七年级数学有理数的加减法教案
有理数的加减法教案
《有理数的加减法》教案一教学目标1.知识与技能 :在有理数加、减法混合运算的教学过程中,掌握计算方法,培养学生的运算能力.2.数学思考:通过观察,比较,归纳等得出有理数加减混合运算的方法。
3.解决问题 :能运用有理数加、减法法则解决混合运算和实际问题。
4.情感与态度 :认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
二教学重点:省略加号、括号,得到简单的书写方式,再进行加法运算三教学难点:培养学生良好的思维习惯(先准确判断加减法的类型后计算) 三教学模式:启发式四教学过程设计(一 ) 知识要点回顾1 有理数加法法则2 运算律(1) 加法交换律(2) 加法结合律3 有理数减法法则例1计算下列各式1 )-23+(-12) 2) -16+293)(-2008)+2008 4 ) 0+(-7)例2、某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.•某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,•+5.(1)问收工时距A地多远?(2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升? 课堂练习1抢答(1) 5+(-6)(2) -(-7)+(-2)(3) (-4)+(-5)(4)-4+(-6);(5)15+(-17)(6)-3+3(7) (+9)+(-7)+(+10)+(-3)+(-9)2 计算(1)(+17)+(-32)+(-16)+(+24)+(-1);(2)(+653)+(-532)+(452)+(-131) 例3 计算(1) 3-(-3)=_______; (2) (-11)-2=_______;(3) 0-(-6)=_______; (4) (-7)-(+8)=_______;(5) -12-(-5)=________;例4把下列两个式子写成省略括号的和的形式.把它读出来,并计算出结果.(1)(-5)-(+9.6)+(+7.3)+(-0.7)-(-3.07);(2)4 35-(+213)-(-4.8)+(-323)-(+4.6)课堂练习1.计算:(1)(3.1+4.2)-(4.2-1.9);(2)(-2.4)-0.6-1.8;(3)(-41)-83+169; (4)(-71)-(-72)-173; (5)(-1)-(+331)-(-132); (6)(-9)-(+9)-(-18)-9.三 综合应用1 .如果|a|=7,|b|=5,试求a-b 的值.思路解析:本题中对a 、b 分成四种取值情况进行讨论.解:∵|a|=7,|b|=5,∴a=±7,b=±5.因此,有四种可能:(1)当a=7,b=5时,a-b=2;(2)当a=7,b=-5时,a-b=12;(3)当a=-7,b=5时,a-b=-12;(4)当a=-7,b=-5时,a-b=-2.四作业1 .有一批小麦,标准质量为每袋90千克,现抽取10袋样品进行称重检测,结果如下(单位:千克):97,95,86,96,94,93,87,98,91.这10袋小麦的总质量是多少?总计超过标准质量多少千克或不足标准质量多少千克?3.计算:(1)(-1.5)-(-9.4)-(+3.6)+(-4.3)-(+5.2);(2)0-(+12)-(-13)-(-14)-(+16);(3)0-(-2.75)-(+0.71)-(-4);(4)(-323)-(-234)-(-123)-(+1.75).思路解析:本题是有理数的减法运算,根据有理数减法法则,把减法全部转化为加法再进行计算,同时也可运用加法运算律使计算简便.解:(1)原式=-1.5-3.6-4.3-5.2+9.4=-5.2;(2)原式=-12-16+13+14=-46+712=-112;(3)原式=2.75+4-0.71=6.04;(4)原式=-323+123+234-134=-2+1=-1.4.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西方向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下:(单位:千米)+15,-4,+13,―10,―12,+3,―13,―17.(1)将最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?思路解析:要求出小王距出车地点的距离,就是求所给的数据的代数和;要求出汽车耗油多少升,就要先求出汽车的行程,而汽车的行程是所给数据的绝对值的和解:(1)(+15)+(-4)+(+13)+(―10)+(―12)+(+3)+(―13)+(―17)=-25.所以最后一名老师送到目的地时,小王在出车地点的西方,距离是25千米.(2)|+15|+|-4|+|+13|+|―10|+|―12|+|+3|+|―13|+|―17|=87.0.4× 87 = 34.8.所以这天下午汽车共耗油34.8升.5 .已知a=-12,b=-14,c=13,求下列各式的值.(1)a-b+c;(2)a-b-c.思路解析:用数字去代替代数式中相应的字母时,必须用括号将数字和它前面的性质符号在一起,然后再进行运算.解:(1)a-b+c=(-12)-(-14)+13=-12+14+13=112;(2)a-b-c=(-12)-(-14)-13=-12+14-6 .如下图:(1)A,B两点间的距离是多少?(2)B,C两点间的距离是多少?思路解析:求两点间的距离就是用表示这两点的数相减,由于求的是“距离”,所以结果应是正数,因此,将相减的式子求绝对值即可.解:(1)|AB|=|2-(-113)|=|2+113|=313;(2)|BC|=|-113-(-3)|=|-113+3|=132.季节中的花开花落,都有自己的命运与节奏,岁月如歌的谱曲与纳词,一定是你。
有理数加减教案初中数学
有理数加减教案初中数学教学目标:1. 理解有理数的加减法的概念和规则。
2. 能够熟练地进行有理数的加减法运算。
3. 能够解决实际问题,运用有理数的加减法进行计算和分析。
教学重点:1. 有理数的加减法的概念和规则。
2. 有理数的加减法运算的技巧和方法。
教学准备:1. 教学课件或黑板。
2. 练习题和答案。
教学过程:一、导入(5分钟)1. 引入有理数的加减法,解释有理数的加减法的概念和意义。
2. 通过举例说明有理数的加减法的实际应用。
二、讲解(20分钟)1. 讲解有理数的加法规则,包括同号相加、异号相加和零的加法。
2. 讲解有理数的减法规则,包括减去一个数等于加上它的相反数。
3. 通过示例和练习,让学生理解和掌握有理数的加减法的规则。
三、练习(15分钟)1. 分组练习题,让学生进行有理数的加减法运算。
2. 提供一些实际问题,让学生运用有理数的加减法进行计算和分析。
四、总结(5分钟)1. 对本节课的内容进行总结,强调有理数的加减法的概念和规则。
2. 提醒学生注意运算的符号和顺序。
五、作业布置(5分钟)1. 布置一些有关有理数的加减法的练习题,让学生巩固所学知识。
2. 鼓励学生进行自主学习,查找有关有理数的加减法的更多信息。
教学反思:本节课通过引入实际问题和示例,让学生理解和掌握有理数的加减法的概念和规则。
通过练习和总结,让学生巩固所学知识,并能够运用有理数的加减法进行计算和分析。
在教学过程中,要注意引导学生掌握运算的符号和顺序,避免出现错误。
同时,也要鼓励学生进行自主学习,提高他们的学习兴趣和能力。
初一有理数加减法教案
