函数f(x)是一个常数。
二、幂函数(power function)
形如y=x^a(a为常数)的函数。
如,y = x^ 1/2,y = x,y= x^ 2,y= x^3 等。
三、指数函数(exponential function)
形如y=a^x的函数,式中a为不等于1的正常数。
四、对数函数(logarithmic function)
指数函数的反函数,记作y=loga x式中a为不等于1的正常数,定义域是X〉0。
对数函数图形对数函数与指数函数互为反函数
五、三角函数(trigonometric function)
即正弦函数y=sinx ,余弦函数y=cosx ,正切函数y=tanx,余切函数y=cotx ,正割函数y=secx,余割函数y=cscx。
六、反三角函数(inverse trigonometic function)
反正弦函数y = arcsin x,为y=sin x的反函数反余弦函数y = arccos x,为y=cos x 的反函数
反正切函数y = arctan x,为y=tan x 的反函数反余切函数y = arccot x ,为y=cot x的反函数
反正割函数y = arcsec x ,为y=sec x的反函数反余割函数y = arccsc x ,为y=csc x的反函数七、定义域,值域和单调性。
6类基本初等函数以及三角函数(考研数学基础)
基本初等函数及图形(1) 常值函数(也称常数函数) y =c (其中c 为常数)(2) 幂函数 μx y =,μ是常数;(3) 指数函数 xa y = (a 是常数且01a a >≠,),),(+∞-∞∈x ;(4) 对数函数x y a log =(a是常数且01a a >≠,),(0,)x ∈+∞;1. 当u 为正整数时,函数的定义域为区间),(+∞-∞∈x ,他们的图形都经过原点,并当u>1时在原点处与X 轴相切。
且u 为奇数时,图形关于原点对称;u 为偶数时图形关于Y 轴对称;2. 当u 为负整数时。
函数的定义域为除去x=0的所有实数。
3. 当u 为正有理数m/n 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞+∞)。
函数的图形均经过原点和(1 ,1).如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m,n 均为奇数时,跟原点对称4. 当u 为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数.1. 当a>1时函数为单调增,当a<1时函数为单调减.2. 不论x 为何值,y 总是正的,图形在x 轴上方.3. 当x=0时,y=1,所以他的图形通过(0,1)点.(5) 三角函数正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y ,余弦函数 x y cos =,),(+∞-∞∈x ,]1,1[-∈y ,正切函数 x y tan =,2ππ+≠k x ,k Z ∈,),(+∞-∞∈y ,余切函数 x y cot =,πk x ≠,k Z ∈,),(+∞-∞∈y ;1. 他的图形为于y 轴的右方.并通过点(1,0)2. 当a>1时在区间(0,1),y 的值为负.图形位于x 的下方,在区间(1, +∞),y 值为正,图形位于x 轴上方.在定义域是单调增函数. a<1在实用中很少用到/(6)反三角函数反正弦函数 x y arcsin =, ]1,1[-∈x ,]2,2[ππ-∈y ,反余弦函数 x y arccos =,]1,1[-∈x ,],0[π∈y ,反正切函数 x y arctan =,),(+∞-∞∈x ,)2,2(ππ-∈y ,反余切函数 x y cot arc =,),(+∞-∞∈x ,),0(π∈y .小结:(a 为任意实数)(正弦函数)正弦函数是奇函数且三角公式汇总一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x=αcos 正切:xy=αtan 余切:y x =αcot正割:xr=αsec 余割:y r =αcsc注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。
六大基本初等函数图像及其性质
六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);二、幂函数 αy =1.幂函数的图像:2.幂函数的性质;3y1)当α为正整数时,函数的定义域为区间为,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;1(1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ⎪⎭⎫ ⎝⎛=1)(的函数图像关于y 轴对称。
.当1>a 时,a 值越大,x a y =的图像越靠近y 轴;.当10<<a 时,a 值越大,xa y =的图像越远离y 轴。
4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) n m n m a a a +=⋅(2)n m n m a a a -=÷(3)()()mn nmnm aaa ==xf x xxx g ⎪⎫⎛=1)((4)()n n n b a ab =b.根式的性质; (1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,⎩⎨⎧<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a a n m nm(2))1,,,0(11*>∈>==-n Z n m a a aanmnm nm 四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。
