人教版七年级数学下册 第九章 不等式 专题培优训练 (无答案)
【教师卷】初中七年级数学下册第九单元《不等式与不等式组》经典习题(课后培优)(3)
一、选择题1.若a b >,则下列结论不一定成立的是( ) A .a c b c ->- B .22ac ab >C .c a c b -<-D .a c b c +>+ B解析:B 【分析】根据不等式的性质逐一分析四个选项的正误即可得出结论. 【详解】 解:A 、∵a >b , ∴a-c >b-c ,选项A 成立; B 、22ac ab >不一定成立; C 、∵a >b , ∴a b -<-∴c a c b -<-,选项C 成立; D 、∵a >b ,∴a c b c +>+,选项D 成立. 故选:B . 【点睛】本题考查了不等式的性质,牢记不等式的性质是解题的关键. 2.不等式()2533x x ->-的解集为( ) A .4x <- B .4x >C .4x <D .4x >- C解析:C 【分析】根据解一元一次不等式的方法解答即可. 【详解】解:去括号,得2539x x ->-, 移项、合并同类项,得4x ->-, 不等式两边同时除以﹣1,得4x <. 故选:C . 【点睛】本题考查了一元一次不等式的解法,属于基础题目,熟练掌握解一元一次不等式的方法是关键.3.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( ) A .6折 B .7折 C .8折 D .9折B解析:B 【详解】设可打x 折,则有1200×10x-800≥800×5%, 解得x≥7. 即最多打7折. 故选B . 【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.4.不等式组10,{360x x -≤-<的解集在数轴上表示正确的是( ) A .B .C .D . D解析:D 【解析】 试题分析:10{360x x -≤-<①②,由①得:x≥1,由②得:x <2,在数轴上表示不等式的解集是:,故选D .考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.5.不等式组3213,23251223x x x x ++⎧≤+⎪⎨⎪->-⎩的解集为( )A .B .C .D .C解析:C 【分析】分别解两个不等式,再根据“同大取大,同小取小,大小小大中间找,大大小小无解了”取解集,即可得到答案. 【详解】解:321323251223x x x x ++⎧≤+⎪⎨⎪->-⎩①②,解不等式①得:2x ≥-; 解不等式②得:3x >; 将解集在数轴上表示为:,故选:C . 【点睛】本题考查解一元一次不等式组,掌握不等式组取解集的方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.6.若关于x 的不等式32x a +≤只有2个正整数解,则a 的取值范围为( ) A .74a -<<- B .74a -≤≤-C .74a -≤<-D .74a -<≤- D解析:D 【分析】先解不等式得出23ax -≤,然后根据不等式只有2个正整数解可知正整数解为1和2,据此列出不等式组求解即可. 【详解】解:32x a +,32x a ∴-,则23ax-, ∵不等式只有2个正整数解, ∴不等式的正整数解为1、2,则2233a-≤<, 解得:74a -<-, 故答案为D . 【点睛】本题主要考查一元一次不等式的整数解,正确求解不等式并根据不等式的整数解的情况列出关于某一字母的不等式组是解答本题的关键.7.若关于x 的方程 332x a += 的解是正数,则a 的取值范围是( ) A .23a <B .23a >C .a 为任何实数D .a 为大于0的数A解析:A 【分析】先解方程,再结合题意列出不等式,解之即可得出答案. 【详解】 解:∵3x+3a=2,3又∵方程的解为正数, ∴233a->0, ∴a <23. 故选:A. 【点睛】本题考查一元一次不等式与一元一次方程的综合运用,正确理解一元一次方程解的意义及熟练求解一元一次不等式是解题关键.8.小圆想用7天的时间背诵若干首诗词,背诵计划如下: ①将诗词分为4组,第n 组有n x 首,1,2,3,4n =;②对于第n 组诗词,第n 天背诵第一遍,第(1)n +天背诵第二遍,第(3)n +天背诵第三遍,三遍后完成背诵,其它天无需背诵,1,2,3,4n =; ③每天最多背诵8首,最少背诵2首,A .10首B .11首C .12首D .13首D解析:D 【分析】根据表格及题意可得第2天、第3天、第4天、第5天的背诵最多的诗词,然后根据不等式的关系可进行求解. 【详解】解:由表格及题可得:∵每天最多背诵8首,最少背诵2首, ∴由第2天、第3天、第4天、第5天可得:128x x +≤①,238x x +≤②,1348x x x ++≤③,248x x +≤④,①+②+④-③得:2316x ≤,23∴123416181333x x x x +++≤+=, ∴7天后,小圆背诵的诗词最多为13首; 故选D . 【点睛】本题主要考查一元一次不等式的应用,熟练掌握不等式的性质与求法是解题的关键. 9.下列是一元一次不等式的是( ) A .21x > B .22x y -<-C .23<D .29x < A解析:A 【分析】根据一元一次不等式的定义对各选项进行逐一分析即可. 【详解】解:A 、21x >中含有一个未知数,并且未知数的最高次数等于1,是一元一次不等式,故本选项正确;B 、22x y -<-中含有两个未知数,故本选项错误;C 、23<中不含有未知数,故本选项错误;D 、29x <中含有一个未知数,但未知数的最高次数等于1,不是一元一次不等式,故本选项错误. 故选:A . 【点睛】本题考查的是一元一次不等式的定义,即含有一个未知数,未知数的最高次数是1的不等式,叫做一元一次不等式.10.若关于 x?的不等式组2x 1x 3x a +<-⎧⎨>⎩无解,则实数 a?的取值范围是( )A .a 4<-B .a 4=-C .a 4?≥-D . a 4>- C解析:C 【分析】先解出第一个不等式的解集,再根据题意确定a 的取值范围即可. 【详解】 解:2x 1x 3x a +<-⎧⎨>⎩①②解①的:x ﹤﹣4, ∵此不等式组无解, ∴a≥﹣4, 故选:C . 【点睛】本题考查一元一次不等式组的解法,熟知不等式组解集应遵循的原则“同大取大,同小取小,大小小大取中间,大大小小无解”是解答的关键.二、填空题11.若0a b c ++=,且a b c >>,以下结论: ①0a >,0c >;②关于x 的方程0ax b c ++=的解为1x =; ③22()a b c =+ ④||||||||a b c abc a b c abc +++的值为0或2; ⑤在数轴上点A .B .C 表示数a 、b 、c ,若0b <,则线段AB 与线段BC 的大小关系是AB BC >.其中正确的结论是______(填写正确结论的序号).②③⑤【分析】①根据a+b+c=0且a >b >c 推出a >0c <0即可判断;②根据a+b+c=0求出a=-(b+c )又ax+b+c=0时ax=-(b+c )方程两边都除以a 即可判断;③根据a=-(b+c )解析:②③⑤ 【分析】①根据a +b +c =0,且a >b >c 推出a >0,c <0,即可判断;②根据a +b +c =0求出a =-(b +c ),又ax +b +c =0时ax =-(b +c ),方程两边都除以a 即可判断;③根据a =-(b +c )两边平方即可判断;④分为两种情况:当b >0,a >0,c <0时,去掉绝对值符号得出a a +b b +c c -+abc abc-,求出结果,当b <0,a >0,c <0时,去掉绝对值符号得出a a +b b -+c c -+abc abc,求出结果,即可判断;⑤求出AB =a -b =-b -c -b =-2b -c =-3b +b -c ,BC =b -c ,根据b <0利用不等式的性质即可判断. 【详解】解:(1)∵a +b +c =0,且a >b >c , ∴a >0,c <0, ∴①错误; ∵a +b +c =0,a >b >c , ∴a >0,a =-(b +c ), ∵ax +b +c =0, ∴ax =-(b +c ), ∴x =1, ∴②正确; ∵a =-(b +c ),∴两边平方得:a 2=(b +c )2,∴③正确;∵a>0,c<0,∴分为两种情况:当b>0时,aa+bb+cc+abcabc=aa+bb+cc-+abcabc-=1+1+(-1)+(-1)=0;当b<0时,aa+bb+cc+abcabc=aa+bb-+cc-+abcabc=1+(-1)+(-1)+1=0;∴④错误;∵a+b+c=0,且a>b>c,b<0,∴a>0,c<0,a=-b-c,∴AB=a-b=-b-c-b=-2b-c=-3b+b-c,BC=b-c,∵b<0,∴-3b>0,∴-3b+b-c>b-c,∴AB>BC,∴⑤正确;即正确的结论有②③⑤.故答案为:②③⑤.【点睛】本题考查了比较两线段的长,数轴,有理数的加法、除法、乘方,一元一次方程的解,绝对值等知识点的综合运用,题目比较典型,但是一道比较容易出错的题目.12.对任意四个整数a、b、c、d定义新运算:a bc dad bc=-,若1<241xx-<12,则x的取值范围是____.【分析】根据新定义列不等式组并求解集即可【详解】解:由题意得:1<2x-(-4)x<12即1<6x<12解得故答案为【点睛】本题主要考查了新定义运用解不等式组等知识点正确理解新运算法则是解答本题的关键解析:12 6x<<【分析】根据新定义列不等式组并求解集即可.【详解】解:由题意得:1<2x-(-4)x<12,即1<6x<12,解得126x<<.故答案为12 6x<<.【点睛】本题主要考查了新定义运用、解不等式组等知识点,正确理解新运算法则是解答本题的关键.13.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________.-2【分析】根据一元一次方程的定义列出关于m 的方程组求解即可【详解】解:∵∴解得m=-2故答案为-2【点睛】本题主要考查了一元一次方程的定义和不等式组的解法根据一元一次方程的定义列出关于m 的方程组成解析:-2 【分析】根据一元一次方程的定义列出关于m 的方程组求解即可. 【详解】解:∵||1(2)3m m x --=∴2011m m -≠⎧⎨-=⎩,解得m=-2.故答案为-2. 【点睛】本题主要考查了一元一次方程的定义和不等式组的解法,根据一元一次方程的定义列出关于m 的方程组成为解答本题的关键.14.若不等式2(x+3)>1的最小整数解是方程2x-ax=3的解,则a 的值为__________________.5【解析】解不等式2(x+3)>1得x >-则最小整数解是-2把x=-2代入方程得-4+2a=3解得:a=35点睛:本题考查了不等式的解法和方程的解的定义正确解不等式求出解集是解答本题的关键解不等式应解析:5 【解析】解不等式2(x+3)>1得x >-52,则最小整数解是-2,把x=-2代入方程得-4+2a=3,解得:a=3.5.点睛:本题考查了不等式的解法和方程的解的定义,正确解不等式求出解集是解答本题的关键.解不等式应根据不等式的基本性质. 15.己知不等式组1x x a≤⎧⎨≤⎩的解集是1x ≤,则a 的取值范围是______.a≥1【分析】已知不等式组的解集为再根据不等式组解集的口诀:同大取大得到a 的范围【详解】解:∵一元一次不等式组的解集为∴a≥1故答案为:a≥1【点睛】本题考查了一元一次不等式组解集的求法将不等式组解解析:a≥1 【分析】已知不等式组的解集为1x ≤,再根据不等式组解集的口诀:同大取大,得到a 的范围. 【详解】解:∵一元一次不等式组1x x a ≤⎧⎨≤⎩的解集为1x ≤,∴a≥1,故答案为:a≥1. 【点睛】本题考查了一元一次不等式组解集的求法,将不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集反过来求a 的范围.16.关于x 的不等式组0821x m x -≥⎧⎨->⎩有3个整数解,则m 的取值范围是______.0<m≤1【分析】不等式组整理后表示出不等式组的解集由不等式组有3个整数解确定出m 的范围即可【详解】解:不等式组整理得:解得:由不等式组有3个整数解即整数解为123则m 的取值范围是0<m≤1故答案为解析:0<m≤1 【分析】不等式组整理后,表示出不等式组的解集,由不等式组有3个整数解,确定出m 的范围即可. 【详解】解:不等式组整理得:72x m x ≥⎧⎪⎨<⎪⎩,解得:72m x ≤<, 由不等式组有3个整数解,即整数解为1,2,3, 则m 的取值范围是0<m≤1. 故答案为:0<m≤1. 【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 17.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.【分析】首先通过解不等式得出的解集和的解集然后根据题意建立一个关于m 的不等式从而确定m 的范围即可【详解】解得解得∵不等式的解集中的每一个值都能使关于的不等式成立解得【点睛】本题主要考查不等式的解集掌解析:35m <-【分析】首先通过解不等式得出25123x x +-≤-的解集和3(1)552()x x m x -+>++的解集,然后根据题意建立一个关于m 的不等式,从而确定m 的范围即可. 【详解】25123x x +-≤-, 解得45x ≤. 3(1)552()x x m x -+>++,解得12mx -<. ∵不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,1425m -∴>, 解得35m <-. 【点睛】本题主要考查不等式的解集,掌握解不等式的方法是解题的关键. 18.若不等式组30x ax >⎧⎨-≤⎩只有三个正整数解,则a 的取值范围为__________.【分析】先确定不等式组的整数解再求出的取值范围即可【详解】∵不等式组只有三个正整数解∴故答案为:【点睛】本题考查了解不等式组的整数解的问题掌握解不等式组的整数解的方法是解题的关键 解析:01a ≤<【分析】先确定不等式组的整数解,再求出a 的取值范围即可. 【详解】30x ax >⎧⎨-≤⎩30x -≤ 3x ≤∵不等式组只有三个正整数解 ∴01a ≤<故答案为:01a ≤<. 【点睛】本题考查了解不等式组的整数解的问题,掌握解不等式组的整数解的方法是解题的关键.19.不等式组()2x 15x 742x 31x 33⎧+>-⎪⎨+>-⎪⎩的解集为______【分析】先求出每个不等式的解集再求出不等式组的解集即可【详解】解不等式得:解不等式得:不等式组的解集为故答案为【点睛】本题考查了解一元一次不等式组能根据不等式的解集根据同大取大同小取小大小小大中间找解析:1x 3-<<【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】()2x 15x 742x 31x 33⎧+>-⎪⎨+>-⎪⎩①②, 解不等式①得:x<3,解不等式②得:x 1>-,∴不等式组的解集为1x 3-<<,故答案为1x<3-<.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集根据“同大取大,同小取小,大小小大中间找,大大小小无解了”找出不等式组的解集是解此题的关键.20.在实数范围内规定一种新的运算“☆”,其规则是:a ☆b=3a+b ,已知关于x 的不等式:x ☆m>1的解集在数轴上表示出来如图所示.则m 的值是________ .-2【分析】根据新运算法则得到不等式3通过解不等式即可求的取值范围结合图象可以求得的值【详解】∵☆∴根据图示知已知不等式的解集是∴故答案为:【点睛】本题主要考查了数轴上表示不等式的解集及解不等式本题解析:-2【分析】根据新运算法则得到不等式31x m +>,通过解不等式即可求m 的取值范围,结合图象可以求得m 的值.【详解】∵x ☆ 31m x m =+>,∴13m x ->, 根据图示知,已知不等式的解集是1x >,∴113m -=, 故答案为:2m =-.【点睛】本题主要考查了数轴上表示不等式的解集及解不等式,本题的关键是理解新的运算方法.三、解答题21.(1)解方程组:43220x y x y +=⎧⎨+=⎩ (2)解不等式组:3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩ 解析:(1)12x y =-⎧⎨=⎩;(2)25x ≤<. 【分析】(1)利用加减消元法解二元一次方程组即可得;(2)先分别求出两个不等式的解,再找出它们的公共部分即为不等式组的解.【详解】(1)43220x y x y +=⎧⎨+=⎩①②, 由①2-⨯②得:322y y -=,解得2y =,将2y =代入②得:220x +=,解得1x =-,则方程组的解为12x y =-⎧⎨=⎩; (2)3(2)211124x x x x -<-⎧⎪⎨-≥-⎪⎩①②, 解不等式①得:5x <,解不等式②得:2x ≥,则不等式组的解为25x ≤<.【点睛】本题考查了解二元一次方程组、解一元一次不等式组,熟练掌握方程组和不等式组的解法是解题关键.22.解不等式或不等式组,并把解集在数轴上表示出来.(1)432136x x -+>-;(2)2(1)0210x x +<⎧⎨-⎩. 解析:(1) 2.4x <,数轴见解析;(2)1x <-,数轴见解析【分析】(1)根据去分母、去括号、移项、合并、系数化为1求出不等式的解集即可;(2)分别解两个不等式得到1x <-和12x,然后根据同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解确定不等式组的解集,再用数轴表示解集.【详解】解:(1)去分母得:2(4)326x x ->+-, 82326x x ->+-,23268x x -->--,512x ->-,2.4x <,在数轴上表示为:;(2)()210210x x ⎧+<⎨-⎩①②,解不等式①得:1x <-, 解不等式②得:12x, 所以不等式组的解集是1x <-, 在数轴上表示为:.【点睛】本题考查了解一元一次不等式(组):求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集. 23.解不等式(组),并在数轴上表示解集: (1)解不等式:4x 1x 13-->; (2)解不等式组:3x x 2,12x x 1.3-≥⎧⎪+⎨>-⎪⎩ 解析:(1)x 4>,在数轴上表示不等式的解集如图见解析;(2)1x 4≤<;在数轴上表示不等式组的解集如图见解析.【分析】(1)去分母,移项,合并同类项,最后在数轴上表示出不等式的解集即可;(2)分别求出各不等式的解集,再求出其公共解集,最后在数轴上表示出不等式的解集即可.【详解】解:(1)解不等式:4x1x1 3-->去分母,得:4x13x3-->,移项,得:4x3x31->+,合并同类项,得:x4>.在数轴上表示不等式的解集如下:(2)3x x2, 12xx1, 3-≥⎧⎪⎨+>-⎪⎩①②解不等式①得:x1≥,解不等式②得:x4<,所以不等式组的解集为1x4≤<.在数轴上表示不等式组的解集如下:【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.24.某校购买了A型课桌椅100套和B型课桌椅150套供学生使用,共付款53000元.已知每套A型课桌椅比每套B型课桌椅多花30元.(1)求该校购买每套A型课桌椅和每套B型课桌椅的钱数.(2)因学生人数增加,该校需再购买A、B型课桌椅共100套,只有资金22000元,求最多能购买A型课桌椅的套数.解析:(1)该校购买每套A型课桌椅需230元,购买每套B型课桌椅需200元.(2)最多能购买A型课桌椅66套.【分析】(1)设该校购买每套B型课桌椅需x元,则购买每套A型课桌椅需(x+30)元,根据购买A型课桌椅100套和B型课桌椅150套共需53000元,即可得出关于x的一元一次方程,解之即可得出结论;(2)设可以购买A 型课桌椅m 套,则购买B 型课桌椅(100-m )套,根据总价=单价×数量结合总价不超过22000元,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,再取其中的最大整数值即可得出结论.【详解】解:(1)设该校购买每套B 型课桌椅需x 元,则购买每套A 型课桌椅需(30)x +元, 依题意得:100(30)15053000x x ++=,解得:200x =,30230x ∴+=.答:该校购买每套A 型课桌椅需230元,购买每套B 型课桌椅需200元.(2)设可以购买A 型课桌椅m 套,则购买B 型课桌椅(100)m -套,依题意得:230200(100)22000m m +-, 解得:2003m. 又m 为整数,m ∴可以取的最大值为66.答:最多能购买A 型课桌椅66套.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.25.解不等式,并把不等式的解集在数轴上表示出来.(1)6327x x ->-;(2)21123x x -+-≤. 解析:(1)1x >-,在数轴上表示见解析;(2)2x ≥,在数轴上表示见解析【分析】(1)先按照移项、合并同类项和系数化为1的步骤求出不等式的解集,进一步即可将不等式的解集在数轴上进行表示;(2)先按照去分母、去括号、移项、合并同类项和系数化为1的步骤求出不等式的解集,进一步即可将不等式的解集在数轴上进行表示.【详解】解:(1)移项,得6237x x ->-,合并同类项,得44x >-,系数化为1,得1x >-;不等式的解集在数轴上表示如下:(2)去分母,得()()63221x x --≤+,去括号,得63622x x -+≤+,移项,32266x x --≤--,合并同类项,得510x --≤,系数化为1,得2x ≥.不等式的解集在数轴上表示如下:【点睛】本题考查了一元一次不等式的解法,属于基础题目,熟练掌握解一元一次不等式的方法是解题的关键.26.若关于x 的方程23244x m m x -=-+的解不小于7183m --,求m 的取值范围. 解析:14m ≥- 【分析】先解方程2x−3m =2m−4x +4求得x ,然后再根据方程的解不小于7183m --列出关于m 的不等式组,最后求解即可.【详解】解:解方程23244x m m x -=-+ 得546m x +=由题意得5471683m m +-≥-,解得14m ≥- 所以m 的取值范围为14m ≥-. 【点睛】本题主要考查了解一元一次方程和解不等式组,掌握一元一次方程和一元一次不等式组的解法成为解答本题的关键.27.(1)解方程组26m n m n =⎧⎨+=⎩ (2)解不等式组26015a a +<⎧⎨-≤⎩(3)计算:()33532a a a a ⋅⋅+ (4)计算:()()34++x x解析:(1)42n m =⎧⎨=⎩;(2)-43a ≤<-;(3)99a ;(4)2712x x ++; 【分析】(1)根据代入消元法解方程组即可;(2)解不等式组即可;(3)根据幂的运算性质计算即可;(4)根据多项式乘以多项式计算即可;【详解】(1)26m n m n =⎧⎨+=⎩, 把2=m n 代入6+=m n 中,得到:26m m +=,解得:2m =,∴4n =,∴方程组的解为42n m =⎧⎨=⎩. (2)26015a a +<⎧⎨-≤⎩, 由260a +<得:3a <-,由15-≤a 得:4a ≥-,∴不等式组的解集为:-43a ≤<-.(3)原式99989a a a =+=. (4)原式224312712x x x x x =+++=++.【点睛】本题主要考查了二元一次方程组求解,不等式组求解,整式乘法的应用,准确计算是解题的关键. 28.解不等式组:()324112x x x ⎧+≥+⎪⎨-<⎪⎩. 解析:﹣1≤x <3.【分析】先分别求出各不等式的解集,再求出其公共解集.【详解】 解:不等式组3(2)4?11? 2x x x +≥+⎧⎪⎨-<⎪⎩①②, 由①得:x ≥﹣1,由②得:x <3,故不等式组的解集是:﹣1≤x <3.【点睛】本题考查一元一次不等式组的解法,属于基础题.求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.。