初一有理数加减法教案【篇一:有理数加减法教案】有理数的加减法(一)[本节课内容] 1.有理数的加法2.有理数的加法的运算律[本节课学习目标]1、理解有理数的加法法则.2、能够应用有理数的加法法则,将有理数的加法转化为非负数的加减运算.3、掌握异号两数的加法运算的规律.4、理解有理数的加法的运算律.5、能够应用有理数的加法的运算律进行计算.[知识讲解]一、有理数加法:正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围.例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1).这里用到正数和负数的加法.下面借助数轴来讨论有理数的加法.看下面的问题:一个物体作左右方向的运动;我们规定向左为负,向右为正,向右运动 5m记作 5m,向左运动 5m记作? 5m;如果物体先向右移动5m,再向右移动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向右移动了 8m,写成算式就是:5+3 = 8如果物体先向左运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向左运动了 8m,写成算式就是(?5)+(?3) = ?81如果物体先向右运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向右运动了 2m,写成算式就是5+(?3) = 2探究这三种情况运动结果的算式如下:3+(—5)=—2;5+(—5)= 0;(—5)+5= 0.如果物体第1秒向可(或向左)走 5m,第二秒原地不动,两秒后物体从起点向右(或向左)运动了 5m.写成算式就是5+0=5 或(—5)+0=—5.你能从以上7个算式中发现有理数加法的运算法则吗?有理数加法法则:①同号的两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得零.③一个数同0相加,仍得这个数.例题例1、计算(-3)+(-9); (2)(-4.7)+3.9.2例2 足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数.解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(—2) = +(4—2)=2;黄队共进2球,失4球,净胜球数为(+2)+(—4)=—(4—2)= ( );蓝队共进( )球,失( )球,净胜球数为()=( ).二、有理数加法的运算律通过这两个题计算,可以看出它们的结果都为10,说明有理数的加法满足交换律,即:两个数相加,交换加数的位置,和不变.用式子表示为:再请你计算一下,[ 8 +(-5)] +(-4),8 + [(-5)]+(-4)].通过这两个题计算,可以仍然可以看出它们的结果都为-1,说明有理数的加法满足结合律,即:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用式子表示为:上述加法的运算律说明,多个有理数相加,可以任意改变加数的位置,也可以先把其中的几个数相加,使计算简化.例题例1 计算:16 +(-25)+ 24 +(-35).若使此题计算简便,可以先利用加法的结合律,将正数与负数分别结合在一起进行计算.解: 16 +(-25)+ 24 +(-35)= (16 + 24)+ [(-25)+(-35)]= 40 +(-60)3=-20.例2 每袋小麦的标准重量为 90千克,10袋小麦称重记录如下:91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.1答:总计超过 5千克,10袋水泥的总质量是 505千克.三、小结:有理数加法法则:①同号的两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得零.③一个数同0相加,仍得这个数.有理数加法运算律:①加法交换律:a+ b = b + a②加法结合律:(a+ b)+ c = a+( b +c)有理数的加减法(二)学习目标1、会将有理数的减法运算转化为有理数的加法运算.2、会将有理数的加减混合运算转化为有理数的加法运算.重点、难点4会进行有理数的减法运算,会进行有理数的加减混合运算.教学过程一、有理数的减法法则实际生活中有很多时候要涉及到有理数的减法.例如:长春某天的气温是―3~4oc,这一天的温差是多少呢?(温差是最高气温减最地气温,单位:oc).显然,这天的温差是4―(―3).这里就用到了有理数的减法.我们知道,减法是与加法相反的运算,计算4―(―3),就是要求一个数,使之与(―3)的和得4,因为与―3相加得4,所以这个数应该是7,即4―(―3) = 7. (1)另一方面,我们知道4+(+3) = 7 (2)由(1),(2)有4―(―3) = 4+(+3) (3)从(3)式能看出减―3相当于加哪个数吗?用上面的方法考虑:0―(―3) =___,0+(+3) =___;1―(―3) =___,1+(+3)=____;―5―(―3) =___,―5+(+3) =___.这些数减?3的结果与它们加+3的结果相同吗?计算: 9-8=___, 9+(- 8)=____; 15-7=___, 15+(-7)=____.上述式子表明:减去一个数,等于加上这个数的相反数.于是,得到有理数减法法则:减去一个数,等于加这个数的相反数.用式子可以表示成a?b = a+(?b)例题5【篇二:有理数的加法的教案】1.3.1 有理数的加法教案(第二课时)教学目标1.知识与技能①能运用加法运算律简化加法运算.②理解加法运算律在加法运算中的作用,适当进行推理训练.2.过程与方法①培养学生的观察能力和思维能力.②经历对有理数的运算,领悟解决问题应选择适当的方法.3.情感、态度与价值观在数学学习中获得成功的体验.教学重点难点重点:如何运用加法运算律简化运算.难点:灵活运用加法运算律.教与学互动设计(一)情境创设,导入新课思考在小学里,我们学过的加法运算有哪些运算律?它们的内容是什么?能否举一两个例子来?那这些加法运算律还适于有理数范围吗?今天,我们一起来探究这个问题.(二)合作交流,解读探究体验 1.自己任举两个数(至少有一种是负数 ,并比较它们的运算结果,你发现了什么?发现:对任选择的数,即小学里学过的加法交换律在有理数范围内仍是成立的.体验 2.任选三个有理数(至少有一个是负数),并比较它们的运算结果.发现都有些什么?这就是说,小学的加法结合律,在有理数范围内都是成立的.小结有理数的加法仍满足交换律和结合律.加法交换律:两个数相加,交换加数的位置,和不变.用式子表示成a+b=a+b.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,用式子表示成(a+b)+c=a+(b+c)(三)应用过移,巩固提高例1 说出下列每一步运算的依据(-0.125)+(+5)+(-7)+(+)+(+2)=(-0.125)+(+)+(+5)+(+2)+(-7)(加法交换律)=[(-0.125)+(+)]+[(+5)+(+2)]+(-7)(加法结合律)=0+(+7)+(-7)(有理数的加法法则)=0(有理数的加法法则)例2 利用有理数的加法运算律计算,使运算简便.(1)(+9)+(-7)+(+10)+(-3)+(-9)(2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)(3)(+1)+(-2)+(+3)+(-4)+…+(+2003)+(-2004)【答案】(1)0 (2)-6.7 (3)-1002例3 某出租司机某天下午营运全是在东西走向的人民大道进行的,?如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18(1)他将最后一名乘客送到目的地,该司机距下午出发点的距离是多少千米?