高等数学 期末复习之常微分方程部分
常微分方程复习提纲
常微分方程复习与考试提纲一、复习与分值结构总体分三块,解方程部分,包括第2,4,5章,这部分内容分值在60分左右;理论部分,就是,主要是第三章,第四章,第五章等的解的存在唯一性定理以及解的结构定理20分左右;应用部分20分左右; 其次从试题难度上看70左右的基础题、常规题,20分左右的,具有一定灵活性的问题,10左右难题。
二、知识点解析(一) 解方程部分分一阶、高阶与方程组三部分1、一阶微分方程:解方程的三个思想:可分离变量类型,全微分(恰当)微分方程,参数方程法(1)可分离变量类型及其可化为可分离变量类型的方程的类型,这部分习题主要集中在P42-43,P49-50;a .齐次方程 ()y y xϕ'=,令 y x μ=即可; b .111222a x b y c y f a x b y c ⎛⎫++'= ⎪++⎝⎭;c .一些简单的组合变换,如P43,2(1),(2),(5)等;d .一阶线性微分方程及其通解公式(含伯努利方程,黎卡提方程),见P44-45,其主要思想是常数变异法,其实质是变量分离;特别提示一阶线性微分方程是目前解决的最为彻底的一类方程,应该好好掌握。
(2)全微分(恰当)微分方程及其可化为全微分微分方程的类型,这部分习题主要集中在P60-61;a .全微分(恰当)微分方程的定义及其判定的充要条件;b .要求熟记的一些简单二元函数的全微分,见P54及课堂提供;c .(,)(,)0M x y dx N x y dy +=分别具有形为()x μ、()y μ、()x y μ+和()x y μ-的充要条件及其推导,见P52;d .方程变换前的积分因子与方程变换前的积分因子之间的关系,P61,5我给大家提供的第二种解法等;e .常见用到的结论,如P61,4,5,8,11等;f .难点问题:P61 2(11),10等。
(3) 参数方程法,主要习题见P70,与P73 1 (10)(19)(20)等;a .(,),y f x y '=或(,)x f y y '=,可设y p '=(参数),然后求解;b .(,)0,F x y '=或(,)0F y y '=,视问题而灵活设定。
常微分方程知识点整理
常微分方程知识点整理常微分方程是数学中的一个重要分支,研究描述自然界中各种变化规律的微分方程。
在物理、工程、经济学等领域具有广泛的应用。
本文将对常微分方程的基本概念、分类、求解方法等知识点进行整理。
一、常微分方程的基本概念常微分方程是指未知函数的导数及其自变量的关系式。
一般形式为dy/dx = f(x, y),其中y是未知函数,x是自变量,f是已知的函数。
常微分方程可以分为一阶常微分方程和高阶常微分方程。
1. 一阶常微分方程:一阶常微分方程是指方程中只涉及到一阶导数的微分方程。
常见形式为dy/dx = f(x, y)。
其中f(x, y)是已知的函数,也可以是常数。
2. 高阶常微分方程:高阶常微分方程是指方程中涉及到二阶及以上导数的微分方程。
常见形式为d^n y/dx^n = f(x, y, dy/dx, ..., d^(n-1)y/dx^(n-1)),其中n为方程的阶数,f是已知的函数。
二、常微分方程的分类根据方程的形式和性质,常微分方程可以分为线性常微分方程、非线性常微分方程、齐次线性常微分方程等多种类型。
1. 线性常微分方程:线性常微分方程是指方程中未知函数及其导数之间的关系是线性的微分方程。
常见形式为a_n(x) d^n y/dx^n + a_(n-1)(x) d^(n-1)y/dx^(n-1) + ... + a_1(x) dy/dx + a_0(x) y = f(x),其中a_n(x)、a_(n-1)(x)、...、a_1(x)、a_0(x)是已知的函数。
2. 非线性常微分方程:非线性常微分方程是指方程中未知函数及其导数之间的关系是非线性的微分方程。
常见形式为dy/dx = f(x, y),其中f(x, y)是已知的非线性函数。
3. 齐次线性常微分方程:齐次线性常微分方程是指方程中没有常数项的线性常微分方程。
常见形式为a_n(x) d^n y/dx^n + a_(n-1)(x) d^(n-1)y/dx^(n-1) + ... + a_1(x) dy/dx + a_0(x) y = 0。
高中数学中的常微分方程知识点
高中数学中的常微分方程知识点一、引言常微分方程是数学中的一个重要分支,它在自然科学、社会科学和工程技术等领域有着广泛的应用。
高中数学中的常微分方程知识点主要包括一阶微分方程、二阶微分方程和常微分方程的解法等内容。
二、一阶微分方程1. 概念一阶微分方程是指形如dy/dx + P(x)y = Q(x)的方程,其中P(x)和Q(x)是关于自变量x的已知函数。
2. 解法(1)分离变量法:将方程中的y和x分离,化为y = f(x)的形式,然后对两边进行积分。
(2)积分因子法:找出一个函数μ(x),使得原方程两边乘以μ(x)后,可以化为dy/dx + μP(x)y = μQ(x)的形式,然后利用积分因子公式求解。
(3)变量替换法:选择一个合适的变量替换,将原方程化为简单的一阶微分方程,然后求解。
3. 例子求解方程dy/dx + 2y = e^x。
(1)分离变量法:dy/y = e^x dx∫ dy = ∫ e^x dxy = e^x + C其中C是积分常数。
(2)积分因子法:μ(x) = e^(-∫ 2dx) = e^(-2x)μ(dy/dx + 2y) = μQ(x)e^(-2x)dy/dx + 2e^(-2x)y = e(-2x)e x(-dy/dx + 2y)e^(2x) = 1-dy/dx + 2y = e^(-2x)利用积分因子公式求解,得到:y * e^(2x) = -∫ e^(-2x) dx + Cy = (-1/2)e^(-2x) + C/e^(2x)三、二阶微分方程1. 概念二阶微分方程是指形如d²y/dx² + P(x)dy/dx + Q(x)y = R(x)的方程,其中P(x)、Q(x)和R(x)是关于自变量x的已知函数。
2. 解法(1)常数变易法:假设y = e^(αx),代入原方程,得到关于α的二次方程,求解得到α的值,进而求出y的解。
(2)待定系数法:假设y = e^(αx)的系数为待定系数,代入原方程,得到关于待定系数的方程,求解得到待定系数的值,进而求出y的解。
常微分方程期末复习提纲
y ce p(x)dx, c为任意常数
20 常数变易法求解
dy P(x) y Q(x) dx
(1)
(将常数c变为x的待定函数 c(x), 使它为(1)的解)
令y c(x)e p(x)dx为(1)的解,则
dy dc(x) e p(x)dx c(x) p(x)e p(x)dx dx dx
代入(1)得
X x Y y ,
则方程化为
dY a1 X b1Y dX a2 X b2Y
为 (1)的情形,可化为变量分离方程求解.
解的步骤:
10
解方程组aa21xx
b1 b2
y y
c1 c2
0 ,
0
得解 yx
,
20
作变换YX
x y
,
方程化为
dY dX
a1 X a2 X
b1Y b2Y
第一章:绪论
一、常微分方程与偏微分方程
定义1: 联系自变量、未知函数及未知函数导数(或微分)的关 系式称为微分方程.
如果在一个微分方程中,自变量的个数只有一个,则这 样的微分方程称为常微分方程.
如果在一个微分方程中,自变量的个数为两个或两个以上,称 为偏微分方程.
二、微分方程的阶
定义2 :微分方程中出现的未知函数的最高阶导数或微分的 阶数称为微分方程的阶数.
方程两边同乘以 1 , 得
( y)
1 dy f (x)dx 0,
( y)
1
( f (x)) 0 ( y)
y
x
是恰当方程.
对一阶线性方程:
dy (P(x) y Q(x))dx 0, 不是恰当方程.
方程两边同乘以e P(x)dx , 得
e
P(
常微分方程期末复习
1.求下列方程的通解。
1sin 4-=-x e dxdyy . 解:方程可化为1sin 4-+-=x e dxde y y令ye z =,得x z dxdzsin 4+-= 由一阶线性方程的求解公式,得[]xx x dx dx ce x x c e x x e c dx xe e z -----+-=+-=+⎰⎰=⎰)cos (sin 2)cos (sin 2)sin 4()1()1(所以原方程为:y e =xcex x -+-)cos (sin 22.求下列方程的通解。
1)(122=⎥⎦⎤⎢⎣⎡-dx dy y .解:设t p dxdysin ==,则有t y sec =, 从而c tgt t tdt c tdt tgt tx +=+=+⋅=⎰⎰2sec sec sin 1,故方程的解为221)(y c x =++, 另外1±=y 也是方程的解 .3.求方程2y x dxdy+=通过)0,0(的第三次近似解. 解:0)(0=x ϕ 20121)(x xdx x x==⎰ϕ5204220121)41()(x x dx x x x x +=+=⎰ϕ dx x x x x dx x x x x x x⎰⎰⎪⎭⎫ ⎝⎛+++=⎥⎦⎤⎢⎣⎡++=0710402523201400141)20121()(ϕ 8115216014400120121x x x x +++=4.求解下列常系数线性方程。
0=+'+''x x x解:对应的特征方程为:012=++λλ, .解得i i 23,23212211--=+-=λλ 所以方程的通解为:)23sin 23cos(2121t c t c ex t +=-5.求解下列常系数线性方程。
t e x x =-'''解:齐线性方程0=-'''x x 的特征方程为013=-λ,解得231,13,21i±-==λλ, 故齐线性方程的基本解组为:i e i ee t23sin ,23cos ,2121--,因为1=λ是特征根,所以原方程有形如t tAe t x =)(,代入原方程得,tt t t e Ate Ate Ae =-+3,所以31=A ,所以原方程的通解为2121-+=e c e c x tt te i e c i 3123sin 23cos 213++-6.试求下列线性方程组的奇点,并通过变换将奇点变为原点,进一步判断奇点的类型及稳定性:5,1--=+--=y x dtdyy x dt dx 解: ⎩⎨⎧=--=+--050!y x y x 解得⎩⎨⎧-==23y x 所以奇点为()2,3-经变换,⎩⎨⎧+=-=33y Y x X方程组化为⎪⎩⎪⎨⎧-=--=Y X dtdy Y X dt dx因为,01111≠---又01)1(11112=++=+-+λλλ 所以i i --=+-=1,121λλ,故奇点为稳定焦点,所对应的零解为渐近稳定的。
常微分方程复习提要全文
式
dyi (x) dx
fi (x, y1(x),
, yn (x)), (i 1.2
n)
则称 y1(x), , yn (x) 为微分方程组(3.1)在区间 [a,b] 的一个解。
通解及通积分:
含有n个任意常数 c1, cn 的方程组(3.1)的解
y1 1(x, c1, cn )
yn
n (x, c1,
齐次方程组的解组线性相关性的判别法:
推论3.3 方程组(3.8)的n个解在其定义区间I上线性 无关的充要条件是它们的朗斯基行列式W(x)在I上任一点
不为零.
解组
线性相关 W ( x0 )=0 线性无关 W ( x0 ) 0
我们把一阶线性齐次方程组(3.8)的n个线性无关解 称为它的基本解组。其对应的矩阵称为基本解矩阵。
(其中F为已知的函数)
定义(P3) :微分方程中出现的未知函数的 最高阶导数的阶数(或微分的阶数)称为微分方程的 阶数.
定义(P4) :如果一个微分方程关于未知函数 及其各阶导数都是一次的,则称它为线性微分方程, 否则称之为非线性微分方程.
定义(P4): 设函数 y x在区间I上连续,且有
dy1
dx
a11( x) y1
a12 ( x) y2
dy2 dx
a21( x) y1
a22 ( x) y2
dyn dx
an1( x) y1
an2 ( x) y2
a1n ( x) yn f1( x),
a2n ( x) yn f2 ( x), (3.6)
ann ( x) yn fn ( x).
解法:两边除以yn ,得 yn dy p( x) y1n f ( x) dx
令z y1n ,则 dz (1 n) yn dy ,代入方程
常微分方程的大致知识点
欢迎阅读
常微分方程的大致知识点
(一)初等积分法
1、线素场与等倾线
2、可分离变量方程
3、齐次方程(一般含有x
y y x 或的项) 4、一阶线性非齐次方程
5令 6781方法:特征方程
单的实根21,λλ,x x e C e C y 2121λλ+=
单的复根i βαλ±=2,1,)sin cos (21x C x C e y x ββα+=
重的实根λλλ==21,x e x C C y λ)(21+=
重的复根i βαλ±=2,1,i βαλ±=4,3,]sin )(cos )[(4321x x C C x x C C e y x ββα+++=
2、常系数非齐次)()(x f y D L =
方法:三部曲。
第一步求0)(=y D L 的通解Y
第二步求)()(x f y D L =的特解*y
第三步求)()(x f y D L =的通解*y Y y +=
如何求*y ?
