浅谈初中数学中的分类讨论思想
浅谈初中数学中的分类讨论思想
浅谈初中数学分类讨论思想在解题中的应用摘要:在初中数学解题中,分类讨论不仅是一种非常重要的数学思想,而且它还也是一种非常有效的解题策略,其主要体现在“集零为整,化整为零”思想和归类整理思想这两个部分。
在初中数学教学中,如果教师在进行初中数学的教学时,对分类讨论思想加以运用,可以使学生对数学知识有更加深入的认识和理解,同时它能够进一步的培养学生的思维能力。
本文主要是对分类讨论在初中数学解题的应用进行探讨。
关键词:分类讨论思想初中数学教学应用俗话说的好,“数学是思维的体操”,要想进行数学学习,就一定是离不开思维运用,在对数学进行每一步探索,都是需要思维来完成。
因此,在初中的数学教学中,教师要对学生慢慢的进行数学思想方法的渗透,使学生的思维能力得到进一步的提升,使其能够形成一个良好的数学思维习惯,这样不仅符合了新课改的新要求,而且其还是实施数学素质教育的一个很好的切入点。
一、分类讨论思想在初中数学解题中的重要作用简单的来说,分类讨论起本质上就是一种逻辑上划分的思维方式。
其在教学中的具体表现为对题目“化整为零”,一个一个的进行逐步击破,这样的就实现了积零为整的教学方式。
在目前,分类讨论思想已经成为一种非常重要的数学思想,其在我国数学教学中得到了广泛的应用。
它不仅只是一种独特的数学逻辑方法,而且在进行数学知识教学时其更是一种有效的解题策略。
由于分类讨论在对不同的问题进行综合考虑时,其在逻辑上具有优势,特别是在培养学生的学习能力以及提升学生的思维严谨性有很好的促进作用。
在对数学题进行解答时,如果因为题目的题意中存在着一些不确定因素,进而导致无法解答出来,这样的情况下,就可以将题目分为若干个小问题,对其进行分类讨论,使相对复杂的问题变得简单化,方便对其进行解答。
二、分类讨论思想在初中数学解题的应用1.在不等式中的运用不等式在初中数学中是一种比较基础和普遍的内容。
因为不等式要涉及到绝对值,所以就要进行转换符号,同时一个不等式可能会存在不止一个绝对值问题,遇到这样的情况,学生往往会变得无所适从,这也就影响着学生的学习成绩的提升,运用分类谈论思想,就能够对不等式进行很好的解答。
浅谈在初中数学教学中的分类讨论思想
浅谈在初中数学教学中的分类讨论思想摘要:目前,我国初中数学教学中运用数学思想方法存在问题,从而导致数学思想方法的培养存在缺陷。
然而分类讨论思想是中学数学中的一种极其重要的数学思想方法,有必要对初中数学分类讨论思想在解题中的运用等进行尝试和讨论。
关键词:初中数学分类讨论思想一、问题的提出目前,我国初中数学教学中运用数学思想方法存在着一些问题(一)、我国教师的教育观念没有彻底改变,数学思想方法作为数学教育的重要内容,以日益引起人们的注意,这与教育越来越重视培养学生的能力和提高学生的素质有着密切的关系,但是,现在的数学课堂教学模式几乎延袭传统的教学理念,在表面上谈素质教育,其实内部暗中追求升学率的今天,数学思想方法教学的重要性没有引起老师们的足够重视。
例如,求解一道题,许多教师并没有反思是否一题多解,更没有考虑到解题的意图,只是一解了之,并没有反思解决数学问题的思维方式或者思想方法。
(二)、学生的学习方式和学习习惯也存在问题受教师传统观念的影响,学生的学业方面也存在许多问题,学生只是在拼命的完成教师布置的作业,没有深入的去了解所学知识。
因此,学生感到数学越学越枯燥,越学越不想学,哪还能考虑数学的思想方法,更谈不上知识的创新了。
(三)、分类讨论思想是中学数学中的一种极其重要的数学思想方法2011年新课程标准中指出:“数学教学中发展思维能力是培养能力的核心”,有必要对初中数学分类讨论思想在解题中的运用等进行尝试和讨论,这也符合新课程理念的基本要求,更是有利于深入实施新课程教学改革。
二、分类讨论思想在初中数学教学中的意义分类讨论思想是一种拙象的思想,是一类解決数学问题的思维方式。
它主要是将整体的数学概念转換为零散的小部分,全方位的解決各种数学问题,之后,又将零散的部分有条理地整合起来,得出有效可靠的总结。
分类讨论思想符合学生初中阶段思维发展的特点,有效地帮助学生整理解决数学问题的思路,提高学生思考问题的思维能力、创新能力以及动手实践能力。