(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?解:(1)+15+(+14)+(-3)+(-11)+(+10)+(-12)+4+(-15)+16+(-18) =[15+(-15)]+(14+10+4+16)+[(-3)+(-11)+(-12)+(-18)]=0=118a【答案】(1)将最后一名乘客送到目的地,该司机仍在其出发点.(2)共耗油118a公升.例4 若│2x-3│与│y+3│互为相反数,求x+y的相反数.【提示】两个非负数互为相反数,只有都为0.解:根据题意,有2x-3=0,y+3=0 则x=,y=-3x+y= +(-3)=-.所以x+y的相反数是备选例题.小王上周在股市以收盘价/(收市时的价格)每股25?元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)星期每股涨跌(元)根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)周内该股票收盘时的最高价、最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.?若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?【答案】(1)星期二收盘价为25+2-0.5=26.5(元/股)(2)收盘最高价为25+2-0.5+1.5=28(元/股)收盘最低价为25+2-0.5+1.5-1.8=26.2(元/股)∴小王的本次收益为1740元.(五)总结有理数的加法仍满足交换律和结合律.加法交换律:两个数相加,交换加数的位置,和不变.用式子表示成a+b=a+b.一 +2 二 -0.5 三 +1.5 四 -1.8 五 +0.8【篇三:人教版七年级上册第一章有理数的加法教学设计】人教版七年级上册第一章《有理数》第三节有理数的加减法第一课时1.3.1有理数的加法一、教学目标(一)知识与技能:通过实例,了解有理数加法的意义,会根据有理数加法法则进行运算;(二)过程与方法:经历有理数加法法则的探究过程,深刻感受分类讨论、数形结合的思想,由具体到抽象、由特殊到一般的规律;(三)情感态度与价值观:通过师生活动,学会自我探究,让学生充分参与到数学学习的过程中来。
有理数的加减法教学设计教案
有理数的加减法教学设计教案教学设计:有理数的加减法一、教学目标:1.知识目标:了解有理数的加减法的定义和性质,能够准确地进行有理数的加减运算。
2.能力目标:能够运用有理数的加减法解决实际问题,培养学生的逻辑思维和分析能力。
3.情感目标:培养学生良好的学习态度和团队合作意识,增强学生对数学的兴趣和自信心。
二、教学重点:1.有理数的加法和减法的运算方法。
2.运用有理数的加减法解决实际问题。
三、教学难点:运用有理数的加减法解决实际问题。
四、教学步骤:1.导入新知识(10分钟)通过简单的问题引入有理数的加减法概念,如:小华手中有十几个苹果,小明偷走了他的7个苹果,那么小华手中还剩下多少苹果?引导学生思考和探讨。
2.基础知识的讲解(20分钟)在较为简单的数值计算上,讲解有理数的加法和减法的定义和性质。
通过简单的数轴上的图示和实例进行解释。
3.例题引导和探究(30分钟)通过一些简单的例题引导学生进行操作,培养学生的计算能力和分析问题能力。
例题1:计算:(-3)+5,(-7)-4例题2:计算:(-4)+(-6),(-8)-(-5)4.拓展知识讲解(10分钟)在基础知识讲解的基础上,进一步引入拓展知识,如有理数的乘法和除法,学习有理数的四则运算规则。
5.解决实际问题(20分钟)通过一些实际的问题来引导学生解决问题,培养学生的应用能力和实际运用能力。
如:问题1:小明从北京骑自行车到天津,用了2小时30分钟,骑车速度为每小时16公里。
问:小明从北京到天津的距离是多少公里?问题2:小华去超市买牛奶,超市原价是每瓶9元,今天正在打折,每瓶打7折。
小华买了5瓶,他用了多少元?6.总结与讲评(10分钟)总结本节课的知识要点和核心内容,帮助学生理清思路。
7.作业布置(5分钟)布置一些相关的课后作业和练习题,要求学生按时完成并及时订正。
五、教学反思:通过本节课的教学设计和实施,学生能够全面了解和掌握有理数的加减法的基本知识和运算方法。
人教版数学七年级上册1.3《有理数的加减法》(有理数的加减混合运算)教学设计
人教版数学七年级上册1.3《有理数的加减法》(有理数的加减混合运算)教学设计一. 教材分析《有理数的加减法》是人教版数学七年级上册的教学内容,本节课主要介绍了有理数的加减混合运算。
学生在学习了有理数的基础知识后,进一步学习有理数的加减法运算,这对于培养学生解决实际问题的能力具有重要意义。
教材通过例题和练习题,使学生掌握有理数加减法运算的规则和方法,并能灵活运用到实际问题中。
二. 学情分析七年级的学生已经掌握了有理数的基本概念,对数的大小比较也有了一定的了解。
但学生在进行有理数的加减法运算时,可能会对符号的判断和运算顺序产生困惑。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生正确判断符号,掌握运算顺序,提高运算能力。
三. 教学目标1.知识与技能:使学生掌握有理数的加减法运算方法,能正确进行有理数的加减混合运算。
2.过程与方法:通过实例演示、小组讨论等方法,培养学生合作学习、解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:有理数的加减法运算方法。
2.难点:符号的判断和运算顺序。
五. 教学方法1.实例演示法:通过具体的例子,让学生直观地理解有理数的加减法运算。
2.引导发现法:教师引导学生发现运算规律,培养学生的探究能力。
3.小组讨论法:学生分组讨论,共同解决问题,提高合作能力。
4.练习法:通过大量练习,巩固所学知识。
六. 教学准备1.教学课件:制作课件,展示例题和练习题。
2.教学素材:准备一些实际问题,用于引导学生运用有理数加减法解决实际问题。
3.练习题:设计一些有梯度的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过一个实际问题,引导学生思考如何运用有理数加减法解决问题。
例如:小明买了3本书,每本书5元,又卖掉2本书,每本书3元,请问小明最后赚了多少钱?2.呈现(10分钟)教师展示教材中的例题,引导学生观察和分析,让学生发现有理数加减法运算的规律。
初中初一数学上册《有理数的加法与减法》优秀教学案例
案例中,小组合作是一种重要的教学策略。通过分组讨论、互助学习,学生能够在团队中发挥各自的优势,共同解决问题。这种合作学习方式不仅提高了学生的团队协作能力,还培养了学生的沟通表达能力和共享精神。
4.反思与评价,促进自主学习
本案例注重学生的反思与评价,鼓励学生总结自己的学习过程,发现优点和不足,制定针对性的改进措施。这种教学策略有助于培养学生的自主学习能力,使他们在反思中不断成长。
(二)过程与方法
1.通过情境创设,引导学生主动探究有理数加减法的规律,培养学生独立思考的能力。
2.采用问题驱动法,激发学生的学习兴趣,引导学生通过自主探究、合作交流等方式解决问题。
3.设计不同难度的例题和练习,使学生在实际操作中掌握有理数的加减法运算方法,提高解题能力。
4.注重个别辅导,关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。
(三)学生小组讨论
在学生小组讨论环节,我会将学生分成若干小组,让他们针对以下问题进行讨论:
1.有理数加减法的运算规律有哪些?如何运用到实际计算中?