2022年人教版初中数学七年级下册第九章不等式与不等式组专题测试练习题
初中数学七年级下册第九章不等式与不等式组专题测试(2021-2022学年 考试时间:90分钟,总分100分) 班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分) 1、不等式34x x ≥+的解集在数轴上表示正确的是( ) A .B .C .D .2、若|m ﹣1|+m =1,则m 一定( ) A .大于1B .小于1C .不小于1D .不大于13、整数a 使得关于x 的不等式组6202()3x x a x ->⎧⎨+≥+⎩至少有4个整数解,且关于y 的方程1﹣3(y ﹣2)=a有非负整数解,则满足条件的整数a 的个数是( ) A .6个B .5个C .3个D .2个4、已知a ,b 为实数,下列说法:①若0ab <,且a ,b 互为相反数,则1a b=-;②若0a b +<,0ab >,则|23|23a b a b +=--;③若||0a b a b -+-=,则b a >;④若||||a b >,则()()a b a b +⨯-是正数;⑤若a b <,0ab <且|3||3|a b -<-,则6a b +>,其中正确的说法有( )个. A .2B .3C .4D .55、若x y >成立,则下列不等式不成立的是( ) A .11x y ->-B .2x x y >+C .22x y >D .33x y ->-6、下列不等式组,无解的是( )A .1030x x ->⎧⎨->⎩B .1030x x -<⎧⎨-<⎩C .1030x x ->⎧⎨-<⎩D .1030x x -<⎧⎨->⎩7、若m >n ,则下列不等式成立的是( ) A .m ﹣5<n ﹣5B .55m n < C .﹣5m >﹣5n D .55m n -<- 8、如果关于x 的不等式组312364x x x a +⎧≥-⎪⎨⎪+>+⎩有且只有3个奇数解,且关于y 的方程3y +6a =22-y 的解为非负整数,则符合条件的所有整数a 的积为( ) A .-3B .3C .-4D .49、在数轴上表示不等式﹣1<x ≤2,其中正确的是( )A .B .C .D .10、不等式820x ->的解集在数轴上表示正确的是 ( ) A .B .C .D .二、填空题(5小题,每小题4分,共计20分)1、 “x 的2倍减去y 的差是非正数”用不等式表示为_______.2、若关于x 的不等式组9210x x a ->-⎧⎨-≥⎩的整数解共有5个,则a 的取值范围_________.3x 的取值范围为_______________.4、安排学生住宿,若每间住3人,则还有13人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为_____.5、若不等式组9433x xx k+>+⎧⎨-<⎩的解集为2x<,则k的取值范围为__________.三、解答题(5小题,每小题10分,共计50分)1、已知x<y,比较下列各对数的大小.(1)8x-3和8y-3;(2)516x-+和516y-+;(3)x-2和y-1.2、为纪念今年建党一百周年,学校集团党委决定印制《党旗飘扬》、《党建知识》两种党建读本.已知印制《党旗飘扬》5册和《党建知识》10册,需要350元;印制《党旗飘扬》3册和《党建知识》5册,需要190元.(1)求印制两种党建读本每册各需多少元?(2)考虑到宣传效果和资金周转,印制《党旗飘扬》不能少于60册,且用于印制两种党建读本的资金不能超过2630元,现需要印制两种读本共100册,问有哪几种印制方案?哪种方案费用最少?3、某体育用品商店开展促销活动,有两种优惠方案.方案一:不购买会员卡时,乒乓球享受8.5折优惠,乒乓球拍购买5副(含5副)以上才能享受8.5折优惠,5副以下必须按标价购买.方案二:办理会员卡时,全部商品享受八折优惠,小健和小康的谈话内容如下:小健:听说这家商店办一张会员卡是20元.小康:是的,上次我办了一张会员卡后,买了4副乒乓球拍,结果费用节省了12元.(会员卡限本人使用)(1)求该商店销售的乒乓球拍每副的标价.(2)如果乒乓球每盒10元,小健需购买乒乓球拍6副,乒乓球a盒,小健如何选择方案更划算?4、某商店欲购进A、B两种商品,已知购进A种商品3件和B种商品4件共需220元;若购进A种商品5件和B种商品2件共需250元.(1)求A、B两种商品每件的进价分别是多少元?(2)若每件A种商品售价48元,每件B种商品售价31元,且商店将购进A、B两种商品共50件全部售出后,要获得的利润不少于360元,问A种商品至少购进多少件?5、由于近期疫情防控形势严峻,妈妈让小明到药店购买口罩,某种包装的口罩标价每袋10元,请认真阅读老板与小明的对话:(1)结合两人的对话内容,小明原计划购买几袋口罩?(2)此时,妈妈来电话说:“口罩只需要购买8袋,另外还需要购买消毒液和洗手液共5瓶,并且三种物品购买总价不超过200元.”现已知消毒液标价每瓶20元,洗手液标价每瓶35元,经过沟通,老板答应三种物品都给予8折优惠,那么小明最多可购买洗手液多少瓶?---------参考答案-----------一、单选题1、A【分析】先解不等式,再利用数轴的性质解答.【详解】解:34≥+x x解得2x≥,∴不等式34≥+的解集在数轴上表示为:x x故选:A.【点睛】此题考查解不等式及在数轴上表示不等式的解集,正确解不等式及掌握数轴的性质是解题的关键.2、D【分析】先将绝对值等式移项变形为|m﹣1|=1–m,利用绝对值的非负性质列不等式1–m≥0,解不等式即可.【详解】解:∵|m﹣1|+m=1,∴|m﹣1|=1–m,∵|m﹣1|≥0,∴1–m≥0,∴m≤1.故选择D.【点睛】本题考查绝对值的性质,列不等式与解不等式,掌握绝对值的性质,列不等式与解不等式方法是解题关键.3、A 【分析】解不等式组中两个不等式得出323a x -≤<,结合其整数解的情况可得2a ≥,再解方程得73a y -=,由其解为非负数得出7a ≤,最后根据方程的解必须为非负整数可得a 的取值情况. 【详解】解:解不等式620x ->,得:3x <, 解不等式2()3x a x +≥+,得:32x a ≥-, 不等式组至少有4个整数解,321a ∴-≤-,解得2a ≥,解关于y 的方程13(2)y a --=得73a y -=,方程有非负整数解,∴703a-≥, 则7a ≤, 所以27a ≤≤, 其中能使73a-为非负整数的有2,3,4,5,6,7,共6个, 故选:A . 【点睛】本题主要考查一元一次不等式组的整数解,解题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解. 4、C【分析】①除0外,互为相反数的商为1-,可作判断;②由两数之和小于0,两数之积大于0,得到a 与b 都为负数,即23a b +小于0,利用负数的绝对值等于它的相反数化简得到结果,即可作出判断;③由-a b 的绝对值等于它的相反数,得到-a b 为非正数,得到a 与b 的大小,即可作出判断; ④由a 绝对值大于b 绝对值,分情况讨论,即可作出判断;⑤先根据a b <,得33a b -<-,由0ab <和有理数乘法法则可得0a <,0b >,分情况可作判断. 【详解】解:①若0ab <,且a ,b 互为相反数,则1a b=-,本选项正确;②若0ab >,则a 与b 同号,由0a b +<,则0a <,0b <,则|23|23a b a b +=--,本选项正确; ③||0a b a b -+-=,即||()a b a b -=--,0a b ∴-,即a b ,本选项错误;④若||||a b >,当0a >,0b >时,可得a b >,即0a b ->,0a b +>,所以()()a b a b +⋅-为正数; 当0a >,0b <时,0a b ->,0a b +>,所以()()a b a b +⋅-为正数; 当0a <,0b >时,0a b -<,0a b +<,所以()()a b a b +⋅-为正数; 当0a <,0b <时,0a b -<,0a b +<,所以()()a b a b +⋅-为正数, 本选项正确; ⑤a b <,33a b -<-∴, 0ab <,0a ∴<,0b >,当03b <<时,|3||3|a b -<-,33a b ∴-<-,不符合题意;所以3b ,|3||3|a b -<-,33a b ∴-<-,则6a b +>, 本选项正确;则其中正确的有4个,是①②④⑤. 故选:C . 【点睛】本题考查了相反数,不等式的性质,绝对值和有理数的混合运算,熟练掌握各种运算法则是解本题的关键. 5、D 【分析】根据不等式的性质逐项判断即可. 【详解】解:A 、给x y >两边都减去1,不等号的方向不变,故本选项正确,不符合题意; B 、给x y >两边都加上x ,不等号的方向不变,故本选项正确,不符合题意; C 、给x y >两边都除以2,不等号的方向不变,故本选项正确,不符合题意; D 、给x y >两边都乘以﹣3,不等号的方向要改变,故本选项不正确,符合题意, 故选:D . 【点睛】本题考查不等式的性质,熟练掌握不等式的性质,注意不等号的方向是解答的关键.6、D【分析】根据不等式组的解集的求解方法进行求解即可.【详解】解:A、1030xx->⎧⎨->⎩,解得13xx>⎧⎨>⎩,解集为:3x>,故不符合题意;B、1030xx-<⎧⎨-<⎩,解得13xx<⎧⎨<⎩,解集为:1x<,故不符合题意;C、1030xx->⎧⎨-<⎩,解得13xx>⎧⎨<⎩,解集为:13x<<,故不符合题意;D、1030xx-<⎧⎨->⎩,解得13xx<⎧⎨>⎩,无解,符合题意;故选:D.【点睛】本题考查了求不等式组的解集,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”取不等式组的解集是关键.7、D【分析】根据不等式的性质:不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,可得答案.【详解】解:A、在不等式m>n的两边同时减去5,不等式仍然成立,即m﹣5>n﹣5,原变形错误,故此选项不符合题意;B 、在不等式m >n 的两边同时除以5,不等式仍然成立,即55m n >,原变形错误,故此选项不符合题意;C 、在不等式m >n 的两边同时乘以﹣5,不等式号方向改变,即﹣5m <﹣5n ,原变形错误,故此选项不符合题意;D 、在不等式m >n 的两边同时乘以﹣5,不等式号方向改变,即55m n-<-,原变形正确,故此选项符合题意. 故选:D . 【点睛】本题考查了不等式的性质,不等式的基本性质是解不等式的主要依据,必须熟练地掌握.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变. 8、A 【分析】先求解不等式组,根据解得范围确定a 的范围,再根据方程解的范围确定a 的范围,从而确定a 的取值,即可求解. 【详解】解:由关于x 的不等式组312364x x x a +⎧≥-⎪⎨⎪+>+⎩解得253a x -<≤ ∵关于x 的不等式组有且只有3个奇数解 ∴2113a --≤<,解得15a -≤< 关于y 的方程3y +6a =22-y ,解得1132ay -=∵关于y 的方程3y +6a =22-y 的解为非负整数∴1132a-≥,且1132a-为整数解得113a≤且1132a-为整数又∵15a-≤<,且a为整数∴符合条件的a有1-、1、3符合条件的所有整数a的积为(1)133-⨯⨯=-故选:A【点睛】本题主要考查一元一次不等式组的解法及一元一次方程的解法,熟练掌握一元一次不等式组的解法及一元一次方程的解法是解题的关键.9、A【分析】不等式﹣1<x≤2在数轴上表示不等式x>﹣1与x≤2两个不等式的公共部分,据此求解即可.【详解】解:“>”空心圆圈向右画折线,“≤”实心圆点向左画折线.故在数轴上表示不等式﹣1<x⩽2如下:故选A.【点睛】本题考查了在数轴上表示不等式的解集,不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.10、B【分析】先解不等式,得到不等式的解集,再在数轴上表示不等式的解集即可.【详解】解:820x ->,移项得:28,x解得:4,x <所以原不等式得解集:4x <.把解集在数轴上表示如下:故选B【点睛】本题考查的是一元一次不等式的解法,在数轴上表示不等式的解集,掌握“画图时,小于向左拐,大于向右拐”是解本题的关键,注意实心点与空心圈的使用.二、填空题1、2x −y ≤0【分析】直接利用“x 的2倍”即2x ,再减y ,结果是非正数,即小于等于零,即可得出不等式.【详解】解:由题意可得:2x −y ≤0.故答案为:2x −y ≤0.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确得出不等关系是解题关键.2、﹣1<a≤0【分析】先求出不等式组的解集,再根据已知条件得出−1<a≤0即可.【详解】解:921xx a--⎧⎨-≥⎩>①②,解不等式①,得x<5,解不等式②,得x≥a,所以不等式组的解集是a≤x<5,∵关于x的不等式组921xx a->-⎧⎨-≥⎩的整数解共有5个,∴−1<a≤0,故答案为:−1<a≤0.【点睛】本题考查了解一元一次不等式组的整数解和解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.3、12x≤且1x≠-【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式求解.【详解】解:由题意得:120x-≥,且10x+≠解得:12x ≤且1x ≠- 故答案为:12x ≤且1x ≠-【点睛】本题考查了分式有意义的条件和二次根式有意义的条件,掌握:分式有意义,分母不为0;二次根式的被开方数是非负数是解题的关键.4、5或6【分析】设共有x 间宿舍,则共有(313)x +个学生,然后根据每间住6人,则还有一间不空也不满,列出不等式组进行求解即可.【详解】解:设共有x 间宿舍,则共有(313)x +个学生,依题意得:3136(1)3136x x x x+>-⎧⎨+<⎩, 解得:131933x <<. 又x 为正整数,5x ∴=或6.故答案为:5或6.【点睛】本题主要考查了一元一次不等式组的应用,解题的关键在于能够准确根据题意列出不等式组进行求解.5、1k ≥-【分析】先解一元一次不等式组中的两个不等式,再根据解集为2x <,可得32k +≥,从而可得答案.【详解】解:9433x x x k +>+⎧⎨-<⎩①② 由①得:36x ->-2x ∴<由②得:3x k <+不等式组9433x x x k +>+⎧⎨-<⎩的解集为2x <, 32k ∴+≥1∴≥-k故答案为:1k ≥-【点睛】本题考查的是一元一次不等式组的解法,利用一元一次不等式组的解集求解参数的取值范围,掌握一元一次不等式组的解法是解题的关键.三、解答题1、(1)8x -3<8y -3;(2)551166x y -+>-+;(3)x -2<y -1【解析】【分析】(1)根据不等式的基本性质:不等式两边同时乘以一个正数,不等号不变号,不等式两边同时加上或减去一个数,不等号方向不变,即可得;(2)根据不等式的基本性质:不等式两边同时乘以一个负数,不等号变号,不等式两边同时加上或减去一个数,不等号方向不变,即可得;(3)根据不等式的基本性质:不等式两边同时加上或减去一个数,不等号方向不变,即可得.【详解】解:(1)∵ x y < ,∴ 88x y <,∴ 8383x y -<-;(2)∵ x y <,∴ 5566x y ->-,∴ 551166x y -+>-+;(3)∵ x y <,∴ 22x y -<-,而21y y -<-,∴ 21x y -<-.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的各个性质是解题关键.2、(1)印制《党旗飘扬》每册30元,《党建知识》每册20元;(2)有四种方案:方案一:印制《党旗飘扬》60册,印制《党建知识》40册,需要付款:2600元;方案二:印制《党旗飘扬》61册,印制《党建知识》39册,需要付款:2610元;方案三:印制《党旗飘扬》62册,印制《党建知识》38册,需要付款:2620元;方案四:印制《党旗飘扬》63册,印制《党建知识》37册,需要付款:2630元;方案一费用最少.【解析】【分析】(1)根据题意设印制《党旗飘扬》每册x 元,《党建知识》每册y 元,进而依据等量关系建立二元一次方程组求解;(2)根据题意设印制《党旗飘扬》a 册,则印制《党建知识》(100﹣a )册,可得30a +20(100﹣a )≤2630且a ≥60,进而求得a 对四种方案进行分析即可.解:(1)设印制《党旗飘扬》每册x元,《党建知识》每册y元,由题意可得510350 35190x yx y+=⎧⎨+=⎩,解得3020xy=⎧⎨=⎩,答:印制《党旗飘扬》每册30元,《党建知识》每册20元;(2)设印制《党旗飘扬》a册,则印制《党建知识》(100﹣a)册,由题意可得:30a+20(100﹣a)≤2630且a≥60,解得:60≤a≤63,∵a为整数,∴a=60,61,62,63,∴有四种方案,方案一:印制《党旗飘扬》60册,印制《党建知识》40册,需要付款:30×60+20×40=2600(元);方案二:印制《党旗飘扬》61册,印制《党建知识》39册,需要付款:30×61+20×39=2610(元);方案三:印制《党旗飘扬》62册,印制《党建知识》38册,需要付款:30×62+20×38=2620(元);方案四:印制《党旗飘扬》63册,印制《党建知识》37册,需要付款:30×63+20×37=2630(元);由上可得,方案一费用最少.【点睛】本题考查二元一次方程的应用以及一元一次不等式的应用,读懂题意并根据题意等量或不等量关系建立方程组和不等式是解题的关键.3、(1)40元;(2)当16a=时,两种方案一样;当016a<<时,选择方案一;当16a>时,选择方案二【解析】(1)设商店销售的乒乓球拍每副的标价为x元,根据题意列出一元一次方程,解方程即可求得乒乓球拍每副的标价;(2)根据两种方案分别计算小健购买乒乓球拍6副,乒乓球a盒,所需费用,比较即可【详解】(1)设商店销售的乒乓球拍每副的标价为x元,根据题意得+⨯=-x x2040.8412解得40x=答:该商店销售的乒乓球拍每副的标价为40元(2)方案一:6400.850.85102048.5⨯⨯+⨯=+a a方案二:206400.8100.82128+⨯⨯+⨯=+a a若2048.5a+,+=2128a即16a=时,两种方案一样当2048.5a++<2128a解得16a<即当016<<时,选择方案一,a当2048.5a+>2128a+解得16a>即当16a>时,选择方案二【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,根据题意列出方程或不等式是解题的关键.4、(1)A种商品每件的进价为40元,B种商品每件的进价为25元;(2)A种商品至少购进30件.【分析】(1)设A 种商品每件的进价为x 元,B 种商品每件的进价为y 元,根据题中的等量关系列出二元一次方程组求解即可;(2)设购进A 种商品m 件,则购进B 种商品(50-m )件,根据题意列出一元一次不等式求解即可.【详解】解:(1)设A 种商品每件的进价为x 元,B 种商品每件的进价为y 元,依题意,得:3422052250x y x y +=⎧⎨+=⎩,解得:4025x y =⎧⎨=⎩. 答:A 种商品每件的进价为40元,B 种商品每件的进价为25元.(2)设购进A 种商品m 件,则购进B 种商品(50-m )件,依题意,得:(48-40)m +(31-25)(50-m )≥360,解得:m ≥30.答:A 种商品至少购进30件.【点睛】此题考查了二元一次方程组应用题和一元一次不等式应用题,解题的关键是正确分析题目中的等量关系列出方程或不等式求解.5、(10)10;(2)4【解析】【分析】(1)设小明原计划购买x 袋口罩,列方程0.8510(1) 6.510x x ⨯++=,求解即可;(2)设购买洗手液a 瓶,则购买消毒液(5-a )瓶,由题意得列不等式[]0.881020(5)35200a a ⨯+-+≤,求解即可.【详解】解:(1)设小明原计划购买x袋口罩,由题意得0.8510(1) 6.510x x⨯++=,解得x=10,∴小明原计划购买10袋口罩;(2)设购买洗手液a瓶,则购买消毒液(5-a)瓶,由题意得[]0.881020(5)35200a a⨯+-+≤,解得243a≤,∴小明最多可购买洗手液4瓶.【点睛】此题考查了一元一次方程的实际应用,一元一次不等式的实际应用,正确理解题意列出方程或不等式是解题的关键.。
人教版七年级数学下册第 9章不等式与不等式组单元提优卷