分类讨论思想在初中数学解题教学中的运用探究
分类讨论思想在初中数学解题教学中的运用探究一、分类讨论思想的基本概念分类讨论思想是指将问题或事物按某种特定的标准进行分类,然后依次讨论各个类别中的具体内容,最后综合分类的结果来得出结论的一种思维方法。
在数学解题中,分类讨论思想常常用于分析不同情况下的解题方法,进而得出最终的解题结论。
在解决一个较为复杂的数学问题时,我们可以先将问题进行分类,然后分别讨论各个类别中的解题方法,最后再将各个类别的解题结果进行合并,得出最终的解题结论。
1. 引导学生灵活分类在初中数学解题教学中,教师可以通过引导学生灵活分类来启发学生的思维,帮助他们更好地理解和掌握解题方法。
在解决“集合”的问题时,教师可以要求学生根据不同的条件将集合进行分类,然后分别讨论各个分类的特点和解题方法,最后再将各个分类的解题结果进行总结。
通过这种方式,学生可以更加清晰地理解集合的概念和解题方法,从而提高他们的解题能力。
2. 激发学生的探究兴趣3. 提高学生的综合分析能力4. 培养学生的逻辑思维能力三、思考与建议分类讨论思想在初中数学解题教学中的运用,为提高学生的解题能力和思维能力提供了有益的启示。
在实际教学中,教师们还需要注意以下几点:1. 灵活运用分类讨论思想在初中数学解题教学中,教师需要根据具体的教学内容和学生的实际情况,灵活运用分类讨论思想来解决数学问题。
只有灵活运用分类讨论思想,才能更好地激发学生的学习兴趣,提高他们的解题能力。
2. 注重引导学生分析问题3. 多种方式引导学生实践分类讨论思想在初中数学解题教学中的运用,有助于提高学生的解题能力和思维能力。
教师们需要灵活运用分类讨论思想,注重引导学生分析问题,通过多种方式引导学生实践,从而更好地提高学生的解题能力和思维能力。
相信随着教师们不断的探索和实践,分类讨论思想的应用将会为初中数学解题教学带来新的活力和效果。
初中数学思想方法之分类讨论
初中数学思想方法之分类讨论数学是一门既抽象又具体的学科,它需要学生具备一定的思维方法和思想能力。
在初中数学中,分类讨论是一种常用的思想方法,它可以帮助学生分析问题、归纳规律并解决问题。
本文将详细介绍初中数学中分类讨论的基本思想和具体步骤,并通过例题来说明如何运用这种方法。
一、分类讨论的基本思想分类讨论是指将问题进行细化,将其分解成几个易于分析和解决的小问题,并分别进行讨论和解决。
通过这种方法可以更好地理解问题的本质,找到解题的关键点,并最终得到问题的解决办法。
分类讨论的基本思想包括以下几点:1.具体问题具体分析。
将问题进行细化后,每个小问题都有其独特的特点和解决思路,需要根据具体情况展开分析。
2.归纳总结。
在分析过程中,要总结出各个小问题之间的共同点和规律,以便更好地理解问题,并找到解决办法。
3.统一思考。
将各个小问题的解决办法进行归纳和整合,形成对大问题的解决思路。
二、分类讨论的具体步骤分类讨论的具体步骤可以简单概括为以下几点:1.理解问题。
仔细阅读题目,了解问题的背景和要求,确定需要解决的具体问题。
2.分析问题。
将大问题分解成几个小问题,每个小问题都有明确的目标和限制条件。
在分析过程中,可以通过画图、列举数据等方式进行辅助分析。
3.解决小问题。
按照特定的思路和方法,分别解决各个小问题。
在解决过程中,可以运用已经学过的数学知识、规律和公式。
4.总结归纳。
在解决小问题的过程中,要总结各个小问题之间的共同点和规律,归纳出解决大问题的关键思路和方法。
5.整合答案。
将各个小问题的解答整合成对大问题的解答。
在整合过程中,要仔细检查各个小问题的解答是否符合大问题的要求,并进行必要的修正和调整。
三、分类讨论的具体例题下面以一些常见的初中数学题目为例,说明如何运用分类讨论的方法解决问题。
例题1:现有一些白球和红球,共18个。
白球的个数不超过红球的个数。
问,最少有多少个红球?解题思路:根据题目要求和条件,可以将问题进行分类讨论。
初中数学分类讨论思想_浅析分类讨论思想在初中数学中的应用