当
f 当f 当f 1当0,021><λλ,鞍点,图像
当0,021<<λλ,稳定结点,图像
当0,021>>λλ,不稳定结点,图像
第二种情况:相异复根,βαλ+=1i ,βαλ-=2i
当0=α,中心,图像
当0<α,稳定焦点,图像
当0>α,不稳定焦点,图像
第三种情况:相同实根,λλλ==21
当c b ,同时为0时,如果0>λ,不稳定临界结点,图像 如果0<λ,稳定临界结点,图像
当c b ,不同时为0时,如果0>λ,不稳定退化结点,图像
23。
(完整word)高等数学:常微分方程的基础知识和典型例题
常微分方程1 .( 05,4 分)微分方程xy 2yxln x 满足y(1)22x y)= x ln x.2 .( 06,4 分) 微分方程 y= y(1 x)的通解为 ———— x分析:这是可变量分离的一阶方程,分离变量得dy( 11)dx.积分得 ln y ln x x C 1,即 y e C1xe x yxy Cxe x, 其中C 为任意常数 .(二)奇次方程与伯努利方程1 .( 97,2,5 分) 求微分方程 (3x2 2xy y 2)dx (x 22xy)dy 0的通解解:所给方程是奇次方程 . 令 y=xu, 则 dy=xdu+udx. 代入原方程得 3 ( 1+u- u 2) dx+x(1-2 u) du=0. 分离变量得1-2u2 du 3dx, 1uu x积分得 ln 1 u u 2 3ln x C 1,即 1 u u 2=Cx 3. 以 u y代入得通解 x 2xy y 2.xx( y x 2y 2)dx xdy 0(x 0),2 .(99,2,7 分 ) 求初值问题 的解 .y x1 0分析:这是一阶线性微分方程原方程变形为 . dy +2y dx x 2 dx lnx, 两边乘 e x=x 得积分得y(1)x 2y=C+ x 2 ln xdx C 1 ln xdx 3 3 1 11 得 C 0 y xln x x.9 39 C 1 x 3 ln x 3 13 x. 9 1 的解解:所给方程是齐次方程 (因 dx, dy 的系数 (y+ x 2 y 2)与 (-x)都是一次齐次函数)令 dy xdu udx,带入得x(u 1 u 2dx x( xdu udx) 0, 化简得 12u 2dx xdu 0.分离变量得dx- du=0. x 1 u 2积分得 ln x ln(u 1 u 2) C 1,即 u 1 u 2Cx. 以 u y代入原方程通解为y+ x 2 y 2 Cx 2.x 再代入初始条件 y x 1 0,得 C=1.故所求解为 y+x 2y2x 2,或写成y 12 (x 2 1).(三)全微分方程 练习题(94,1,9 分)设 f ( x)具有二阶连续导数, f (0) 0, f (0) 1,且 [xy(x+y)- f(x)y]dx+[ f (x)+x 2y]dy=0为一全微分方程,求 f(x)以及全微分方程的通解先用凑微分法求左端微分式的原函数:122 122( y dx x dy ) 2( ydx xdy ) yd (2sin x cos x) (2sin x cos x)dy 0, 22 122d [ x y 2xy y (cos x 2sin x)] 0. 2其通解为 1x 2y 2 2xy y (cos x 2sin x) C.4.( 98,3分) 已知函数y y(x)在任意点x 处的增量 y= y2 x ,当 x0时 ,1x是 x 的高阶无穷小,y(0)= ,则 y(1)等于 ( )解:由全微分方程的条件,有 即 x22xy f (x) f (x)y因而 f (x)是初值问题y x 2[xy(x y) f(x)y] y 2xy, 亦即 f (x) f (x) x 2.2yx的解,从而解得0, y x 0 12.22[ f (x) xy], x 2sin x cosx)dy 0.(A)2 .(B) .(C)e 4 .(D) e 4 .分析:由可微定义,得微分方程 y y. 分离变量得21x1y dx2,两边同时积分得 ln y arctan x C ,即 y Ce arctanx.y1x代入初始条件y(0) ,得 C= ,于是 y(x) earctanx,由此, y(1) e 4.应选 ( D)二、二阶微分方程的可降阶类型5( . 00,3分) 微分方程 x y 3y 0的通解为分析:这是二阶微分方程的一个可降阶类型,令 y =P( x),则 y =P ,方程可化为一阶线性方程xP 3P 0,标准形式为 P+3P=0,两边乘 x 3得 (Px 3) =0. 通解为 y P C 30 .xx再积分得所求通解为 y C 22C 1.x216 .( 02,3分)微分方程 yy y 2=0满足初始条件y x 01, y x 0 2的特解是分析:这是二阶的可降阶微分方程 .令 y P(y)(以 y 为自变量 ),则 y dy dP P dP.dx dx dy代入方程得 yP dP +P 2=0,即 y dP+P=0(或 P=0, ,但其不满足初始条件y x 0 1)dy dy2分离变量得 dP dy 0,PyC积分得 ln P +ln y =C ,即 P= 1(P=0对应 C 1=0); y11由 x 0时 y 1, P=y , 得 C 1 ,于是221 y P ,2 ydy dx, 积分得 y x C 2 2y .又由 y x 0 1 得 C 2. 1,所求特解为 y 1 x.三、二阶线性微分方程(一)二阶线性微分方程解的性质与通解结构7 .( 01,3分)设 y e x(C 1sin xC 2cosx)(C 1,C 2为任意常数 )为某二阶常系数线性齐次微分方程的通解,则该方程为 ___ .r1,r2 1 i,从而得知特征方程为分析一:由通解的形式可得特征方程的两个根是22(r r1 )(r r2) r (r1 r2 )r r1r2 r 2r 2 0.由此,所求微分方程为y 2y 2y 0.分析二:根本不去管它所求的微分方程是什么类型(只要是二阶),由通解y e x(C1sinx C2 cosx)求得y e x[( C1 C2 )sin x (C1 C2)cos x], y e x( 2C2 sin x 2C1 cos x),从这三个式子消去C1与C2,得y 2y 2y 0.(二)求解二阶线性常系数非齐次方程9.( 07,4分) 二阶常系数非齐次线性微分方程y 4y 3y 2e2x的通解为y=分析:特征方程24 3 ( 1)( 3) 0的根为1, 3.非齐次项 e x, 2不是特征根,非齐次方程有特解y Ae2x.代入方程得(4A 8A 3A)e2x2e2x A 2.因此,通解为y C1e x C2e3x2e2x..10.(10,10分 )求微分方程y 3y 2y 2xe x的通解.分析:这是求二阶线性常系数非齐次方程的通解.1由相应的特征方程2 3 2 0, 得特征根 1 1, 2 2 相应的齐次方程的通解为y C1e x C2e2x.2非齐次项 f ( x) 2xe x , 1是单特征根,故设原方程的特解xy x(ax b)e .代入原方程得ax2 (4a b)x 2a 2b 3[ax2 (2a b)x b] 2(ax2 bx) 2x,即 2ax 2a b 2x, a 1,b 2.3原方程的通解为y C1e x C2e2x x(x 2)e x,其中 C1,C2为两个任意常数.04, 2, 4分)微分方程y y x2 1 sin x的特解形式可设为( )22(A)y ax bx c x(Asin x B cosx).(B)y x(ax bx c Asin x B cos x).22(C)y ax bx c Asin x.(D )y ax bx c Acosx.分析:相应的二阶线性齐次方程的特征方程是2 1 0,特征根为i .y y x2 1L()与 1 y y sin xL( 2)方程 (1) 有特解 y ax2 bx c,方程(2)的非齐次项 f (x) e x sin x sin x( 0, 1,i 是特征根), 它有特解y x(Asin x B cosx).y ax2 bx c x(Asin x Bbcosx).应选 (A).(四)二阶线性变系数方程与欧拉方程12.(04, 4分 )欧拉方程x2 d2y 4x dy 2y 0(x 0)的通解为dx dx分析:建立 y 对 t 的导数与y 对 x 的导数之间的关系 .222dy dy dx dyd y d y 2 dy 2 d y dy( sin x), 2 2 sin t cost (1 x ) 2 x .dt dx dt dx dt dx dx dx dxd 2y于是原方程化为 2 y 0,其通解为 y C 1 cost C 2sint.dt 2 回到 x 为自变量得 y C 1x C 2 1 x 2.x由 y (0) C 2 1 C 2 1.y(0) C 1x 02 C 1 2.1 x 2因此 特解为 y 2x 1 x 2 .四、高于二阶的线性常系数齐次方程13.( 08, 4分)在下列微分方程中,以 y C 1e xC 2cos2x C 3 sin 2x(C 1, C 2, C 3为任意常数)为通 解的是()(A)y y 4y 4y 0.(B)y y 4y 4y 0. (C)y y 4y 4y 0.(D ) y y 4y 4y 0.分析:从通解的结构知,三阶线性常系数齐次方程相应的三个特征根是: 1, 2i(i 1),对 应的特征方程是 ( 1)( 2i)( 2i) ( 1)( 24) 3244 0,因此所求的微分方程是 y y 4y 4y 0,选(D).(00,2,3分 ) 具有特解 y 1 e x , y 2 2xe x ,y 3 3e x的三阶常系数齐次线性微分方程是( )(A)y y y y 0.(B)y y y y 0. (C)y 6y 11y 6y 0.(D)y2y y 2y 0.分析:首先,由已知的三个特解可知特征方程的三个根为 r 1 r 21,r 3 1,从而特征方程为(1)求导数 f (x); (2)证明:当 x 0时 ,成立不等式 e分析:求解欧拉方程的方法是:作自变量22d y dy d y dy 2 (4 1) 2y 0,即 2 3 2y xe t(t l n x),将它化成常系数的情形: 0.1, 2 2, 通解为 yC 1e t C 2e 2t. y C 1 x C 22,其中C 1,C 2为任意常数(05,2,12分 )用变量代换 xcost (0 t)化简微分方程 (1 x 2)y xy y 0,并求其(r 1)2(r 1) 0,即r3r 2r 1 0,由此,微分方程为y y y y 0.应选(D).五、求解含变限积分的方程00, 2,8分) 函数y=f(x)在0, 上可导,f (0) 1,且满足等式1xf (x) f (x) 1 f (t)dt 0,x10f(x) 1.求解与证明()首先对恒等式变形后两边求导以便消去积分: 1x(x 1)f (x) (x 1)f(x) 0f (t)dt 0,(x 1)f (x)(x 2)f (x)0.在原方程中令变限 x 0得 f (0) f (0) 0,由 f (0) 1,得 f (0) 1.现降阶:令 u f (x),则有 u x 2u 0,解此一阶线性方程得x1x e f (x) u C eu 0x1 x e 由 f (0) 1,得 C 1,于是 f (x) e. x1xe (2)方法 1 用单调性 . 由f (x) e0(x 0), f (x)单调减 , f(x) f(0) 1(x );x1x 又设 (x) f (x) e x ,则 (x) f (x) e x x e x0(x 0), (x)单调增,因此 (x)x1 (0) 0(x 0),即 f(x) e x(x 0) . 综上所述,当 x 0时 ,e x f (x) 1.方法 2 用积分比较定理 . 由 牛顿 -莱布尼茨公式,有六、应用问题 (一)按导数的几何应用列方程 练习题 1 .( 96,1,7分)设对任意 x 0,曲线 y f(x)上点 (x, f(x))处的切线在 y 轴上的截距等于1 xf (t)dt,求 f ( x)的一般表达式 . x 0解:曲线 y f (x)上点 (x, f ( x))处的切线方程为 Y f ( x) f ( x)( X x).令 X 0得 y 轴上的截距 Y f(x) xf (x).由题意 1x1f(t)dt f(x) xf (x) x 0x, 得x 2f(t)dt xf (x) x 2f (x)( ) 恒等式两边求导,得 f (x) f (x) xf (x) 2xf (x) x 2f ( x),即 xf (x) f (x) 0 在 ( )式中令 x 0得 0 0,自然成立 . 故不必再加附加条件. 就是说f (x)是微分方程 xy y 0的通解 . 令 y P(x),则 y P ,解 xP P 0,得 y P C 1.xf ( x) f (0) x0 f (t)dt, f(x) t 由于 0 e t1从而有 e x e t (t 0),有 0 f (x) 1. 0t e t d t 1 dt . 1 x t e t dt x e (x再积分得 y f ( x) C1 ln x C2.12( . 98,2,8分) 设 y y(x)是一向上凸的连续曲线 ,其上任意一点 (x, y)处的曲率为 1,1 y 2y P tan( x).(二 )按定积分几何应用列方程3.(97,2,8分 )设曲线 L 的极坐标方程为 r r( ), M (r, )为 L 上任一点 ,M 0(2,0)为 L 上一定点 ,若极径 OM 0,OM 与曲线 L 所围成的曲边扇形面积值等于 L 上 M 0、 M 两点间弧长值的一半, 求曲线L 的方程 .且此曲线上点 (0,1)处的切线方程为 y x 1, 求该曲线的方程,并求函数 y y( x)的极值 .解:由题设和曲率公式有y( x)向上凸 , y 0, y令 y P(x),则 y P ,方程化为 y) ,化简得 y 12. yP1 P 21, dP 分离变量得 2 dx,积分得C 1.y (0) 1即 P(0) 1,代入可得 C 1,故再积分得 y ln cos( x) C 2 又由题设可知y(0)1,代入确定 C 2 11ln 2,1y ln cos( x) 1 ln 2x , 即当 4 2,3时 ,cos( x) 0, 而3 或 时, 44cos( x)y ln cos( 40,ln cos( x)1 x) 12 ln2( 4 x34 )显然,当 x 时 ,ln cos( x) 4410, y 取最大值 1 1ln 2,显然 y 在 (3),没有极小值解:由已知条件得r 2d r 2 r 2d , 2020 两边对 求导 ,,得 r 2 r 2 r (隐式微分方程)2 ,解出 r r r 2 1,从而, L 的直角坐标方程为 x m 3y 2.1 arccos r 分离变量,得 dr r r 2 dr r r 2 1 d 1 1 d( )1 r (r 1)2 arccos 1 , 或 r dr r r 2 1d tarccos 1(r sect ) 两边积分,得 代入初始条件 r(0) 2,得 1arccos 2 1arccos r3L 的极坐标方程为 1 r cos( ) 31 co s 3si。
常微分方程期末考试练习题及答案
一,常微分方程的基本概念常微分方程:含一个自变量x,未知数y及若干阶导数的方程式。
一般形式为:F(x,y,y,.....y(n))=0 (n≠0).1. 常微分方程中包含未知函数最高阶导数的阶数称为该方程的阶。
如:f(x)(3)+3f(x)+x=f(x)为3阶方程。
2.若f(x)使常微分方程两端恒等,则f(x)称为常微分方程的解。
3.含有独立的任意个常数(个数等于方程的阶数)的方程的解称为常微分方程的通解。
如常系数三阶微分方程F(t,x(3))=0的通解的形式为:x(t)=c1x(t)+c2x(t)+c3x(t)。
4.满足初值条件的解称为它的特解(特解不唯一,亦可能不存在)。
5.常微分方程之线性及非线性:对于F(x,y,y,......y(n))=0而言,如果方程之左端是y,y,......y(n)的一次有理式,则次方程为n阶线性微分方程。
(方程线性与否与自变量无关)。
如:xy(2)-5y,+3xy=sinx 为2阶线性微分方程;y(2)+siny=0为非线性微分方程。
注:a.这里主要介绍几个主要的,常用的常微分方程的基本概念。
余者如常微分方程之显隐式解,初值条件,初值问题等概念这里予以略去。
另外,有兴趣的同学不妨看一下教材23页的雅可比矩阵。
b.教材28页第八题不妨做做。
二.可分离变量的方程A.变量分离方程1.定义:形如dxdy=f (x)φ(y)的方程,称为分离变量方程。
这里f (x ),φ(x )分别是x ,y 的连续函数。
2.解法:分离变量法⎰⎰+=c dx x f y dy)()(ϕ. (*) 说明: a 由于(*)是建立在φ(y )≠0的基础上,故而可能漏解。
需视情况补上φ(y )=0的特解。