人教版七年级数学下册第 9 章不等式与不等式组单元提优卷姓名:________班级:________成绩:________一、单选题1 . 不等式 >0 的解集在数轴上表示正确的是( )A. 2 . 已知点A.B.C.D.在第一象限,则下列关系式正确的是( )B.C.D.3 . 不等式组的解集在数轴上表示为( )A.B.C.D.4 . 下列各式不是一元一次不等式组的是( )A.B.C.D.5 . 关于 的不等式的解集在数轴上表示如图所示,则 的值是:A.-6 6 . 若 ,且B.-12C.6,则 的取值范围是( )A.B.C.7 . 若关于 x 的不等式 x-m≥-1 的解集如图所示,则 m 等于( )D.12 D.第1页共7页A.3B.0C.28 . 下列不等式的解集中,不包括-3 的是( )A.B.C.9 . 下列为一元一次不等式的是( )D.1 D.A.C.B.D.10 . 下列各项中,蕴含不等关系的是( ) A.老师的年龄是小明的年龄的 3 倍 C.小明的岁数比爸爸小 26 岁二、填空题B.小明和小亮一样高 D.x2 是非负数11 . 观察图象,可以得出不等式组的解集是_____.12 . 商店购进一批文具盒,进价每个 4 元,零售价每个 6 元,为促销决定打折销售,但利润率仍然不低于 20%, 那么该文具盒实际价格最多可打___________折销售13 . 不等式的解集是__.14 . 比较下面两个算式结果的大小(在横线上填“>”“<”或“=”): 32+42__________2×3×4, 22+22__________2×2×2,第2页共7页12+( ) 2_________2×1× ,(-2)2+52__________2×(-2)×5,( ) 2+( ) 2__________2× × .15 . 若,则 ____.16 . 若关于 x 的不等式组有且只有四个整数解,则实数 a 的取值范围是______ .三、解答题17 . 不等式的解集中是否一定有无限多个数?不等式|x|≤0、x2<0 的解集是什么?不等式 x2>0 和 x2+4>0 的解集分别又是什么?18 . 对 定义一种新运算 ,规定:通常的四则运算,例如:.(1)已知.①求 的值:(其中均为非零常数),这里等式右边是②若关于 的不等式组无解,求实数 的取值范围.(2)若 的关系式对任意实数 都成立(这里和均有意义),则应满足怎样19 . ①解不等式:3x﹣5<2(2+3x)第3页共7页②解不等式组:,并把解集表示在数轴上.20 . 北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房 间少 5 间,该旅游团有 48 人,若全部安排在一楼,每间住 4 人,房间不够,每间住 5 人,有房间没住满.若全部 安排在二楼,每间住 3 人,房间不够,每间住 4 人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间 吗?21 . 解不等式组:,并写出其整数解。
人教版 七年级下册第9章 不等式与不等式组培优练习(含答案)
人教版 七年级下册第9章 不等式与不等式组培优练习(含答案)一、选择题(本大题共6道小题)1. 将不等式3x -2<1的解集表示在数轴上,正确的是( )2. 不等式组⎩⎪⎨⎪⎧2x +2>x 3x <x +2的解集是( ) A. x >-2 B. x <1 C. -1<x <2 D. -2<x <13. 某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( )A. 103块B. 104块C. 105块D. 106块4. 对于不等式组⎩⎪⎨⎪⎧12x -1≤7-32x 5x +2>3(x -1),下列说法正确的是( )A. 此不等式组无解B. 此不等式组有7个整数解C. 此不等式组的负整数解是-3,-2,-1D. 此不等式组的解集是-52<x ≤25. 不等式x +12>2x +23-1的正整数解的个数是( )A. 1个B. 2个C. 3个D. 4个6. 点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b .对于以下结论:甲:b -a <0;乙:a +b >0;丙:|a |<|b |;丁:b a >0.其中正确的是( )A. 甲乙B. 丙丁C. 甲丙D. 乙丁二、填空题(本大题共5道小题)7. 不等式3x +134>x3+2的解是________.8. 不等式5x -3<3x +5的最大整数解是________.9. 不等式组⎩⎪⎨⎪⎧x -1≤2-2x2x 3>x -12的解集是________.10. 不等式组⎩⎪⎨⎪⎧x >-1x <m 有3个整数解,则m 的取值范围是________.11. 不等式组⎩⎪⎨⎪⎧x +2>12x -1≤8-x 的最大整数解是________.三、解答题(本大题共6道小题)12. 解不等式组:13. 解不等式:3x -5<2(2+3x ).14. 解不等式组⎩⎪⎨⎪⎧3x +1≤2(x +1)-x <5x +12,并写出它的整数解.15. 解不等式2x -1>3x -12,并把它的解集在数轴上表示出来.16. x 取哪些整数值时,不等式5x +2>3(x -1)与12x ≤2-32x 都成立?17. 光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其他天气平均每天可发电5度.已知某月(按30天计)共发电550度.(1)求这个月晴天的天数;(2)已知该家庭每月平均用电量为150度.若按每月发电550度计,至少需要几年才能收回成本(不计其他费用,结果取整数).人教版七年级下册第9章不等式与不等式组培优练习-答案一、选择题(本大题共6道小题)1. 【答案】D【解析】3x-2<1,解得x<1,故选D.2. 【答案】D【解析】由2x+2>x得,x>-2;由3x<x+2得,x<1,∴-2<x <1,∴选项D正确.3. 【答案】C【解析】设这批电话手表有x块,根据“销售总额超过5.5万元”列不等式得550×60+500(x-60)>55000,解得x>104,所以这批电话手表至少有105块.4. 【答案】B 【解析】⎩⎪⎨⎪⎧12x -1≤7-32x ①5x +2>3(x -1) ②,解①得2x ≤8,x ≤4,解②得2x >-5,x >-52,所以不等式组的解集是-52<x ≤4,所以不等式组的整数解是-2,-1,0,1,2,3,4,共7个,其中负整数解是-2,-1,故选B.5. 【答案】D 【解析】解不等式x +12>2x +23-1得,3(x +1)>2(2x +2)-6,3x +3>4x +4-6,x <5.∵小于5的正整数有1,2,3,4,∴该不等式的正整数解有1,2,3,4,共4个,故选D.6. 【答案】C 【解析】∵由数轴可知b <-3<0<a <3,∴甲和丙的结论都正确,故选C.二、填空题(本大题共5道小题)7. 【答案】x >-3 【解析】3x +134>x 3+2,去分母得9x +39>4x +24,移项得5x >-15,系数化为1得x >-3,即不等式的解为x >-3.8. 【答案】3 【解析】由不等式5x -3<3x +5,移项,5x -3x <5+3,合并同类项,2x <8,系数化为1,x <4,∴最大整数解为3.9. 【答案】-3<x ≤1 【解析】解不等式x -1≤2-2x ,得x ≤1,解不等式2x 3>x -12,得x>-3,故不等式组的解集为:-3<x ≤1.10. 【答案】2<m ≤3 【解析】本题主要考查了一元一次不等式组的计算,特别注意最后解集范围的确定.∵原不等式组有3个整数解,且解集为:-1<x <m ,∴三个整数解为0,1,2,∴2<m ≤3.11. 【答案】3 【解析】由x +2>1得x >-1,由2x -1≤8-x 得x ≤3,所以原不等式组的解集是-1<x ≤3,最大整数解为x =3.三、解答题(本大题共6道小题)12. 【答案】解:解不等式x -3(x -2)≥-4,得x ≤5,解不等式x -1<,得x<4,∴不等式组的解集为x<4.13. 【答案】解:去括号,得3x -5<4+6x ,(1分)移项,得3x -6x <4+5,(2分)合并同类项,得-3x <9,(3分)系数化为1,得x >-3.(4分)14. 【答案】解:解不等式3x +1≤2(x +1),得x ≤1, 解不等式-x <5x +12,得x>-2,(4分) ∴不等式组的解集是-2<x ≤1,(5分)∴该不等式组的整数解是-1,0,1.(7分)15. 【答案】解:去分母得4x -2>3x -1,(2分)解得x>1. (3分)这个不等式的解集在数轴上表示如解图所示: (5分)16. 【答案】解:不等式5x +2>3(x -1)可化为:x >-52,(2分)不等式12x ≤2-32x 可化为:x ≤1,(4分)取公共部分:-52<x ≤1,(6分)∴满足条件的整数为-2,-1,0,1.(7分)17. 【答案】解:(1)设这个月的晴天天数为x 天,根据题意得: 30x +5(30-x)=550,(2分)解得x =16.答:这个月的晴天天数是16天.(3分)(2)设需要y 年才可以收回成本,根据题意得: (550-150)×(0.52+0.45)×12y ≥40000,(5分) 解得y ≥8.6,答:至少需要9年才能收回成本. (6分)。
人教版数学七年级下册第九章不等式与不等式组测试卷附解析
人教版数学七年级下册第九章不等式与不等式组测试卷附解析一、单选题(共10题;共30分)1.x =3是下列不等式( )的一个解.A. x +1<0B. x +1<4C. x +1<3D. x +1<5 2.下列不等式求解的结果,正确的是( )A. 不等式组 {x ≤−3x ≤−5 的解集是 x ≤−3B. 不等式组 {x >−5x ≥−4 的解集是 x ≥−5C. 不等式组 {x >5x <−7 无解 D. 不等式组 {x ≤10x >−3 的解集是 −3≤x ≥103.在数轴上表示-2≤x <1正确的是( ) A.B.C. D.4.关于x 的不等式 2x +m >−6 的解集是 x >−3 ,则m 的值为( ) A. 1. B. 0. C. -1. D. -25.若m >n ,则下列不等式正确的是( )A. m -4<n -4B. m4>n4 C. 4m <4n D. -2m >-2n 6.已知关于x 、y 的方程组 {x +y =1−a x −y =3a +5 ,满足 x ≥12y ,则下列结论:① a ≥−2 ;② a =−53时, x =y ;③当 a =−1 时,关于x 、y 的方程组 {x +y =1−ax −y =3a +5 的解也是方程 x +y =2 的解;④若 y ≤1 ,则 a ≤−1 ,其中正确的有( )A. 1个B. 2个C. 3个D. 4个 7.若代数式4x - 32 的值不大于代数式3x +5的值,则x 的最大整数值是( ) A. 4 B. 6 C. 7 D. 88.如果关于x 的不等式组 {5x −2a >07x −3b ≤0 的整数解仅有7,8,9,那么适合这个不等式组的整数a ,b 的有序数对(a ,b )共有( )A. 4对B. 6对C. 8对D. 9对9.某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打( )A. 6折B. 7折C. 8折D. 9折10.运行程序如图所示,从“输入实数 x”到“结果是否<18”为一次程序操作,若输入 x 后程序操作仅进行了三次就停止,那么 x 的取值范围是( )A. x ≥329B. 329≤x ≤143C. 329<x ≤143D. x ≤143二、填空题(共8题;共24分)11.如果关于 x 的不等式 2x −m <0 的正整数解恰有2个,则 m 的取值范围是________. 12.“x 与y 的平方和大于8. ”用不等式表示: ________. 13.若 y =2x −6 ,当 x ________时, y >0 ;14.某校规定把期中考试成绩的40%与期末考试成绩的60%的和作为学生的总成绩.该校李红同学在期中考试中数学考了86分,她希望自己这学期数学总成绩不低于92分,她在期末考试中数学至少应得多少分?设她在期末考试中数学考了 x 分,则可列不等式________.15.关于 x 的不等式 bx <a 的解集为 x >−2 ,写出一组满足条件的实数 a ,b 的值:a= ________,b= ________.16.如果不等式组 {x2+a ≥22x −b <3的解集是 0≤x <1 ,那么 a +b 的值为________.17.按下面的程序计算,若开始输入的值 x 为正整数:规定:程序运行到“判断结果是否大于10”为一次运算,例如当 x =2 时,输出结果等于11,若经过2次运算就停止,则 x 可以取的所有值是________.18.关于 x,y 的方程组 {x −y =1+3mx +3y =1+m 的解 x 与 y 满足条件 x +y ≤2 ,则 4m +3 的最大值是________.三、计算题(共1题;共10分)19.解下列不等式(1)4x-2+1x−5>1x−5+3x +2 (2)7x−62x+3>2四、解答题(共7题;共54分)20.(6分)解不等式组: {x −3(x −2)≥42x−15<x+12 并求该不等式组的非负整数解.21.(7分)解不等式 1−2x 3+x+22≥1 ,并把解集在数轴上表示出来.22.(7分)已知关于x ,y 的二元一次方程组 {3x −y =ax −3y =5−4a 的解满足 x <y ,试求a 的取值范围.23.(7分)某居民小区污水管道里积存污水严重,物业决定请工人清理.工人用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,若工人抽污水每小时的工钱是60元,那么抽完污水最少需要支付多少元?24.(8分)新冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂共同完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天,问至少应安排两个工厂共同工作多少天才能完成任务25.(9分)北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间吗?26(10分).对x,y定义了一种新运算T,规定T(x,y)= ax+by2x+y(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)= a×0+b×12×0+1,已知T(1,﹣1)=﹣2,T(4,2)=1.(1)求a,b的值;(2)若关于m的不等式组{T(2m,5−4m)≤4T(m,3−2m)>p恰好有3个整数解,求p的取值范围.答案解析部分一、单选题 1.【答案】 D【解析】【解答】解:A 、3+1=4>0,故A 不成立; B 、3+1=4,故B 不成立; C 、3+1=4>3,故C 不成立; D 、3+1=4<5,故D 成立; 故答案为:D.【分析】直接将x=3代入各个不等式,不等式成立的即为所选. 2.【答案】 C【解析】【解答】解:A 、不等式组 {x ≤−3x ≤−5 的解集根据“同小取较小”的原则可知,此不等式组的解集为x≤-5;B 、不等式组 {x >−5x ≥−4 的解集是根据“同大取较大”的原则可知,此不等式组的解集为x≥-4;C 、不等式组 {x >5x <−7 根据“大大小小解为空”的原则可知,此不等式组无解;D 、不等式组 {x ≤10x >−3 的解集根据“小大大小中间找”的原则可知,-3<x≤10.故答案为:C .【分析】根据不等式组解集的确定方法分别求出各不等式组的解集即可. 3.【答案】 D【解析】【解答】解:解:x≥-2表示-2右边的部分,含-2这点,应为实心点,x<1表示1左边的部分,不含1这点,应为空心点,则正确的是D .【分析】根据不等式解集的表示法,在数轴上表示出两个不等式即可. 4.【答案】 B【解析】【解答】解: 2x +m >−6 , 2x >−6−m ,x >−6+m2由题知x >-3, 则 −6+m 2=−3 ,解得:m=0, 故答案为:B .【分析】解不等式求出 x >−6+m 2,结合 x >−3 ,从而得出 −6+m 2=−3 ,解之可得.5.【答案】 B【解析】【解答】解:A 、∵m >n ∴m-4>n-4,故A 不符合题意; B 、∵m >n ∴m4>n4 , 故B 符合题意; C 、∵m >n∴4m >4n ,故C 不符合题意; D 、∵m >n∴-2m <-2n ,故D 不符合题意; 故答案为:B.【分析】利用不等式的性质1,可对A 作出判断;利用不等式的性质2可对B ,C 作出判断,利用不等式的性质3,可对D 作出判断。
人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案
人教版初中数学七年级下册第9章《不等式与不等式组》测试题(一)一、选择题:1,下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5D.1x-3x ≥0 2,已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-4 3,下列数中:76, 73,79, 80, 74.9, 75.1, 90, 60,是不等式23x >50的解的有( ) A.5个 B.6个 C.7个 D.8个 4,若t>0,那么12a+12t 与a 的大小关系是( ) A .2a +t>2a B .12a+t>12a C .12a+t ≥12a D .无法确定5,如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等 则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b6,若a<0关于x 的不等式ax+1>0的解集是( )A .x>1a B .x<1a C .x>-1a D .x<-1a7,不等式组31027x x +>⎧⎨<⎩的整数解的个数是( )A .1个B .2个C .3个D .4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米 B.7千米 C.8千米 D.15千米 10,在方程组2122x y mx y +=-⎧⎨+=⎩中若未知数x 、y 满足x+y ≥0,则m 的取值范围在数轴上表示应是( )二、填空题11,不等号填空:若a<b<0 ,则5a -5b -;a1 b 1;12-a 12-b .12,满足2n-1>1-3n 的最小整数值是________.13,若不等式ax+b<0的解集是x>-1,则a 、b 应满足的条件有______.14,满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数x 为__________.15,若|12x --5|=5-12x -,则x 的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是 .17,小芳上午10时开始以每小时4km 的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________. 18,代数式x-1与x-2的值符号相同,则x 的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)<7x+4; (2)0.10.81120.63x x x ++-<-;(3)523(1),317;22x x x x ->+⎧⎪⎨-≤-⎪⎩ (4)6432,2111.32x x x x +≥+⎧⎪+-⎨>+⎪⎩20,代数式213 1--x的值不大于321x-的值,求x的范围21,方程组3,23x yx y a-=⎧⎨+=-⎩的解为负数,求a的范围.22,已知,x满足3351,11.4x xx+>-⎧⎪⎨+>-⎪⎩化简:52++-xx.23,已知│3a+5│+(a-2b+52)2=0,求关于x的不等式3ax-12(x+1)<-4b(x-2)的最小非负整数解.24,是否存在这样的整数m,使方程组24563x y mx y m+=+⎧⎨-=+⎩的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案一、1,C;2,C;3,A;4,A.解:不等式t>0利用不等式基本性质1,两边都加上12a得12a+t>12a.5,C.6,D.解:不等式ax+1>0,ax>-1,∵a<0,∴x<-1a因此答案应选D.7,D.解:先求不等式组解集-13<x<72,则整数x=0,1,2,3共4个.8,D;9,C.10,D.解:2122x y m x y+=-⎧⎨+=⎩①+②,得3x+3y=3-m,∴x+y=33m-,∵x+y≥0,∴33m-≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选D.二、11,>、>、<;12,1.解:先求解集n>25,再利用数轴找到最小整数n=1.13,a<0,a=b 解析:ax+b<0,ax<-b,而不等式解集x>-1不等号改变了方向.因此可以确定运用不等式性质3,所以a<0,而-ab=-1,∴b=a.14,-2,-1,0,1 解析:先求不等式组解集-3<x≤1,故整数x=0,1,-1,-2.15,x≤11 解析:∵│a│=-a时a≤0,∴12x--5≤0,解得x≤11.16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10)<x<4•×(134560-10),即12<x<15.18,x>2或x<1 解析:由已知可得10102020 x xx x->-<⎧⎧⎨⎨->-<⎩⎩或者.三、19,(1)9-4(x-5)<7x+4.解:去括号9-4x+20<7x+4,移项合并11x>25,化系数为1,x>2511.(2)0.10.81120.63x x x++-<-.解:811263x x x++-<-,去分母 3x-(x+8)<6-2(x+1),去括号 3x-x-8<6-2x-2,移项合并 4x<12,化系数为1,x<3.(3)523(1)31722x xxx->+⎧⎪⎨-≤-⎪⎩解:解不等式①得 x>52,解不等式②得 x≤4,∴不等式组的解集52<x ≤4. (4)6432211132x x x x+≥+⎧⎪+-⎨>+⎪⎩解:解不等式①得x ≥-23,解不等式②得x>1,∴不等式组的解集为x>1. 