初中数学分类讨论思想_浅析分类讨论思想在初中数学中的应用所谓分类讨论思想是指在解决某些数学问题时,其解决过程包括多种情形,不可一概而论,难以用统一的形式或同一种方法进行处理,需要根据所研究的对象在性质上存在的差别,按一定标准把原问题分为几个不同的种类,并对每一类逐一地加以分析和讨论,再把每一类结果和结论进行汇总,最终使得整个问题在总体上得到解决。
一、分类讨论思想在方程中的应用例:关于某的方程(m-2)某2-2某+1=0有实根,求m的取值范围。
解:①当m-2=0即m=2时,方程-2某+1=0有一个根为某=;②当m-2≠0即m≠2时,方程为一元二次方程。
且当b2-4ac=-4m+12≥0即m≤3时,原方程有两个实数根综上所述,当m≤3时,方程(m-2)某2-2某+1=0有实根。
二、分类讨论思想在特殊三角形中的应用例:已知四边形ABCD中,△ABC是边长为2的等边三角形,△ACD是一个含30°角的直角三角形且D在△ABC的外部,求四边形ABCD的对角线BD的长。
解:①以点A为直角顶点,点D为30°角顶点,或点C为直角顶点,点D为30°角顶点。
在△ACD中,∠CAD=90°,∠ADC=30°,AC=2∴AD=2√3。
过点D作DE⊥BA的延长线于E,∵∠BAC=60°,∠CAD=90°∴∠DAE=30°在△ADE中,∠AED=90°,∠DAE=30°AD=2√3∴DE=√3,AE=3,∴BE=5,∵DB2=DE2+BE2,∴BD=2√7。
②点C为直角顶点,点A为30°角顶点或点A为直角顶点,点C为30°角顶点,在△ACD中,∠ACD=90°,∠CAD=30°,AC=2∴AD=√3∵∠BAC=60°,∠CAD=30°∴∠BAD=90°∴DB2=AB2+AD2∵AB=2,AD=√3∴BD=√21。
初中数学教学中的分类讨论思想
互相 补充 , 互相 评价 , 个不同种类的一种数学思想。 它能训练学 是应 用分 类思想 解决 问题 的一个完 整的 则应 由学 生讨 论 , 生 的思维条理性和严密性 , 而提高学 生 过程。使学生在学 习知识 的过程 中体会 : 逐 步完善 。 从 分析 问题和解决问题的能力。 分类思想要 为什么要分 类 , 及分类 的基本原则。在随 贯串于整个数学教学 中, 在初 中数学教学 后 的去括号法则 、 有理数 的乘 法、 乘方 的 的过 程 中逐 步恰 当地 渗透数学 分类讨 论 教学 中均可仿照此方法渗透分类的思想 。
意k 对方程性质的影响。 讨论或讲评中, 要
参 考文献 : [] 1王燕春 . 分类 方法. 学会 提高分 类
[] 日制义 务教育课 程标 准 ( 2全 实验 [] 3蔡上鹤. 数学思想和数学方法
初 中数学大纲 明确指 出要让学生 “ 会 使学生明确系数 k决定方程的次数 ,从而 的大小和边长的关系对三角形进行分类 ” b- a> ,Z4 c Ob- a < 三种情况进 Z4 c Ob. a= ,Z4c O
号 , 解题 的过程使学 生体会分类讨论 的 图像过哪几个象限? 道题势必 要考虑 图 在 这
2 1 ・ 02 1
一
般情况 下, 分类讨论后都要对结论
这也是解决这一类问题必须的 类的依据 ,初步体会分类要不重复 ,不遗 并通过 有关讨论 的知识 的传授起 到潜移 进 行归纳 , 步骤 。对所 有分 类情况 的解进行统计 , 理
解问题 的意思 ,哪些解符合题 目要求 , 需
分类讨论 是重要的数学思想方法 , 但 保留 ; 哪些解不符合题 目要求 , 要舍去。 保
一
、
养成分类意识、 渗透分类思想
分类讨论思想
初中数学分类讨论思想全国各地每年中考数学试题都离不开考查分类讨论的思想,分类讨论思想是在解决问题出现不确定性时的有效方法。
比如线段及端点的不确定;角的一边不确定;三角形形状不确定;等腰三角形腰或顶角不确定;直角三角形斜边不确定;相似三角形对应角(边)不确定等,都需要我们正确地运用分类讨论的思想进行解决。
分类讨论思想不仅可以使我们有效地解决一些问题,同时还可以培养我们的观察能力和全面数学思维能力。
学生能够自觉合理的运用分类讨论的思想解决相应数学冋题,掌握分类讨论数学思想方法这个锐利武器,提高学生的综合运用的能力和良好的思维品质。