2.在有理数加减法运算中,如何避免常见的错误?
3.结合实例,讨论有理数加减法在实际生活中的应用。
(四)总结归纳
在总结归纳环节,我会带领学生回顾本节课所学内容,总结有理数加减法的运算规律和技巧。具体包括以下几点:
3.鼓励小组成员积极参与讨论,分享自己的观点和思路,学会倾听他人的意见,形成共识。
4.教师在小组合作过程中进行巡回指导,关注每个学生的参与情况,及时给予反馈和指导。
(四)反思与评价
反思与评价是教学过程中的重要环节,可以帮助学生巩固所学知识,提高自我认知。在本章节的教学中,我将采取以下措施:
《有理数的加减法》教学设计
《有理数的加减法》教学设计《有理数的加减法》教学设计有理数的加法与小学的加法大有不同,小学的加法不涉及到符号的问题,下面给大家分享《有理数的加减法》教学设计,一起来看看吧!《有理数的加减法》教学设计1教学目标:1、会将有理数的减法运算转化为有理数的加法运算。
2、会将有理数的加减混合运算转化为有理数的加法运算。
教学重点、难点:会进行有理数的减法运算,会进行有理数的加减混合运算。
课前复习:1、有理数加法法则是什么?2、有理数加法运算律是什么?教学过程:一、有理数的减法法则实际生活中有很多时候要涉及到有理数的减法。
例如:某地某天的气温是―2至5C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:C)。
显然,这天的温差是5―(―2)。
这里就用到了有理数的减法。
我们知道,减法是与加法相反的运算,计算5―(―2),就是要求一个数,使之与(―2)的和得4,因为与―3相加得4,所以这个数应该是7,即:5―(―2)=7。
(1)另一方面,我们知道5+(+2)=7(2)由(1),(2)有5―(―2)=5+(+2)(3)从(3)式能看出减―2相当于加哪个数吗?用上面的方法考虑:0―(―2)=___, 0+(+2)=___;1―(―2)=___, 1+(+2)=____;―5―(―2)=___,―5+(+2)=___。
这些数减3的结果与它们加+2的结果相同吗?从(3)式能看出减―2相当于加哪个数吗?把5换成0,1,—5,用上面的方法考虑,并看它们的结果相同吗?计算:10-8=___,10+(-8)=____;13-7=___,13+(-7)=____。
上述式子表明:减去一个数,等于加上这个数的相反数。
于是,得到有理数减法法则:减去一个数,等于加这个数的相反数。
用式子可以表示成ab=a+(b)例题解析:计算:(1)(-4)―(―5);(2)0-6;(3)7.1―(―4.9);解:(1)(-4)―(―5)=(-4)+5=1;(2))0-6=0+(-6)=-6;(3)7.1―(―4.9)=7.1+4.9=12;二、有理数加减混合运算有理数的.加减混合运算,可以按照运算顺序,从左到右逐一加以计算,通常也会利用有理数的减法法则,把它写成只有加法运算的和的形式。
有理数的加减混合运算_七年级数学教案
有理数的加减混合运算_七年级数学教案篇一:七年级数学上册有理数加减混合运算2.11有理数加减混合运算一、教学目标1、掌握有理数混合运算的法则,并能熟练的按有理数运算顺序进行有理数加、减、乘、除、乘方、的混合运算。
2、在运算过程中合理的使用简化运算,培养良好的运算能力。
3、通过玩“24点”游戏开拓思维,更好掌握有理数的混合运算。
二、重点、难点1、重点:熟练进行有理数的混合运算。
2、难点:在运算中灵活使用运算律并且能准确掌握符号问题。
三、教学过程1、(幂),a是底数,n是指数,叫做幂,他表示n个a相乘。
在前面几节课我们一共学习了5种运算,分别是那些运算呢?(学生回答:加法、减法、乘法、除法、乘方),注意乘方也是一种运算,我们学习了这五种运算所总结归纳出的法则再有理数的范围内都是适用的。
下面我们来检测一下大家,自己在练习23+我们一起检验一下自己做的对不对。
首先看第一题:这一题是那种运算(学生答:加法)。
那么前面我们学习的有理数加法的法则是?学生答:同号两数相加,取相同的符号,并把绝对值相加:异号两数相加,绝对值相等时和为0,绝对值不等时取绝对值较大的数的符号,并用较大的绝对值减去较2、讲授新知通过练习我们复习了前面学过的有理数的加法、减法、乘法、除法、乘方这五种运323则,知道了如何分别进行这些法则的运用,今天我们就来学习有理数的混合运算。
大家来看一下这个算式:思考该如何解决这个问题,3+2某(-)=?提示:在学习了乘方之后,我们说乘方是更高一级的运算在有乘方的算式中先算乘我们一起来解决这个问题:首先我们先来判断一下这个式子包含了哪几种运算?(加法、乘方、乘法),=4那么这个式子我们可以把它变成。
3+4某(-)=?这样的话同学们是不是就见过了呢?接下来应该算乘法最后再算加法。
例1、3+2某()215解:原式=3+4某()=3+(=154)5115现在我们自己总结一下有理数加减混合运算的顺序:先算乘方,再算乘除,最后算加减,如果有括号先算括号的话,先算括里面的。
有理数的加减法 教案
有理数的加减法教案以下是为您推荐的有理数的加减法教案,希望本篇文章对您学习有所帮助。
有理数的加减法教案 一、教学目的 知识与技能:使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算. 过程与方法:通过有理数的加法运算,培养学生的运算能力. 情感与态度:激发学生学习数学的兴趣。
二、教学重点与难点 重点:熟练应用有理数的加法法则进行加法运算. 难点:有理数的加法法则的理解. 三、教学过程 (一)复习提问 1.有理数是怎幺分类的? 2.有理数的绝对值是怎幺定义的?一个有理数的绝对值的几何意义是什幺? 3.有理数大小比较是怎幺规定的?下列各组数中,哪一个较大?利用数轴说明? -3与-2;|3|与|-3|;|-3|与0; -2与|+1|;-|+4|与|-3|. (二)引入新课 在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学有理数的加法运算. (三)进行新课有理数的加法(板书课题) 例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什幺地方? 两次行走后距原点0为8米,应该用加法. 为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况: 1.同号两数相加 (1)某人向东走5米,再向东走3米,两次一共走了多少米? 这是求两次行走的路程的和. 5+3=8 用数轴表示如图 从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米. 可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和. (2)某人向西走5米,再向西走3米,两次一共向东走了多少米? 显然,两次一共向西走了8米 (-5)+(-3)=-8 用数轴表示如图 从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米. 