20,57≥x ;21,a<-3;22,7; 23,解:由已知可得535035520212a a ab b ⎧+==-⎧⎪⎪⎪⎨⎨-+=⎪⎪=⎩⎪⎩解得代入不等式得-5x-12(x+1)<-53(x-2),解之得 x>-1,∴最小非负整数解x=0.24,解:24563x y m x y m +=+⎧⎨-=+⎩得11139529m x m y +⎧=⎪⎪⎨-⎪=⎪⎩∵x ,y 为非负数00x y ≥⎧⎨≥⎩∴1113095209m m +⎧≥⎪⎪⎨-⎪≥⎪⎩解得-1311≤m ≤52,∵m 为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程24563x y m x y m +=+⎧⎨-=+⎩的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解00x y ≥⎧⎨≥⎩的m ,•从而建立关于m 为未知数的一元一次不等式组,求解m 的取值范围,选取整数解.25,设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5,解得29.5<x<32,因为x 为整数,所以x=30或x=31,当x=30时,(3x+59)=149,当x=31时,(3x+59)=152.答:有30只猴子,149只桃子或有31只猴子,152只桃子.1. 将不等式组13x x ⎧⎨⎩≥≤的解集在数轴上表示出来,应是 ( )2. 下面给出的不等式组中①23x x >-⎧⎨<⎩②020x x >⎧⎨+>⎩③22124x x x ⎧>+⎪⎨+>⎪⎩④307x x +>⎧⎨<-⎩⑤101x y x +>⎧⎨-<⎩其中是一元一次不等式组的个数是( ) A.2个B.3个C.4个D.5个3. 不等式组24030x x ->⎧⎨->⎩,的解集为( )A.23x << B. 3x > C. 2x <D. 23x x ><-或4. 下列不等式中哪一个不是一元一次不等式( )A.3x >B.1y y -+>C.12x> D.21x >5. 下列关系式是不等式的是( )A.25x += B.2x + C.25x +>D.235+=6. 若使代数式312x -的值在1-和2之间,x 可以取的整数有( ) A.1个B.2个C.3个D.4个7. 不等式组2030x x -<⎧⎨->⎩的正整数解是( )A.0和1 B.2和3 C.1和3 D.1和2 8. 下列选项中,同时适合不等式57x +<和220x +>的数是( )A.3 B.3- C.1- D.19. 不等式211133x ax +-+>的解集是53x <,则a 应满足( ) A.5a > B.5a = C.5a >- D.5a =-10. a 是一个整数,比较a 与3a 的大小是( )C1DA3BA.3a a >B.3a a <C.3a a =D.无法确定二、填空题(每题3分,共30分) 11. 不等式(3)1a x ->的解集是13x a <-,则a 的取值范围 . 12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降 元出售商品.13. 一个两位数,十位数字与个位数字的和为6,且这个两位数不大于42,则这样的两位数有 ______个. 14. 若a b >,则22____ac bc .15. 关于x 的方程32x k +=的解是非负数,则k 的取值范围是 . 16. 若(1)20mm x++>是关于x 的一元一次不等式,则m 的取值是 .17. 关于x 的方程4132x m x -+=-的解是负数,则m 的取值范围 .18. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩的解集为 .19. 不等式15x +<的正整数解是 .20. 不等式组⎩⎨⎧-<+<632a x a x 的解集是32+<a x ,则a 的取值 .三、解答题(21、22每小题8分,23、24第小题10分,共36分) 21. 解不等式5(1)33x x x +->+22. 解不等式组3(2)41214x x x x --⎧⎪⎨-<-⎪⎩≤23. 关于x ,y 的方程组322441x y k x y k +=+⎧⎨+=-⎩的解x ,y 满足x y >,求k 的取值范围.24.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8 人,则有一间宿舍不满也不空,问宿舍间数和学生人数分别是多少?25.喷灌是一种先进的田间灌水技术.雾化指标P是它的技术要素之一.当喷嘴的直径d(mm).喷头的工作压强为h(kPa)时.雾化指标P=100hd.如果树喷灌时要求3000≤P≤4000.若d=4mm.求h的范围.四、解答题(本题共2小题,每题12分,共24分)26.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包的单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样商品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?27.在“512大地震”灾民安置工作中,某企业接到一批生产甲种板材240002m和乙种板材120002m的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材302m或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材问:这400间板房最多能安置多少灾民?参考答案:一、选择题:1. B2. B.3. A4. C.5. C.6. B7. D.8. D.9. B.10. D. 二、填空题:11. 3a <. 12. 450元. 13. 4个. 14. ≥. 15. 2k ≤. 16. 1m =.17. 3m <. 18. 无解. 19. 1,2,3. 20..a ≤ -9 三、解不等式(组):21. 2x >-. 22. 312x <≤ 23. 1k > 24.解:设宿舍间数为x ,学生人数为y. 由题意得⎪⎩⎪⎨⎧>--<--+=0)1(88)1(8204x y x y x y解得: 5 < x < 7∵x 是正整数 ∴ x = 6 故y=44 答:宿舍间数为6,学生人数为44 . 24.解:把d=4代入公式P=100h d 中得P=1004h,即P=25h ,又∵3000≤P≤4000,∴3000≤25h≤4000,120≤h≤160,故h 的范围为120~160(kPa )26. (1)随身听的单价为360元,书包单价为92元.(2)在超市A 购买更省钱. 27.(1)设安排x 人生产甲种板材,应安排80人生产甲种板材,60人生产乙种板材.(2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.解得300m ≥.又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名.。
人教版七年级数学下册第九章不等式与不等式组单元提优卷
⼈教版七年级数学下册第九章不等式与不等式组单元提优卷⼈教版七年级数学下册第九章不等式与不等式组单元提优卷⼀、选择题1.已知x >y ,若对任意实数a ,以下结论:甲:ax >ay ;⼄:a 2-x >a 2-y ;丙:a 2+x ≤a 2+y ;丁:a 2x ≥a 2y其中正确的是()A. 甲B. ⼄C. 丙D. 丁 2.不等式组{3x <503x +3>50的整数解是() A. 15 B. 16 C. 17 D. 15,163.若-12a≥b,则a≤-2b ,其根据是( )A .不等式的两边加(或减)同⼀个数(或式⼦),不等号的⽅向不变B .不等式的两边乘(或除以)同⼀个正数,不等号的⽅向不变C .不等式的两边乘(或除以)同⼀个负数,不等号的⽅向改变D .以上答案均不对4.亮亮准备⽤⾃⼰今年的零花钱买⼀台价值300元的英语学习机.现在他已存有45元,如果从现在起每⽉节省30元,设x 个⽉后他存够了所需钱数,则x 应满⾜的关系式是()A. 30x-45≥300B. 30x+45≥300C. 30x-45≤300D. 30x+45≤3005.已知a <b ,则下列四个不等式中不正确...的是( ) A. a+4<b+4 B. a-4<b-4 C. 4a <4b D. -4a <-4b6.为有效开展“阳光体育”活动,某校计划购买篮球和⾜球共50个,购买资⾦不超过3 000元.若每个篮球80元,每个⾜球50元,则篮球最多可购买( )A .16个B .17个C .33个D .34个7下列不等式总成⽴的是()A. 4a >2aB. a 2>0C. a 2>aD. -12a 2≤0 8.不等式组{3?2x >?1x?a≥0的整数解共有4个,则a 的取值范围是()A. -3<a <-2B. -4<a ≤-2C. -3≤a <-2D. -3<a ≤-2 9.不等式3x +2<2x +3的解集在数轴上表⽰正确的是( )10.甲、⼄两⼈从相距24km 的A 、B 两地沿着同⼀条公路相向⽽⾏,如果甲的速度是⼄的速度的两倍,如果要保证在2⼩时以内相遇,则甲的速度()A. ⼩于8km /hB. ⼤于8km /hC. ⼩于4km /hD. ⼤于4km /h⼆、填空题11.若点(2,m -1)在第四象限,则实数m 的取值范围是______.12.某试卷共有30道题,每道题选对得10分,选错了或者不选扣5分,⾄少要选对______ 道题,其得分才能不少于80分.13.不等式x -82>1的解集是.14.已知9a +3b +c =0,b >c ?1,t =1?94a ?c ,则t 的取值范围是________.15.已知22,{ 2(-1)1,x x x ><+那么|x-3|+|x-1|=___________. 16已知关于x 的不等式组5-3x≥-1,a -x <0⽆解,则a 的取值范围是.三、解答题17.解下列不等式,并将解集在数轴上表⽰出来:(1)3(y ?2)+1≤?2;(2)1?x+62<2x?13.18.求不等式组{7(x +1)≥5x +31?x 3>3?x 4的整数解.19.阅读下列材料,并完成填空.你能⽐较2 0172 018和2 0182 017的⼤⼩吗?为了解决这个问题,先把问题⼀般化,⽐较n n +1和(n +1)n (n >0,且n 为整数)的⼤⼩.然后从分析n =1,n =2,n =3,…的简单情形⼊⼿,从中发现规律,经过归纳、猜想得出结论.(1)通过计算(可⽤计算器)⽐较下列①~⑦组两数的⼤⼩:(在横线上填上“>”“=”或“<”)①12<21;②23<32;③34>43;④45>54;⑤56>65;⑥67>76;⑦78>87;(2)归纳第(1)问的结果,可以猜想出n n +1和(n +1)n的⼤⼩关系; (3)根据以上结论,可以得出2 0172 018和2 0182 017的⼤⼩关系.20.求不等式2x+13≤3x?25+1的⾮负整数解.21. 某中学为了绿化校园,计划购买⼀批榕树和⾹樟树,经市场调查榕树的单价⽐⾹樟树少20元,购买3棵榕树和2棵⾹樟树共需340元.(1)请问榕树和⾹樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费⽤不超过10840元,且购买⾹樟树的棵数不少于榕树的1.5倍,请你算算,该校本次购买榕树和⾹樟树共有哪⼏种⽅案.22.解不等式组12(x +1)≤2,x +22≥x +33,并求出不等式组的整数解之和.参考答案⼀、选择题1.已知x >y ,若对任意实数a ,以下结论:甲:ax >ay ;⼄:a 2-x >a 2-y ;丙:a 2+x ≤a 2+y ;丁:a 2x ≥a 2y其中正确的是( D )A. 甲B. ⼄C. 丙D. 丁2.不等式组{3x <503x +3>50的整数解是( B ) A. 15 B. 16 C. 17 D. 15,163.若-12a≥b,则a≤-2b ,其根据是( C )A .不等式的两边加(或减)同⼀个数(或式⼦),不等号的⽅向不变B.不等式的两边乘(或除以)同⼀个正数,不等号的⽅向不变C.不等式的两边乘(或除以)同⼀个负数,不等号的⽅向改变D.以上答案均不对4.亮亮准备⽤⾃⼰今年的零花钱买⼀台价值300元的英语学习机.现在他已存有45元,如果从现在起每⽉节省30元,设x个⽉后他存够了所需钱数,则x应满⾜的关系式是( B )A. 30x-45≥300 B. 30x+45≥300 C. 30x-45≤300 D. 30x+45≤3005.已知a<b,则下列四个不等式中不正确...的是( D )A. a+4<b+4B. a-4<b-4C. 4a<4bD. -4a<-4b6.为有效开展“阳光体育”活动,某校计划购买篮球和⾜球共50个,购买资⾦不超过3 000元.若每个篮球80元,每个⾜球50元,则篮球最多可购买( A )A.16个B.17个C.33个D.34个7下列不等式总成⽴的是( D )a2≤0A. 4a>2aB. a2>0C. a2>aD. -12x?a≥0的整数解共有4个,则a的取值范围是( D )8.不等式组{3?2x>?1A. -3<a<-2B. -4<a≤-2C. -3≤a<-2D. -3<a≤-29.不等式3x+2<2x+3的解集在数轴上表⽰正确的是( D )10.甲、⼄两⼈从相距24km的A、B两地沿着同⼀条公路相向⽽⾏,如果甲的速度是⼄的速度的两倍,如果要保证在2⼩时以内相遇,则甲的速度( B )A. ⼩于8km /hB. ⼤于8km /hC. ⼩于4km /hD. ⼤于4km /h⼆、填空题 11.若点(2,m -1)在第四象限,则实数m 的取值范围是______.答案m <112.某试卷共有30道题,每道题选对得10分,选错了或者不选扣5分,⾄少要选对______ 道题,其得分才能不少于80分.答案1613.不等式x -82>1的解集是x >10.15.已知9a +3b +c =0,b >c ?1,t =1?94a ?c ,则t 的取值范围是________. 答案t >14 15.已知22,{ 2(-1)1,x x x ><+那么|x-3|+|x-1|=___________. 答案216已知关于x 的不等式组?5-3x≥-1,a -x <0⽆解,则a 的取值范围是a≥2.三、解答题17.解下列不等式,并将解集在数轴上表⽰出来:(1)3(y ?2)+1≤?2;(2)1?x+62<2x?13.解:(1)y ≤1(2)x >-10718.求不等式组{7(x +1)≥5x +31?x 3>3?x 4的整数解. 【解析】分析:先求出不等式组的解集,然后求出整数解.详解:{7(x +1)≥5x +3①1?x 3>3?x 4②,由不等式①,得:x ≥﹣2,由不等式②,得:x <3,故原不等式组的解集是﹣2≤x <3,∴不等式组{7(x +1)≥5x +31?x 3>3?x 4的整数解是:﹣2、﹣1、0、1、2. 19.阅读下列材料,并完成填空.你能⽐较2 0172 018和2 0182 017的⼤⼩吗?为了解决这个问题,先把问题⼀般化,⽐较n n +1和(n +1)n (n >0,且n 为整数)的⼤⼩.然后从分析n =1,n =2,n =3,…的简单情形⼊⼿,从中发现规律,经过归纳、猜想得出结论.(1)通过计算(可⽤计算器)⽐较下列①~⑦组两数的⼤⼩:(在横线上填上“>”“=”或“<”)①12<21;②23<32;③34>43;④45>54;⑤56>65;⑥67>76;⑦78>87;(2)归纳第(1)问的结果,可以猜想出n n +1和(n +1)n 的⼤⼩关系;(3)根据以上结论,可以得出2 0172 018和2 0182 017的⼤⼩关系.解:(2)当n =1或2时,n n +1<(n +1)n ;当n >2时,nn +1>(n +1)n . (3)2 0172 018>2 0182 017. 20.求不等式2x+13≤3x?25+1的⾮负整数解.解:去分母得:5(2x +1)≤3(3x -2)+15,去括号得:10x +5≤9x -6+15,移项得:10x -9x ≤-5-6+15,合并同类项得x ≤4,∴不等式的⾮负整数解为0、1、2、3、4.21.某中学为了绿化校园,计划购买⼀批榕树和⾹樟树,经市场调查榕树的单价⽐⾹樟树少20元,购买3棵榕树和2棵⾹樟树共需340元.(1)请问榕树和⾹樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费⽤不超过10840元,且购买⾹樟树的棵数不少于榕树的1.5倍,请你算算,该校本次购买榕树和⾹樟树共有哪⼏种⽅案.解:(1)设榕树的单价为x 元/棵,⾹樟树的单价是y 元/棵,根据题意得,{x =y ?203x +2y =340,解得{x =60y =80,答:榕树和⾹樟树的单价分别是60元/棵,80元/棵;(2)设购买榕树a 棵,则购买⾹樟树为(150-a )棵,根据题意得,{60a +80(150?a)≤10840①150?a ≥1.5a ②,解不等式①得,a ≥58,解不等式②得,a ≤60,所以,不等式组的解集是58≤a ≤60,∵a 只能取正整数,∴a =58、59、60,因此有3种购买⽅案:⽅案⼀:购买榕树58棵,⾹樟树92棵,⽅案⼆:购买榕树59棵,⾹樟树91棵,⽅案三:购买榕树60棵,⾹樟树90棵.22.解不等式组12(x +1)≤2,x +22≥x +33,并求出不等式组的整数解之和.解:不等式12(x +1)≤2,得x≤3,解不等式x +22≥x +33,得x≥0,则不等式组的解集为0≤x≤3,所以不等式组的整数解之和为0+1+2+3=6.。
人教版七年级下第九章《不等式与不等式组》培优测试题含答案
第九章《不等式与不等式组》培优测试题一.选择题(共10小题)1.若a<b,则下列不等式中,成立的是()A.a2<ab B.<1C.ac2<bc2D.2a<a+b2.下面列出的不等式中,正确的是()A.“m不是正数”表示为m<0B.“m不大于3”表示为m<3C.“n与4的差是负数”表示为n﹣4<0D.“n不等于6”表示为n>63.满足关于x的一次不等式2 (1﹣x)+3≥0的非负整数解的个数有()A.2 个B.3 个C.4 个D.无数个4.不等式组的解集为()A.﹣1≤x<2B.﹣1<x<2C.x≤﹣1D.x<25.关于x的不等式(m+1)x>m+1的解集为x<1,那么m的取值范围是()A.m<﹣1B.m>﹣1C.m>0D.m<06.某商品的标价比成本价高m%,现根据市场需要,该商品需降价n%岀售.为了使获利不低于10%,n应满足()A.B.C.D.7.不等式组的解集在数轴上表示为()A.B.C.D.8.小红读一本400页的书,计划10天内读完,前5天因种种原因只读了100页,为了按计划读完,则从第六天起平均每天至少要读()A.50页B.60页C.80页D.100页9.运行程序如图所示,规定:从“输入一个值x”到“结果是否≥19”为一次程序如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥B.≤x<4C.<x≤4D.x≤410.若a使关于x的不等式组有两个整数解,且使关于x的方程2x+a=有负数解,则符合题意的整数a的个数有()A.1个B.2个C.3个D.4个二.填空题(共8小题)11.根据“x的2倍大于4,且x的三分之一与1的和不大于2”列出的不等式组是.12.不等式3(x﹣1)≥5(x﹣3)+6的正整数解是.13.小聪用100元钱去购买笔记本和钢笔共15件,已知每本笔记本5元,每支钢笔7元,小聪最多能买支钢笔.14.商家花费1900元购进某种水果100千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为元/千克.15.关于x的不等式3x﹣2m<x﹣m的正整数解为1、2、3,则m取值范围是.16.若不等式组解为﹣3<x<1,则(a+1)(b﹣1)值为.17.步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打折.18.某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x的取值范围是.三.解答题(共6小题)19.解不等式(组)(1)﹣≥1(2)20.若方程组的解满足x<1且y>1,求k的取值范围.21.小花家在装修客厅时,购进彩色地砖和原色地砖共120块,一共花费了8700元.已知原色地砖的价钱是60元/块,彩色地砖的价钱是110元/块.(1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺这两种型号的地砖共70块,且采购费用不超过4400元,那么彩色地砖最多能采购多少块?22.某企业前年按可回收垃圾处理费15元/吨、不可回收垃圾处理费25元/吨的收费标准,共支付两种垃圾处理费5000元,从去年元月起,收费标准上调为:可回收垃圾处理费30元/吨,不可回收垃圾处理费100元/吨.若该企业去年处理的这两种垃圾数量与前年相比没有变化,但调价后就要多支付处理费9000元.(1)该企业前年处理的可回收垃圾和不可回收垃圾各多少吨?(2)该企业计划今年将上述两种垃圾处理总量减少到200吨,且可回收垃圾不少于不可回收垃圾处理量的3倍,则今年该企业至少有多少吨可回收垃圾?23.一幢学生宿舍楼有一些空宿舍,现有一批学生要入住,若每间住5人,则有25人无法入住;若每间住10人,则有1间房不空也不满.求空宿舍的间数和这批学生的人数.24.阅读理解例,解不等式:>2解:把不等式>2进行整理,得﹣2>0,即>0,则有:①;②.解不等式组①得:x>1;解不等式②得:x<﹣4.所以原不等式的解集为:x<﹣4或x>1.请根据以上解不等式的思想方法解不等式<1.参考答案一.选择题(共10小题)1.解:A、当a=0时,该不等式不成立,故本选项错误;B、当b<0时,该不等式不成立,故本选项错误;C、当c=0时,该不等式不成立,故本选项错误;D、不等式a<b的两边同时加上a,不等式仍成立,故本选项正确.故选:D.2.解:A、∵m不是正数,∴m≤0,A选项错误;B、∵m不大于3,∴m≤3,B选项错误;C、∵n与4的差是负数,∴n﹣4<0,C选项正确;D、∵n不等于6,∴n<6或n>6,D选项错误.故选:C.3.解:2 (1﹣x)+3≥0,去括号,得2﹣2x+3≥0,移项合并,得:﹣2x≥﹣5,系数化为1,得:x≤2.5,所以不等式的非负整数解有:0、1、2,一共3个,故选:B.4.解:,由①得,x<2,由②得,x≥﹣1,所以不等式组的解集是﹣1≤x<2.故选:A.5.解:∵不等式(m+1)x>m+1的解集为x<1,∴m+1<0,即m<﹣1,故选:A.6.解:设成本为a元,由题意可得:a(1+m%)(1﹣n%)﹣(1+10%)a≥0,则(1+m%)(1﹣n%)﹣1.1≥0,去括号得:1﹣n%+m%﹣﹣1.1≥0,整理得:100n+mn+1000≤100m,故n≤.故选:B.7.解:∵解不等式①得:x≥﹣2,解不等式②得:x<1,∴不等式组的解集为﹣2≤x<1,在数轴上表示为:,故选:A.8.解:设从第六天起平均每天要读x页,由题意得:100+5x≥400,解得:x≥60,故选:B.9.解:根据题意得:,解得:≤x<4.故选:B.10.解:解不等式3(x+1)>x+a,得:x>,解不等式﹣x+3≥2,得:x≤,∵不等式组有两个整数解,∴1≤a<3,解方程2x+a=得:x=﹣2a﹣1,∵关于x的方程2x+a=有负数解,∴﹣2a﹣1<0,∴a>﹣,∴a=1,2,故选:B.二.填空题(共8小题)11.解:根据题意可列不等式组为,故答案为:.12.解:3(x﹣1)≥5(x﹣3)+63x﹣3≥5x﹣15+6,3x﹣5x≥﹣15+6+3,﹣2x≥﹣6,∴x≤3所以不等式3(x﹣1)≥5(x﹣3)+6的正整数解为:1,2,3.13.解:设小聪买了x支钢笔,由题意得:7x+5(15﹣x)≤100,解得:x≤12.5,∵x为整数,∴x的最大值为12,故答案为:12.14.解:设商家把售价应该定为每千克x元,根据题意得:x(1﹣5%)≥,解得,x≥20,故为避免亏本,商家把售价应该至少定为每千克20元.故答案为:20.15.【解答】解:解不等式得:x<,∵不等式的正整数解为1、2、3,∴3<≤4解得:6<m≤8,故答案为6<m≤8.16.解:,∵解不等式①得:x<,解不等式②得:x>3+2b,∴不等式组的解集为3+2b<x<,∵若不等式组解为﹣3<x<1,∴3+2b=﹣3,且=1,解得:a=1,b=﹣3,∴(a+1)(b﹣1)=(1+1)×(﹣3﹣1)=﹣8,故答案为:﹣8.17.解:设至多可打x折,则1200×﹣800≥800×5%,解得x≥7,即至多可打7折.故答案为:7.18.解:由题意知,令3x﹣1=x,x=,此时无输出值当x>时,数值越来越大,会有输出值;当x<时,数值越来越小,不可能大于10,永远不会有输出值故x≤,故答案为x≤.三.解答题(共6小题)19.解:(1)去分母得:2x﹣3x+12≥6,移项合并得:﹣x≥﹣6,解得:x≤6;(2),由①得:x≤1,由②得:x<4,∴不等式组的解集为x≤1.20.解:解方程组,可得,又∵x<1且y>1,∴,解得.21.解:(1)设彩色地砖采购了x块,原色地砖采购了y块,根据题意得:,解得:.答:彩色地砖采购了30块,原色地砖采购了90块.(2)设彩色地砖采购了m块,则原色地砖采购了(70﹣m)块,根据题意得:110m+60(70﹣m)≤4400,解得:m≤4.答:彩色地砖最多能采购4块.22.解:(1)设该企业前年处理x吨可回收垃圾,y吨不可回收垃圾,根据题意得:,解得:.答:该企业前年处理200吨可回收垃圾,80吨不可回收垃圾.(2)设今年该企业有m吨可回收垃圾,则今年该企业有(200﹣m)吨不可回收垃圾,根据题意得:m≥3(200﹣m),解得:m≥150.答:今年该企业至少有150吨可回收垃圾.23.解:设空宿舍有x间,根据题意得:,解得:5<x<7,∵x是整数,∴x=6,5×6+25=55(人),答:空宿舍的间数为6间,这批学生的人数为55人.24.解:把不等式<1进行整理,得:﹣1<0,即<0,则有:①;②.解不等式组①得:x<﹣;解不等式②得:x>﹣.所以原不等式的解集为x<﹣或x>﹣.。