六大基本初等函数图像及其性质(可编辑修改word版)
1. 幂函数的图像:2. 幂函数的性质;性质函数 定义域 y R R R [0,+∞) {x|x ≠0} 值域 R [0,+∞) R O奇偶性 奇 偶奇 [0,+∞)x非奇非偶 {y|y ≠0}奇 单调性 增[0,+∞) 增 (-∞,0] 减增 增(0,+∞) 减 (-∞,0) 减公共点(1,1)六 大 基 本 初 等 函 数 图 像 及 其 性 质一、常值函数(也称常数函数) y =C (其中 C 为常数);常数函数( y = C )C ≠ 0 C = 0 yOxyxO平行于 x 轴的直线y 轴本身 定义域 R定义域 R二、幂函数 y = x , x 是自变量,是常数;1) 当α为正整数时,函数的定义域为区间为 x ∈ (-∞,+∞) ,他们的图形都经过原点,并当α>1 时在原点处与 x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于 y 轴对称;2) 当α为负整数时。
函数的定义域为除去 x=0 的所有实数; 3) 当α为正有理数m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的n定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4) 如果 m>n 图形于 x 轴相切,如果 m<n,图形于 y 轴相切,且 m 为偶数时,还跟 y 轴对称;m ,n 均为奇数时,跟原点对称;(0,1) Oxb.1.当 a > 1 时,a 值越大, y = ax在(- ∞,+ ∞)是减函数在(- ∞,+ ∞)是增函数单调性公共点奇偶性 O值域非奇非偶性质定义域(0,1) R (0,1)过点(0,1),即 x = 0 时, y = 15) 当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除 x=0 以外的一切实数。
三、指数函数 y = a x( x 是自变量, a 是常数且a > 0 , a ≠1),定义域是 R ; [无界函数]1. 指数函数的图象:2. 指数函数的性质;yyx(0,+∞) Ox1) 当 a > 1 时函数为单调增,当 0 < a < 1时函数为单调减; 2) 不论 x 为何值, y 总是正的,图形在 x 轴上方;3) 当 x = 0 时, y = 1,所以它的图形通过(0,1)点。
六大基本初等函数图像及其性质
六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2x y =3x y =21xy =1-=x y定义域 R R R [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xy Ox y =2x y =21xy =1-=xy 3x y = O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性在),(∞+∞-是增函数 在),(∞+∞-是减函数 1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
六大基本初等函数图像及其性质
六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2x y =3x y =21xy =1-=x y定义域 R R R [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xyOxy =2x y =3x y =1-=xy 21xy =O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性 在),(∞+∞-是增函数在),(∞+∞-是减函数1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
函数类型细分辨,一目了然方法现——高中常见函数的分类
函数类型细分辨,一目了然方法现——高中常见函数的分类
高中阶段,学生们开始研究函数。
因为函数的概念难以理解,种类繁多,课本又没有系统地讲解,许多老师也只是泛泛而谈,所以很多学生更是稀里糊涂,无所适从。
因函数类型的不同,处理方式也大不一样,所以函数类型是题目的一个重要标志,找到了标志,方法、步骤大致确定。
其实,只要能分辨清楚函数的类型,则对应的方法、技巧是一目了然的。
这里就给出分类标准,以供参考:
基本初等函数:包括6种
其它的函数,基本上都是由以上基本初等函数进行有限次组合或有限次复合而成的。
组合函数:
复合函数:将基本初等函数的自变量x换成另外一个基本初等函数(自身也行)就得到一个复合函数。
通俗地说,复合函数就是函数套函数,是把几个简单的函数复合为一个较为复杂的函数。
例如:
具体函数:给出了具体的解析式的函数叫具体函数。
抽象函数:没给出具体解析式的函数就是抽象函数。
抽象函数不是没有解析式,只是说题目没有给出来,仅以一个符号y=f(x)或f(x)来体现。
我们可以理解为“有这么一个函数存在,具体的解析式是什么样子的暂时还不知道”
至于其它的一些函数类型,因为高一新生接触不到,这里先不讲了!