(有时候特解也可以和通解统一于一式中)b.不需考虑因自变量引起的分母为零的情况。
例1.0)4(2=-+dy x x ydx解:由题意分离变量得:042=+-ydy x dx即:0)141(41=+--ydydx x x 积分之,得:c y x x =+--ln )ln 4(ln 41故原方程通解为:cx y x =-4)4( (c 为任意常数),特 解y=0包含在通解中(即两者统一于一式中)。
《常微分方程》知识点整理
《常微分方程》知识点整理常微分方程是微分方程的一种,是研究一个独立变量和一个或多个其导数(常见的是一阶或二阶导数)之间关系的方程。
常微分方程在物理、工程、生物学等领域起着重要作用,广泛应用于实际问题的建模和求解过程中。
1.常微分方程的基本定义常微分方程是指未知函数及其导数之间的一个或多个方程。
它可以是一个方程或一组方程,通常描述了函数值与其导数之间的关系,而不涉及到偏导数。
常微分方程可以分为线性常微分方程、非线性常微分方程等多种类型。
2.常微分方程的阶数常微分方程的阶数是指方程中导数的最高阶数。
常见的常微分方程有一阶常微分方程和二阶常微分方程。
一阶常微分方程形式为dy/dx = f(x, y),二阶常微分方程形式为d^2y/dx^2 = f(x, y, dy/dx)。
3.常微分方程的初值问题常微分方程的初值问题是指在给定一定条件下求解微分方程的解的过程。
它通常通过确定未知函数在其中一点的值以及其导数在该点的值来确定微分方程的解。
求解初值问题需要借助于初值条件和积分常数等概念。
4.常微分方程的解法常微分方程的解法主要包括分离变量法、常数变易法、特征方程法、变量代换法等。
这些方法能够将微分方程转化为容易求解的形式,从而得到微分方程的解析解。
5.常微分方程的数值解法对于复杂的微分方程或无法求得解析解的微分方程,可以采用数值解法进行求解。
常见的数值解法包括欧拉法、改进的欧拉法、龙格-库塔法等,通过数值逼近的方式得到微分方程的近似解。
6.常微分方程的应用常微分方程广泛应用于物理学、工程学、生物学等领域的建模和分析过程中。
例如,牛顿第二定律、振动系统、生物种群动力学等问题都可以用常微分方程来描述和求解。
7.常见的常微分方程问题常见的常微分方程问题包括一阶线性微分方程、二阶线性微分方程、常系数微分方程、非齐次微分方程等。
这些问题在实际应用中经常遇到,求解这些问题需要掌握基本的微分方程理论和方法。
总的来说,常微分方程是微分方程理论中的一个重要分支,它研究了函数与导数之间的关系,并在实际问题的建模和求解中发挥着关键作用。
常微分方程的大致知识点
常微分方程的大致知识点一、基本概念1. 微分方程:包含未知函数及其导数的方程。
一般形式为dy/dx = f(x, y)。
2.隐式解:由微分方程定义的函数关系,即常微分方程的解。
3.解的阶:微分方程解中导数的最高阶数。
4.初值问题:给定微分方程解及其导数在其中一点的初始条件,求解在该点上的特定解。
二、分类根据微分方程中未知函数的阶数、系数是否包含自变量,以及方程是否含有非线性项,常微分方程可以分为以下几类:1.一阶微分方程:- 可分离变量方程:dy/dx = g(x)/h(y),通过变量分离可将方程化为两个变量的乘积。
- 齐次方程:dy/dx = f(x, y),通过变量代换将方程化为变量分离方程。
- 一阶线性方程:dy/dx + P(x)y = Q(x),通过积分因子法求解。
- Bernoulli方程:dy/dx + P(x)y = Q(x)y^n,通过变换化为线性方程求解。
2.二阶微分方程:- 齐次线性方程:d^2y/dx^2 + P(x)dy/dx + Q(x)y = 0,通过特征方程求解。
- 非齐次线性方程:d^2y/dx^2 + P(x)dy/dx + Q(x)y = f(x),通过待定系数法和特解法求解。
- 常系数线性方程:d^2y/dx^2 + a dy/dx + by = f(x),通过特征方程和特解法求解。
三、解法1.变量分离法:一阶微分方程中的可分离变量方程通过将未知函数与自变量的微分分离,然后两边同时积分得到解。
2.变量代换法:一阶微分方程中的齐次方程通过将未知函数表示为新的变量,从而将方程化为分离变量方程。
3.积分因子法:一阶线性方程通过找到一个适当的函数作为积分因子,然后将方程乘以积分因子,从而使得方程左侧成为一个全微分。
4.特征方程法:二阶齐次线性方程通过设解为指数函数的形式,通过特征方程求解。
5.待定系数法:二阶非齐次线性方程通过假设特解为其中一形式的函数,然后解出系数。
《常微分方程》知识点整理
dyydy1.(变量分离方程)形如dx 《常微分方程》复习资料f (x )ϕ( y )(1.1)的方程,称为变量分离方程,这里 f (x ),ϕ( y ) 分别是 x , y 的连续函数.dy解法:(1)分离变量,当ϕ( y ) ≠ 0 时,将(1.1)写成ϕ( y )= f (x )dx ,这样变量就“分离”了;(2)两边积分得⎰ ϕ( y ) = ⎰f (x )dx + c (1.2),由(1.2)所确定的函数 y = ϕ(x , c ) 就为(1.1)的解.注:若存在 y 0 ,使ϕ( y 0 ) = 0 ,则 y = y 0 也是(1.1)的解,可能它不包含在方程(1.2)的通解中,必须予以补上.dyy2.(齐次方程)形如 = g ( ) 的方程称为齐次方程,这里 g (u ) 是u 的连续函数.dx x解法:(1)作变量代换(引入新变量) u = ,方程化为 xdu = g (u ) - u ,(这里由于 dx x dy = x du dx dx + u ); (2) 解以上的分离变量方程; (3) 变量还原.3.(一阶线性微分方程与常数变异法)一阶线性微分方程 a (x ) dy dx+ b (x ) y + c (x ) = 0 在 a (x ) ≠ 0 的区间上可写成dy= P (x ) y + Q (x ) (3.1),这里假设 P (x ), Q (x ) 在考虑的区间上是 x 的连续函数.若 Q (x ) = 0 ,则(3.1)变为 dx dy= P (x ) y (3.2),(3.2)称为一阶齐次线性方程.若Q (x ) ≠ 0 ,则(3.1)称为一阶非齐次线性方程. dx解法:(1)解对应的齐次方程 dy= P (x ) y ,得对应齐次方程解 y = ce ⎰ p ( x ) dx , c 为任意常数;dx(2)常数变异法求解(将常数c 变为 x 的待定函数c (x ) ,使它为(3.1)的解):令 y = c (x )e ⎰p ( x )dx为(3.1)的解,则dy = dc (x ) e ⎰ p ( x )dx + c (x ) p (x )e ⎰ p ( x )dx ,代入(3.1)得 dc (x )= Q (x )e -⎰ p ( x )dx ,积分得c (x ) = ⎰ Q (x )e -⎰ p ( x )dx + c ; dx dx dx(3)故(3.1)的通解为 y = e ⎰p ( x )dx(⎰ Q (x )e -⎰ p ( x )dxdx + c ) .4.(伯努利方程)形如dy = P (x ) y + Q (x ) y n 的方程,称为伯努利方程,这里 P (x ), Q (x ) 为 x 的连续函数.dx解法:(1)引入变量变换 z = y1-n,方程变为dz = (1- n )P (x )z + (1- n )Q (x ) ;dx(2) 求以上线性方程的通解; (3) 变量还原.5.(可解出 y 的方程)形如 y =dyf (x , dy) (5.1)的方程,这里假设 f (x , y ') 有连续的偏导数. dx解法:(1)引进参数 p = ,则方程(5.1)变为 y = dxf (x , p ) (5.2);(2) 将(5.2)两边对 x 求导,并以 dy = p 代入,得 p = ∂f + ∂f ∂p(5.3),这是关于变量 x , p 的一阶微分方dx ∂x ∂p ∂x程;(3)(i )若求得(5.3)的通解形式为 p = ϕ(x , c ) ,将它代入(5.2),即得原方程(5.1)的通解 y =f (x ,ϕ(x ,c )) ,c 为任意常数;=⎩⎩ ⎩dy ⎩dy ⎩ ⎧x =ψ ( p , c )(ii )若求得(5.3)的通解形式为 x =ψ ( p , c ) ,则得(5.1)的参数形式的通解为⎨y =,其中f (ψ ( p , c ), p )p 是参数, c 是任意常数;⎧Φ(x , p , c ) = 0(iii ) 若求得(5.3)的通解形式为Φ(x , p , c ) = 0 ,则得(5.1)的参数形式的通解为⎨ y = f (x , p ),其中 p是参数, c 是任意常数.6.(可解出 x 的方程)形如 x =dyf ( y , dy ) (6.1)的方程,这里假设 f ( y , y ') 有连续的偏导数. dx解法:(1)引进参数 p = ,则方程(6.1)变为 x = dxf ( y , p ) (6.2);(2) 将(6.2)两边对 y 求导,并以 dx = 1 代入,得 1 = ∂f +∂f ∂p(6.3),这是关于变量 y , p 的一阶微分方 dy p p ∂y ∂p ∂y程;⎧x = f ( y , p )(3)若求得(6.3)的通解形式为Φ( y , p , c ) = 0 ,则得(6.1)的参数形式的通解为⎨Φ( y , p , c ) = 0 ,其中 p 是参数, c 是任意常数.7.(不显含 y 的方程)形如 F (x , dy) = 0 的方程,这里假设 F (x , y ') 有连续的偏导数. dx解法:(1)设 p =,则方程变为F (x , p ) = 0 ;dx⎧x = ϕ(t )(2)引入参数t ,将 F (x , p ) = 0 用参数曲线表示出来,即⎨⎩ ,(关键一步也是最困难一步); =ψ (t )(3) 把 x = ϕ(t ) , p =ψ (t ) 代入 dy = pdx ,并两边积分得 y =⎰ψ (t )ϕ'(t )dt + c ;⎧⎪x = ϕ(t )(4) 通解为⎨⎪ y = ⎰ ψ (t )ϕ'(t )dt + c . 8.(不显含 x 的方程)形如 F ( y , dy) = 0 的方程,这里假设 F ( y , y ') 有连续的偏导数.dx解法:(1)设 p = ,则方程变为 F ( y , p ) = 0 ; dx⎧ y = ϕ(t )(2)引入参数t ,将 F ( y , p ) = 0 用参数曲线表示出来,即⎨ p =ψ ,(关键一步也是最困难一步); (t )dyϕ'(t )(3)把 y = ϕ(t ) , p =ψ (t ) 代入 dx = p ,并两边积分得 x = ⎰ ψ dt + c ;(t )⎧x = ϕ'(t )⎪ (4)通解为⎨dt + c ψ (t ) . ⎪⎩y = ϕ(t ) 9.( F (x , y(k ), , y (n -1) , y n ) = 0(k ≥ 1) 型可降阶高阶方程)特点:不显含未知函数 y 及 y ', , y (k -1) .p ⎰解法:令y(k ) =z(x) ,则y(k +1) =z',y(n)=z(n-k ) .代入原方程,得F (x, z(x), z'(x), , z(n-k ) (x)) = 0 .若能求得z(x) ,1 = +⎰x ⎪ 0n 0 ⎰⎪ ⎨ dx将 y(k )= z (x ) 连续积分 k 次,可得通解.10.( y(n )= f ( y , y (k ) , , y (n -1) ) 型可降阶高阶方程)特点:右端不显含自变量 x .' '' = dp dy dP ''' 2 d 2p dP 2 解法:设 y = p ( y ) ,则 y = P , y = P + P ( ) , ,代入原方程得到新函数 P ( y ) 的(n -1) 阶 dy dx dy dy 2dydy dy方程,求得其解为 dx = P ( y ) = ϕ( y , C 1, , C n -1 ) ,原方程通解为⎰ ϕ( y , C , , Cn -1 )= x + C n .11.(恰当导数方程)特点:左端恰为某一函数Φ(x , y , y ', , y (n -1)) 对 x 的导数,即 ddxΦ(x , y , y ', , y (n -1) ) = 0 .解法:类似于全微分方程可降低一阶Φ(x , y , y ', , y (n -1)) = C ,再设法求解这个方程.12.(齐次方程)特点: F (x , ty , ty ', , ty (n )) = t k F (x , y , y ', , y (n ) ) ( k 次齐次函数).解法:可通过变换 y = e ⎰zdx将其降阶,得新未知函数z (x ).因为 y ' = ze ⎰zdx, y ' = (z '+ z 2)e ⎰zdx, , y(n )= Φ(z , z ', , z (n -1) )e ⎰zdx,代入原方程并消去e k ⎰ zdx ,得新函数 z (x ) 的(n -1) 阶方程 f (x , z , z ', , z (n -1)) = 0 .⎧dy13.(存在唯一性定理)考虑初值问题⎪ dx f (x , y ) (13.1),其中 f (x , y ) 在矩形区域 R : x - x≤ a , y - y≤ b 上连⎨0 0 ⎪ y (x ) = y ⎩ 0 0续,并且对 y 满足 Lipschitz 条件:即存在 L > 0 ,使对所有(x , y 1 ), (x , y 2 ) ∈ R 常成立 bf (x , y 1 ) - f (x , y 2 ) ≤ L y 1 - y 2 , 则初值问题(13.1)在区间 x - x 0 ≤ h 上的解存在且唯一,这里h = min(a ,M), M = Max ( x , y )∈R f (x , y ) .x初值问题(13.1)等价于积分方程 y y 0 0 ⎧ϕ (x ) = yf (t , y )dt ,构造Picard 逐步逼近函数列{ϕn (x )}⎨ϕ (x ) = y +f (ξ,ϕn -1(ξ ))dxx 0 ≤ x ≤ x 0 + h , n = 1, 2, .⎩x 014.(包络的求法)曲线族Φ(x , y , c ) = 0 (14.1)的包络包含在下列两方程 ⎧Φ(x , y , c ) = 0 Φ' (x , y , c ) = 0消去参数c 而得到的曲线⎩ c F (x , y ) = 0 之中.曲线 F (x , y ) = 0 称为(14.1)的c - 判别曲线.15.(奇解的直接计算法)方程 F (x , y , dy) = 0(15.1)的奇解包含在由方程组⎧F (x , y , p ) = 0 消去参数 p 而得到的曲dx ⎨F '(x , y , p ) = 0 ⎩ c线Φ(x , y ) = 0 之中,此曲线称为(15.1)的 p - 判别曲线,这里 F (x , y , p ) = 0 是 x , y , p 的连续可微函数. 注: p - 判别曲线是否为方程的奇解,尚需进一步讨论. 16.(克莱罗方程)形如 y = xdy+ f ⎛ dy ⎫(16.1)的方程,称为克莱罗方程,这里 f ''( p ) ≠ 0 . ⎪ dx ⎝ ⎭= x⎨y = xp + f ( p )⎩x (t ) x (t ) x (t ) 解法:令 p = dy,得 y = xp + f ( p ) .两边对 x 求导,并以dy= p 代入,即得 p = x dp + p + f '( p ) dp,经化简, dx得dp[x + f '( p )] = 0 . dx dpdx dx dx如果 = 0 ,则得到 p = c .于是,方程(16.1)的通解为: y = cx + f (c ) .dx如果 x + f '( p ) = 0 ,它与等式 y = xp + f ( p ) 联立,则得到方程(16.1)的以 p 为参数的解:⎧x + f '( p ) = 0或⎩⎧x + f '(c ) = 0 ⎨y = xc + f (c )其中c 为参数.消去参数 p 便得方程的一个解.17.(函数向量组线性相关与无关)设 x 1 (t ), x 2 (t ), , x m (t ) 是一组定义在区间[a , b ] 上的函数列向量,如果存在一组不全为 0 的常数c 1 , c 2 , c m ,使得对所有 a ≤ t ≤ b ,有恒等式c 1 x 1 (t ) + c 2 x 2 (t ) + + c m x m (t ) = 0 , 则称 x 1 (t ), x 2 (t ), , x m (t ) 在区间[a , b ] 上线性相关;否则就称这组向量函数在区间[a , b ] 上线性无关.⎡ x 11 (t )⎤ ⎡ x 12 (t ) ⎤ ⎡ x 1n (t ) ⎤⎢ x (t )⎥ ⎢ x (t )⎥ ⎢ x (t )⎥ 18.