可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和. 总之,同号两数相加,取相同的符号,并把绝对值相加. 例如,(-4)+(-5),同号两数相加 (-4)+(-5)=-( ),取相同的符号 4+5=9把绝对值相加 ∴ (-4)+(-5)=-9. 口答练习: (1)举例说明算式7+9的实际意义? (2)(-20)+(-13)=? 2.异号两数相加 (1)某人向东走5米,再向西走5米,两次一共向东走了多少米? 由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米. 5+(-5)=0 可知,互为相反数的两个数相加,和为零. (2)某人向东走5米,再向西走3米,两次一共向东走了多少米? 由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米. 就是5+(-3)=2. (3)某人向东走3米,再向西走5米,两次一共向东走了多少米? 由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米. 就是3+(-5)=-2. 请同学们想一想,异号两数相加的法则是怎幺规定的?强调和的符号是如何确定的?和的绝对值如何确定? 最后归纳 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0. 例如(-8)+5绝对值不相等的异号两数相加 8大于5 (-8)+5=-( )取绝对值较大的加数符号 8-5=3 用较大的绝对值减去较小的绝对值 ∴(-8)+5=-3. 口答练习 用算式表示:温度由-4℃上升7℃,达到什幺温度. (-4)+7=3(℃) 3.一个数和零相加 (1)某人向东走5米,再向东走0米,两次一共向东走了多少米? 显然,5+0=5.结果向东走了5米. (2)某人向西走5米,再向东走0米,两次一共向东走了多少米? 容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米. 请同学们把(1)、(2)画出图来 由(1),(2)得出:一个数同0相加,仍得这个数. 总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况. 有理数加法运算的三种情况: 特例:两个互为相反数相加; (3)一个数和零相加. 每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法. (四)例题分析 例1 计算(-3)+(-9). 分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征). 解:(-3)+(-9)=-12. 例2 分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值..(强调两个较大”一个较小”) 解: 解题时,先确定和的符号,后计算和的绝对值. (五)巩固练习 1.计算(口答) (1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9); (5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0; 2.计算 (1)5+(-22); (2)(-1.3)+(-8) (3)(-0.9)+1.5; (4)2.7+(-3.5) 四.课堂小结:今天我们学到了什幺? 五.作业布置。
数学人教七年级上册有理数的加减法优秀教案
1.3.1 有理数的加法(1)(终极版)教学目标:1.利用数形结合的思想使学生理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算。
通过有理数加法的教学,体现化归的意识、数形结合和分类的思想方法,培养学生观察、比较和概括的思维能力。
2.使学生理解有理数加法的法则,能熟练地进行有理数加法运算。
教法主要采用启发式教学和必要的讲解3.在传授知识、培养能力的同时,注意培养学生勇于探索的精神。
教学重点:有理数加法法则。
教学难点:异号两数相加的法则。
教学准备:多媒体教学过程:一、复习引入:1.如果把向西走20米记作—20米,那么向东走30米应该记作()米,—10米表示向()走()米,+50米表示向()走()米。
0米表示()。
我们把数的范围扩大到有理数以后,我们知道除0以外任何一个有理数都由()和()两部分组成。
2.在小学里,已经学过了正整数、正分数(包括正小数)及数0的四则运算。
现在引入了负数,数的范围扩充到了有理数。
那么,如何进行有理数的运算呢?3.问题:一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?我们知道,求两次运动的总结果,可以用加法来解答。
可是上述问题不能得到确定答案,因为问题中并未指出行走方向。
二、讲授新课:1.发现、总结:我们必须把问题说得明确些,并规定向东为正,向西为负。
(1)若两次都是向东走,很明显,一共向东走了50米,写成算式就是:(+20)+(+30)=+50,即这位同学位于原来位置的东方50米处。
这一运算在数轴上表示如图:(2)若两次都是向西走,则他现在位于原来位置的西方50米处,写成算式就是:(―20)+(―30)=―50。
(3)若第一次向东走20米,第二次向西走30米,我们先在数轴上表示如图:写成算式是(+20)+(―30)=―10,即这位同学位于原来位置的西方10米处。
(4)若第一次向西走20米,第二次向东走30米,写成算式是:(―20)+(+30)=( )。
七年级数学上册《有理数加减混合运算》教案、教学设计
二、学情分析
七年级的学生在数学学习上已具备一定的运算基础和逻辑思维能力,但对于有理数加减混合运算这一部分内容,他们在理解上可能还存在一定的困难。在之前的学习中,学生已经接触过正整数、零和负整数的概念,并掌握了它们的加减运算。因此,在此基础上,教师需要引导学生进一步拓展对有理数的认识,帮助他们建立完整的有理数加减混合运算体系。
6.课后作业,拓展延伸
布置适量的课后作业,包括基础题和提高题,巩固所学知识。同时,鼓励学生进行拓展学习,如研究有理数乘除运算等。
7.关注学生情感,营造良好氛围
在教学过程中,关注学生的情感态度,鼓励他们积极参与,勇于提问。对学生的每一次进步给予肯定和表扬,增强他们的自信心。
8.评价与反馈
采用多元化评价方式,关注学生的过程表现,及时给予反馈。通过评价,激发学生的学习积极性,提高他们的学习效果。
三、教学重难点和教学设想
(一)教学重点
1.有理数的概念及其分类;
2.有理数的加减法则及其运用;
3.数轴在有理数加减混合运算中的应用;
4.解决实际问题中涉及的有理数加减混合运算。
(二)教学难点
1.有理数加减法则的理解与记忆;
2.正确运用数轴辅助有理数加减混合运算;
3.将实际问题抽象为有理数加减混合运算模型。
3.深入讲解,突破难点
针对学生难以理解的有理数加减法则,教师通过数轴演示、具体实例分析等方法,帮助学生加深理解,突破难点。