函数的种类不同,使用到的方法、步骤大不相同(在以后的发文中我会一一讲解),所以要仔细区分函数的类型,必须达到一眼就能识别的程度。
6类基本初等函数以及三角函数(考研数学基础)
基本初等函数及图形(1) 常值函数(也称常数函数) y =c (其中c 为常数)(2) 幂函数 μx y =,μ是常数;(3) 指数函数 xa y = (a 是常数且01a a >≠,),),(+∞-∞∈x ;(4) 对数函数x y a log =(a是常数且01a a >≠,),(0,)x ∈+∞;1. 当u 为正整数时,函数的定义域为区间),(+∞-∞∈x ,他们的图形都经过原点,并当u>1时在原点处与X 轴相切。
且u 为奇数时,图形关于原点对称;u 为偶数时图形关于Y 轴对称;2. 当u 为负整数时。
函数的定义域为除去x=0的所有实数。
3. 当u 为正有理数m/n 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞+∞)。
函数的图形均经过原点和(1 ,1).如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m,n 均为奇数时,跟原点对称4. 当u 为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数.1. 当a>1时函数为单调增,当a<1时函数为单调减.2. 不论x 为何值,y 总是正的,图形在x 轴上方.3. 当x=0时,y=1,所以他的图形通过(0,1)点.(5) 三角函数正弦函数xy sin=,),(+∞-∞∈x,]1,1[-∈y,余弦函数xy cos=,),(+∞-∞∈x,]1,1[-∈y,正切函数xy tan=,2ππ+≠kx,k Z∈,),(+∞-∞∈y,1.他的图形为于y轴的右方.并通过点(1,0)2.当a>1时在区间(0,1),y的值为负.图形位于x的下方,在区间(1, +∞),y值为正,图形位于x轴上方.在定义域是单调增函数.a<1在实用中很少用到/余切函数 x y cot =,πk x ≠,k Z ∈,),(+∞-∞∈y ;(6)反三角函数反正弦函数 x y arcsin =, ]1,1[-∈x ,]2,2[ππ-∈y ,反余弦函数 x y arccos =,]1,1[-∈x ,],0[π∈y ,反正切函数 x y arctan =,),(+∞-∞∈x ,)2,2(ππ-∈y ,反余切函数xy cotarc=,),(+∞-∞∈x,),0(π∈y.小结:函数名称函数的记号函数的图形函数的性质指数函数a):不论x为何值,y总为正数;b):当x=0时,y=1.对数函数a):其图形总位于y轴右侧,并过(1,0)点b):当a>1时,在区间(0,1)的值为负;在区间(1,+∞)的值为正;在定义域内单调增.幂函数(a为任意实数)这里只画出部分函数图形的一部分。
初等函数
初等函数是由幂函数(power function)、指数函数(exponential function)、对数函数(logarithmic初等函数function)、三角函数(trigonometric function)、反三角函数(inverse trigonometic function)与常数经过有限次的有理运算(加、减、乘、除、有理数次乘方、有理数次开方)及有限次函数复合所产生、并且能用一个解析式表示的函数。
英文:elementary function它是最常用的一类函数,包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数(以上是基本初等函数),以及由这些函数经过有限次四则运算或函数的复合而得的所有函数。
还有一系列双曲函数也是初等函数,如sinh 的名称是双曲正弦或超正弦, cosh 是双曲余弦或超余弦, tanh 是双曲正切、coth 是双曲余切、sech 是双曲正割、csch 是双曲余割。
初等函数在其定义区间内连续。
常数函数初等函数图形对定义域中的一切x对应的函数值都取某个固定常数的函数。
幂函数形如y=x^a的函数,式中a为实常数。
指数函数形如y=a^x的函数,式中a为不等于1的正常数。
对数函数指数函数的反函数,记作y=loga a x,式中a为不等于1的正常数。
指数函数与对数函数之间成立关系式,loga ax=x。
三角函数即正弦函数y=sinx ,余弦函数y=cosx ,正切函数y=tanx,余切函数y=cotx ,正割函数y=secx,余割函数y=cscx(见三角学)。