(Wronsky 行列式)设有 n 个定义在 a ≤ t ≤ b 上的向量函数 x (t ) = ⎢ 21 ⎥ , x (t ) = ⎢ 22 ⎥ , , x (t ) = ⎢ 2n ⎥ , 1 ⎢ ⎥ 2 ⎢ ⎥ n ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ n 1 ⎦ ⎣ n 2 ⎦ ⎣ nn⎦ x 11 (t ) x 12 (t ) x 1n (t ) x 21 (t ) x 22 (t ) x 2n (t )由这 n 个向量函数所构成的行列式W [x 1 (t ), x 2 (t ), x n (t ) W (t ) ≡称为这 n 个向量函数所构成的 Wronsky 行列式.x n 1 (t ) x n 2 (t ) x nn (t )如果向量函数 x 1 (t ), x 2 (t ), , x n (t ) 在 a ≤ t ≤ b 上线性相关,则它们的 Wronsky 行列式W (t ) ≡ 0, a ≤ t ≤ b . 19.(基解矩阵的计算公式)(1) 如果矩阵 A 具有 n 个线性无关的特征向量v 1, v 2 , , v n ,它们相应的特征值为λ1, λ2 , , λn (不必互不相同),那么矩阵Φ(t ) = [e λ1t v , e λ2t v , , e λn tv ], -∞ < x < +∞ 是常系数线性微分方程组 x ' = Ax 的一个基解矩阵;12n(2) 矩阵 A 的特征值、特征根出现复根时(略); (3) 矩阵 A 的特征根有重根时(略).d n x d n -1 x 20.(常系数齐线性方程)考虑方程 L [x ] = dt n为n 阶常系数齐线性方程.+ a 1 dt n -1 + + a n x = 0 (20.1),其中 a 1, a 2 , a n 为常数,称(20.1)解法:(1)求(20.1)特征方程的特征根λ1, λ2 , , λk ;(2) 计算方程(20.1)相应的解:(i ) 对每一个实单根λk ,方程有解eλk t;(ii ) 对每一个 m > 1重实根λk ,方程有 m 个解: eλk t, t e λk t , t 2e λk t , , t m -1e λk t ;m m m 2 ⎨1 ⎩(iii ) 对每一个重数是 1 的共轭复数α ± β i ,方程有两个解: eαtcos β t , e αt sin β t ;(iv ) 对每一个重数是 m > 1的共轭复数αe αt cos β t , te α t cos β t , , t m -1e α t cos β t ;± βi ,方程有2m 个解: ;e αt sin β t , te αt sin β t , , t m -1e αtsin β t(3) 根据(2)中的(i )、(ii )、(iii )、(iv )情形,写出方程(20.1)的基本解组及通解.21.(常系数非齐次线性方程) y ' + py ' + qy = f (x ) 二阶常系数非齐次线性方程对应齐次方程 y '' + py ' + qy = 0 ,通解结构 y = Y + y .设非齐次方程特解 y = Q (x )e λ x 代入原方程 Q ''(x ) + (2λ + p )Q '(x ) + (λ 2+ p λ + q )Q (x ) = P (x )(1)若λ 不是特征方程的根, λ 2+ p λ + q ≠ 0 ,可设Q (x ) = Q (x ) , y = Q m (x )e λ x;(2)若λ 是特征方程的单根, λ 2 + p λ + q = 0 , 2λ + p ≠ 0 ,可设Q (x ) = xQ (x ) ,y = xQ m (x )e λ x;(3)若λ 是特征方程的重根, λ 2 + p λ + q = 0 , 2λ + p = 0 ,可设Q (x ) = x 2Q (x ) , y = x 2Q (x )eλ x.综上讨论,设 y = x k eλ xQ(x ) , ⎧0λ不是根⎪ λ 是单根. ⎪ λ是重根m m m k =。
常微分方程知识点总结
常微分方程知识点总结1. 常微分方程的定义:常微分方程是指包含未知函数及其导数的方程。
一般形式为:dy/dx=f(x,y)。
其中,y为未知函数,x为自变量,f为已知函数。
2.常微分方程的分类:常微分方程可分为一阶常微分方程和高阶常微分方程。
一阶常微分方程包含未知函数的一阶导数,高阶常微分方程则包含未知函数的高阶导数。
3.一阶常微分方程的解法:一阶常微分方程的解法有几种常见的方法。
一种是分离变量法,即将方程两边进行变量分离,然后进行积分。
另一种是齐次方程法,将方程进行变量替换后化为齐次方程,然后进行求解。
还有一种是线性方程法,将方程化为线性方程,然后进行求解。
4.高阶常微分方程的解法:对于高阶常微分方程,常用的方法是特征根法。
通过求解其特征方程得到特征根,然后根据特征根的个数和重数,确定齐次线性微分方程的通解形式。
再根据待定系数法确定非齐次线性微分方程的一个特解,进而得到非齐次线性微分方程的通解。
5.常微分方程的初值问题:常微分方程的初值问题指的是给定一个初始条件,求解满足该条件的函数。
在求解过程中,需要将初始条件代入方程,得到特定的常数,从而确定唯一的解。
6.常微分方程的数值解法:对于一些难以求解的常微分方程,可以采用数值解法进行求解。
常见的数值解法包括欧拉法、龙格-库塔法、亚当斯法等。
这些方法通过将微分方程转化为差分方程,然后进行迭代计算,逼近微分方程的解。
7.常微分方程的稳定性分析:稳定性分析是研究常微分方程解的长期行为。
可以通过线性化理论、相图等方法进行稳定性分析。
线性化理论通过线性化方程,判断非线性常微分方程解的稳定性。
相图是一种可视化的方法,通过绘制解的轨迹图,观察解的长期行为。
8.常微分方程的应用:常微分方程在各个领域都有广泛的应用。
在物理学中,常微分方程可以描述运动学问题、电路问题等。
在工程学中,可以应用于控制系统、电力系统等。
在生物学中,可以用于建立生物模型、研究生物过程等。
总结起来,常微分方程是数学中的一门重要学科,研究的是包含未知函数及其导数的方程。
常微分方程-总复习
dy a1 x b1 y c1 dx a2 x b2 y c2
dx
x
2.3 恰当方程和积分因子 2.3.1 恰当方程 定义、判别方法、求解方法 2.3.2 积分因子 定义、特殊类型方程的积分因子的求法 2.4 一阶隐方程和参数表示
第三章 一阶微分方程解的存在定理
解的存在唯一性定理的内容及证明过程。
近似计算和误差估计;
解对初值的可微性
第四章 高阶微分方程
4.1 线性微分方程的一般理论 4.1.1 齐线性方程解的性质与结构 定理2-定理6 4.1.2 非齐线性方程与常数变易法 定理7 常数变易法 4.2 常系数线性方程的解法 4.2.2 复值函数与复值解 复值函数的运算性质、定理8、定理9
4.2.2 常系数齐线性方程和欧拉方程 欧拉待定指数函数法、根据特征根的性质确定 方程的基本解组、欧拉方程的求解 4.2.3 非齐线性方程-比较系数法
第五章 线性微分方程组
5.1 解的存在唯一性定理 5.1.1 记号和定义 将n阶线性微分方程的初值问题化为等价的微分 方程组的初值问题 5.1.2 存在唯一性定理 5.2 线性微分方程组的一般理论 5.2.1 齐线性微分方程组
定理2-定理6 定理1*定理2* 5.2.2 非齐线性微分方程组 定理7 定理8 常数变易公式
常微分方程
总复习
第一章 绪论
基本概念 常微分方程、偏微分方程、微分方程的阶 线性和非线性微分方程 解:隐式解、通解、特解 积分曲线
第二章 一阶微分方程
2.1 变量分离方程和变量变换 2.1.1 变量分离方程 2.1.2 可化为变量分离方程的类型 y 1) dy g
2) 2.2 线性方程与常数变易法 一阶齐线性微分方程、一阶非齐线性微分方程、 伯努利方程
(完整版)高等数学期末复习考试之常微分方程部分.doc
第 11 章 常微分方程习题课一 .内容提要1.基本概念含有一元未知函数 y( x) ( 即待求函数 )的导数或微分的方程 ,称 为常微分方程 ;其中出现的 y( x) 的最高阶导数的阶数称为此微分方 程的阶; 使微分方程在区间 I 上成为恒等式的函数 y( x) 称为此微分方程在 I 上的解 ;显然一个微分方程若有解 ,则必有无穷多解 ;若 n 阶微分方程的解中含有 n 个不可合并的任意常数 ,则称其为此微分方程的 通解 ;利用 n 个独立的附加条件 (称为定解条件 )定出了所有任意常数的解称为 特解 ;微分方程连同定解条件一起 ,合称为一个定解问题 ;当定解条件是初始条件(给出 y, y ,, y ( n 1) 在同一点x 0 处的值 )时 ,称为初值问题 .2.一阶微分方程 y f ( x, y) 的解法(1)对于可分离变量方程dy(x) ( y) ,dx先分离变量 (当 ( y) 0 时)得 dy(x)dx ,ψ( y)再两边积分即得通解dy (x)dx C .( y)dyf y ,x(2)对于齐次方程 dx作变量代换y,即 yxu ,可将其化为可分离变量的方程 ,分x u 离变量后 ,积分得dudx C 再以y代替 u 便得到齐次方f (u) uxx程的通解 .(3)形如dyf ( ax by c) 的方程 , dxa 1 xb 1 yc 1 ①若 c,c 1 均为零 ,则是齐次方程 ;②若 c,c 1 不全为零 ,则不是齐次方程 ,但当ab k 时 ,只要作变换 va 1xb 1 y ,即可化为可分离a 1b 1变量的方程dvb 1 f (kvc ) a 1 ;dxv c 1当 a b时,只要作平移变换Xx x 0, 即a 1b 1 Y y y 0 x X x 0 ( 其中 (x 0 , y 0 ) 是线性方程组 ax byc 0 的惟一y Y y 0 a 1 x b 1 y c 1 0解 ),便可化为齐次方程dYf ( aX bY) .dXa 1 Xb 1Y(4)全微分方程若 方 程 P(x, y)dx Q ( x, y) dy 0 之 左 端 是 某 个 二 元 函 数u u( x, y) 的全微分 ,则称其为 全微分方程 ,显然 u( x, y)C 即为通解 ,而原函数 u( x, y) 可用曲线积分法、不定积分法或观察法求得.通常用充要条件 PQ 来判定 P( x, y)dx Q(x, y)dy 0 是否yx为全微分方程.对于某些不是全微分方程的P( x, y)dx Q(x, y)dy0 ,可乘上一个函数 (, x, y) 使之成为全微分方程P(x, y)dx Q (x, y)dy 02/19(注意到当 ( x, y) 0 时 P( x, y)dx Q (x, y)dy0 与原方程同解 ),并称(, x, y) 为积分因子 ;一般说来 ,求积分因子比较困难 ,但有时可通过观察得到 .(5)一阶线性微分方程 yp(x) y Q( x) 的通解公式当 Q( x) 不恒为零时 ,称其为一阶线性非齐次微分方程 ;当 Q(x) 恒为零 ,时,即 y p( x) y0 称为一阶线性齐次微分方程,这是一个可分离变量的方程 ,易知其通解为 Y Cep ( x )dx;由此用“常数变易法”即可得到非齐次微分方程的通解y ep ( x)dx(CQ(x)e p( x)d x dx ).(6) 对于 Bernoulli 方程 yp( x) y Q (x) y n ( n 0,1 ),只需作变换z y1 n,即可化为一阶线性方程 dz (1 n) p( x)z (1 n)Q( x) .dx3.高阶方程的降阶解法以下三种方程可通过变量代换降成一阶方程再求解:(1)对于方程 y (n) f ( x) ,令 z y (n 1) 化为 zf (x) ; 在实际求解中 ,只要对方程连续积分 n 次 ,即得其通解ydxf (x)dx C 1 x n1C n 1 x C n .n 次(2)对于 y f ( x, y ) (不显含 y ),作变换 P y ,则 y P ,于是化一阶方程 P f (x, P) ;显然对 y ( n)f (x, y ( n 1) ) 可作类似处理 .(3)对于 yf ( y, y ) (不显含 x ),作变换 Py ,则 yPdP,于是dy可化为一阶方程 PdPf ( y, P) .dy4.线性微分方程解的结构(1)线性齐次微分方程解的性质对于线性齐次微分方程来说,解的线性组合仍然是解 .(2)线性齐次微分方程解的结构若 y1 , y2 , , y n是 n 阶线性齐次微分方程的线性无关的解,则其通解为Y c1 y1c2 y2c n y n.(3)线性非齐次微分方程解的结构线性非齐次微分方程的通解y ,等于其对应的齐次方程的通解Y 与其自身的一个特解 y 之和 ,即y Y y .(4)线性非齐次微分方程的叠加原理1 设 y k( k 1,2, , m )是方程y ( n ) p1 (x) y( n 1) p n 1 (x) y p n ( x) y f k ( x)m的解 ,则y k 是方程k 1y ( n) p1 ( x) y (n 1) mp n 1 (x) y p n ( x) y f k (x)k 1的解 .2 若实变量的复值函数 u( x) i v( x) 是方程y (n) p1 ( x) y (n 1) p n 1 (x) y p n ( x) y f 1 ( x) if 2 ( x)的解 ,则此解的实部u( x)是方程y ( n)p1 ( x) y( n 1)p n 1 (x) y p n (x) y f1 ( x)的解 ;虚部v(x)是方程y ( n )p1 (x) y( n 1)p n 1 (x) y p n ( x) y f 2 ( x)的解 .(5)线性非齐次方程的解与对应的齐次方程解的关系线性非齐次方程任意两个解的差是对应的齐次方程的解.5.常系数线性微分方程的解法(1)求常系数线性齐次微分方程通解的“特征根法”1 写出y(n ) p1y( n 1) p n 1 y p n y 0 的特征方程r n p1 r n 1 p n 1 r p n 0 ,并求特征根;2 根据特征根是实根还是复根以及重数写出通解中对应的项(见下表 )特征根 r 为给出通解中的单实根 1 项: Ce rxk 重实根k 项: e rx(C1 C 2 x C k x k 1 )一对单复根 2 项: e x(C1cos x C 2 sin x)r1,2 i一对 k 重复根 2 k 项 : e x[( C1 C2 x C k x k 1 ) cos xr1,2 i(D1 D 2 x D k x k 1 ) sin x](2)下列两种情况可用“待定系数法”求常系数线性非齐次方程的特解1对于 f ( x) P m (x)e x,应设特解y x k Q m ( x)e x x k ( a0 x m a1 x m 1a m 1 x a m )e x,其中 k 等于为特征根的重数( 0 k n ), a0, a1,L , a m是待定系数 .将 y 代入原方程,可定出 a0, a1,L , a m,从而求得 y .2 对于 f ( x) e x [ P l ( x) cos x P s sin x] (0 ),应设特解yx k e x [ R m (x) cos x T m ( x) sin x] ,其中 k 等于i 为特征根的重数 ( 0 kn), R m ( x),T m ( x) 是2待 定 的 m max{ l , s} 次 多 项 式 . 将 y 代原方程,即可定出R m ( x),T m ( x) ,从而求得 y .或因为 f ( x) e x [ P l ( x) cos x P s (x)sin x]Re e x (P l (x) iP s ( x))(cos x isin x)Re Q m ( x)e ( i ) x(其中 Q m ( x) P l ( x) iP s ( x) 是 m max{ l , s} 次的复系数多项式) .对于方程y ( n)1 ( n 1)L p n 1y nyQ m ( x)e (i ) xp yp可设其特解Yx k Z m ( x)e (i ) x,( Z m ( x) 是 m 次待定复系数多项式, k 等于 i 为特征根的重数),将 Yx k Z m (x)e ( i ) x代入方程y ( n )p 1 y ( n 1) Lp n 1 y p n y Q m ( x)e (i ) x中,可定出 Z m (x) ,于是 Yx k Z m ( x)e ( i ) x ,从而原方程的特解y Re Y .3o特例当 f ( x) e x P l ( x)cos x 或f (x) e x P l ( x)sin x 时,设Y Z l ( x)e ( i ) x , 将其代入y ( n) p 1 y ( n 1) Lp n 1 yp n y P l ( x)e ( i ) x ,6/19求得 Y ,则原方程的一个特解y ReY 或 y ImY .6.Euler 方程的解法(1)形如x n y (n )p1 x n 1 y( n 1)p n 1xy p n y f (x)的线性变系数微分方程称为 Euler 方程 ,是一种可化为常系数的变系数微分方程 .