4.巩固练习,提高能力
设计不同难度的练习题,让学生独立完成。在解题过程中,教师巡回指导,针对学生的问题进行个别辅导,提高他们的运算能力。
5.课堂小结,总结规律
有理数的加减法,教案
有理数的加减法,教案篇一:有理数的加法(第一课时)教学设计有理数的加法(1)教学设计本节课选自人教版教材七年级(上),是本册书第一章第三节第一课时的内容。
下面我从教学内容分析、教学目标设置、学生学情分析、教学策略分析、教学过程五个方面谈一谈我对本节课的理解与设计。
一、教学内容分析有理数的有关概念和运算是整个学段“数与代数”领域内容的基础,直接关系到实数运算、代数式运算、解方程等内容的学习。
有理数的加法是本章的一个重点,是学生接触的第一种有理数运算,又因为减法运算可以统一为加法运算,所以学生能否接受和形成在有理数范围内进行的各种运算的思考方式,关键在于这一节的学习。
在学习有理数的加法之前,本教材从实例中引入负数,然后介绍一些关于有理数的概念,如数轴、对数值和绝对值,以加深对有理数(尤其是负数)的理解,另一方面,准备学习本节中有理数的加法。
在此基础上,通过具体问题情境,认识操作的作用,加深学生对操作本身意义的理解,即为什么要进行操作,操作意味着什么;同时,在学生体验操作应用的过程中,培养学生一定的应用意识和能力。
因此,本课程的教学重点是:有理数加法规则的理解和应用。
它把一般思想与一般思想结合起来,体现了探索过程中的基本思想。
二、教学目标设置《数学课程标准》要求学生通过义务教育阶段的数学学习,通过数与代数的抽象、运算和建模,掌握数与代数的基本知识和技能。
在有理数一章中,学生应该能够计算有理数并解决一些简单的实际问题。
根据课程标准和上述教学内容分析,教学目标如下:1、通过实例,了解有理数加法的意义;2.体验探索规律的过程,培养学生总结能力;3、会根据有理数加法法则进行有理数的加法运算;4.在探索过程中,感受数与形相结合的数学思想,从特殊到一般渗透辩证唯物主义思想。
三、学生学情分析小学学习算术运算是学生学习有理数加法的前提;对负数、数轴、对数和绝对值的研究,不仅加深了对有理数的理解,而且为有理数的加法做了准备。
人教版七年级数学上册1.3《有理数的加减法》教学设计
人教版七年级数学上册1.3《有理数的加减法》教学设计一. 教材分析《有理数的加减法》是人教版七年级数学上册第一章第三节的内容,本节内容是在学生已经掌握了有理数的概念和简单的性质的基础上进行讲授的。
有理数的加减法是数学中基本的运算,也是日常生活中经常使用的运算。
本节内容的学习,有助于学生进一步理解和掌握有理数的运算规则,培养学生解决实际问题的能力。
二. 学情分析学生在进入七年级之前,已经初步接触过有理数的概念和性质,对有理数有了一定的认识。
但学生的数学基础参差不齐,部分学生对有理数的理解还不够深入,对有理数的加减运算规则还不够熟悉。
因此,在教学过程中,需要关注所有学生的学习情况,针对不同学生进行有针对性的教学。
三. 教学目标1.理解有理数的加减法运算规则,能够熟练地进行有理数的加减运算。
2.培养学生解决实际问题的能力,使学生能够运用有理数的加减法规则解决生活中的问题。
3.培养学生的逻辑思维能力,使学生能够理解和分析数学问题。
四. 教学重难点1.教学重点:有理数的加减法运算规则,有理数的加减运算。
2.教学难点:理解并掌握有理数的加减法运算规则,能够灵活运用规则解决实际问题。
五. 教学方法采用问题驱动的教学方法,通过引导学生思考和解决问题,让学生主动探索和理解有理数的加减法运算规则。
同时,运用实例讲解和练习,使学生能够熟练地进行有理数的加减运算。
六. 教学准备1.准备相关的教学材料,如PPT、教案、练习题等。
2.准备一些实际问题,用于引导学生运用有理数的加减法规则解决实际问题。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数的概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)通过PPT展示有理数的加减法运算规则,让学生初步了解并感知加减法运算的规则。
3.操练(10分钟)让学生进行有理数的加减运算练习,教师引导学生注意运算的顺序和规则,并及时给予反馈和纠正。
4.巩固(10分钟)通过一些实际问题,让学生运用有理数的加减法规则进行解决,巩固所学知识。
《有理数的加减法》教案
《有理数的加减法》教案一、教学目标理解有理数加法和减法的意义,掌握有理数加法和减法法则。
能熟练进行有理数的加法和减法运算。
培养学生的观察、分析、归纳和运算能力。
二、教学重难点教学重点有理数加法和减法法则的理解与运用。
有理数加法和减法运算的准确性。
教学难点异号两数相加和减法转化为加法的理解。
多个有理数相加和减法的运算。
三、教学方法讲授法:讲解有理数加法和减法的法则及运算方法。
演示法:通过实例演示有理数加法和减法的运算过程。
练习法:让学生进行大量的有理数加法和减法运算练习。
讨论法:组织学生讨论有理数加法和减法运算中的问题和解决方法。
四、教学过程导入新课回顾有理数的概念和分类,引出有理数的运算问题。
提出问题:如何进行有理数的加法和减法运算呢?激发学生的学习兴趣。
有理数加法法则结合实例讲解有理数加法的几种情况:同号两数相加:取相同的符号,并把绝对值相加。
例如:(+3)+(+4)=+7,(-3)+(-4)=-7。
异号两数相加:绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
例如:(+5)+(-3)=+2,(-5)+(+3)=-2。
当互为相反数的两个数相加时,和为 0。
例如:(-2)+2=0。
一个数同 0 相加,仍得这个数。
引导学生总结有理数加法法则,强调法则的要点。
有理数加法运算练习出示一些有理数加法的练习题,让学生进行运算。
请学生到黑板上进行演示,教师点评并纠正错误。
有理数减法法则讲解有理数减法法则:减去一个数,等于加上这个数的相反数。
例如:5 - 3 = 5 + (-3) = 2。
分析减法转化为加法的原理和方法,让学生理解减法的本质。
有理数减法运算练习给出一些有理数减法的练习题,让学生进行运算。
强调运算过程中的注意事项,如符号的变化等。
多个有理数的加法和减法运算举例讲解多个有理数相加和减法的运算方法,如按顺序依次进行运算、结合运算律简化运算等。
让学生进行一些多个有理数的运算练习,培养学生的综合运算能力。
人教版七年级数学上册教案:第1章 有理数 有理数的加减法(4课时)