人教版七年级数学下册第九章《不等式与不等式组》单元培优测试题及解析
七年级数学下册第九章《不等式与不等式组》单元培优测试题一.选择题(共10小题)1.在数轴上与原点的距离小于8的点对应的x满足()A.﹣8<x<8 B.x<﹣8或x>8 C.x<8 D.x>82.若m>n,则下列不等式正确的是()A.m﹣2<n﹣2 B.C.6m<6n D.﹣8m>﹣8n3.不等式组的解集是x>2,则m的取值范围是()A.m≤2 B.m≥2 C.m≤1 D.m>14.下列四个不等式组中,其中一个不等式组的解集在数轴上的正确表示如图所示,这个不等式组是()A.B.C.D.5.下列不等式中是一元一次不等式的是()A.y+3≥x B.3﹣4<0 C.2x2﹣4≥1 D.2﹣x≤46.下列不等式组:①,②,③,④,⑤.其中一元一次不等组的个数是()A.2个B.3个C.4个D.5个7.某次知识竞赛共20道题,每一题答对得10分,答错或不答都扣5分,小英得分不低于90分.设她答对了x道题,则根据题意可列出不等式为()A.10x﹣5(20﹣x)≥90 B.10x﹣5(20﹣x)>90C.10x﹣(20﹣x)≥90 D.10x﹣(20﹣x)>908.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤79.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块10.如果不等式组的整数解仅为1,2,3,那么适合这个不等式组的整数a,b的有序数对(a,b)的个数是()A.5 B.6 C.12 D.4二.填空题(共8小题)11.甲种水果保鲜适宜的温度是2℃~10℃,乙种水果保鲜适宜的温度是5℃~12℃,将这两种水果放在一起保鲜,最适宜的温度是.12.已知a>5,不等式(5﹣a)x>a﹣5解集为.13.已知不等式组的解集是x≤1,则m的取值范围是.14.已知如图是关于x的不等式2x﹣a>﹣3的解集,则a的值为.15.写出含有解为x=1的一元一次不等式(写出一个即可).16.不等式2﹣x>0的解集是.17.不等式组的解集是.18.在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出环的成绩.三.解答题(共7小题)19.利用数轴确定不等式组的解集.20.用不等式表示下列数量的不等关系(1)x的与6的差大于2;(2)y的与4的和小于x(3)a的3倍与b的的差是非负数(4)x与5的和的30%不大于﹣2.21.求不等式的负整数解22.若x<y,比较2﹣3x与2﹣3y的大小,并说明理由.23.已知a+1>0,2a﹣2<0.(1)求a的取值范围;(2)若a﹣b=3,求a+b的取值范围.24.解不等式组,并将它的解集在数轴上表示出来.25.在等式y=kx+b(k,b为常数)中,当x=2时,y=﹣5;当x=﹣1时,y=4.(1)求k、b的值;(2)若不等式5﹣2x>m+4x的最大整数解是k,求m的取值范围.一.选择题(共10小题)1.在数轴上与原点的距离小于8的点对应的x满足()A.﹣8<x<8 B.x<﹣8或x>8 C.x<8 D.x>8【分析】根据到原点的距离小于8,即绝对值小于8.显然是介于﹣8和8之间.【解答】解:依题意得:|x|<8∴﹣8<x<8故选:A.【点评】本题考查的是数轴的对称性,在数轴上以原点为中心,两边关于原点对称.2.若m>n,则下列不等式正确的是()A.m﹣2<n﹣2 B.C.6m<6n D.﹣8m>﹣8n【分析】将原不等式两边分别都减2、都除以4、都乘以6、都乘以﹣8,根据不等式得基本性质逐一判断即可得.【解答】解:A、将m>n两边都减2得:m﹣2>n﹣2,此选项错误;B、将m>n两边都除以4得:>,此选项正确;C、将m>n两边都乘以6得:6m>6n,此选项错误;D、将m>n两边都乘以﹣8,得:﹣8m<﹣8n,此选项错误;故选:B.【点评】本题主要考查不等式的性质,解题的关键是掌握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.3.不等式组的解集是x>2,则m的取值范围是()A.m≤2 B.m≥2 C.m≤1 D.m>1【分析】根据解不等式,可得每个不等式的解集,再根据每个不等式的解集,可得不等式组的解集,根据不等式的解集,可得答案.【解答】解:∵不等式组的解集是x>2,解不等式①得x>2,解不等式②得x>m+1,不等式组的解集是x>2,∴不等式,①解集是不等式组的解集,∴m+1≤2,m≤1,故选:C.【点评】本题考查了不等式组的解集,不等式组中的两个不等式的解集都是大于,不等式组的解集大于大的,不等式②的解集是不等式组的解集.4.下列四个不等式组中,其中一个不等式组的解集在数轴上的正确表示如图所示,这个不等式组是()A.B.C.D.【分析】根据不等式组的表示方法,可得答案.【解答】解:由,得,故选:D.【点评】本题考查了在数轴上表示不等式的解集,利用不等式组的解集的表示方法:大小小大中间找是解题关键.5.下列不等式中是一元一次不等式的是()A.y+3≥x B.3﹣4<0 C.2x2﹣4≥1 D.2﹣x≤4【分析】利用一元一次不等式的定义判断即可.【解答】解:下列不等式中是一元一次不等式的是2﹣x≤4,故选:D.【点评】此题考查了一元一次不等式的定义,熟练掌握一元一次不等式的定义是解本题的关键.6.下列不等式组:①,②,③,④,⑤.其中一元一次不等组的个数是()A.2个B.3个C.4个D.5个【分析】根据一元一次不等式组的定义,含有两个或两个以上的不等式,不等式中的未知数相同,并且未知数的最高次数是一次,对各选项判断后再计算个数即可.【解答】解:根据一元一次不等式组的定义,①②④都只含有一个未知数,并且未知数的最高次数是1,所以都是一元一次不等式组;③含有一个未知数,但未知数的最高次数是2,⑤含有两个未知数,所以②⑤都不是一元一次不等式组.故有①②④三个一元一次不等式组.故选:B.【点评】本题主要考查一元一次不等式组的定义,熟练掌握定义并灵活运用是解题的关键.7.某次知识竞赛共20道题,每一题答对得10分,答错或不答都扣5分,小英得分不低于90分.设她答对了x道题,则根据题意可列出不等式为()A.10x﹣5(20﹣x)≥90 B.10x﹣5(20﹣x)>90C.10x﹣(20﹣x)≥90 D.10x﹣(20﹣x)>90【分析】小英答对题的得分:10x;小英答错或不答题的得分:﹣5(20﹣x).不等关系:小英得分不低于90分.【解答】解:设她答对了x道题,根据题意,得10x﹣5(20﹣x)≥90.故选:A.【点评】此题主要考查了由实际问题抽象出一元一次不等式,抓住关键词语,找到不等关系是解题的关键.8.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤7【分析】先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.【解答】解:解不等式3x﹣m+1>0,得:x>,∵不等式有最小整数解2,∴1≤<2,解得:4≤m<7,故选:A.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.9.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块【分析】根据题意设出未知数,列出相应的不等式,从而可以解答本题.【解答】解:设这批手表有x块,550×60+(x﹣60)×500>55000解得,x>104∴这批电话手表至少有105块,故选:C.【点评】本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.10.如果不等式组的整数解仅为1,2,3,那么适合这个不等式组的整数a,b的有序数对(a,b)的个数是()A.5 B.6 C.12 D.4【分析】首先解不等式组,则不等式组的解集即可利用a,b表示,根据不等式组的整数解仅为1,2,3,即可确定a,b的范围,即可确定a,b的整数解,即可求解.【解答】解:解不等式组得,∵不等式组的整数解仅为1,2,3,∴,解得:0<a≤3、6<b≤8,则整数a的值有1、2、3,整数b的值有7、8,所以有序数对(a,b)有(1,7)、(1,8)、(2,7)、(2,8)、(3,7)、(3,8)这6组,故选:B.【点评】本题主要考查了一元一次不等式组的整数解,注意各个不等式的解集的公式部分就是这个不等式组的解集.但本题是要求整数解的,所以要找出在这范围内的整数.二.填空题(共8小题)11.甲种水果保鲜适宜的温度是2℃~10℃,乙种水果保鲜适宜的温度是5℃~12℃,将这两种水果放在一起保鲜,最适宜的温度是5℃≤x≤10℃.【分析】根据“2℃~10℃”,“5℃~12℃”组成不等式组,解不等式组即可求解.【解答】解:设温度为x℃,根据题意可知,解得5≤x≤10.故答案为:5℃≤x≤10℃【点评】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.12.已知a>5,不等式(5﹣a)x>a﹣5解集为x<﹣1.【分析】先由a>5,得出5﹣a<0,由不等式的基本性质得出答案.【解答】解:∵a>5,∴5﹣a<0,∴解不等式(5﹣a)x>a﹣5,得x<﹣1.故答案为:x<﹣1.【点评】本题主要考查了不等式的性质,解题的关键是注意不等号的方向是否改变.13.已知不等式组的解集是x≤1,则m的取值范围是m≥1.【分析】根据“同小取小”求解可得.【解答】解:∵不等式组的解集是x≤1,∴m≥1,故答案为:m≥1.【点评】本题主要考查了不等式组的解集,解题的关键是掌握确定不等式组解集的口诀.14.已知如图是关于x的不等式2x﹣a>﹣3的解集,则a的值为1.【分析】解出不等式2x﹣a>﹣3的解集是x>,由数轴上的解集得出x>﹣1,从而得到一个一元一次方程=﹣1,解得a的值即可.【解答】解:解不等式2x﹣a>﹣3,解得x>,由数轴上的解集,可得x>﹣1,∴=﹣1,解得a=1.【点评】当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.本题需注意,在不等式两边都除以一个负数时,应只改变不等号的方向,余下运算不受影响,该怎么算还怎么算.15.写出含有解为x=1的一元一次不等式x>0(答案不唯一)(写出一个即可).【分析】根据一元一次不等式的定义写出的一元一次不等式的解集含有x=1即可.【解答】解:例如:x>0(答案不唯一).故答案为:x>0(答案不唯一).【点评】本题考查的是一元一次不等式的定义,即有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.16.不等式2﹣x>0的解集是x<2..【分析】求此不等式的解集即可.【解答】解:2﹣x>0﹣x>﹣2x<2,故答案为:x<2.【点评】考查了解一元一次不等式.关键是根据一元一次不等式的解法解答.17.不等式组的解集是1≤x<3.【分析】分别求出每个不等式的解集,再求出公共部分即可.【解答】解:解不等式x﹣1≥0得:x≥1,解不等式2x﹣5<1,得:x<3,则不等式组的解集为1≤x<3,故答案为:1≤x<3.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出8环的成绩.【分析】设第8次射击打出x环的成绩,根据总成绩=前7次射击成绩+后3次射击成绩(9、10两次按最高成绩计算)结合总成绩大于89环,即可得出关于x的一元一次不等式,解之取其内的最小值即可得出结论.【解答】解:设第8次射击打出x环的成绩,根据题意得:62+x+10+10>89,解得:x>7,∵x为正整数,∴x≥8.故答案为:8.【点评】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.三.解答题(共7小题)19.利用数轴确定不等式组的解集.【分析】先分别求出各不等式的解集,在数轴上表示出来,即可得出不等式组的解集.【解答】解:由①得x≥﹣2由②得x<1在数轴上表示不等式①、②的解集所以,不等式组的解集是﹣2≤x<1【点评】本题考查了解一元一次不等式组:先分别解几个不等式,然后把它们的解集的公共部分作为原不等式的解集;按照“同大取大,同小取小,大于小的小于大的取中间,大于小的小于大的为空集”.也考查了利用数轴表示不等式的解集.20.用不等式表示下列数量的不等关系(1)x的与6的差大于2;(2)y的与4的和小于x(3)a的3倍与b的的差是非负数(4)x与5的和的30%不大于﹣2.【分析】(1)首先表示x的与6的差为x﹣6,再表示大于可得x﹣6>2;(2)首先表示y的与4的和为y+4,再表示小于可得y+4<x;(3)首先表示a的3倍与b的的差为3a﹣b,再表示“是非负数”即可;(4)首先表示x与5的和的30%为30%(x+5),再表示“不大于”即可.【解答】解:(1)x﹣6>2;(2)y+4<x;(3)3a﹣b≥0;(4)30%(x+5)≤﹣2.【点评】此题主要考查了由实际问题抽象出一元一次不等式,关键是要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.21.求不等式的负整数解【分析】等式两边乘以6去分母后,移项合并,将x系数化为1求出解集,找出解集中的非负整数解即可.【解答】解:2x≤6+3(x﹣1),2x≤6+3x﹣3,2x﹣3x≤6﹣3,﹣x≤3,x≥﹣3,∴不等式的负整数解为﹣3、﹣2、﹣1.【点评】此题考查了一元一次不等式的整数解,求出不等式的解集是解本题的关键.22.若x<y,比较2﹣3x与2﹣3y的大小,并说明理由.【分析】根据不等式的性质,由x<y,可得:﹣x>﹣y,据此判断出2﹣3x与2﹣3y的大小即可.【解答】解:∵x<y,∴﹣x>﹣y,∴﹣3x>﹣3y,∴2﹣3x>2﹣3y.【点评】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.23.已知a+1>0,2a﹣2<0.(1)求a的取值范围;(2)若a﹣b=3,求a+b的取值范围.【分析】(1)解两个不等式组成的方程组即可求得a的范围;(2)根据a﹣b=3可得b=a﹣3,则a+b=2a﹣3,然后根据a的范围即可求解.【解答】解:(1)根据题意得,解①得a>﹣1,解②得a<1,则a的范围是﹣1<a<1;(2)∵a﹣b=3,∴b=a﹣3,∴a+b=2a﹣3,∴﹣5<2a﹣3<﹣1,即﹣5<a+b<﹣1.【点评】本题考查了不等式组的解法以及不等式的性质,把a+b利用a表示是关键.24.解不等式组,并将它的解集在数轴上表示出来.【分析】求出不等式组中两不等式的解集,找出公共部分确定出不等式组的解集,表示在数轴上即可.【解答】解:,由①得:x>2,由②得:x≤9,∴不等式组的解集为2<x≤9,不等式组的解集在数轴上表示,如图所示:【点评】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.25.在等式y=kx+b(k,b为常数)中,当x=2时,y=﹣5;当x=﹣1时,y=4.(1)求k、b的值;(2)若不等式5﹣2x>m+4x的最大整数解是k,求m的取值范围.【分析】(1)根据二元一次方程组的求解方法,求出k、b的值各是多少即可.(2)首先根据一元一次不等式的解法,可得x<,然后根据不等5﹣2x>m+4x的最大整数解是k,可得关于m的不等式组,据此求出m的取值范围即可.【解答】解:(1)根据题意可得:,解得:;(2)解不等式5﹣2x>m+4x,得:x<,因为该不等式的最大整数解是k,即﹣3,所以﹣3<≤﹣2,解得:7≤m<13.【点评】本题主要考查解二元一次方程组和一元一次不等式组,解题的关键是掌握解二元一次方程组的能力,并根据不等式组的整数解情况列出关于m的不等式组.。
第九章 不等式与不等式组(过关测试)【培优卷】-2022-2023学年七年级数学下册同步精品课堂
第九章 不等式与不等式组(培优卷)考试时间:120分钟 满分:120分一、单选题(每小题3分,共18分)1. 若m n >,则下列不等式一定成立的是( )A. 23m n >B. 22m n +>+C. 33m n ->-D. 22m n <2. 若a b >,则下列不等式成立的是( )A. 22a b ->-B. 55a b <C. 33a b -<-D. 88a b +<+3. 如果a ,b 为有理数,且a ,b 两数的和大于a 与b 的差,则()A. a ,b 同号B. a ,b 异号C. a ,b 为正数D. b 为正数4. 已知a b <,则下列四个不等式中,不正确的是( ).A. 22a b +<+B. 22a b -+<-+C. 0.50.5a b <D. 2121a b -<-5. 甲、乙两人从相距24km 的A 、B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度( )A. 小于8km/hB. 大于8km/hC. 小于4km/hD. 大于4km/h (2019春·内蒙古·七年级校考阶段练习)6. 已知关于x 、y 的方程组,给出下列说法:①当a =1时,方程组的解也是方程x +y =2的一个解;②当x -2y >8时,15a >;③不论a 取什么实数,2x +y 的值始终不变;④若25y x =+,则4a =-. 以上说法正确的是( )A. ②③④B. ①②④C. ③④D. ②③二、填空题(每小题3分,共18分)7. 小张购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,费用不超过100元钱,设小张买了x 支钢笔,则根据题意可列不等式为______.8. 滨海市出租汽车起步价为10元(即行驶距离在5千米以内的都需付10元车费).达到或超过5千米后,每增加1千米加价1.2元(不足1千米部分按1千米计),小华乘这种出租车从家到单位,支付车费多于15元,设小华从家到单位距离为x 千米(x 为整数),列关系式为 ____.9. 试写出一个由两个一元一次不等式组成的一元一次不等式组,使它的解集是-1<x≤2,这个不等式组是_______.10. 已知关于x 的不等式组+1>52+<0x x m -⎧⎨⎩的所有整数解的和为9-,m 的取值范围是_________ .11. 不等式组102x x -≤⎧⎨-⎩<的整数解的个数是___________.(2022春·重庆渝中·七年级重庆巴蜀中学校考期末)12. “鲁巴好少年,一起向未来”,重庆市鲁能巴蜀中学校春季运动会在4月27日如期举行.各班同学积极参与,热情高涨;运动员挥洒汗水,激昂赛场;场下观众文明观赛,有序加油.后勤团队也不甘示弱,积极为同学们做好各种后勤保障,其中,采购小组的同学们就为全班同学准备了百事可乐,红牛和脉动三种饮料.已知百事可乐、红牛和脉动的单价之和为14元,计划购买百事可乐,红牛和脉动的数量总共不超过160瓶,其中脉动的单价为每瓶5元,计划购买20瓶,百事可乐的数量不多于红牛数量的一半,但至少购买40瓶,结果,在做预算时,将百事可乐和红牛的单价弄反了,结果在实际购买时,总费用比预算多了150元.若百事可乐、红牛和脉动的单价均为整数,则实际购买百事可乐、红牛和脉动的总费用最多需要花费 _____.三、解答题(每小题6分,共30分)13. 解不等式:(1)5313x x -<+;(2)112123x x ++≤+.(2022春·安徽宣城·七年级校考期中)14. 解不等式组:221113x x x -<+⎧⎪-⎨⎪⎩ ,并在数轴上表示解集.15. 某停车场收费标准分为中型汽车和小型汽车两种,某两天这个停车场的收费情况如下表:中型汽车数量小型汽车数量收取费用第一天15辆35辆360元第二天18辆20辆300元(1)中型汽车和小型汽车的停车费每辆多少元?(2)某天停车场共停车70辆,若收取的停车费用高于500元,则中型汽车至少有多少辆?(2022春·河南周口·七年级统考期中)16. 已知方程组713x y a x y a+=--⎧⎨-=+⎩的解x 为非正数,y 为负数.