反三角函数三角函数的反函数——反正弦函数y = arc sinx ,反余弦函数 y =arc cosx (-1≤x≤1,初等函数0≤y≤π),反正切函数 y=arc tanx ,反余切函数 y = arc cotx(-∞<x<+∞,θ<y<π)等。
以上这些函数常统称为基本初等函数。
双曲正弦或超正弦sinh x =(e^x- e^(-x))/2双曲余弦或超余弦cosh x =(e^x + e^(-x))/2双曲正切tanh x =sinh x / cosh x双曲余切coth x = 1 / tanh x双曲正割sech x = 1 / cosh x双曲余割csch x = 1 / sinh x一个初等函数,除了可以用初等解析式表示以外,往往还有其他表示形式,例如,三角函数 y=sinx 可以用无穷级数表为初等函数可以按照解析表达式分类为:初等函数是最先被研究的一类函数,它与人类的生产和生活密切相关,并且应用广泛。
基本初等函数总结表格
基本初等函数总结表格基本初等函数是数学中的重要概念,它们是解析函数的一种,具有简单的形式和基本的性质。
在学习数学的过程中,我们经常会接触到各种各样的基本初等函数,它们在数学建模、物理、化学等领域都有着重要的应用。
为了更好地理解和掌握基本初等函数,下面我们将对常见的基本初等函数进行总结,并制作成表格,以便大家更加直观地了解它们的特点和性质。
首先,我们来看一下常见的基本初等函数及其表达式、定义域和值域。
1. 线性函数。
表达式,y = kx + b。
定义域,(-∞, +∞)。
值域,(-∞, +∞)。
2. 幂函数。
表达式,y = ax^n (a ≠ 0, n为正整数)。
定义域,(-∞, +∞)。
值域,。
当n为奇数时,值域为(-∞, +∞)。
当n为偶数时,值域为[0, +∞)。
3. 指数函数。
表达式,y = a^x (a > 0, a ≠ 1)。
定义域,(-∞, +∞)。
值域,(0, +∞)。
4. 对数函数。
表达式,y = log_a(x) (a > 0, a ≠ 1)。
定义域,(0, +∞)。
值域,(-∞, +∞)。
5. 三角函数。
正弦函数,y = sinx。
余弦函数,y = cosx。
正切函数,y = tanx。
定义域,(-∞, +∞)。
值域,[-1, 1]通过以上表格,我们可以清晰地了解到各种基本初等函数的特点和性质。
线性函数具有直线图像,定义域和值域都是整个实数集;幂函数的图像呈现出不同的形状,其值域受到幂指数n的影响;指数函数和对数函数是互为反函数的函数对,其值域和定义域分别是正实数集和整个实数集;三角函数则是周期函数,其定义域是整个实数集,值域在[-1, 1]之间。
除了上述基本初等函数外,还有一些其他常见的基本初等函数,如双曲函数、反比例函数等,它们都有着各自独特的特点和性质。
通过学习和掌握这些基本初等函数,我们可以更好地理解数学知识,解决实际问题,甚至在日常生活中也能够运用到这些知识。
(完整word)6类基本初等函数以及三角函数(考研数学基础)
基本初等函数及图形(1) 常值函数(也称常数函数) y =c (其中c 为常数)(2) 幂函数 μx y =,μ是常数;(3) 指数函数 xa y = (a 是常数且01a a >≠,),),(+∞-∞∈x ;(4) 对数函数x y a log =(a是常数且01a a >≠,),(0,)x ∈+∞;1. 当u 为正整数时,函数的定义域为区间),(+∞-∞∈x ,他们的图形都经过原点,并当u>1时在原点处与X 轴相切。
且u 为奇数时,图形关于原点对称;u 为偶数时图形关于Y 轴对称;2. 当u 为负整数时。
函数的定义域为除去x=0的所有实数。
3. 当u 为正有理数m/n 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞+∞)。