1.3有理数的加减法1.3.1有理数的加法第1课时有理数的加法法则一、基本目标【知识与技能】理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算.【过程与方法】经历探究有理数加法法则的过程,学会与他人交流合作.【情感态度与价值观】在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力.二、重难点目标【教学重点】有理数加法运算.【教学难点】异号两数的加法运算.环节1自学提纲,生成问题【5 min阅读】阅读教材P16~P18的内容,完成下面练习.【3 min反馈】1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.3.一个数同0相加,仍得这个数.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算:(1)(-25)+(-35);(2)(-12)+(+3);(3)(+8)+(-7);(4)0+(-7).【互动探索】(引发学生思考)同号两数相加怎样计算?异号两数相加呢?【解答】(1)(-25)+(-35)=-(25+35)=-60.(2)(-12)+(+3)=-(12-3)=-9.(3)(+8)+(-7)=+(8-7)=1.(4)0+(-7)=-7.【互动总结】(学生总结,老师点评)有理数加法法则是进行有理数加法运算的依据.进行加法运算时,首先判断两个加数的符号,是同号、异号还是有一个加数是0,然后确定用哪一条法则.活动2 巩固练习(学生独学)1.下列各数中,与-13的和为0的是( D ) A .3B .-3C .-13D.132.计算(-6)+5的结果是( C )A .-11B .11C .-1D .1 3.李志家冰箱冷冻室的温度为-6 ℃,调高4 ℃后的温度为( C )A .4 ℃B .10 ℃C .-2 ℃D .-10 ℃4.计算:8+(-5)的结果为3.5.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a +b +c =0.6.计算:(1)45+(-20);(2)(-8)+(-1);(3)|-10|+|+8|.解:(1)45+(-20)=45-20=25.(2)(-8)+(-1)=-(8+1)=-9.(3)|-10|+|+8|=10+8=18.活动3 拓展延伸(学生对学)【例2】已知|a |=4,|b |=6,求a +b 的值.【互动探索】先依据绝对值的性质求得a 、b 的值,最后依据加法法则进行计算即可.【解答】因为|a |=4,所以a =4或a =-4.因为|b |=6,所以b =-6或b =6.当a =4,b =6时,a +b =4+6=10;当a =4,b =-6时,a +b =4+(-6)=-2;当a =-4,b =6时,a +b =-4+6=2.当a =-4,b =-6时,a +b =-4++(-6)=-10.综上所述,a +b 的值为10或-2或2或-10.【互动总结】(学生总结,老师点评)本题考查有理数的加法运算以及绝对值的性质,由于未告知a 、b 的正负,所以要分类讨论.环节3 课堂小结,当堂达标(学生总结,老师点评)有理数的加法⎩⎪⎨⎪⎧ 法则⎩⎪⎨⎪⎧ 同号异号0运算步骤请完成本课时对应练习!第2课时 有理数的加法运算律一、基本目标【知识与技能】1.掌握有理数的加法运算律,理解小学中的加法运算律在有理数中仍然成立.2.能用有理数的运算律对有理数加法进行简便运算.【过程与方法】经历探索有理数的加法运算律的过程,培养学生的观察能力和思维能力.【情感态度与价值观】体会有理数加法运算律的应用价值.二、重难点目标【教学重点】有理数加法运算律.【教学难点】灵活运用加法运算律进行简便运算.环节1 自学提纲,生成问题【5 min 阅读】阅读教材P19~P20的内容,完成下面练习.【3 min 反馈】1.有理数加法的交换律:两个数相加,交换加数的位置,和不变,用字母表示为a +b =b +a .2.有理数加法的结合律:三个数相加,先把前两个数相加或先把后两个数相加,和不变,用字母表示为(a +b )+c =a +(b +c ).3.计算:30+(-20);(-20)+30;[8+(-5)]+(-4);8+[(-5)]+(-4)].解:10. 10. -1. -1.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】用简便方法计算下列各题:(1)12+⎝⎛⎭⎫-23+45+⎝⎛⎭⎫-12+⎝⎛⎭⎫-13; (2)(-0.5)+314+2.75+⎝⎛⎭⎫-512; (3)7+(-6.9)+(-3.1)+(-8.7).【互动探索】(引发学生思考)观察式子特点,灵活选择运算律进行计算.【解答】(1)原式=12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-23+⎝⎛⎭⎫-13+45=⎣⎡⎦⎤12+⎝⎛⎭⎫-12+⎣⎡⎦⎤⎝⎛⎭⎫-23+⎝⎛⎭⎫-13+45=0-1+45=-1+45=-15. (2)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-512+314+234=⎣⎡⎦⎤⎝⎛⎭⎫-12+⎝⎛⎭⎫-512+⎝⎛⎭⎫314+234 =-6+6=0.(3)原式=(-6.9)+(-3.1)+(-8.7)+7=[(-6.9)+(-3.1)]+[(-8.7)+7]=-10+(-1.7)=-11.7.【互动总结】(学生总结,老师点评)在运用运算律时,通常有下列规律:①互为相反数的两个数先相加;②符号相同的数先相加;③分母相同的数先相加;④几个数相加得到整数的先相加;⑤整数与整数,小数与小数相加.活动2 巩固练习(学生独学)1.运用加法的运算律计算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最适当的是( D )A .[(+6)+(+4)+18]+[(-18)+(-6.8)+(-3.2)]B .[(+6)+(-6.8)+(+4)]+[(-18)+18+(-3.2)]C .[(+6)+(-18)]+[(+4)+(-6.8)]+[18+(-3.2)]D .[(+6)+(+4)]+[(-3.2)+(-6.8)]+[(-18)+18)]2.计算43+(-77)+27+(-43)的结果是-50.3.用适当的方法计算:(1)23+(-17)+6+(-22);(2)1+⎝⎛⎭⎫-12+13+⎝⎛⎭⎫-16; (3)1.125+⎝⎛⎭⎫-325+⎝⎛⎭⎫-18+(-0.6); (4)(-2.48)+(+4.33)+(-7.52)+(-4.33).解:(1)原式=(23+6)+[(-17)+(-22)]=29-39=-10.(2)原式=1+13+⎣⎡⎦⎤⎝⎛⎭⎫-12+⎝⎛⎭⎫-16 =43-23=23. (3)原式=118+⎝⎛⎭⎫-18+⎝⎛⎭⎫-325+⎝⎛⎭⎫-35 =1-4=-3.(4)原式=[(-2.48)+(-7.52)]+[(+4.33)+(-4.33)]=-10+0=-10.活动3 拓展延伸(学生对学)【例2】10月6日上午,出租车司机小李在南北走向的商业大道上运营,如果规定向北为正,向南为负,出租车的行车里程如下(单位:km):-17,-4,+13,-10,-12,+3,-13,+15,+20.(1)将最后一名乘客送到目的地时,小李离出车地点的距离是多少千米?(2)若每千米耗油0.2升,这天上午汽车共耗油多少升?【互动探索】(1)根据加法法则,将正数与正数相加,负数与负数相加,进而得出计算结果.