(2)解法只需作变换x e t,即t ln x ,即可将其化为常系数线性微分方程 .d ,则若引入微分算子 Ddtxy D y , x2 y D(D 1) y ,, x n y (n )D(D 1) (D n1) y , 于是很容易写出对应的齐次方程的特征方程.7.应用常微分方程解决实际问题的一般步骤(1)在适当的坐标系下 ,设出未知函数y y( x) ,据已知条件写出相关的量 ;(2)根据几何、物理、经济及其它学科的规律(往往是瞬时规律或局部近似规律)建立微分方程 ;(3)提出定解条件 ;(4)求定解问题的解 ;(5)分析解的性质,用实践检验解的正确性 .二 .课堂练习 (除补充题外 ,均选自复习题12)1.填空题22(1)已知 y 1 e x 及 y 2xe x 是方程 y4xy( 4x 2 2) y0 的解 ,2则其通解为e x (C 1 C 2 x) .222解 : 因 y 1e x , y 2 xe x 都是解 ,且线性无关 ,故 e x (C 1 C 2 x) 是通解 .(2)设一质量为 m 的物体 ,在空气中由静止开始下落 .若空气阻力为 R kv,则其下落的距离 s所满足的微分方程是 sksg ,m 初始条件是 s(0) 0, s (0) 0 .解 : 因为 F ma 而 F mg k v v s , a s , 故得方程 O s(0), ,mg k sms ,化简得 sk sg ;s(t )m在如图所示的坐标系下 ,初始条件为 s( 0)0, s (0) 0.s(3) 微 分 方 程 y 2 y y 6xe x 的 特 解 y的形式为x 2 (axb)e x .解 : 因为特征方程为 r 2 2r 1 0 , r 1 r 21, 而 1 是二重特征根 ,故应设 yx 2 (ax b)e x .(4)若 y 1x 2 , y 2x 2e 2 x , y 3 x 2e 2xe 5x 都是线性非齐次微分 方 程 yp( x) y q( x) yf (x)的解,则其通解为C 1e 2x C 2e 5xx 2 .解:由线性非齐次方程的解与对应的齐次方程解的关系可知 ,Y 1y 2 y 1 e 2 x , Y 2 y 3 y 2 e 5 x 都是对应的齐次方程的解,且 线 性 无 关 ,故 对 应 的 齐次方 程 的 通 解 为Y C 1Y 1 C 2 Y 2 C 1e 2 xC 2 e 5 x ; 由非齐次方程解的结构得其通解y Y y 1C 1e 2 x C 2e 5 x x 2 .(5)(补充 )已知 f ( x) 满足 xf ( x)1x 2f (t) dt ,则 f (x)x2t 1 e 2 .x解 :两边对 x 求导得 f ( x)xf (x) x 2 f (x) ,整理得f ( x)x1f ( x) ,xx 2ln c ,即 f (x)x 2分离变量后积分得 ln f ( x)ln x ce 2, x 0 ;2xx 1时(1) 11t 2 1(e 111又当 , f2c e 2d tc 21) ,即 ce 21 ce 2ct1 ,所以 f (x)x 2故 c 1 e 2 .x(6)( 补 充 ) 设 f ( x) 有 连 续 导 数 , 且 f (0) 1.若曲线积分 Lyf (x)dx[ f ( x) x 2 ]dy 与路径无关 ,则 f ( x)3e x 2x 2 .解 : 记 P yf ( x), Qf ( x) x 2.因为积分与路径无关,故有PQ,亦即.它的通解为 yx ,即f ( x) f (x) 2xf ( x) f ( x)2xf ( x) dxdxc] e x [ 2xe xdx c]2x2 ce x .e[ 2 xe dx由 f (0) 1 得 c 3 ,于是 f (x)3e x 2x 2 .(7)( 补充 ) 已知 yy( x)在任意点 x 处的增量 yy x , 其中 =o( x),21xπy(0) π,则 y(1) πe 4.解:由题设知,dyy .dx1 x 2分离变量得dydx ,积分得 ln y arctanx C 1,即 y Ce arctan x .y1 x 2π由 y(0) π得C π,故y(1) πe 4 .2.选择题(1)函数 yc 1e 2x c 2 ( c 1 ,c 2 为任意常数 )是微分方程 yy 2 y 0的(A) 通解 .(B) 特解 .(C) 不是解 .(D) 解,但不是通解 ,也不是特解 .答(D)解 :因为 y c 1e 2 x c 2 ce 2x ,经检验是解 ,但含有任意常数 ,故不是特解 ,又因为只含一个独立的任意常数 ,故也不是通解 .(2)微分方程 y2 y2 sin 2 2x ,其特解形式为 y(A) A B cos4x C sin 4x . (B) A Bx cos4x Cx sin 4x .(C) Ax B cos4x C sin 4x .(D) Ax Bx cos4x Cxsin 4x .答( C) 解 : y 2 y 2 sin 2 2x1 cos4x 特解为 y y 1 y2 .,因为r 22 r0 , r1 0, r22 而 0 是特征方程的单根 , 故应, 设 y 1 Ax ; 而i4i 不是特征方程根,故应设y 2B cos 4xC sin 4x ,因此 y y 1 y 2Ax B cos4 x C sin 4x .(3)微分方程 (2 x y)dy (5x 4y)dx 是(A) 一阶线性齐次方程 .(B) 一阶线性非齐次方程 .(C) 齐次方程 .(D) 可分离变量方程 .答(C)解 :原方程可化为dy5x 4 y5 4 yx . dx 2x y y2x(4)(补充 )具有特解y1 e x, y2 2xe x, y3 3e x的三阶常系数线性齐次微分方程是(A) y y y y 0 . (B) y y y y 0 .(C) y y y y 0 . (D) y y y y 0 .答(B) 解 : 由方程的特解可知 ,其特征根为r1 r2 1, r3 1 ,于是特征方程为 ( r 1)2 ( r 1) 0 即 r 3 r 2 r 1 0 ,故方程为y y y y0 .(5)( 补充 ) 方程y9 y 0 通过点 ( , 1) 且在该点处与直线y 1 xπ相切的积分曲线为(A) y C1 cos3x C2 sin3x . (B) y cos3x C2 sin 3x .(C) y cos3x. (D) y cos3x 1sin3x .3答( D)解 : 因为r2 9 0 , r1, 2 3i ,故通解为 y C 1 cos3x C2 sin3x .由初始条件 y( ) 1, y ( ) 1得C1 1,C2 1,所以所求积分曲线3为y x 1sin 3x.cos3 3(6)(补充 ) 方程 y( 4 ) y e x 3sin x 的特解应设为(A) Ae x B sin x . (B) Ae x B cos x C sin x .(C) Axe xB cos xC sin x .(D) x(Ae xB cos xC sin x) .答(D)解 :对应的齐次方程的特征方程为 r 4 1 0 ,特征根为r 1 1, r 2 1, r 3 i, r 4 i .令 f ( x)e x 3sin xf 1 (x) f 2 (x) .对于 f 1 ( x) e x ,因1 是单特征根 ,故设 y 1 Axe x ; 对于 f 2 ( x) 3sin x ,因ii 是单特征根 ,故设y 2 x(B cos x C sin x) ;从而 yy 1 y 2x( Ae xB cos xC sin x) .(7)(06 考研 )函数 y C 1e x C 2e 2x xe x 满足的一个微分方程是 (A) y y 2y 3xe x .(B) y y 2 y 3e x .(C) yy2y 3xe x .(D) yy 2 y 3e x .答(D)解 :因为 r 1 1,r 22 ,即特征方程为 r 2 r 2 0 ,故排除( A )、(B ).由1是特征方程的单根,知 f (x)Ae x ,故排除( C ) .3.求下列方程的通解(2)dyy x ; dx2 ln y解 :方程化为dx2 x2ln y 是一阶线性方程.dyy y ,1 22ln y y 2 dy Cx2 y d y2y dydy C1ey ln yey 2y1121 212.y 222 y ln y4y Cln y 2 Cy(5) xdx ydyydx xdy0 ;x2y2解 :原方程可化为 1 21 2 d arctanx,故通解为d 2 x d 2 yy1 x21 y2arctanxC .22y(10) y x x 2 y .解 :设 ux2y ,即 u2x2y ,则dy2u du2x .代入原方程得dx dxdu1 x 1 .此为齐次方程 ,再设 v u ,则 duv xdv,故方程化dx 2 ux dxdx为 v x dvv 1.分离变量为2vdv11dx ,两边积分得dx2v2v 2 v x1 ln 2v 2v 1 1ln 2v 1 1ln v 1 ln x ln C 1 .2 3 3代回原变量并整理得 x 2 3 x 3 3 xy C .y24.求下列微分方程满足所给初始条件的特解(1) y 3dx 2 x 2xy 2 dy 0 , y x11 ;解 :原方程化为 y 3dx 2 xy 2x2,即dx2 x 2 x 2 .dydyyy 3令 Z x 1dZ 22,得 dy y Zy 3.221Ze yd y2 e y d ydyC 2 ln y C ,即 y 3y 21 12 ln y C 故通解为 y2x 2 ln y C .x y 2 ,由 y x 1 1 ,得 C 1 ,所以特解为 y 2 x 2 ln y 1 . (3) 2ysin 2 y 0 , y 02 , y 0 1 ;解:令 Py ,则 yPdP,原方程化为 2PdP2 sin y cos y ,即dydy2PdP 2 sin yd sin y .积分得 P 2sin 2 y C .由 y 0, y 0 1,sin y .解之得 ln tany2得 C 0 ,故 yPx C .由 y 0, C 0 .2arctan e x .22故特解为 y5(补充).设y e x是微分方程xy p(x) y x 的一个解,求此微分方程满足条件 y(ln 2)0 的特解.解 : 将y e x代入微分方程得 xe x p(x) e x x ,解之得p( x) xe x x ,于是此微分方程为 xy ( xe x x) y x ,即y (e x1) y 1 .x其对应的齐次方程的通解为Y Ce e x ,于是此微分方程的通Ce e x x e x 1解为 y . 由y(ln 2) 0得 C e 2,故特解为e x x1y e x e 2 .6(补充).设L : y y( x) 是一条向上凸的连续曲线,其上任意一点( x, y) 处的曲率为 1 ,且此曲线上点(0,1) 处的切线方程为1 y 2y x 1 ,求该曲线的方程.解 : 因为曲线向上凸 ,故y 0 ,于是有y 1 ,化简y 2 )3(1 1 y 2得二阶方程 y (1 y 2 ) .令 P y ,则 y P ,故方程化为P (1 P 2 ) .分离变量后积分得arctanP C1 x . 由题设有P(0) y (0) 1 ,于是可定出 C1 4 ,所以y P tan( 4x) ,再积分π得 y ln cos(πx) C2 . 由y(0) 1得C2 11ln 2 ,因此该曲线4 2L : y ln cos(πx) 11ln 2 .4 27(补充).某湖泊的水量为V ,每年排入湖泊内含污染物 A 的污水量为 V ,流入湖泊内不含 A 的水量为 V ,流出湖泊的水量为 V.已知 6 6 31999 年底湖中 A 的含量为 5m 0 ,超过国家规定指标 .为了治理污染,从 2000 年初起 ,限定排入湖泊中含 A 污水的浓度不超过m 0.V问至少需经过多少年 ,湖泊中污物 A 的含量降至 m 0 以内 ?(注 :设湖水中 A 的浓度是均匀的 .)解 :设 2000 年初 (记此时 t 0 )开始 ,第 t 年湖泊中污物 A 的总量为 m ,浓度为m,则在时间间隔 [t , t dt] 内,排入湖泊中污染物 A 的量为Vm 0 V dtm 0dt ,流出湖泊的水中 A 的量为 m Vdtmdt ,因而在 V6 6 V 3 3此间隔内湖泊中污染物 A 的改变量为 dm(mm)dt , m t 0 5m 0 .63m 0 t9m 0 , 故分 离 变 量 解 得 mCe 3, 由 m t 05m 0 得 C2t2mm 0(1 9e 3 ) .2令 m m 0 ,解得 t 6 ln 3 ,即至少需经过 6 ln 3 年湖泊中污物 A 的含量降至 m 0 以内 .8.求下列 Euler 方程的通解(2) x 2 y 4xy6 y x .解 :设 xt,方程化为d 2 y dy6 y edt 25r2dt5r 6 0r 1 2 , r 23 .设 y ae t ,代入方程( * ),得 e ta1, 故 y 1e t.从而原方程的通解为 2 2e t . .(* )y C 1e 2 t C 2e 3 t.a 5a 6ae t .由此定出y C 1 x 2C 2 x 31x .2设对于半空间 , 都有内任意的光滑有向封闭曲面xf ( x)dydz xyf ( x)dzdx e 2 x zdxdy 0 ,S其中 f x 在 0,内具有连续的一阶导数 , 且 limf x 1 , 求x 0f x .解 :由曲面积分与曲面无关的条件PQ R 0, 有xyzxf xf xxf xe2x0 , 即 f x1 1f x 1 e 2 x .xx11所以 f xe1 xdx2 x e 1 x dxC1 edxxe x 1 1 e 2x e x xdx C1 e x e x C .x x x由 lim f x 1, 即 lim 1 e x e xC 1 ,可求出 C1 ,故 x 0x 0 x f x 1 e x e x 1 .x10(补充 ).设函数 y( x)( x 0) 二阶可导且 y (x)0, y(0) 1 .过曲线yy(x) 上任意一点 P( x, y) ,作该曲线的切线及 Ox 轴的垂线 ,上述二直线与 Ox 轴所围成的三角形的面积记为S 1 ,区间 [0, x] 上以y y(x) 为曲边的曲边梯形面积记为 S 2,并设 2S 1 S 2 恒为 1,求此曲线 yy(x) 的方程 .解 :曲线 y y( x) 上点 P(x, y) 处的切线方程为 Y yy (x)( X x) . 切 线 与 Ox 轴 的 交 点 为 (xy( x), 0) . 由 y ( x)0, y(0) 1 , 知y ( x)y( x) 0 ,于是S 11y( x) xx y( x)2( x); 而 S 2y(t )dt ( x 0 ); 故由yx2y ( x)2 y (x)1得y2x条件 2S 1 S 2y(t )dt1,由此还可得 y (0)1.y将y 2x( y )2 .令 y P ,y(t )dt 1 两边对 x 求导并整理得 yyy则 yPdP, 于 是 方 程 化为 ydPP , 解之 得 y P C 1 y , 由dydyy (0) 1和 y( 0) 1得 C 1 1,于是 yy ,从而 yC 2e x .再由 y(0) 1得 C 2 1 ,故所求曲线方程为 ye x .11 .) 内具有二阶导数,且(06 考研 ) 设函数 f (u) 在 (0,zf ( x222z 2z0 .y) 满足等式2y 2x ( 1) 验证 f(u)f (u) ;u( 2) 若 f (1) 0, f (1) 1,求函数 f (u) 的表达式 .解 : (1)由 zf (u),ux 2 y 2 ,得z f (u)x,2z f (u)x 2 f (u)y 2,x x 2y 2 x 2x 2y 2y 23x 2 2z f (u)y,2zf (u)y 2f (u)x 23.yx 2y 2 y 2x 2y 2y 2x 2 2 因为2z2z0 ,所以有 f(u)f (u) 0 ,即x 2 y 2x 2y 2f (u) f (u) 0 .u(2)由(1)得 f (u) 1C ,由f (1) 1 知 C0 ,即 f (u) 1 ;u11u于是得 f (u) ln u C 2 ,由 f (1) 0,得 C 2 0 ,所以 f (u)ln u .12(07 考研 ).解初值问题y ( x y 2 )y ,y(1)1, y (1)1.解:令 y P, 则 y P ,原方程化为 P (x P 2 ) P, 即dx1 x P. dP P1dPC1 1dPP C1 dP P(C1 P).于是 x e P Pe P dP由 P x 1 y (1) 1,得C1 0,且P x,即dyx. dx31,故 y 31 .解得 y 2 x2 C2 , 又由 y(1) 1得C2 2 x23 3 3 312(07 考研). 设幂级数a n x n在 ( , ) 内收敛,其和n 0函数 y(x)满足y 2xy 4y 0, y(0) 0, y (0) 1.(I )证明a n2 2 a n ,n 1,2,L ;n 1(I I )求y( x)的表达式.解:( I )对yn 0a n x n求一、二阶导数,得y na n x n 1 , y n( n 1)a n x n 2 ,n 1 n 2代入 y 2xy 4 y 0并整理得( n 1)(n 2) a n 2 x n 2na n x n 4a n x n 0.n 0 n 1 n 0于是2a2 4a0 0,(n 1)(n 2)a n 2 2(n 2)a n 0, n 1,2,L ,从而有2a n 2 n 1an,n1,2,L .( II )因为y(0) a0 0, y (0) a1 1, 故a0, k 0,1,2L ;a2k 12 a2 k 11a 2k 11 1 a2 k 3L1 a 1 1 , k 0,1,2,L .2kkk k 1k ! k !所以ya n x na 2k 1x 2k 1x 2 k 1 ( x 2 )kx2).k 0k !xk!xe , x ( ,n 0k 0k 0补充 设 满足 xf ( x) 3 f (x) 6x 2 , 且由曲线y 与 13( ). f (x)f (x) 直线 x 1及 x 轴所围的平面图形 D 绕x 轴旋转一周得到的旋转体的体积最小 , 求 f (x).解:满足的方程 可写为. f (x)y3 y6x,x3 d x3dx31其通解xxyf (x) eC6xedxxC6 dxx 2Cx 3 6x 2 .旋转体的体积为V (C) π01 f 2 (x)dx π01 (Cx 3 6x 2 )2 dxπ01 (C 2 x 6 12Cx 5 36x 4 )dx π C 2 2C36 .75令 V (C) 2C 2 ,得惟一驻点 C 7, 且 V (C)2π 0, π 7 0 7 故 C 7是极小值点,也是最小值.点于是f (x)6x 2 7 x 3 .19/19。