函数的图形均经过原点和(1 ,1).如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m,n 均为奇数时,跟原点对称4. 当u 为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数.1. 当a>1时函数为单调增,当a<1时函数为单调减.2. 不论x 为何值,y 总是正的,图形在x 轴上方.3. 当x=0时,y=1,所以他的图形通过(0,1)点.(5) 三角函数正弦函数xy sin=,),(+∞-∞∈x,]1,1[-∈y,余弦函数xy cos=,),(+∞-∞∈x,]1,1[-∈y,正切函数xy tan=,2ππ+≠kx,k Z∈,),(+∞-∞∈y,余切函数xy cot=,πkx≠,k Z∈,),(+∞-∞∈y;1.他的图形为于y轴的右方.并通过点(1,0)2.当a>1时在区间(0,1),y的值为负.图形位于x的下方,在区间(1, +∞),y值为正,图形位于x轴上方.在定义域是单调增函数.a<1在实用中很少用到/(6)反三角函数反正弦函数 x y arcsin =, ]1,1[-∈x ,]2,2[ππ-∈y ,反余弦函数 x y arccos =,]1,1[-∈x ,],0[π∈y ,反正切函数 x y arctan =,),(+∞-∞∈x ,)2,2(ππ-∈y ,反余切函数 x y cot arc =,),(+∞-∞∈x ,),0(π∈y .小结:函数名称函数的记号函数的图形函数的性质指数函数a):不论x 为何值,y 总为正数;b):当x=0时,y=1.对数函数a):其图形总位于y 轴右侧,并过(1,0)点b):当a >1时,在区间(0,1)的值为负;在区间(1,+∞)的值为正;在定义域内单调增. 幂函数(a 为任意实数)这里只画出部分函数图形的一部分。
六大基本初等函数图像及其性质
六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C(其中C 为常数);α1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
1(3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ⎪⎭⎫ ⎝⎛=1)(的函数图像关于y 轴对称。
.当1>a 时,a 值越大,x a y =的图像越靠近y 轴;.当10<<a 时,a 值越大,xa y =的图像越远离y 轴。
4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) nm n m aa a +=⋅(2)nm nmaa a -=÷(3)()()mn nm n m aa a ==(4) ()nnnba ab =b.根式的性质; (1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,⎩⎨⎧<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a a n m nm(2))1,,,0(11*>∈>==-n Z n m a a aanmnm nm yxf x xxx g ⎪⎫⎛=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六种基本初等函数(elementary function)
一、常数函数(constant function)
常数函数(也称常值函数)是指值不发生改变(即是常数)的函数。
例如,函数f(x)=4,因为f映射任意的值到4,因此函数f(x)是一个常数。
二、幂函数(power function)
形如y=x^a(a为常数)的函数。
如,y = x^ 1/2,y = x,y= x^ 2,y= x^3 等。
三、指数函数(exponential function)
形如y=a^x的函数,式中a为不等于1的正常数。
四、对数函数(logarithmic function)
指数函数的反函数,记作y=loga x式中a为不等于1的正常数,定义域是X 〉0。
对数函数图形对数函数与指数函数互为反函数
五、三角函数(trigonometric function)
即正弦函数y=sinx ,余弦函数y=cosx ,正切函数y=tanx,余切函数y=cotx ,正割函数y=secx,余割函数y=cscx。
六、反三角函数(inverse trigonometic function)
反正弦函数y = arcsin x,为y=sin x的反函数反余弦函数y = arccos x,为y=cos x 的反函数
反正切函数y = arctan x,为y=tan x 的反函数反余切函数y = arccot x ,为y=cot x的反函数
反正割函数y = arcsec x ,为y=sec x的反函数反余割函数y = arccsc x ,为y=csc x的反函数七、定义域,值域和单调性。