(2)要求耗油量,只需求出出租车上午一共走的路程,即将各数的绝对值相加求出即可.【解答】(1)(-17)+(-4)+(+13)+(-10)+(-12)+(+3)+(-13)+(+15)+(+20)=[-17+(-4)+(-10)+(-12)+(-13)]+(13+3+15+20)=-56+51=-5.即将最后一名乘客送到目的地时,小王离出车地点的距离是南边5千米处.(2)总行程为|-17|+|-4|+|+13|+|-10|+|-12|+|+3|+|-13|+|+15|+|+20|=17+4+13+10+12+3+13+15+20=107(千米).由于每千米耗油0.2升,所以这天上午汽车共耗油107×0.2=21.4(升).【互动总结】(学生总结,老师点评)本题考查有理数的加法运算以及绝对值的性质,关键是熟练利用加法的运算法则进行运算.环节3 课堂小结,当堂达标(学生总结,老师点评)有理数的加法运算律⎩⎪⎨⎪⎧交换律结合律请完成本课时对应练习!1.3.2 有理数的减法第3课时 有理数的减法法则一、基本目标【知识与技能】理解有理数减法法则,并能准确地进行有理数的减法运算.【过程与方法】通过把减法运算转化为加法运算,向学生渗透转化思想.【情感态度与价值观】通过揭示有理数的减法法则,注意培养学生的观察、比较、归纳及运算能力.二、重难点目标【教学重点】掌握有理数减法法则和运算.【教学难点】有理数减法法则的推导.环节1 自学提纲,生成问题【5 min 阅读】阅读教材P21~P22的内容,完成下面练习.【3 min 反馈】通过教材第21页实际例子,一方面,利用加法与减法互为逆运算可知:计算3-(-3),就是要求出一个数x ,使x +(-3)=3,易知x =6,所以3-(-3)=6.①另一方面,3+(+3)=6.②由①②有3-(-3)=3+(+3).再试,把减数-3换成正数,任意列出一些算式进行计算,如:计算9-8与9+(-8);15-7与15+(-7).得出减法法则:减去一个数,等于加这个数的相反数.用字母表示为a -b =a +(-b ).【教师点拨】减法法则渗透了一种重要的数学思想方法——转化,有了相反数,减法就可以转化为加法,加减就可以统一为加法.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】计算:(1)-7-3;(2)5.8-(-3.6);(3)(+4.09)-⎝⎛⎭⎫+614; (4)(-30)-(-6)-(+6)-(-15).【互动探索】(引发学生思考)利用有理数的减法法则进行计算。
最新七年级有理数的加减法教案优秀6篇
最新七年级有理数的加减法教案优秀6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!最新七年级有理数的加减法教案优秀6篇作为一位杰出的老师,时常需要用到教案,教案是教学活动的依据,有着重要的地位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学有理数的加减
法教案
Prepared on 22 November 2020
初一同步辅导材料(第9讲)
第一章 有理数加减及其混合运算
【知识梳理】
1、有理数的加法法则:
同号两数相加,取相同的符号,并把绝对值相加.
异号两数相加,绝对值相等时和为0(即互为相反数的两数相加得0); 绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值. 一个数同0相加,仍得这个数.
加法的法则指出,两个有理数相加的结果由两部分构成:
先确定和的符号,再确定两数的绝对值相加或相减,以得到和的绝对值. 在加法运算中,最容易错的就是符号问题,运算时要特别注意符号问题.
【重点难点】
重点:有理数的加法法则和相关的运算律。
难点:运用有理数加法法则和运算律进行简化运算。
【典例解析】
例1、 数轴上的一点由原点出发,向左移动2个单位长度后又向左移动了4
个单位,两次共向左移动了几个单位
解:(-2)+(-4)=-6。
答:这个点共向左移动6个单位。
例2、计算:
(1))432()413(-+- (2)()⎪⎭
⎫ ⎝⎛++-5112.1 (3))43(31-+ (4))7
52()723(-+;
解 :(1)6)4
32413()432()413(-=+-=-+-; (2)()0)2.1()2.1(5112.1=++-=⎪⎭
⎫ ⎝⎛++-; (3)12
5)3143()43(31-=--=-+; (4)7
4)752723()752(723+=-+=-+。
说明 严格按法则去做,对异号两数相加,关键是判断出两数的绝对值哪一个大,从而确定和的符号以及哪个数的绝对值减去哪个数的绝对值.
例3、计算(1))2()6()8()20()15(++-+++-++
(2))819()125.0()5.2()712()25()7
2(-+-+++-+-++ 解:(1))2()6()8()20()15(++-+++-++
)6()20()2()8()15(-+-++++++=
1)26()25(-=-++=
(2))819()125.0()5.2()712()25()7
2(-+-+++-+-++ )819()81()5.2()25()712()72(-+-+++-+-++=
)25(0)710(-++-=1455)1435()1420(-=-+-= 说明:把同分母的分数,互为相反数的数分别结合相加,计算起来就比较方便
【牛刀小试】
1、计算:
(1)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-3121; (2)(—)+;
(3)3
14+(—561); (4)(—56
1)+0;
(5)(+251)+(—); (6)(—15
2)+(+);
(7)(—6)+8+(—4)+12;
(8)
3173312741++⎪⎭⎫ ⎝⎛-+
(9)+(—++(—+;
(10)9+(—7)+10+(—3)+(—9);
2、用简便方法计算下列各题:
(1))127()65()411()3
10(-++-+ (2)75.9)219()29()5.0(+-++-
(3))539()518()23()52()2
1(++++-+- (4))4.2()6.0()2.1()8(-+-+-+-
(5)
)37(75.0)27()43()34()5.3(-++++-+-+- 3、用算式表示:温度由—5℃上升8℃后所达到的温度.
.
4、有5筐菜,以每筐50千克为准,超过的千克数记为正,不足记为负,称重记录如下:
+3,-6,-4,+2,-1,总计超过或不足多少千克5筐蔬菜的总重量是多少千克
5. 已知04512=-+-b a ,计算下题:
(1)a 的相反数与b 的倒数的相反数的和;
(2)a 的绝对值与b 的绝对值的和。
答案:
1、(1)65-;(2);(3) 65-;(4) 615-; (5)0;(6)3
2 ;
(7)10;(8)0;(9) —;(10)0;
2、(1)65 (2) (3)12 (4)- (5)311-
3、-5+8=-3(°C )
4、 不足6克;244克。