常微分方程总复习
常微分方程复习总结初等积分法一、主要概念常微分方程:未知函数是一个变元的函数,由这样的函数及其导数(或微分)构成的等式。
方程的阶:在微分方程中,未知函数最高阶导数的阶数,称为方程的阶。
微分方程的解:一个函数代入微分方程中去,使得它成为关于自变量的恒等式,称此函数为微分方程的解。
通解:n 阶方程,其解中含有n 个(独立的)任意常数,此解称为方程的通解。
由隐式表出的通解称为通积分。
特解:给通解中的任意常数以定值,所得到的解称为特解,由隐式给出的特解称为特积分。
初值问题:求微分方程满足初值条件的解的问题。
变量可分离方程: 形如 )()(d d y g x f xy=或 y y N x M x y N x M d )()(d )()(2211= 的方程称为变量可分离方程。
齐次微分方程:形如)(d d xyx y ϕ=的方程,称为齐次微分方程。
线性微分方程:未知函数和它的导数都是一次的微分方程。
一阶线性微分方程:一阶线性微分方程的形式是 )()(d d x f y x p x y =+ 如果0)(≡x f ,即0)(d d =+y x p xy称为一阶线性齐次方程。
如果)(x f 不恒为零,则称)()(d d x f y x p x y=+为一阶线性非齐次方程。
伯努利(Bernoulli )方程:形如 n y x f y x p xy)()(d d =+ (1,0≠n ) 的方程,称为伯努利方程。
全微分方程:如果微分形式的一阶方程0d ),(d ),(=+y y x N x y x M (1.1)的左端恰好是一个二元函数),(y x U 的全微分,即y y x N x y x M y x U d ),(d ),(),(d += (1.2)则称方程(1.1)是全微分方程或恰当方程,而函数),(y x U 称为微分式(1.2)的原函数。
积分因子:假如存在这样的连续可微函数0),(≠y x μ,使方程0d ),(),(d ),(),(=+y y x N y x x y x M y x μμ成为全微分方程,我们就把),(y x μ称为方程(1.1)的一个积分因子。
(完整版)常微分方程复习资料
常微分方程复习资料一、 填空题1.一阶微分方程的通解的图像是 维空间上的一族曲线. 2.方程02=+'-''y y y 的基本解组是 . 3.一个不可延展解的存在在区间一定是 区间.4.方程21d d y x y-=的常数解是 .5.方程22d d y x xy+=满足解的存在唯一性定理条件的区域是 .6.若)(x y ϕ=在),(∞+-∞上连续,则方程y x xy)(d d ϕ=的任一非零解与x 轴相交. 7.在方程0)()(=+'+''y x q y x p y 中,如果)(x p ,)(x q 在),(∞+-∞上连续,那么它的任一非零解在xoy 平面上 与x 轴相切.8.向量函数组)(,),(),(21x x x n Y Y Y Λ在其定义区间I 上线性相关的 条件是它们的朗斯基行列式0)(=x W ,I x ∈.9.方程0d )1(1)d (22=-+-y x y x y x 所有常数解是 . 10.方程04=+''y y 的基本解组是 .11.方程1d d +=y xy满足解的存在唯一性定理条件的区域是 .12.若)(),(21x y x y ϕϕ==是二阶线性齐次微分方程的基本解组,则它们 共同零点. 二、单项选择题1.方程y x xy+=-31d d 满足初值问题解存在且唯一定理条件的区域是( ). (A )上半平面 (B )xoy 平面 (C )下半平面 (D )除y 轴外的全平面 2.)(y f 连续可微是保证方程)(d d y f xy=解存在且唯一的( )条件. (A )必要 (B )充分 (C )充分必要 (D )必要非充分 3.二阶线性非齐次微分方程的所有解( ).(A )构成一个2维线性空间(B )构成一个3维线性空间(C )不能构成一个线性空间(D )构成一个无限维线性4.方程323d d y xy=过点(0, 0)有( ).(A) 无数个解 (B) 只有一个解 (C) 只有两个解 (D) 只有三个解 5.n 阶线性齐次方程的所有解构成一个( )线性空间.(A )n 维 (B )1+n 维 (C )1-n 维 (D )2+n 维 6. 方程2d d +-=y x xy( )奇解. (A )有三个 (B )无 (C )有一个 (D ) 有两个7.若)(1x y ϕ=,)(2x y ϕ=是一阶线性非齐次微分方程的两个不同特解,则该方程的通解可用这两个解表示为( ).(A ))()(21x x ϕϕ- (B ))()(21x x ϕϕ+ (C ))())()((121x x x C ϕϕϕ+- (D ))()(21x x C ϕϕ+8.),(y x f y '连续是方程),(d d y x f xy=初值解唯一的( )条件. (A )必要 (B )必要非充分 (C )充分必要 (D )充分9.方程y xy=d d 的奇解是( ). (A )x y = (B )1=y (C )1-=y (D )0=y10. 方程21d d y x y -=过点)1,2(π共有( )个解.(A )一 (B )无数 (C )两 (D )三11.n 阶线性齐次微分方程基本解组中解的个数恰好是( )个. (A )n (B )n -1 (C )n +1 (D )n +2 12.一阶线性非齐次微分方程组的任两个非零解之差( ).(A )不是其对应齐次微分方程组的解 (B )是非齐次微分方程组的解 (C )是其对应齐次微分方程组的解 (D )是非齐次微分方程组的通解13.如果),(y x f ,y y x f ∂∂),(都在xoy 平面上连续,那么方程),(d d y x f xy=的任一解的存在区间( ). (A )必为),(∞+-∞ (B )必为),0(∞+ (C )必为)0,(-∞ (D )将因解而定 三、计算题求下列方程的通解或通积分:1.y y xyln d d = 2. x y x y x y +-=2)(1d d 3. 5d d xy y xy += 4.0)d (d 222=-+y y x x xy5.3)(2y y x y '+'= 6. 21d d xxy x y += 7. x y x y 2e 3d d =+ 8. 0)d (d )(3223=+++y y y x x xy x9.0e =-'+'x y y 10.0)(2='+''y y y11. x y x y x y tan d d += 12. 1d d +=x y x y13. 0d d )e (2=+-y x x y x y14.1)ln (='-'y x y15.022=+'+''x y y y 16.求方程255x y y -='-''的通解.17.求下列方程组的通解.⎪⎪⎩⎪⎪⎨⎧-=+=xty ty t x d d sin 1d d 18.求方程x y y e 21=-''的通解.19.求下列方程组的通解⎪⎪⎩⎪⎪⎨⎧+=--=y x ty y x tx43d d 2d d .五、证明题1.设)(x f 在),0[∞+上连续,且0)(lim =+∞→x f x ,求证:方程)(d d x f y xy=+的一切解)(x y ,均有0)(lim =+∞→x y x .2.在方程0)()(=+'+''y x q y x p y 中,)(),(x q x p 在),(∞+-∞上连续,求证:若)(x p 恒不为零,则该方程的任一基本解组的朗斯基行列式)(x W 是),(∞+-∞上的严格单调函数.3.设),(y x f 在整个xoy 平面上连续可微,且0),(0≡y x f .求证:方程),(d d y x f xy= 的非常数解)(x y y =,当0x x →时,有0)(y x y →,那么0x 必为∞-或∞+. 4.设)(1x y ϕ=和)(2x y ϕ=是方程0)(=+''y x q y 的任意两个解,求证:它们的朗斯基行列式C x W ≡)(,其中C 为常数.5.在方程)()(d d y y f xyϕ=中,已知)(y f ,)(x ϕ'在),(∞+-∞上连续,且0)1(=±ϕ.求证:对任意0x 和10<y ,满足初值条件00)(y x y =的解)(x y 的存在区间必为),(∞+-∞.6.在方程0)()(=+'+''y x q y x p y 中,已知)(x p ,)(x q 在),(∞+-∞上连续.求证:该方程的任一非零解在xoy 平面上不能与x 轴相切.参考答案一、填空题1.2 2.xx x e ,e 3.开 4.1±=y 5.xoy 平面 6.不能 7.不能 8.必要 9.1,1±=±=x y10.x x 2cos ,2sin 11.}0),{(2>∈=y R y x D ,(或不含x 轴的上半平面) 12.没有二、单项选择题1.D2.B3.C4.A5.A6.A7.C8.D9.D 10.B 11.A 12.C 13.D三、计算题1.解 当0≠y ,1≠y 时,分离变量取不定积分,得C x yy y+=⎰⎰d ln d 通积分为xC y e ln = 2.解 令xu y =,则xuxu x y d d d d +=,代入原方程,得 21d d u x ux-= 分离变量,取不定积分,得C xxu u ln d 1d 2+=-⎰⎰(0≠C ) 通积分为: Cx xyln arcsin = 3.解方程两端同乘以5-y ,得x y xyy +=--45d d 令 z y=-4,则xzx y y d d d d 45=--,代入上式,得x z xz=--d d 41 通解为41e 4+-=-x C z x原方程通解为 41e 44+-=--x C y x 4.解 因为xNx y M ∂∂==∂∂2,所以原方程是全微分方程. 取)0,0(),(00=y x ,原方程的通积分为C y y x xy yx=-⎰⎰20d d 2即 C y y x =-3231 5.解 原方程是克莱洛方程,通解为 32C Cx y += 6.解 当0≠y 时,分离变量得x x x y y d 1d 2+= 等式两端积分得 C x y ln )1ln(21ln 2++= 即通解为21x C y += 7.解 齐次方程的通解为xC y 3e -= 令非齐次方程的特解为 x x C y 3e)(-=代入原方程,确定出 C x C x+=5e 51)( 原方程的通解为xC y 3e-=+x2e51 8.解 由于xNxy y M ∂∂==∂∂2,所以原方程是全微分方程. 取)0,0(),(00=y x ,原方程的通积分为103023d d )(C y y x xy x yx =++⎰⎰即 C y y x x =++42242 9.解 令t y =',则原方程的参数形式为⎩⎨⎧='+=ty t x te由基本关系式t t x y y td )e 1(d d +='= 积分有C t t y t +-+=)1(e 212得原方程参数形式通解⎪⎩⎪⎨⎧+-+=+=Ct t y t x tt)1(e 21e 2 10.解 原方程为恰当导数方程,可改写为 0)(=''y y 即1C y y =' 分离变量得x C y y d d 1= 积分得通积分21221C x C y +=11.解 令u x y =,则xux u x y d d d d +=,代入原方程,得 u u xuxu tan d d +=+,u x u x tan d d = 当0tan ≠u 时,分离变量,再积分,得C xxu u ln d tan d +=⎰⎰C x u ln ln sin ln +=即通积分为: Cx xy =sin12.解 齐次方程的通解为Cx y = 令非齐次方程的特解为 x x C y )(=代入原方程,确定出 C x x C +=ln )( 原方程的通解为Cx y =+x x ln 13.解 积分因子为 21)(x x =μ 原方程的通积分为1012d d )(e C y x xy y x x =+-⎰⎰即 1e ,e C C C xyx+==+) 14.解 令p y =',则原方程的参数形式为⎪⎩⎪⎨⎧='+=p y p p x ln 1由基本关系式y xy'=d d ,有 p p pp x y y )d 11(d d 2+-⋅='=p p)d 11(-=积分得 C p p y +-=ln得原方程参数形式通解为⎪⎩⎪⎨⎧+-=+=C p p y p p x ln ln 1 15.解 原方程可化为0)(2='+'x y y于是 12d d C x xyy=+ 积分得通积分为23123121C x x C y +-= (6分) 16.解 对应齐次方程的特征方程为052=-λλ,特征根为01=λ,52=λ,齐次方程的通解为 xC C y 521e += 因为0=α是特征根。
常微分方程常考知识点总结
常微分方程常考知识点总结一、基本概念。
1. 常微分方程的定义。
- 含有一个自变量和它的未知函数以及未知函数的导数(或微分)的等式称为常微分方程。
例如:y' + 2y = 0,这里y = y(x)是未知函数,x是自变量,y'是y对x的一阶导数。
2. 阶数。
- 方程中未知函数导数的最高阶数称为方程的阶。
如y''+3y' - 2y = x是二阶常微分方程,因为方程中未知函数y的最高阶导数是二阶导数y''。
3. 解、通解、特解。
- 解:如果函数y = φ(x)代入常微分方程后,使方程成为恒等式,那么y=φ(x)就称为该常微分方程的解。
- 通解:如果常微分方程的解中含有独立的任意常数,且任意常数的个数与方程的阶数相同,这样的解称为通解。
例如,对于一阶常微分方程y'=y,其通解为y = Ce^x(C为任意常数)。
- 特解:在通解中给任意常数以确定的值而得到的解称为特解。
比如在y = Ce^x中,当C = 1时,y = e^x就是一个特解。
二、一阶常微分方程。
1. 可分离变量方程。
- 形式为g(y)dy = f(x)dx的方程称为可分离变量方程。
- 求解方法:将方程两边同时积分,即∫ g(y)dy=∫ f(x)dx + C,得到方程的通解。
例如,对于方程y'=(y)/(x),可化为(dy)/(y)=(dx)/(x),积分得lny=lnx+C,即y = Cx (C≠0)。
2. 齐次方程。
- 形式为y'=φ((y)/(x))的方程称为齐次方程。
- 求解方法:令u = (y)/(x),则y = ux,y'=u + xu',原方程化为u+xu'=φ(u),这是一个可分离变量方程,按照可分离变量方程的方法求解。
例如,对于方程y'=(y)/(x)+tan(y)/(x),令u=(y)/(x),方程化为u + xu'=u+tan u,即xu'=tan u,然后分离变量求解。
高等数学常微分方程考点
高等数学常微分方程考点
高等数学常微分方程考点
常微分方程,学过中学数学的人对于方程是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。
下面小编为大家介绍高等数学常微分方程考点,希望能帮到大家!
