伽罗瓦理论的理解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
要点:
Galois关于代数方程根式可解等价于它的Galois群可解这一定理的证明思路。(1)存在性证明与数的计算相分离;如极限值、代数学基本定理、方程的根;
(2)三次方程根的置换群和五次方程根的置换群有什么不同?3个根共有3!=6个可能的置换,5个根共有5!=120个可能的置换。为什么说方程的可解性可以在根的置换群的某些性质中有所反映?
(3)方程的对称性质与有无求根公式有关系吗?
(4)GALOIS定理是通过研究根式扩张和根对称性得出来的结果.问题是怎样求一个多项式方程的GALOIS群?怎样判断GALOIS群是否可解?为什么一般的五次以上方程GALOIS群不可解,但是某些特殊的五次以上方程有根式解?x^n-1=0可用根式解,它的n个根是?
(5)假设一个多项式方程有根式解,发现了有根式的情况下,各个根的对称性要满足一定关系.五次以上的方程这个关系不一定满足.那么这个关系是什么呢?
(6)阿贝尔定理:如果一个代数方程能用根式求解,则出现在根的表达式中的每个根式,一定可以表成方程诸根及某些单位根的有理函数.
(7)怎样构造任意次数的代数可解的方程?怎样判定已知方程是否可用根式求解?怎样全部刻画可用根式求解的方程的特性?
(8)一个方程究竟有多少个根?如何预知方程的正、负、复根的个数?方程的根与系数的关系如何?方程是否一定有根式解存在?
(9)方程本身蕴涵的代数结构:
方程根的置换群中某些置换组成的子群被伽罗瓦称之为方程的群(伽罗瓦群),伽罗瓦群就是由方程的根的置换群中这样一些置换构成的子群。那么某些置换是哪些置换呢?
四次方程x^4+p*x^2+q=0的四个根的系数在方程的基本域F中有两个关系成立:x1+x2=0,x3+x4=0.在方程根的所有24=4!个可能置换中,下面8个置换
E=(1),E1=(12),E2=(34),E3=(12)(34),E4=(13)(24),E5=(1423),E6=(1324),E7= (14)(23)都能使上述两个关系在F中保持成立,并且这8个置换是24个置换中,使根之间在域F中的全部代数关系都保持不变的仅有的置换。这8个置换就是方
程在域F中的群,即伽罗瓦群。
为什么说方程的群(即伽罗瓦群)与它是否根式可解存在着本质联系呢?
四次方程x^4+p*x^2+q=0有4个根,具体哪个根是x1,x2,x3,x4,对于满足x1+x2=0,x3+x4=0这两个关系来说,有8种情况(伽罗瓦群的阶为8)
(10)描述运算封闭性和可逆性的代数结构
(11)数的分类与函数的分类?
(12)代数的分类与空间的分类?
(13)通过置换群研究有限离散群
(14)群论的研究步骤
低阶群工具http://wims.unice.fr/wims/cn_tool~algebra~smallgroup.html