(1)求a 的取值范围:(2)化简|3||3|a a -++;(3)在a 的取值范围内,当a 取何整数时,不等式221ax x a +>+的解为1x <?(2021春·河南南阳·七年级统考期中)17. A 、B 两超市平日都是以同样的价格出售同样的商品,如笔记本每本18元,练习本每本3元.(1)若小丽一日在A 超市购买了笔记本和练习本共7本,总共花费了51元,则小丽笔记本和练习本各买了多少本?(2)某节假日,A 、B 两超市推出不同的优惠方案:在A 超市累计购物超过50元的部分打九折;在B 超市累计购物超过80元的部分打八点五折.①若小丽购物金额超过80元,则她去哪家超市购物更合算?②若小丽打算到A 超市购买一些笔记本送给同学,请问她至少购买多少本时,平均每本笔记本价格不超过17元?四、解答题(每小题8分,共24分)(2023·河北邯郸·校考一模)18. 小明到某水果店购买苹果和梨,他发现一人购买1千克苹果和2千克梨共花费了28元,另一人购买2千克苹果和1千克梨共花费了32元.(1)妈妈给小明带了20元钱,想购买1千克苹果和1千克梨;小明带的钱够用吗?说明理由;(2)到家后妈妈给小明出了一道题:如果给你带250元钱.①当购买苹果和梨的重量相等时,最多能够买多少千克苹果?(千克只取整数)②当购买苹果的重量是梨的重量的2倍时,最多能够买多少千克苹果?(千克只取整数)(2022·河北石家庄·统考二模)19. 某社区原来每天需要处理生活垃圾920吨,刚好被12个A型转运站和10个B 型转运站处理.已知一个A型转运站比一个B型转运站每天多处理7吨生活垃圾.(1)每个A型或B型转运站每天处理生活垃圾各多少吨?(2)由于垃圾分类要求的提高,每个转运站每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该社区每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A型、B型转运站共5个,试问至少需要增设几个A型转运站才能当日处理完所有生活垃圾?(2020·湖南郴州·统考中考真题)20. 为支援抗疫前线,某省红十字会采购甲、乙两种抗疫物资共540吨,甲物资单价为3万元/吨,乙物资单价为2万元吨,采购两种物资共花费1380万元.(1)求甲、乙两种物资各采购了多少吨?(2)现在计划安排,A B两种不同规格的卡车共50辆来运输这批物资.甲物资7吨和乙物资3吨可装满一辆A型卡车;甲物资5吨和乙物资7吨可装满一辆B型卡车.按此要求安排,A B两型卡车的数量,请问有哪几种运输方案?五、解答题(每小题9分,共18分)(2022春·安徽芜湖·七年级芜湖市第二十九中学校考期末)21. 阅读材料:如果x是一个有理数,我们把不超过x的最大整数记作[]x.例如,==-=-.那么,[][3.2]3,[5]5,[ 2.1]3=+,其中01x x a≤<.例如,a=+=+-=-+.请你解决下列问题:3.2[3.2]0.2,5[5]0, 2.1[ 2.1]0.9-=__________,[0]=__________;(1)[4.8]=__________,[ 6.5]x=,那么x的取值范围是__________;(2)如果[]3(3)如果[52]31x x -=+,求x 的值.(2023·安徽滁州·校考一模)22. 某体育用品商店开展促销活动,有两种优惠方案.方案一:不购买会员卡时,乒乓球享受8.5折优惠,乒乓球拍购买5副(含5副)以上才能享受8.5折优惠,5副以下必须按标价购买.方案二:办理会员卡时,全部商品享受八折优惠,小健和小康的谈话内容如下:小健:听说这家商店办一张会员卡是20元.小康:是的,上次我办了一张会员卡后,买了4副乒乓球拍,结果费用节省了12元.(会员卡限本人使用)(1)求该商店销售的乒乓球拍每副的标价.(2)如果乒乓球每盒10元,小健需购买乒乓球拍6副,乒乓球a 盒,小健如何选择方案更划算?六、解答题(本大题共12分)23. 阅读下列材料:数学问题:已知2x y -=,且1x >,0y <,试确定x y +的取值范围.问题解法:2x y -= ,2x y ∴=+.又1x > ,21y ∴+>,1y ∴>-.又0y < ,10y ∴-<<.①同理得12x <<.②由②+①得1102y x -+<+<+,x y ∴+的取值范围是02x y <+<.完成任务:(1)在数学问题中的条件下,写出23x y +的取值范围是_____.(2)已知3x y +=,且2x >,0y >,试确定x y -的取值范围;(3)已知1y >,1x <-,若x y a -=成立,试确定x y +的取值范围(结果用含a 的式子表示).第九章 不等式与不等式组(培优卷)考试时间:120分钟 满分:120分一、单选题(每小题3分,共18分)【1题答案】【答案】B【解析】【分析】根据不等式的性质解答.【详解】解:A 、若m >n ,则22m n >或33m n >,故选项不符合题意;B 、若m >n ,22m n +>+,故选项符合题意;C 、若m >n ,33m n -<-,故选项不符合题意;D 、若m >n ,22m n >,故选项不符合题意;故选:B .【点睛】本题主要考查了不等式的性质,不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项的项要变号;②两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变.【2题答案】【答案】C【解析】【分析】根据不等式的性质进行分析判断.【详解】解:A 、a b > ,22a b ∴-<-,原变形错误,故本选项不符合题意;B 、a b > ,∴55a b >,原变形错误,故本选项不符合题意;C 、a b > ,33a b ∴-<-,原变形正确,故本选项符合题意;D 、a b > ,88a b ∴+>+,原变形错误,故本选项不符合题意;故选:C .【点睛】本题考查了不等式的性质,解题的关键是能熟记不等式的性质的内容,要注意:不等式的性质:不等式两边同时乘(或除以)同一个负数时,不等号方向的改变.【3题答案】【答案】D【解析】【分析】因为a ,b 两数的和大于a 与b 的差,即a+b >a-b ,解此不等式,即可得出b >0.【详解】∵a ,b 两数的和大于a 与b 的差,∴a+b >a-b ,即b >0.故选D .【点睛】此题要先根据题意列出不等式再求解.【4题答案】【答案】B【解析】【详解】不等式的基本性质:a b <,a b ->-,22a b -+>-+.故选B.【5题答案】【答案】B【解析】【详解】设甲的速度为x 千米/小时,则乙的速度为2x 千米/小时,由题意可得,2(x+2x )>24,解得x>8,所以要保证在2小时以内相遇,则甲的速度要大于8km/h ,故选B.(2019春·内蒙古·七年级校考阶段练习)【6题答案】【答案】A【解析】【详解】试题分析:当a=1时,方程x+y=1-a=0,因此方程组的解不是x+y =2的解,故①不正确;通过加减消元法可解方程组为x=3+a ,y=-2a-2,代入x-2y >8可解得a>15,故②正确;2x+y=6+2a+(-2a-2)=4,故③正确;代入x、y的值可得-2a-2=(3+a)2+5,化简整理可得a=-4,故④正确.故选:A二、填空题(每小题3分,共18分)【7题答案】【答案】2(30-x)+5x≤100【解析】【分析】设小张买了x支钢笔,则买了(30-x)本笔记本,根据费用不超过100元钱即可列出不等式.【详解】解:设小张买了x支钢笔,则买了(30-x)本笔记本,根据题意得:2(30-x)+5x≤100,故答案为:2(30-x)+5x≤100.【点睛】题目主要考查不等式的应用,理解题意是解题关键.【8题答案】【答案】10+1.2(x-5)>15【解析】【分析】设小华从家到单位距离为x千米,根据题意可知车费为10+1.2(x-5),即可列不等式.【详解】车费分两部分计算,即起步价与超过5千米的费用的和.不等关系:从家到单位,支付车费多于15元.根据题意,得10+1.2(x-5)>15.故答案为:10+1.2(x-5)>15【点睛】此题主要考查不等式的应用,正确得出不等关系是解题关键.【9题答案】【答案】2010xx>-≤⎧⎨+⎩(答案不唯一)【解析】【详解】分析:本题为开放性题,根据“大小小大中间找”可知只要写2个一元一次不等式x≤a,x>b,其中a>b即可.详解:根据解集﹣1<x ≤2,构造的不等式为2010x x >-≤⎧⎨+⎩. 故答案为2010x x -≤⎧⎨+⎩>(答案不唯一).点睛:本题考查了一元一次不等式解集与不等式组之间的关系.本题为开放性题,按照口诀列不等式组即可.解不等式组的简便求法就是用口诀求解,构造已知解集的不等式是它的逆向运用.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).【10题答案】【答案】68m ≤<或86m -≤<-【解析】【分析】先求出不等式组的解集,然后根据不等式组的整数解的情况得到不等式组的整数解可以为5-、4-或5-、4-、3-、2-、1-、0、1、2、3,据此求解即可解答.【详解】+1>52+<0x x m -⎧⎨⎩①②,解不等式①得:>6x -,解不等式②得:<2m x -,∴不等式组的解集为:6<<2m x --, 不等式组的所有整数解的和为9-,∴不等式组的整数解可以为5-、4-或5-、4-、3-、2-、1-、0、1、2、3,∴4<32m --- 或3<42m - ,6<8m ∴ 或8<6m -- ,故答案为:6<8m ≤或8<6m -≤-.【点睛】本题主要考查了根据不等式组的整数解的情况,由不等式组的解确定出整数m 的值是解题的关键.【11题答案】【答案】3个【解析】【分析】先求出不等式的解集,再求出不等式的解集,即可得出答案.【详解】102x x -≤⎧⎨-⎩①<② ∵解不等式①得:x≤1,解不等式②得:x >-2,∴不等式组的解集为-2<x≤1,∴不等式组的整数解为-1,0,1,共3个,故答案为3.【点睛】此题考查解一元一次不等式组,不等式组的整数解,能求出不等式组的解集是解此题的关键.(2022春·重庆渝中·七年级重庆巴蜀中学校考期末)【12题答案】【答案】805元【解析】【分析】设购买x 瓶百事可乐,y 瓶红牛,百事可乐的单价为m 元,则红牛的单价为()9m -元,根据在做预算时,将百事可乐和红牛的单价弄反了,结果在实际购买时,总费用比预算多了150 元,可得()()99150xm y m x m ym +---+=⎡⎤⎣⎦,整理得:15092y x m-=-,再根据百事可乐的数量不多于红牛数量的一半,但至少购买40瓶,可得12x y ≤,40x ≥,140x y +≤,根据x ,y ,m 均为正整数,12x y ≤,可得 4.5m <,可得m =2或m =3或m =4,依此进行讨论即可求解.【详解】解:设购买x 瓶百事可乐,y 瓶红牛,百事可乐的单价为m 元,则红牛的单价为14﹣5﹣m =(9﹣m )元,依题意得:xm +y (9﹣m )﹣[x (9﹣m )+ym ]=150,整理得:15092y x m -=-,∵12x y ≤,x ≥40,∴x +y +20≤160,∴x +y ≤140,又∵x ,y ,m 均为正整数,x ≤12y ,∴y ﹣x 是正整数,∵m <4.5,∴9﹣2m =7(舍去)或9﹣2m =5或9﹣2m =3或9﹣2m =1,∴m =2或m =3或m =4,当m =2时,9﹣m =7,y ﹣x =30,∴4030140x x x ≥⎧⎨++≤⎩,解得:40≤x ≤55,此时实际购买这三种物品的总费用为:5×20+2x +7y =100+2x +7(x +30)=9x +310,∴当x 取最大值55时,总费用最大为9×55+310=805(元)(不合题意舍去);当m =3时,9﹣m =6,y ﹣x =50,4050140x x x ≥⎧⎨++≤⎩,解得40≤y ≤45,∴此时实际购买这三种物品的总费用为:5×20+3x +6(x +50)=9x +400,∴当x 取最大值45时,总费用最大为9×55+40=805(元);当m =4时,9﹣m =5,y ﹣x =150,∴40150140x x x ≥⎧⎨++≤⎩,此时不等式组无解.综上所述,实际购买百事可乐、红牛和脉动的总费用最多需要花费805元.故答案为:895元.【点睛】本题考查了应用类问题,不定方程的应用,解题的关键是正确读懂题意列出方程和代数式.三、解答题(每小题6分,共30分)【13题答案】【答案】(1)2x <(2)5x ≥-【解析】【分析】(1)不等式移项,合并同类项,把x 系数化为1,即可求出解集;(2)不等式去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解集.【小问1详解】解:移项得:5313x x -<+,合并同类项得:24x <,解得:2x <;【小问2详解】去分母得:3(1)2(12)6x x +≤++,去括号得:33246x x +≤++,移项得:34263x x -≤+-,合并同类项得:5x -≤,解得:5x ≥-.【点睛】此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.(2022春·安徽宣城·七年级校考期中)【14题答案】【答案】x<3,图见解析【解析】【分析】先求得每个不等式的解集,后确定不等式组的解集.【详解】解:221113x x x -<+⎧⎪⎨-⎪⎩①② 由①得3x <,由②得4x ,则不等式的解集是3x <,原不等式组的解集在数轴上表示如图【点睛】本题考查了一元一次不等式组的解法,熟练掌握不等式的解题步骤是解题的关键.【15题答案】【答案】(1)中型汽车的停车费每辆10元,小型汽车的停车费每辆6元; (2)中型汽车至少有21辆【解析】【分析】(1)设中型汽车的停车费每辆x 元,小型汽车的停车费每辆y 元,根据第一天和第二天的收费各列一个方程,组成二元一次方程组求解即可;(2)设中型汽车有a 辆,小型汽车有()70a -辆,根据收取的停车费用高于500元,列不等式求解即可.【小问1详解】解:设中型汽车的停车费每辆x 元,小型汽车的停车费每辆y 元.根据题意,得15353601820300x y x y +=⎧⎨+=⎩,解这个方程组得106x y =⎧⎨=⎩,答:中型汽车的停车费每辆10元,小型汽车的停车费每辆元;【小问2详解】解:设中型汽车有a 辆,小型汽车有()70a -辆,根据题意,得()10670500a a +->,解这个不等式,得:20a > ,答:中型汽车至少有21辆.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,仔细审题,找出其中的等量关系和不等量关系式是解答本题的关键.(2022春·河南周口·七年级统考期中)【16题答案】【答案】(1)23a -<≤;(2)6;(3)-1【解析】【分析】(1)先把a 当作已知求出x 、y 的值,再根据x 、y 的取值范围得到关于a 的一元一次不等式组,求出a 的取值范围即可;(2)根据a 的取值范围去掉绝对值符号,把代数式化简即可;(3)根据不等式2ax +x >2a +1的解为x <1得出2a +1<0且23a -<≤,解此不等式得到关于a 取值范围,找出符合条件的a 的值.【详解】解:(1)解方程组713x y a x y a +=--⎧⎨-=+⎩,解得:342x a y a =-+⎧⎨=--⎩,∵x 为非正数,y 为负数,30420a a -+≤⎧∴⎨--<⎩,解不等式组,得:23a -<≤;(2)∵23a -<≤,∴30a -<,30a +>|3||3|336a a a a ∴-++=-++=;(3)不等式221ax x a +>+可化为:(21)21a x a +>+,∵不等式221ax x a +>+的解为1x <,可知210a +<,12a ∴<-,又23a -<≤,122a ∴-<<-,∵a 为整数,∴1a =-.【点睛】本题考查的是解二元一次方程组及解一元一次不等式组、代数式的化简求值,先把a 当作已知求出x 、y 的值,再根据已知条件得到关于a 的不等式组求出a 的取值范围是解答此题的关键.(2021春·河南南阳·七年级统考期中)【17题答案】【答案】(1)小丽笔记本买了2本,练习本买了5本;(2)①当购物金额超过80元且不足140元时,小丽去A 超市购物更划算;当购物金额为140元时,小丽去两家超市购物一样;当金额超过140元时,小丽去B 超市购物更合算;②小丽至少购买7本时,平均每本笔记本价格不超过17元.【解析】【分析】(1)设小丽笔记本买了x 本,练习本买了y 本,根据题意可得718351x y x y +=⎧⎨+=⎩,进而求解即可;(2)①设小丽的购物原价为m (m >80)元,则在A 超市购买需付金额为(0.9m +5)元,在B 超市购买需付金额为(0.85m +12)元,进而分三种情况进行求解即可;②设小丽购买了n 本笔记本,则总金额为(0.9×18n +5)元,根据平均每本笔记本价格不超过17元即可得出关于n 的一元一次不等式,求解即可.【详解】解:(1)设小丽笔记本买了x 本,练习本买了y 本,根据题意可得:718351x y x y +=⎧⎨+=⎩,解得:25x y =⎧⎨=⎩,答:小丽笔记本买了2本,练习本买了5本.(2)设小丽的购物原价为m (m >80)元,由题意得:在A 超市购买需付金额为()500.9500.95m m +-=+(元),在B 超市购买需付金额为()800.85800.8512m m +-=+(元),当0.950.8512m m +<+时,则有80140m <<,当0.950.8512m m +=+时,则有140m =,当0.950.8512m m +>+时,则有140m >,∴当购物金额超过80元且不足140元时,小丽去A 超市购物更划算;当购物金额为140元时,小丽去两家超市购物一样;当金额超过140元时,小丽去B超市购物更合算;(3)设小丽购买了n本笔记本,则总金额为(0.9×18n+5)元,由题意得:0.918517n n⨯+≤,解得:164n≥,∵n为正整数,∴n的最小值为7;答:小丽至少购买7本时,平均每本笔记本价格不超过17元.【点睛】本题主要考查二元一次方程组及一元一次不等式的应用,熟练掌握二元一次方程组及一元一次不等式的应用是解题的关键.四、解答题(每小题8分,共24分)(2023·河北邯郸·校考一模)【18题答案】【答案】(1)小明带的钱够用,理由见解析(2)①12千克;②14千克【解析】【分析】(1)设1千克苹果的价格为x元,1千克梨的价格为y元,根据购买1千克苹果和2千克梨共花费了28元,另一人购买2千克苹果和1千克梨共花费了32元列出方程组求出x、y的值即可得到答案;(2)①设可以购买m千克苹果,则购买m千克梨,再根据总花费不超过250元列出不等式求解即可;②设可以购买n千克苹果,则购买12n千克梨,再根据总花费不超过250元列出不等式求解即可.【小问1详解】解:小明带的钱够用,理由如下:设1千克苹果的价格为x元,1千克梨的价格为y元,依题意得:228 232x yx y+=⎧⎨+=⎩,解得:128xy=⎧⎨=⎩,∴12820x y +=+=.答:小明带的钱够用.【小问2详解】解:①设可以购买m 千克苹果,则购买m 千克梨,依题意得:12820x y +=+=,解得:1122m ≤,又∵m 为正整数,∴m 的最大值为12.答:最多能够买12千克苹果.②设可以购买n 千克苹果,则购买12n 千克梨,依题意得:11282502n n +⋅≤,解得:5158n ≤,又∵n ,12n 均为正整数,∴n 的最大值为14.答:最多能够买14千克苹果.【点睛】本题主要考查了二元一次方程组的实际应用,一元一次不等式的实际应用,正确理解题意找到等量关系和不等关系是解题的关键.(2022·河北石家庄·统考二模)【19题答案】【答案】(1)每个B 型点位每天处理生活垃圾38吨(2)至少需要增设3个A 型转运站才能当日处理完所有生活垃圾【解析】【小问1详解】解:设每个B 型转运站每天处理生活垃圾x 吨,则每个A 型转运站每天处理生活垃圾(7)x +吨.根据题意可得,12(7)10920++=x x ,解得:38x =.答:每个B 型点位每天处理生活垃圾38吨;【小问2详解】解:设需要增设y 个A 型转运站才能当日处理完所有生活垃圾,由(1)得每个A 型转运站每天处理生活垃圾45吨,分类要求提高后,每个A 型点位每天处理生活垃圾45837-=(吨),每个B 型转运站每天处理生活垃圾38830-=(吨),根据题意可得:37(12)30(105)92010+++-≥-y y ,解得167≥y ,∵y 是正整数,∴符合条件的y 的最小值为3,答:至少需要增设3个A 型转运站才能当日处理完所有生活垃圾.【点睛】本题考查一次方程及一次不等式的应用,解题的关键是读懂题意,找准等量关系或不等关系,列方程或不等式.(2020·湖南郴州·统考中考真题)【20题答案】【答案】(1)甲物资采购了300吨,乙物质采购了240吨;(2)共有3种运输方案,方案1:安排25辆A 型卡车,25辆B 型卡车;方案2:安排26辆A 型卡车,24辆B 型卡车;方案3:安排27辆A 型卡车,23辆B 型卡车.【解析】【分析】(1)设甲物资采购了x 吨,乙物质采购了y 吨,根据“某省红十字会采购甲、乙两种抗疫物资共540吨,且采购两种物资共花费1380万元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设安排A 型卡车m 辆,则安排B 型卡车(50-m )辆,根据安排的这50辆车一次可运输300吨甲物质及240吨乙物质,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为正整数即可得出各运输方案.【详解】解:(1)设甲物资采购了x 吨,乙物质采购了y 吨,依题意,得:540321380x y x y +⎧⎨+⎩==,解得:300240x y ⎧⎨⎩==.答:甲物资采购了300吨,乙物质采购了240吨.(2)设安排A 型卡车m 辆,则安排B 型卡车(50-m )辆,依题意,得:()()75503003750240m m m m ⎧+-≥⎪⎨+-≥⎪⎩,解得:25≤m ≤2712.∵m 为正整数,∴m 可以为25,26,27,∴共有3种运输方案,方案1:安排25辆A 型卡车,25辆B 型卡车;方案2:安排26辆A 型卡车,24辆B 型卡车;方案3:安排27辆A 型卡车,23辆B 型卡车.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.五、解答题(每小题9分,共18分)(2022春·安徽芜湖·七年级芜湖市第二十九中学校考期末)【21题答案】【答案】(1)4;7-;0(2)34x ≤<(3)53x =【解析】【分析】(1)根据题目中的定义,[x ]表示不超过x 的最大整数,求出结果即可;(2)根据定义,x 是大于等于3小于4的数;(3)由[]5231x x -=+得到315232x x x +≤-<+,求出x 的取值范围,再由31x +是整数即可得到x 的值.