(一)一阶微分方程
1.知识范围
(1)微分方程的概念
微分方程的定义阶解通解初始条件特解
(2)可分离变量的方程
(3)一阶线性方程
2.要求
(1)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解。
(2)掌握可分离变量方程的解法。
(3)掌握一阶线性方程的`解法。
(二)可降价方程
1.知识范围
(1) 型方程
(2) 型方程
2.要求
(1)会用降阶法解型方程。
(2)会用降阶法解型方程。
(三)二阶线性微分方程
1.知识范围
(1)二阶线性微分方程解的结构
(2)二阶常系数齐次线性微分方程
(3)二阶常系数非齐次线性微分方程
2.要求
(1)了解二阶线性微分方程解的结构。
(2)掌握二阶常系数齐次线性微分方程的解法。
(3)掌握二阶常系数非齐次线性微分方程的解法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11章 常微分方程习题课一. 内容提要1.基本概念含有一元未知函数)(x y (即待求函数)的导数或微分的方程,称为常微分方程;其中出现的)(x y 的最高阶导数的阶数称为此微分方程的阶;使微分方程在区间I 上成为恒等式的函数=y )(x ϕ称为此微分方程在I 上的解;显然一个微分方程若有解,则必有无穷多解;若n 阶微分方程的解中含有n 个不可合并的任意常数,则称其为此微分方程的通解;利用n 个独立的附加条件(称为定解条件)定出了所有任意常数的解称为特解;微分方程连同定解条件一起,合称为一个定解问题;当定解条件是初始条件(给出)1(,,,-'n y y y 在同一点0x 处的值)时,称为初值问题.2.一阶微分方程),(y x f y ='的解法(1)对于可分离变量方程)()(d d y x xy ψϕ=, 先分离变量(当0)(≠y ψ时)得x x y ψy d )()(d ϕ=, 再两边积分即得通解 C x x y y +=⎰⎰d )()(d ϕψ.(2)对于齐次方程d d y y f x x ⎛⎫= ⎪⎝⎭, 作变量代换x y u =,即xu y =,可将其化为可分离变量的方程,分离变量后,积分得C x x u u f u +=-⎰⎰d )(d ,再以x y 代替u 便得到齐次方程的通解.(3)形如)(111d d c y b x a c by ax f x y ++++=的方程, ①若1,c c 均为零,则是齐次方程;②若1,c c 不全为零,则不是齐次方程,但当k b b a a ==11时,只要作变换y b x a v 11+=,即可化为可分离变量的方程111)(d d a c v c kv f b x v +++=; 当11b b a a ≠时,只要作平移变换⎩⎨⎧-=-=00y y Y x x X ,即⎩⎨⎧+=+=00y Y y x X x (其中),(00y x 是线性方程组⎩⎨⎧=++=++0 0111c y b x a c by ax 的惟一解),便可化为齐次方程)(d d 11Yb X a bY aX f X Y ++=. (4)全微分方程若方程0d ),(d ),(=+y y x Q x y x P 之左端是某个二元函数),(y x u u =的全微分,则称其为全微分方程,显然C y x u =),(即为通解,而原函数),(y x u 可用曲线积分法、不定积分法或观察法求得. 通常用充要条件xQ y P ∂∂=∂∂来判定0d ),(d ),(=+y y x Q x y x P 是否为全微分方程.对于某些不是全微分方程的0d ),(d ),(=+y y x Q x y x P ,可乘上一个函数),(,y x μ使之成为全微分方程0d ),(d ),(=+y y x Q x y x P μμ(注意到当0),(≠y x μ时0d ),(d ),(=+y y x Q x y x P μμ与原方程同解),并称),(,y x μ为积分因子;一般说来,求积分因子比较困难,但有时可通过观察得到.(5)一阶线性微分方程)()(x Q y x p y =+'的通解公式当)(x Q 不恒为零时,称其为一阶线性非齐次微分方程;当)(x Q 恒为零,时,即0)(=+'y x p y 称为一阶线性齐次微分方程,这是一个可分离变量的方程,易知其通解为⎰=-x x p C Y d )(e ;由此用“常数变易法”即可得到非齐次微分方程的通解)(d e )(e d )(d )(⎰⎰+⎰=-x x Q C y x x p x x p .(6)对于Bernoulli 方程n y x Q y x p y )()(=+' (1,0≠n ),只需作变换n y z -=1,即可化为一阶线性方程)()1()()1(d d x Q n z x p n xz -=-+. 3.高阶方程的降阶解法以下三种方程可通过变量代换降成一阶方程再求解:(1)对于方程)()(x f y n =,令)1(-=n y z 化为)(x f z =';在实际求解中,只要对方程连续积分n 次,即得其通解n n n n C x C x C x x f x y ++++=--⎰⎰111d )(d次. (2)对于),(y x f y '=''(不显含y ),作变换y P '=,则P y '='',于是 化一阶方程),(P x f P =';显然对),()1()(-=n n y x f y 可作类似处理.(3)对于),(y y f y '=''(不显含x ),作变换y P '=,则y P P y d d ='',于是可化为一阶方程),(d d P y f yP P =.4.线性微分方程解的结构(1)线性齐次微分方程解的性质对于线性齐次微分方程来说,解的线性组合仍然是解.(2)线性齐次微分方程解的结构若n y y y ,,,21 是n 阶线性齐次微分方程的线性无关的解,则其通解为n n y c y c y c Y +++= 2211.(3)线性非齐次微分方程解的结构线性非齐次微分方程的通解y ,等于其对应的齐次方程的通解Y 与其自身的一个特解*y 之和,即*+=y Y y .(4)线性非齐次微分方程的叠加原理1 设*k y (m k ,,2,1 =)是方程)()()()(1)1(1)(x f y x p y x p y x p y k n n n n =+'+++--的解,则∑=*mk k y 1是方程∑=--=+'+++mk k n n n n x f y x p y x p y x p y11)1(1)()()()()( 的解. 2 若实变量的复值函数)(i )(x v x u +是方程=+'+++--y x p y x p y x p y n n n n )()()(1)1(1)( )(i )(21x f x f +的解,则此解的实部)(x u 是方程)()()()(11)1(1)(x f y x p y x p y x p y n n n n =+'+++--的解;虚部)(x v 是方程)()()()(21)1(1)(x f y x p y x p y x p y n n n n =+'+++--的解.(5)线性非齐次方程的解与对应的齐次方程解的关系线性非齐次方程任意两个解的差是对应的齐次方程的解.5.常系数线性微分方程的解法(1)求常系数线性齐次微分方程通解的“特征根法”1 写出01)1(1)(=+'+++--y p y p y p y n n n n 的特征方程0111=++++--n n n n p r p r p r ,并求特征根;2 根据特征根是实根还是复根以及重数写出通解中对应的项(见(2)下列两种情况可用“待定系数法”求常系数线性非齐次方程的特解1对于x m x P x f λe )()(=,应设特解x m k x Q x y λe )(=*x m m m m k a x a x a x a x λ)e (1110++++=-- , 其中k 等于λ为特征根的重数(n k ≤≤0),01,,,m a a a 是待定系数.将*y 代入原方程,可定出01,,,m a a a ,从而求得*y .2对于()e [()cos sin ]x l s f x P x x P x λωω=+ (0≠ω),应设特解]s i n )(c o s )([e x x T x x R x y m m x k ωωλ+=*, 其中k 等于i μλω=+为特征根的重数(20n k ≤≤),)(),(x T x R m m 是待定的},m a x {s l m =次多项式.将*y 代原方程,即可定出)(),(x T x R m m ,从而求得*y .或因为()e [()cos ()sin ]x l s f x P x x P x x λωω=+Re e (()i ())(cos isin )x l s Px P x x x λωω⎡⎤=-+⎣⎦ (i )Re ()e x m Q x λω+⎡⎤=⎣⎦(其中()m Q x ()i ()l s P x P x =-是max{,}m l s =次的复系数多项式).对于方程()(1)11n n n n y p y p y p y --'++++=(i )()e x m Q x λω+可设其特解 (i )()e k x m Y x Z x λω*+=,(()m Z x 是m 次待定复系数多项式,k 等于i μλω=+为特征根的重数),将(i )()e k x m Y x Z x λω*+=代入方程()(1)11n n n n y p y p y p y --'++++=(i )()e x m Q x λω+中,可定出()m Z x ,于是(i )()e k x m Y x Z x λω*+=,从而原方程的特解Re y Y **=.3特例(i )()(1)(i )11()e ()cos ()e ()sin ()e ,()e x x l l x l n n x n n l f x P x x f x P x x Y Z x y p y p y p y P x λλλωλωωω*+-+-==='++++= 当或时,设将其代入,求得,Re Im .Y y Y y Y *****==则原方程的一个特解或6.Euler 方程的解法(1) 形如)(1)1(11)(x f y p y x p y x p y x n n n n n n =+'+++---的线性变系数微分方程称为Euler 方程,是一种可化为常系数的变系数微分方程.(2) 解法只需作变换 t x e =,即x t ln =,即可将其化为常系数线性微分方程.若引入微分算子td d D =,则 y y x D =',y y x )1D(D 2-='',, y n y x n n )1(D )1D(D )(+--= , 于是很容易写出对应的齐次方程的特征方程.7. 应用常微分方程解决实际问题的一般步骤(1) 在适当的坐标系下,设出未知函数)(x y y =,据已知条件写出相关的量;(2) 根据几何、物理、经济及其它学科的规律(往往是瞬时规律或局部近似规律)建立微分方程;(3) 提出定解条件;(4) 求定解问题的解;(5) 分析解的性质,用实践检验解的正确性.二.课堂练习(除补充题外,均选自复习题12)1.填空题(1)已知2e 1x y =及2e 2x x y =是方程0)24(42=-+'-''y x y x y 的解,则其通解为 )(e 212x C C x +.解:因2e 1x y =,2e 2x x y =都是解,且线性无关,故)(e 212x C C x +是通解.(2)设一质量为m 的物体,在空气中由静止开始下落 .若空气阻力为v k R =,则其下落的距离s 所满足的微分方程是s g m''=, 初始条件是 (0)0,(0)0 s s '==. 解:因为ma F =,而v k mg F -=,s v '=,s a ''=,故得方程s m s k mg ''='-,化简得g s mk ='+''s ; 在如图所示的坐标系下,初始条件为 0)0(,0)0(='=s s . (3)微分方程x x y y y e 62=+'-''的特解*y 的形式为 )e ( 2x b ax x +.解: 因为特征方程为0122=+-r r ,121==r r ,而1=λ是二重特征根,故应设x b ax x y )e (2+=*.(4)若x x x x y x y x y 522322221e e ,e ,++=+==都是线性非齐次微分方程)()()(x f y x q y x p y =+'+''的解,则其通解为25212 e e x x C C x ++.解:由线性非齐次方程的解与对应的齐次方程解的关系可O s (0)s ()s t知,x y y Y 2121e =-=, x y y Y 5232e =-=都是对应的齐次方程的解,且线性无关,故对应的齐次方程的通解为x x C C Y C Y C Y 52212211e e +=+=;由非齐次方程解的结构得其通解252211e e x C C y Y y x x ++=+=.(5)(补充)已知)(x f 满足⎰+=x t t f t x xf 0 2d )(1)(,则221() e x f x x =.解:两边对x 求导得)()()(2x f x x f x x f ='+,整理得()1()()f x x f x x'=-, 分离变量后积分得c x x x f ln ln 2)(ln 2+-=,即22e )(x x c x f =,0≠x ; 又当1=x 时,)1e (1d e 1)1(211 0 222-+=+=⎰c t t c t f t ,即c c c -+=2121e 1e 故1=c ,所以22e 1)(x xx f =. (6)(补充)设)(x f 有连续导数,且1)0(=f .若曲线积分⎰-+L y x x f x x yf 2d ])([d )(与路径无关,则 22e 3 )(--=x x f x .解: 记2)(),(x x f Q x yf P -==.因为积分与路径无关,故有xQ y P ∂∂=∂∂,即x x f x f 2)()(-'=,亦即x x f x f 2)()(=-'.它的通解为 ]d e 2[e ]d e 2[e )(d d c x x c x x x f x x x x +=+⎰⎰=⎰⎰--x c x e 22+--=. 由1)0(=f 得3=c ,于是22e 3)(--=x x f x .2π4(),=()1(0)π,(1) πe .y x y y x x y o x x y y αα∆=∆=+∆+==(7)(补充)已知在任意点处的增量其中, 则解:由题设知,2d .d 1y y x x =+ arctan 12π4d d ln arctan ,e .1(0)ππ,(1)πe .x y xy x C y C y xy C y ==+=+===分离变量得,积分得即由得故2.选择题(1)函数221e c x c y +=(21,c c 为任意常数)是微分方程02=-'-''y y y 的(A) 通解. (B)特解.(C)不是解. (D)解,但不是通解,也不是特解.答( D )解:因为221e c x c y +=x c 2e =,经检验是解,但含有任意常数,故不是特解,又因为只含一个独立的任意常数,故也不是通解.(2)微分方程x y y 2sin 222='-'',其特解形式为=*y(A)x C x B A 4sin 4cos ++. (B)x Cx x Bx A 4sin 4cos ++.(C)x C x B Ax 4sin 4cos ++. (D)x Cx x Bx Ax 4sin 4cos ++. 答( C)解:x y y 2sin 222='-''1cos 4x =-,特解为***+=21y y y .因为022=-r r ,2,021==r r ,而0=λ是特征方程的单根,故应设Ax y =*1;而i 4i =+ωλ不是特征方程根,故应设x C x B y 4sin 4cos 2+=*,因此***+=21y y y x C x B Ax 4sin 4cos ++=.