【小问1详解】解:∵不超过4.8的最大整数是4,∴[]4.84=,∵不超过 6.5-的最大整数是7-,∴[]6.57-=-,∵不超过0的最大整数是0,∴[]00=,故答案是:4;7-;0.【小问2详解】解:∵[]3x =,∴x 是大于等于3小于4的数,即34x ≤<.故答案为:34x ≤<.【小问3详解】解:∵[]5231x x -=+,∴315232x x x +≤-<+,解得322x ≤<,∵31x +是整数,∴53x =.【点睛】本题考查新定义问题,不等式组的运用,解题的关键是理解题目中[]x 的意义,列出不等式组进行求解.(2023·安徽滁州·校考一模)【22题答案】【答案】(1)40元;(2)当16a =时,两种方案一样;当016a <<时,选择方案一;当16a >时,选择方案二【解析】【分析】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意列出一元一次方程,解方程即可求得乒乓球拍每副的标价;(2)根据两种方案分别计算小健购买乒乓球拍6副,乒乓球a 盒,所需费用,比较即可【详解】(1)设商店销售的乒乓球拍每副的标价为x 元,根据题意得2040.8412x x +⨯=-解得40x =答:该商店销售的乒乓球拍每副的标价为40元(2)方案一:6400.850.85102048.5a a⨯⨯+⨯=+方案二:206400.8100.82128a a+⨯⨯+⨯=+若2048.5a +=2128a +,即16a =时,两种方案一样当2048.5a +<2128a+解得16a <即当016a <<时,选择方案一,当2048.5a +>2128a+解得16a >即当16a >时,选择方案二【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,根据题意列出方程或不等式是解题的关键.六、解答题(本大题共12分)【23题答案】【答案】(1)1234x y -<+<;(2)x y -的取值范围是13x y <-<;(3)x y +的取值范围是22a x y a +<+<--.【解析】【分析】(1)仿照例子,根据不等式的基本性质即可求解;(2)仿照例子,注意由0<y <1到-1<-y <0的转化,再由不等式同号可加性进行求解;(3)仿照例子,注意确定不等式有解集时,a 的取值范围,因此要先确定当a <-2时,关于x 、y 的不等式存在解集.【详解】(1)12x << ,224x ∴<<.10y -<< ,330y ∴-<<,1234x y ∴-<+<.故答案为1234x y -<+<.(2)3x y += ,3x y ∴=-.又2x > ,32y ∴->,1y ∴<.又0y > ,01y ∴<<,10y ∴-<-<.同理得23x <<,1203x y ∴-+<-<+,x y ∴-的取值范围是13x y <-<.(3)x y a -= ,x a y ∴=+.又1x <- ,1a y ∴+<-,1y a ∴<--.又1y > ,11a ∴-->,2∴<-a .当2a <-时,11y a <<--.同理得11a x +<<-,22a x y a ∴+<+<--,∴当2a <-时,x y +的取值范围是22a x y a +<+<--.【点睛】本题考查不等式的性质;能够根据例子,仿照例子结合不等式的基本性质解题,注意不等式的同号可加性,是隐含的限定条件.。
人教版 七年级数学下册 第9章 不等式与不等式组 培优训练(含答案)
人教版 七年级数学下册 第9章 不等式与不等式组 培优训练一、选择题1. 关于x 的不等式组⎩⎨⎧-x <1x -2≤0,其解集在数轴上表示正确的是()2. 如果m >n ,那么下列结论错误的是A .m+2>n+2B .m-2>n-2C .2m>2nD .-2m>-2n3. 对于不等式组⎩⎪⎨⎪⎧12x -1≤7-32x 5x +2>3(x -1),下列说法正确的是( ) A. 此不等式组无解B. 此不等式组有7个整数解C. 此不等式组的负整数解是-3,-2,-1D. 此不等式组的解集是-52<x ≤24. 据丽水气象台“天气预报”报道,今天的最低气温是17℃,最高气温是25℃,则今天气温t(℃)的范围是( )A .17t <B .25t >C .21t =D .1725t ≤≤5. (2019•南充)关于x 的不等式2x+a≤1只有2个正整数解,则a 的取值范围为 A .-5<a<-3B .-5≤a<-3C .-5<a≤-3D .-5≤a≤-36. 不等式组2442x x ->⎧⎪⎨≤⎪⎩的解集为 A .68x ≤< B .68x <≤C .28x ≤<D .28x <≤7. (2019•云南)若关于x 的不等式组2(1)20x a x ->⎧⎨-<⎩的解集是x>a ,则a 的取值范围是A .a<2B .a≤2C .a>2D .a≥28. 根据a b >,则下面哪个不等式不一定成立 ( )A . 22a c b c +>+B . 22a c b c ->-C . 22ac bc >D . 22a b c c >二、填空题9. 不等式3x +134>x 3+2的解是________.10. 不等式组21x x >⎧⎨>-⎩的解集是__________.11. 不等式322x -<-<的正整数解为__________.12. 不等式组的整数解是____________.13. 若不等式30x n -+>的解集是2x <,则不等式30x n -+<的解集是_______.14. 已知有理数x 满足31752233x x x -+-≥-,若|3|x --|2|x +的最小值为a ,最大值为b ,则ab =___三、解答题15. 小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?16. 王女士看中的商品在甲,乙两商场以相同的价格销售,两商场采用的促销方式不同:在甲商场一次性购物超过100元,超过的部分八折优惠;在乙商场一次性购物超过50元,超过的部分九折优惠,那么她在甲商场购物超过多少元就比在乙商场购物优惠?17. 已知0a b ab <≠,,是比较1a 与1b的大小。
人教版七年级数学下册第 9章不等式与不等式组单元提优卷
选择题下列说法中,错误的是()A. x=1是不等式x9的解集是x=-3 D. 不等式xx+3>0B. x+3 (x+3) (x+3)>0【答案】C【解析】“与3的和的一半是负数”用不等式表示为:.故选C.选择题若-a≥b,则a≤-2b,其根据是( )A. 不等式的两边加(或减)同一个数(或式子),不等号的方向不变B. 不等式的两边乘(或除以)同一个正数,不等号的方向不变C. 不等式的两边乘(或除以)同一个负数,不等号的方向改变D. 以上答案均不对【答案】C【解析】根据不等式的基本性质分析即可.∵把-a≥b的两边都除以,可得a≤-2b,∵其根据是:不等式的两边乘(或除以)同一个负数,不等号的方向改变.故选C.选择题在数轴上表示不等式x-1≤0的解集,正确的是( )A. B.C. D.【答案】D【解析】先解不等式,求出不等式的解集,然后根据根据不等式的解集与数轴的关系表示即可.∵x-1≤0,∵x≤1,∵在数轴上可表示为:故选D.选择题下列不等式中,是一元一次不等式的是A. B. C. D.【答案】C【解析】A.有两个未知数,不是一元一次不等式;B.没有未知数,不是一元一次不等式;C,符合一元一次不等式的定义,是一元一次不等式;D.未知数的最高次数是2,不是一元一次不等式,故选C.选择题不等式3x+2<2x+3的解集在数轴上表示正确的是( )A. B. C. D.【答案】D【解析】解:3x+2<2x+3移项及合并同类项,得x<1,故选D.选择题下列不等式组是一元一次不等式组的是( )A. B.C. D.【答案】A【解析】根据一元一次不等式组的定义判定则可.由几个含有相同未知数的一元一次不等式所组成的一组不等式叫做一元一次不等式组.A. 是一元一次不等式组;B. 中有2次项,故不是一元一次方程组;C. 中含有两个未知数,故不是一元一次方程组;D. 中含有两个未知数,故不是一元一次方程组;故选A.选择题不等式组的解集为()A. x>B. x>1C. <x<1D. 空集【答案】B【解析】先分别求出不等式组中每一个不等式的解集,然后再取两个不等式的解集的公共部分即可得不等式组的解集.解不等式2x>1-x,得:x>,解不等式x+21,则不等式组的解集为x>1,故选B.选择题关于x的不等式组的解集为x>1 ,则a的取值范围是()A. a>1 B. a<1 C. a≥1 D. a≤1【答案】D.【解析】试题解析:由关于x的不等式组的解集为x>1,得a≤1故选D.选择题下面给出了6个式子:①3>0;②4x+3y>0;③x=3;④x﹣1;⑤x+2≤3;⑥2x≠0.其中不等式有()A.2个B.3个C.4个D.5个【答案】C【解析】试题分析:依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.解:①3>0;②4x+3y>0;⑤x+2≤3;⑥2x≠0是不等式,故选:C.填空题如图,左边物体的质量为xg,右边物体的质量为50g,用不等式表示下列数量关系是______.【答案】【解析】根据图形可知左边的物体质量比右边的物体质量大,从而可得答案.由图可知,.故答案为:.填空题如果2m<3n,那么不等式两边______,可变为m<n.【答案】同时乘(或除以6)【解析】根据不等式的性质分析解答即可.如果2m<3n,那么不等式两边同时乘(或除以6),可变为m<n.故答案为:同时乘(或除以6).填空题不等式的解集是___________.【答案】x>10【解析】按去分母、移项、合并同类项的步骤进行求解即可得.去分母,得x-8>2,移项,得x>2+8,合并同类项,得x>10,故答案为:x>10.填空题某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打___折.【答案】8【解析】设打x折,根据题意得出不等式,求出不等式的解集即可.设打x折,根据题意得:100(1+50%)×≥100(1+20%),解得:x≥8,即至多打8折,故答案为:8.填空题不等式组的解集为__________.【答案】【解析】先求出每个不等式的解集,再根据口诀求出不等式组的解集即可.解不等式3x+1≥5x,得:x≤,解不等式,得:x>-3,则不等式组的解集为-3<x≤,故答案为:-3<x≤.填空题已知关于x的不等式组无解,则a的取值范围是_____.【答案】a≥2【解析】先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a的取值范围即可.,由①得:x≤2,由②得:x>a,∵不等式组无解,∵a≥2,故答案为:a≥2.解答题用不等式表示:(1)7x与1的差小于4;(2)x的一半比y的2倍大;(3)a的9倍与b的的和是正数.【答案】(1)7x-1<4 (2)x>2y (3)9a+b>0【解析】(1)7x与1的差是7x-1,小于4,再用小于号“,y的2倍记作2y,然后用大于号“>”连接即可;(3)a的9倍记作9a,b的记作,和是正数即相加后大于0.由题意得(1)7x-1<4;(2)x>2y;(3)9a+b>0解答题阅读下列材料,并完成填空.你能比较20172018和20182017的大小吗?为了解决这个问题,先把问题一般化,比较nn+1和(n+1)n(n>0,且n为整数)的大小.然后从分析n=1,n=2,n=3,…的简单情形入手,从中发现规律,经过归纳、猜想得出结论.(1)通过计算(可用计算器)比较下列①~⑦组两数的大小:(在横线上填上“>”“=”或“<”)①12 21;②23 32;③34 43;④45 54;⑤56 65;⑥67 76;⑦78 87;(2)归纳第(1)问的结果,可以猜想出nn+1和(n+1)n的大小关系;(3)根据以上结论,可以得出20172018和20182017的大小关系.【答案】(1) > > > >(2)当n=1或2时,nn+1<(n+1)n当n>2时,nn+1>(n+1)n(3)20172018>20182017【解析】(1)通过计算几个简单数的乘方,比较其大小,找出规律;(2)根据(1)中得到的规律写出结论即可;(3)利用(2)中结论求解即可.(1)①∵12=1,21=2,∵1243;④∵45=1024,54=625, ∵45>54;∵⑤56>65;⑥67>76;⑦78>87;(2)当n=1或2时,nn+1<(n+1)n;当n>2时,nn+1>(n+1)n;(3) ∵2017>2,∵20172018>20182017解答题解不等式,并把解集在数轴上表示出来.(1)5x-2≤3x;(2)>1-【答案】(1)x≤1,(2)x>3,【解析】(1)通过移项、合并同类项、系数化为1求出解集,然后在数轴上表示出来即可;(1)通过去分母、移项、合并同类项、系数化为1求出解集,然后在数轴上表示出来即可.(1)解:移项,得5x-3x≤2.合并同类项,得2x≤2.系数化为1,得x≤1.其解集在数轴上表示为:(2)解:去分母,得2x>6-(x-3).去括号,得2x>6-x+3.移项,得2x+x>6+3.合并同类项,得3x>9.系数化为1,得x>3.其解集在数轴上表示为:解答题已知关于x的方程4(x+2)-2=5+3a的解不小于方程的解,试求a的取值范围.【答案】a的取值范围为a≤-.【解析】试题分析:分别解出方程的解,根据题意列不等式解答.试题解析:解方程,得.解方程,得.依题意,得.解得故a的取值范围为:解答题已知关于x的不等式>x﹣1.(1)当m=1时,求该不等式的解集;(2)m取何值时,该不等式有解,并求出解集.【答案】(1)x<2;(2)当m≠﹣1时,不等式有解,当m>﹣1时,不等式解集为x<2;当m<﹣1时,不等式的解集为x>2.【解析】试题分析:(1)把m=1代入不等式,求出解集即可;(2)不等式去分母,移项合并整理后,根据有解确定出m的范围,进而求出解集即可.试题解析:(1)当m=1时,不等式为>﹣1,去分母得:2﹣x>x﹣2,解得:x<2;(2)不等式去分母得:2m﹣mx>x﹣2,移项合并得:(m+1)x<2(m+1),当m≠﹣1时,不等式有解,当m>﹣1时,不等式解集为x<2;当x<﹣1时,不等式的解集为x>2.解答题解不等式组:(1)(2)【答案】(1)2≤x<4 (2)x>5【解析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集.(1)解:解不等式①,得x<4.解不等式②,得x≥2.∵不等式组的解集为2≤x<4.(2)解:解不等式①,得x≥3.解不等式②,得x>5.∵不等式组的解集为x>5.解答题解不等式组,并求出不等式组的整数解之和.【答案】6.【解析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出解集,找出整数解即可.解不等式(x+1)≤2,得:x≤3,解不等式,得:x≥0,则不等式组的解集为0≤x≤3,所以不等式组的整数解之和为0+1+2+3=6.解答题某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?【答案】解:(1)120×0.95=114(元),若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付114元;(2)设所付钱为y元,购买商品价格为x元,则按方案一可得到一次函数的关系式:y=0.8x+168,则按方案二可得到一次函数的关系式:y=0.95x,如果方案一更合算,那么可得到:0.8x+168<0.95x,解得,x>1120,∵所购买商品的价格在1120元以上时,采用方案一更合算.【解析】(1)根据所购买商品的价格和折扣直接计算出实际应付的钱;(2)根据两种不同方案分别求出商品的原价与实际所付价钱的关系式,比较实际价钱,看哪一个合算再确定一个不等式,解此不等式可得所购买商品的价格范围.(1)120×0.95=114(元),所以实际应支付114元.(2)设购买商品的价格为x元,由题意,得0.8x+168<0.95x,解得x>1120,所以当购买商品的价格超过1120元时,采用方案一更合算.解答题水是人类的生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?【答案】(1)2.45元,1元(2)15立方米【解析】(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元,根据甲、乙两用户缴纳的费用各列一个方程,即可得到二元一次方程组,解出相应的结果即可;(2)设该用户7月份可用水t立方米(t>10),根据7月份生活用水水费计划不超过64元列不等式求解即可.解:(1)设每立方米的基本水价是x元,每立方米的污水处理费是y元,依题意得,解得,答:每立方米的基本水价是2.45元,每立方米的污水处理费是1元.(2)设该用户7月份可用水t立方米(t>10),则10×2.45+(t-10)×4.9+t≤64,解得t≤15.答:如果某用户7月份生活用水消费计划不超过64元,该用户7月份最多可用水15立方米.。
人教版七年级数学下册第九章《不等式与不等式组》培优试题(二)
人教版七年级数学下册第九章《不等式与不等式组》培优试题(二)一.选择题(共10小题,每小题3分,共30分) 1.不等式3(2)4x x -+…的解集是( )A .5x …B .3x …C .5x …D .5x -…2.若点(1,)P m m -在第二象限,则(1)1m x m ->-的解集为( ) A .1x <B .1x <-C .1x >D .1x >-3.如果a b >,则下列不等式一定成立的是( ) A .11a b -<-B .a b ->-C .22ac bc >D .22a b -<-4.已知两个不等式的解集在数轴上如图表示,那么这个解集为( )A .1x -…B .1x >C .31x -<-…D .3x >-5.已知关于x 的不等式(2)1a x ->的解集是12x a<-;则a 的取值范围是( ) A .0a >B .0a <C .2a <D .2a >6.把不等式组13264x x +⎧⎨-->-⎩…中每个不等式的解集在同一条数轴上表示出来, 正确的为( ) A . B . C .D .7.若方程3(1)1(3)5m x m x x ++=--的解是负数,则m 的取值范围是( ) A . 1.25m >-B . 1.25m <-C . 1.25m >D . 1.25m <8.某种出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( ) A .5千米B .7千米C .8千米D .15千米9.关于x 的不等式组24351x x -<⎧⎨-<⎩的所有整数解是( )A .0,1B .1-,0,1C .0,1,2D .2-,0,1,210.如图,天平右盘中的每个砝码的质量为10g ,则物体M 的质量()m g 的取值范围在数轴上可表示为( )A .B .C .D .二.填空题(共8小题,每小题3分,共24分) 11.x 与5-的差不小于3-,用不等式表示为 .12.不等式13x ->-的正整数解是 . 13.若代数式315x -的值不小于代数式156x -的值,则x 的取值范围是 . 14.小马用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,那么小马最多能买支 钢笔.15.已知实数x ,y ,a 满足34x y a ++=,30x y a --=.若11a -剟,则2x y +的取值范围是 . 16.同时满足310x >和161043x x -<的整数解是 . 17.若关于x 的不等式组010x m x -⎧⎨-<⎩…无解,则m 的取值范围是 .18.武汉东湖高新开发区某企业新增了一个项目,为了节约资源,保护环境,该企业决定购买A 、B 两种型号的污水处理设备共8台,具体情况如下表:经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.设购买A 种型号的污水处理设备x 台,可列不等式组 .三.解答题(共7小题,满分46分,其中19、20、21每小题6分,22题9分,23题6分,24题8分,25题5分)19.解不等式组,并将解集在数轴上表示出来.()()2731,1542x x x x -<-⎧⎪⎨-+⋅⎪⎩①②…20.已知不等式1()23x m m ->-.(1)若其解集为3x >,求m 的值;(2)若满足3x >的每一个数都能使已知不等式成立,求m 的取值范围. 21.方程组323x y x y a -=⎧⎨+=-⎩的解为负数,求a 的范围.22.为了抓住梵净山文化艺术节的商机,某商店决定购进A 、B 两种艺术节纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件,需要800元. (1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?23.若不等式组2311(3)2x x x +<⎧⎪⎨>-⎪⎩的整数解是关于x 的方程24x ax -=的根,求a 的值. 24.某博物馆的门票每张10元,一次购买30张到99张门票按8折优惠,一次购买100张以上(含100张)按7折优惠.甲班有56名学生,乙班有54名学生.(1)若两班学生一起前往参观博物馆,请问购买门票最少共需花费多少元?(2)当两班实际前往该博物馆参观的总人数多于30人且不足100人时,至少要多少人,才能使得按7折优惠购买100张门票比实际人数按8折优惠购买门票更便宜?25.阅读解题:解方程:|3|1x=.解:①当30x…时,原方程可化为一元一次方程为31x=,它的解是13x=;②当30x<时,原方程可化为一元一次方程为31x-=,它的解是13x=-.请你模仿上面例题的解法,解方程:2|3|513x-+=.2018—2019学年人教版七年级数学下册第九章《不等式与不等式组》培优试题(二)参考简答一.选择题(共10小题)1.A . 2.D . 3.A . 4.A . 5.D . 6.B . 7.A . 8.C . 9.B . 10.C . 二.填空题(共8小题)11. 53x +-… . 12. 1,2 . 13. 1143x … . 14. 13 . 15. 026x y +剟 . 16. 4、5、6、7 . 17. 1m … . 18. 1210(8)89200160(8)1380x x x x +-⎧⎨+-⎩……. 三.解答题(共7小题)19.解不等式组,并将解集在数轴上表示出来.