(3)微分方程x y x y y x d )45(d )2(+=-是(A)一阶线性齐次方程. (B)一阶线性非齐次方程.(C)齐次方程. (D)可分离变量方程.答( C )解:原方程可化为x yx y yx y x x y -⋅+=-+=245245d d .(4)(补充)具有特解x y -=e 1,x x y -=e 22, x y e 33=的三阶常系数线性齐次微分方程是(A)0=+'-''-'''y y y y . (B)0=-'-''+'''y y y y . (C)0=-'+''-'''y y y y . (D)0=+'-''+'''y y y y .答( B )解: 由方程的特解可知,其特征根为1,1321=-==r r r ,于是特征方程为0)1()1(2=-+r r 即0123=--+r r r ,故方程为0=-'-''+'''y y y y .(5)(补充)方程09=+''y y 通过点)1,(-π且在该点处与直线1πy x +=-相切的积分曲线为(A)x C x C y 3sin 3cos 21+=. (B)x C x y 3sin 3cos 2+=. (C)x y 3cos =. (D)x x y 3sin 313cos -=.答( D) 解:因为092=+r ,i 32,1±=r ,故通解为x C x C y 3sin 3cos 21+=.由初始条件1)(,1)(='-=ππy y 得31,121-==C C ,所以所求积分曲线为 x x y 3s i n 313c o s -=.(6)(补充) 方程x y y x sin 3e )4(+=-的特解应设为 (A)x B A x sin e +.(B)x C x B A x sin cos e ++.(C)x C x B Ax x sin cos e ++. (D))sin cos e (x C x B A x x ++.答(D)解:对应的齐次方程的特征方程为014=-r ,特征根为 i ,i ,1 ,14321-==-==r r r r .令)()(sin 3e )(21x f x f x x f x +=+=.对于x x f e )(1=,因1=λ是 单特征根,故设x Ax y e 1=*;对于x x f sin 3)(2=,因i i μλω=+=是单特征 根,故设)sin cos (2x C x B x y +=*;从而)sin cos e (21x C x B A x y y y x ++=+=***. (7)(06考研)函数212e e e x x x y C C x -=++满足的一个微分方程是 (A)23e x y y y x '''--=. (B) 23e x y y y '''--=. (C) 23e x y y y x '''+-=. (D) 23e x y y y '''+-=.答(D)解:因为121,2r r ==-,即特征方程为220r r +-=,故排除(A )、 (B ).由1λ=是特征方程的单根,知()e x f x A =,故排除(C ). 3.求下列方程的通解(2) ()x y y x y -=ln 2d d ; 解:方程化为y yx y y x ln 22d d =+,是一阶线性方程.⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-C y y y x y y yyd e ln 2e d 2d 12⎥⎦⎤⎢⎣⎡+⋅=⎰C y y y y y d ln 2122 ⎥⎦⎤⎢⎣⎡+⎪⎭⎫⎝⎛-=C y y y y 22241ln 2121221ln -+-=Cy y .(5)0d d d d 22=+-++y x yx x y y y x x ;解:原方程可化为()()0arctan d 21d 21d 22=⎪⎭⎫⎝⎛++y x y x ,故通解为C yx y x =++arctan 212122. (10) y x x y +=+'2.解:设y x u +=2,即y x u +=22,则x xu u x y2d d 2d d -=.代入原方程得 ⎪⎭⎫ ⎝⎛+=121d d u x x u .此为齐次方程,再设xu v =,则x v x v x u d d d d +=,故方程化为v v x v x v 21d d +=+.分离变量为 x x v v v v d 112d 22-=--,两边积分得 ()()()12ln ln 1ln 3112ln 3112ln 21C x v v v v +-=⎥⎦⎤⎢⎣⎡-++---.代回原变量并整理得 ()C xy x y x ++=+23332.4.求下列微分方程满足所给初始条件的特解(1)()0d 2d 223=-+y xy x x y ,11==x y;解:原方程化为()2232d d x xy y x y -=,即2322d d x yx y y x -=-.令1-=x Z ,得322d d yZ y y Z =+.⎪⎪⎭⎫ ⎝⎛+⎰⎰=⎰-C y y Z y yyyd e 2ed 23 d 2()C y y +=ln 212,即 ()C y y x +=ln 2112,故通解为()C y x y +=ln 22.由11==x y,得1=C ,所以特解为 ()1ln 22+=y x y . (3)02sin 2=-''y y ,()20π=y ,()10='y ;解:令y P '=,则y P P y d d ='',原方程化为 y y yP P cos sin 2d d 2=,即y y P P sin d sin 2d 2=.积分得 C y P +=22sin .由()20π=y ,()10='y ,得0=C ,故y P y sin =='.解之得C x y+=2tan ln .由()20π=y ,0=C .故特解为 x y e arctan 2=.5(补充).设x y e =是微分方程x y x p y x =+')(的一个解,求此微分方程满足条件0)2(ln =y 的特解.解:将x y e =代入微分方程得)(e x p x x +x x =e ,解之得x x x p x -=-e )(,于是此微分方程为x y x x y x x =-+'-)e (,即1)1e (=-+'-y y x .其对应的齐次方程的通解为xxC Y +-=ee ,于是此微分方程的通解为xxx C y e ee +=+-.由0)2(ln =y 得21e--=C ,故特解为21e ee -+--=x xx y .6(补充).设)(:x y y L =是一条向上凸的连续曲线,其上任意一点),(y x 处的曲率为211y '+,且此曲线上点)1,0(处的切线方程为1+=x y ,求该曲线的方程.解:因为曲线向上凸,故0<''y ,于是有='+''-32)1(y y 211y '+,化简得二阶方程)1(2y y '+-=''.令y P '=,则P y '='',故方程化为)1(2P P +-='.分离变量后积分得x C P -=1arctan .由题设有1)0()0(='=y P ,于是可定出41π=C ,所以πtan()4y P x '==-,再积分得2πln cos()4y x C =-+.由1)0(=y 得2ln 2112+=C ,因此该曲线:L π1ln cos()1ln 242y x =-++. 7(补充).某湖泊的水量为V ,每年排入湖泊内含污染物A 的污水量为6V ,流入湖泊内不含A 的水量为6V ,流出湖泊的水量为3V .已知1999年底湖中A 的含量为05m ,超过国家规定指标.为了治理污染,从2000年初起,限定排入湖泊中含A 污水的浓度不超过Vm 0.问至少需经过多少年,湖泊中污物A 的含量降至0m 以内?(注:设湖水中A 的浓度是均匀的.)解:设2000年初(记此时0=t )开始,第t 年湖泊中污物A 的总量为m ,浓度为V m ,则在时间间隔]d ,[t t t +内,排入湖泊中污染物A 的量为t mt V V m d 6d 600=⋅,流出湖泊的水中A 的量为t m t V V m d 3d 3=⋅,因而在此间隔内湖泊中污染物A 的改变量为t m mm d )36(d 0-=,005m m t ==.分离变量解得30e 2t C m m --=,由005m m t ==得029m C -=,故)e 91(230t m m -+=.令0m m =,解得 3ln 6=t ,即至少需经过3ln 6年湖泊中污物A 的含量降至0m 以内.8.求下列Euler 方程的通解(2)x y y x y x =+'-''642.解:设tx e =,方程化为 t y t yty e 6d d 5d d 22=+-.………………….(*)0652=+-r r ⇒21=r ,32=r . t t C C y 32 21e e +=. 设t a y e =*,代入方程(*),得 ()t t a a a e 65e =+-.由此定出21=a ,故ty e 21=*.从而原方程的通解为 x x C x C y 213221++=.9.设对于半空间0>x 内任意的光滑有向封闭曲面S , 都有0d d e d d )(d d )(2=--⎰⎰y x z x z x xyf z y x xf xS, 其中()x f 在()+∞,0内具有连续的一阶导数,且()1lim 0=+→x f x ,求()x f .解:由曲面积分与曲面无关的条件0=∂∂+∂∂+∂∂zRy Q x P ,有 ()()()0e 2=--+'x x xf x f x f x ,即()()x x x f x x f 2e 111=⎪⎭⎫ ⎝⎛--'.所以 ()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-C x x x f x x x x x d e e 1e d 112d 11⎥⎦⎤⎢⎣⎡+⋅⋅=⎰-C x x x x x x x d e e 11e 2()C xx x +=e e 1.由()1lim 0=+→x f x ,即()1e e 1lim 0=++→C xx x x ,可求出1-=C ,故 ()()1e e 1-=x x xx f .10(补充).设函数)0)((≥x x y 二阶可导且1)0(,0)(=>'y x y .过曲线)(x y y =上任意一点),(y x P ,作该曲线的切线及Ox 轴的垂线,上述二直线与Ox 轴所围成的三角形的面积记为1S ,区间] ,0[x 上以)(x y y =为曲边的曲边梯形面积记为2S ,并设212S S -恒为1,求此曲线)(x y y =的方程.解:曲线)(x y y =上点),(y x P 处的切线方程为))((x X x y y Y -'=-.切线与Ox 轴的交点为)(0 ,)()(x y x y x '-.由1)0(,0)(=>'y x y ,知0)(>x y ,于是211()()()2()2()y x y x S y x x x y x y x ⎛⎫=--= ⎪''⎝⎭;而⎰=x t t y S 0 2d )( (0≥x );故由条件1221≡-S S 得1d )( 02=-'⎰x t t y y y ,由此还可得1)0(='y .将1d )( 02=-'⎰x t t y y y 两边对x 求导并整理得2)(y y y '=''.令P y =',则y P P y d d ='',于是方程化为P yP y =d d ,解之得y C P y 1==',由1)0(='y 和1)0(=y 得11=C ,于是y y =',从而x C y e 2=.再由1)0(=y 得12=C ,故所求曲线方程为x y e =.11(06考研).设函数()f u 在(0, )+∞内具有二阶导数,且z f =满足等式22220zz x y ∂∂+=∂∂. (1) 验证()()0f u f u u'''+=; (2) 若(1)0,(1)1f f '==,求函数()f u 的表达式. 解: (1)由(),z f u u ==()2222223222()()()y z z x f u f u f u x x x y x y ∂∂''''==⋅+⋅∂∂++,()2222223222()()()y z z x f u f u f u y y x y x y ∂∂''''==⋅+⋅∂∂++. 因为22220z z x y ∂∂+=∂∂,所以有()0f u ''+=,即 ()()0f u f u u'''+=. (2)由(1)得11()f u C u '=+,由(1)1f '=知10C =,即1()f u u'=;于是得2()ln f u u C =+,由(1)0f =,得20C =,所以()ln f u u =.12(07考研).解初值问题2(),(1)1,(1) 1.y x y y y y ''''⎧+=⎨'==⎩解:令2,,(),y P y P P x P P '''''==+=则原方程化为即d 1.d x x P P P-=于是()11d d 111e e d d ().PPPP x C P P P C P P C P ---⎡⎤⎰⎰=+=+=+⎢⎥⎣⎦⎰⎰由11d (1)1,0,d x yP y C P x='=====得且即解得322221,(1)1,33y x C y C =+==又由得故3221.33y x =+12(07考研). 设幂级数0n n n a x ∞=∑在(, )-∞+∞内收敛,其和函数()y x 满足 240,(0)0,(0y x y y y y ''''--=== (I )证明22,1,2,;1n n a a n n +==+(II )求()y x 的表达式.解:(I )对0n n n y a x ∞==∑求一、二阶导数,得1212,(1),n n n n n n y na xy n n a x ∞∞--=='''==-∑∑代入240y xy y '''--=并整理得21(1)(2)240.nnnn n n n n n n n a x n a xa x ∞∞∞+===++--=∑∑∑ 于是 202240,(1)(2)2(2)0,1,2,,n n a a n n a n a n +-=⎧⎨++-+==⎩从而有 22,1,2,.1n n a a n n +==+ (II )因为01(0)0,(0)1,y a y a '====故 20,0,1,2;k a k ==212121*********,0,1,2,.21!!k k k k a a a a a k k k k k k k +---=======-所以22212121000()e ,(, ).!!k k nk x n k n k k k x x y a x a xx x x k k ∞∞∞∞+++=========∈-∞+∞∑∑∑∑213().()()3()6,()1().f x xf x f x x y f x x x D x f x '-=-==补充设满足且由曲线与 直线及轴所围的平面图形绕轴旋转一周得到的旋 转体的体积最小,求33d d 3232.()36,1()e6e d 6d 6.xx xx f x y y x x y f x C x x x C x x Cx x ---⎰⎰'-=-⎡⎤⎡⎤==+-=-⎰⎰⎢⎥⎢⎥⎣⎦⎣⎦=+满足的方程解可写为 其通解:()112322001265402()π()d π(6)d π(1236)d 36 π2.75V C f x x Cx x x C x Cx x xC C ==+⎰⎰=++⎰=++旋转体的体积为()2322π()π207,()0,777.()67.C V C C V C C f x x x '''=+==-=>=-=-令,得惟一驻点且故是极小值点,也是最小值点于是。