()()2731,1542x x x x -<-⎧⎪⎨-+⋅⎪⎩①②…【解】:解不等式①,得4x >-, 解不等式②,得2x …,把不等式①②的解集在数轴上表示如图,原不等式组的解集为42x -<…. 20.已知不等式1()23x m m ->-. (1)若其解集为3x >,求m 的值;(2)若满足3x >的每一个数都能使已知不等式成立,求m 的取值范围. 【解】:(1)不等式整理得:63x m m ->-, 解得:62x m >-,由不等式的解集为3x >,得到623m -=, 解得: 1.5m =;(2)由满足3x >的每一个数都能使已知不等式成立,得到623m -…, 解得: 1.5m …. 21.方程组323x y x y a -=⎧⎨+=-⎩的解为负数,求a 的范围.【解】:(1)-(2)得:603a y -=< 可得6a <代入(1)得:1103x a =+< 解得3a <-3a ∴<-.22.为了抓住梵净山文化艺术节的商机,某商店决定购进A 、B 两种艺术节纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件,需要800元. (1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元? 【解】:(1)设该商店购进一件A 种纪念品需要a 元,购进一件B 种纪念品需要b 元,根据题意得方程组得:8395056800a b a b +=⎧⎨+=⎩,解方程组得:10050a b =⎧⎨=⎩, ∴购进一件A 种纪念品需要100元,购进一件B 种纪念品需要50元;(2)设该商店购进A 种纪念品x 个,则购进B 种纪念品有(100)x -个,∴10050(100)750010050(100)7650x x x x +-⎧⎨+-⎩……,解得:5053x 剟,x为正整数,50x =,51,52,53 ∴共有4种进货方案,分别为:方案1:商店购进A 种纪念品50个,则购进B 种纪念品有50个; 方案2:商店购进A 种纪念品51个,则购进B 种纪念品有49个; 方案3:商店购进A 种纪念品52个,则购进B 种纪念品有48个; 方案4:商店购进A 种纪念品53个,则购进B 种纪念品有47个. (3)因为B 种纪念品利润较高,故B 种数量越多总利润越高, 设利润为W ,则关于W 的代数式为:2030(100)103000W x x x =+-=-+.x 越大,103000x -+的值越小,∴选择购A 种50件,B 种50件.总利润502050302500=⨯+⨯=(元)∴当购进A 种纪念品50件,B 种纪念品50件时,可获最大利润,最大利润是2500元.23.若不等式组2311(3)2x x x +<⎧⎪⎨>-⎪⎩的整数解是关于x 的方程24x ax -=的根,求a 的值. 【解】:()231132x x x +<⎧⎪⎨>-⎪⎩①② 解①得22x <-,即1x <-, 解②得23x x >-,即3x >-, 综上可得31x -<<-,x 为整数,故2x =-将2x =-代入24x ax -=, 解得4a =.24.某博物馆的门票每张10元,一次购买30张到99张门票按8折优惠,一次购买100张以上(含100张)按7折优惠.甲班有56名学生,乙班有54名学生.(1)若两班学生一起前往参观博物馆,请问购买门票最少共需花费多少元? (2)当两班实际前往该博物馆参观的总人数多于30人且不足100人时,至少要多少人,才能使得按7折优惠购买100张门票比实际人数按8折优惠购买门票更便宜?【解】:(1)当两个班分别购买门票时, 甲班购买门票的费用为56100.8448⨯⨯=元 乙班购买门票的费用54100.8432⨯⨯=元 甲乙两班分别购买门票共需花费880元 当两个班一起购买门票时,甲乙两班共需花费(5654)100.7770+⨯⨯=元 答:甲乙两班购买门票最少共需花费770元.(2)当多于30人且不足100人时,设有x 人前往参观,才能使得按7折优惠购买100张门票比根据实际人数按8折优惠购买门票更便宜,根据题意得301000.8101000.710x x <<⎧⎨⨯>⨯⨯⎩解得87.5100x <<答:当多于30人且不足100人时,至少有88人前往参观,才能使得按7折优惠购买100张门票比根据实际人数按8折优惠购买门票更便宜. 25.阅读解题:解方程:|3|1x =.解:①当30x …时,原方程可化为一元一次方程为31x =,它的解是13x =; ②当30x <时,原方程可化为一元一次方程为31x -=,它的解是13x =-. 请你模仿上面例题的解法,解方程:2|3|513x -+=. 【解】:当30x -…时,原方程可化为34x -= 它的解是7x =;当30x -<时,原方程可化为(3)4x --= 它的解是1x =-;所以原方程的解是7x =或1x =-.人教版七年级下册第九章《不等式与不等式组》测试题一、单选题(每小题只有一个正确答案)1.下列各式中:①:②:③:④;⑤:⑥,不等式有()A.2个B.3个C.4个D.5个2.若,则下列各式中一定成立的是( )A.B.C.D.3.下列各数中,能使不等式x–3>0成立的是()A.–3 B.5 C.3 D.24.下列说法中,错误的是( )A.不等式x<5的整数解有无数多个 B.不等式x>-5的负整数解集有有限个C.不等式-2x<8的解集是x<-4 D.-40是不等式2x<-8的一个解5.四个小朋友在公园玩跷跷板,他们的体重分别为P,Q,R,S,由图可知,这四个小朋友体重的大小关系是()A.P>R>S>Q B.Q>S>P>R C.S>P>Q>R D.S>P>R>Q6.下列式子①7>4;②3x≥2π+1;③x+y>1;④x2+3>2x;⑤>4中,是一元一次不等式的有()A.4个B.3个C.2个D.1个7.“x的3倍与2的差不大于7”列出不等式是( )A.3x-2>7 B.3x-2<7 C.3x-2≥7 D.3x-2≤78.不等式组的解集在数轴上表示为( )A.B.C.D.9.若关于x的不等式(a–1)x>a–1的解集是x>1,则a的取值范围是()A.a<0 B.a>0 C.a<1 D.a>110.某次知识竞赛共有30道题,每一题答对得5分,答错或不答都扣3分,小亮得分要超过70分,他至少要答对多少道题?如果设小亮答对了x道题,根据题意列式得()A.5x﹣3(30﹣x)>70 B.5x+3(30﹣x)≤70C.5x﹣3(30+x)≥70 D.5x+3(30﹣x)>7011.已知点在第四象限,则m的取值范围在数轴上表示正确的是()A. B. C. D.12.若关于x的不等式组有6个整数解,则m的取值范围是()A.-4<m≤-3 B.-3≤m<-2 C.-4≤m<-3 D.-3<m≤-2二、填空题13.请你写出一个满足不等式2x-1<6的正整数x的值:________.14.不等式12-4x≥0的非负整数解是_______15.x的与12的差是负数,用不等式表示为________.16.某种商品的进价为每件100元,商场按进价提高60%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打________折.17.已知关于X的不等式组的解集为-1<x<2,则(m+n)2019的值是_______.三、解答题18.用不等式表示:(1)7x与1的差小于4;(2)x的一半比y的2倍大;(3)a的9倍与b的的和是正数.19.解下列不等式(或组),并把解集表示在数轴上.①②③④20.解不等式组:并写出它的所有整数解.21.小诚响应“低碳环保,绿色出行”的号召,一直坚持跑步与步行相结合的上学方式已知小诚家距离学校2200米,他步行的平均速度为80米分,跑步的平均速度为200米分若他要在不超过20分钟的时间内从家到达学校,至少需要跑步多少分钟?22.某单位需要将一批商品封装入库,因此打算购进A、B两种型号的包装盒共100个,若购买3个A型包装盒和2个B型包装盒共需550元,且A型包装盒的单价是3型包装盒单价的3倍,每个A型包装盒可容纳500件该商品,每个B型包装盒可容纳200件该商品。
人教版七年级数学下册第九章不等式与不等式组同步单元解答题培优习题
人教版七年级数学下册不等式与不等式组同步单元解答培优习题 解答题1.解下列不等式组.(1)2019189341x x x x ->-⎧⎨<-⎩ (2)521550.513 1.5x x x x--⎧<⎪⎨⎪-≤-⎩ 2.已知方程组202x y x y m -=⎧⎨+=⎩和方程组521x y x y n -=⎧⎨-=-⎩的解相同,求m 、n 的值. 3.为了改善寄宿制学校学生的居住条件,某市财政局准备给部分学校加装空调.经市场调研发现:购买1台A 种型号的空调和2台B 种型号的空调共需资金6400元;购买2台A 型空调和3台B 型空调共需资金10600元.(1)求A ,B 两种型号的空调单价各是多少元;(2)现计划购进A ,B 两种型号的空调共200台,其中A 型空调为()75m m ≤台,并且要求公司15日内(含15日)完成安装调试.公司承诺:若A 型空调不大于75台,则A 型空调一定能保证15天内完成安装与调试,同时B 型空调每天可以完成10台的安装与调试;价格方面,当购买A 型空调不少于60台时,公司给予A 型空调7折优惠;当购买B 型空调大于140台时,公司给予B 型空调8折优惠.若既能保证如期完成安装调试又能使花费资金最少,应购买A ,B 两种型号的空调各多少台?4.若代数式的值不大于代数式5k +1的值,求k 的取值范围.5.解关于x 的不等式组{2x +1>3,a −x >1,x 仅有2个正整数解,求a 的取值范围.6.某商品的进价是2000元,标价是3000元,商店要求以利润不低于5%的售价打折出售.最低可以打几折出售?7.辽宁南部素以“苹果之乡”著称,某乡组织10辆汽车装运A、B两种苹果到外地销售,按规定每辆汽车只装同一种苹果,且必须装满.已知A、B两种苹果的每辆车运载量及每吨苹果获利如下表:(1)要求共运出苹果至少24吨,试写出装运A种苹果的汽车x(辆)应满足的不等式;(2)要求共获利不少于15600元,试写出装运A种苹果汽车x(辆)应满足的另一个不等式.8.已知:2a﹣3x+1=0,3b﹣2x﹣16=0,且a≤4<b,求x的取值范围.9.一件商品的成本价为30元,若按售价的八八折销售可得3元的利润;若按售价的九折销售可获得不足6元的利润.求此商品的售价在什么范围?10.已知方程组25{x yx y m+=+=的解能使方程x-y=7成立。
2022-2023学年人教版数学七年级下册 第九章 不等式与不等式组 培优训练
2022-2023学年人教版数学七年级下册 第九章不等式与不等式组 培优训练一.选择题 1.若x y >,则下列等式不一定成立的是( ) A .44x y +>+ B .33x y -<- C .33x y > D .22x y >2.71x +是不小于3-的负数,表示为( )A .3710x -≤+≤B .3710x -<+<C .3710x -≤+<D .3710x -<+≤3.若关于x 的不等式3x +a ≤2只有2个正整数解,则a 的取值范围为( )A .﹣7<a <﹣4B .﹣7≤a ≤﹣4C .﹣7≤a <﹣4D .﹣7<a ≤﹣44.不等式3+x >4的解集在数轴上表示正确的是( )A .B .C .D .5.已知(y -3)2+|2y -4x -a|=0,若x 为负数,则a 的取值范围是( )A. a>3B. a>4C. a>5D. a>66.代数式14a 的值不大于112a +的值,则a 应满足( ) A .4a ≤ B .4a ≥ C .4a ≤- D .4a ≥-7.若关于x 的不等式组721x m x <⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( ) A .67m << B .67≤<m C .67m ≤≤ D .67m <≤8.定义:对于任意数,符号表示不大于的最大整数,例如:,,.若,则的取值范围是( ). A .≥-2019B .≤<-2018C .<<-2018D .<≤9.若满足方程组的x ,y 值都不大于1,则k 的取值范围是( )A .B .C .D .10.小颖同学准备用26元买笔和笔记本,已知一支笔2元,一本笔记本3元,他买了5本笔记本,最多还能买多少支笔?设他还能买x 支笔,则列出的不等式为( )A .23526x +⨯≤B .23526x +⨯≥C .32526x +⨯≤D .32526x +⨯≥二.填空题11.x 的5倍与4的和大于3,且x 的2倍是非负数,列不等式组为________.12.不等式3x ﹣2≥4(x ﹣1)的所有非负整数解的和等于 . 13.若不等式组⎩⎨⎧>-<-002a x x 有解,则a 的取值范围是 . 14.在实数范围内规定一种新的运算“☆”,其规则是:a ☆b=3a+b ,已知关于x 的不等式:x ☆m>1的解集在数轴上表示出来如图所示.则m 的值是________ .15.设“▲”“■”表示两种不同的物体,现用天平称量,情况如图所示.设一个“▲”的质量为A kg,一个“■”的质量为B kg,则可得A 与B 的关系是A_____B .16.某种商品进价为元,出售时标价为元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降 元出售此商品.三.解答题17.解下列不等式,并把解集在数轴上表示出来:(1)()()2332x x -+<+. (2)1211236x x x x ---->-.18.解不等式组:()2731423133x x x x ⎧-<-⎪⎨+≥-⎪⎩并写出它的最小整数解.19.若方程组323x y x y a +=⎧⎨-=-⎩的解是正数,求: (1)a 的取值范围;(2)化简绝对值36a a ++-.20.11月份,年底销售旺季即将来临,某知名品牌服装厂要印制一批宣传手册,公关部门找到甲、乙两家印刷厂.甲印刷厂提出:每本收1元印刷费,另收500元制版费;乙印刷厂提出:每本收1.5元印刷费,不收制版费.设需要印制x 本.(1)甲厂收费y =甲_______,乙厂收费y =乙____________;(2)问:该公司选择哪间印刷厂印制宣传手册比较合算?请通过计算说明.21.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆12万元,面包车每辆8万元,公司可投入的购车款不超过100万元.(1)符合该公司要求的购买方案有几种?(2)如果每辆轿车的日租金为250元,每辆面包车的日租金为150元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于2000元,那么应选择哪种购买方案?。
2020-2021学年人教版 七年级下册 第9章 不等式 培优训练(含答案)
人教版 七年级下册 第9章 不等式 培优训练一、选择题1. 若关于x 的一元一次不等式组⎩⎨⎧2x -1>3(x -2)x <m的解是x <5,则m 的取值范围是( )A. m ≥5B. m >5C. m ≤5D. m <52. 某大型超市从生产基地购进一批水果,运输过程中损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高( )A .40%B .33.4%C .33.3%D .30%3. 初中九年级一班几名同学,毕业前合影留念,每人交0.70元,一张彩色底片0.68元,扩印一张照片0.50元,每人分一张,将收来的钱尽量用掉的前提下,这张照片上的同学最少有( )A .2个B .3个C .4个D .5个4. 已知不等式组⎩⎪⎨⎪⎧x >a x ≥1的解集是x ≥1,则a 的取值范围是( )A. a <1B. a ≤1C. a ≥1D. a >15. 点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b .对于以下结论: 甲:b -a <0;乙:a +b >0;丙:|a |<|b |;丁:b a >0.其中正确的是( )A. 甲乙B. 丙丁C. 甲丙D. 乙丁6. (2019•常德)小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说:“至多12元.”丙说:“至多10元.”小明说:“你们三个人都说错了”.则这本书的价格x (元)所在的范围为 A .10<x<12B .12<x<15C .10<x<15D .11<x<147. 不等式组3(1)17212x xxx+>-⎧⎪⎨+≥-⎪⎩的非负整数解的个数是A.3 B.4 C.5 D.68. (2019•云南)若关于x的不等式组2(1)2xa x->⎧⎨-<⎩的解集是x>a,则a的取值范围是A.a<2 B.a≤2C.a>2 D.a≥29. 如果不等式组9080x ax b-⎧⎨-<⎩≥的整数解仅为1,2,3,那么适合这个不等式组的整数a b,的有序数对()a b,共有()对。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式专题
一、基础篇
1、求不等式x -33-6x -16>-3的非负整数解.
2、解不等式组:
并求它的整数解的和
归纳:解不等式(组)易错点:________________________________________________________________;
二、中级篇。
1、若a>b ,判断正确有___________.
(1)a-1>b-1 (2)2a<2b (3)1-3a>1-3b (4)2ax >2bx (5)22a
b
->-
考点一、利用不等式的解求参数的的值或范围 (注意数形结合,画数轴先确定大致范围,再验证能否取等号) 例1、若关于x 的不等式ax ﹣2>0的解集为x <﹣2,则关于y 的方程ay+2=0的解为 .
例2、关于x 的不等式 (a-1)x > 1-a 的解集为x <﹣1,则a 的范围是_____________
例3、一元一次不等式组21<⎧⎨
-<⎩
x x a 的解集是2x < ,则a 的取范围是______________
例4、不等式组
的解集是x >1,则m 的取值范围是______________
例5、若不等式组
①有解,则a 的取值范围是 ________.
②无解,则a 的取值范围是 _________.
③有3个整数解,则a 的取值范围是 _________.
例6、不等式组0,0
x b x a -<⎧⎨+>⎩解集为23x <<,关于x ,y 的方程组5,21ax y x by +=⎧⎨-=⎩的解为___
例7、已知关于x 、y 的二元一次方程组⎩⎨
⎧+=---=+a y x a y x 317的解x 为非正数,y 为负数。
(1)a 的取值范围
(2)化简23++-a a
(3)在a 的取值范围中,当a 为何整数时,不等式2ax +x >2a +1的解为x <1?
二、提升篇。
例8、为提高饮水质量,越来越多的居民开始选购家用净水器。
一商场抓住商机,从商家购进A,B 两种型号的家用净水器共160台,A 型号家用净水器进价是150每台,
B 型号家用净水器350元每台,购进两种型号的家用净水器共用去36000元。
(1)A,B 两种型号的家用净水器各购进多少台?
(2)为使每台B 型号家用净水器的毛利润是A 型号的2倍,且保证160台家用净水器的毛利润不低于11000元。
求每台A 型号家用净水器的售价至少是多少元?(毛利润=售价-进价)
过关检测
1、.下列说法不一定成立的是( )
A .若a >b ,则a+c >b+c
B .若a+c >b+c ,则a >b
C .若a >b ,则ac 2>bc 2
D .若ac 2>bc 2,则a >b
2、已知方程组⎩⎨⎧+-=+-=+1
2232k y x k y x 的解满足5≥-y x ,则K 可取的值为( )
A 、—2
B 、0
C 、1
D 、3
3、关于x 的不等式x 2-m ≤1-的解集为4≤x ,则m 的取值是
4、若不等式组841x x x m
+<-⎧⎨≥⎩的解是x>3,则m 的取值范围是( )
A .3m ≥
B .3m ≤
C .3m =
D .3m <
5、已知3x -2y =0,且x -1>y ,则x 的取值范围是___,y 的取值范围是________
6、设a 、b 、c 表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是( )
A .c <b <a
B .b <c <a
C .c <a <b
D .b <a <c
7、若x x 3223-=-,则( ) A、32=
x B、32φx C、32≤x D、3
2≥x 8、满足631x x -<+的x 的最小整数是________ 9、某种商品进价为140元,出售时标价为220元,由于销售情况不好,商品准备降价出售,但要保证利润率不
低于10%,则至多可打( )
A.6折
B.7折
C.8折
D.9折
10、若)3)(1(--=x x M ,3422+-=x x N ,则M 与N 的关系为( )
A .N M ≥
B .N M >
C .N M <
D .N
M ≤ 11、关于x 的不等式x ﹣b >0恰有两个负整数解,则b 的取值范围是________________
12、已知关于x 的方程 2x +m x -2
= 3的解是正数,则m 的取值范围为__________________.
13、下课时老师在黑板上抄了一道题:x +22≥2x -13+,
是被一学生擦去的一个数字,又知其解集为x≤2,则被擦去
的数字是_______.
14、有学生若干人,住若干间宿舍,若每间住5人,则有14人无法安排住宿,若每间住8人,则最后有一间宿舍不满也不空,则学生人数为 .
15、(2017·东胜区二模)我们定义⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,例如⎪⎪⎪⎪
⎪⎪2345=2×5-3×4=10-12=-2,则不等式组1<⎪⎪⎪⎪
⎪⎪1x 34<3的解集是 . 16、某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.
(1)该水果店两次分别购买了多少元的水果?
(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有5% 的损耗,该水果店希望售完这些水果获利不低于1244元,
则该水果每千克售价至少为多少元?
17、每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,
2万元,购买2台甲型机器比购买3台乙型机器少6万元.
(1)求a、b的值;
(2)若该公司购买新机器的资金不能超过110万元,请问该公司有几种购买方案?
(3)在(2)的条件下,若公司要求每月的产量不低于2040吨,请你为该公司设计一种最省钱的购买方案.。