1.分类讨论思想含义数学问题比较复杂时,有时可以分解成若干小问题或一系列步骤进行分类并分别加以讨论的方法,我们称为分类讨论法或分类讨论思想。
2.分类讨论一般应遵循以下原则(1)对问题中的某些条件进行分类要遵循同一标准。
(2)分类要完整,不重复,不遗漏。
(3)有时分类并不是一次完成,还需进行逐级分类,对于不同级的分类,其分类标准不一定统一。
3.需要分类讨论的试题基本类型及其要求(1)考查数学概念及定义的分类。
熟练掌握数学中的概念及定义,其中以绝对值、方程及根的定义,函数的定义尤为重要,必须明确讨论对象及原因,进而确定其存在的条件和标准。
(2)考查字母的取值情况或范围的分类。
此类问题通常在函数中体现颇多,考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围.(3)考查图形的位置关系或形状的分类。
熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决.(4)考查图形的对应关系可能情况的分类。
图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论.4.初中数学涉及分类讨论的常见问题(1)绝对值中的分类讨论,(2)应用题中的方案类型,(3)概率统计中的分类讨论,(4)分式方程无解的分类讨论问题(5)一元二次方程系数的分类讨论问题(6)三角形的形状不定需要分类讨论(7)等腰三角形的分类讨论(8)相似三角形的对应角(或边)不确定而进行的分类(9)常见平面问题中动点问题的分类讨论(10)组合图形(一次函数、二次函数与平面图形等组合)中动点问题的分类。
浅谈初中数学中的分类讨论思想
1 引言
角为底角或者 大角为底 角 , 或者小 的数值为腰 , 大的为腰 , 就导致 得 出的结论 只有① 或者② 中的一种 。我 们作为老师 的就 必须在 教学 的过程 中不断 的建立起 分类 的思 想 , 并学会分类 。 例 3 解关于 x , 的不等式 :x a +5>3+ xa
中 的应 用 。
例 1 等腰三角形 的两角之差 为 3 ̄求该 三角形的各内角的 , 0,
度数. 解: 设较小内角为 X 则较 大内角为 X 0 , +3 。
[ 许德 责, 1 】 徐颖, 王春 清. 转化思 想在数 学解题 中的运用U. J中小学
教 学研 究.
① 当较小角为底角时 , + +x 3 ’ 81解得 x 5  ̄ x x ( ) ( + =1 0 = 0
堕
NO. 3
!
Ma c rh
T ME D C T O I E U I 1 N A
浅谈初 中数 学 中的分 类讨 论思想
徐翠 英
摘要 : 分类讨论是 一种重要的逻辑 思维方法 , 也是 一种 重要 的数 学思维方 法,它贯 穿与整个 中学数 学 , 学分类讨论思想主要是 数
根据 数 学研 究对象本质属性 的相 同点和不 同点 对研 究对象进行 分类讨论。在素质教 育和课改 的要 求下 培 养学 生的 思维能 力已经 成 了对教师能力的一个重要考验 , 养和发展 学生的数 学分类讨论思维能力 应贯 穿在我们 的整 个教 学过 程 中。 培
改的要求 , 也是进行数学素质教育的一个切入点 。
初中数学教学中分类讨论思想探析-最新教育文档
初中数学教学中分类讨论思想探析分类讨论是初中数学中常用的数学思想方法之一。
在新课改的大环境下,要想在初中数学教学中,使学生真正地掌握分类讨论的方法,教师要对这种方法的意义和重要性等方面有详细的认识和了解,并对其应用的策略与方法熟练掌握、不断探索创新.一初中数学教学中分类讨论的必要性在新课改中,强调了对学生综合能力的培养,学生总体素质和能力的提高是教学的重点。
对有关的数学问题进行分割,将其按种类进行划分,然后对其进行逐个的解答,这个过程称为分类讨论.做好分类讨论的教学工作,符合新课改的要求,有利于学生整体素质和能力的提高.在进行分类讨论时,最基本的要求就是做到尽量不要将知识点重复讲解,也不要遗漏重要的知识。
在初中数学教学中运用分类讨论的办法,能够有效地提高学生的创新能力和探究能力,在这一点上与新课改的要求是一致的。
分类讨论对于学生思维的培养有着积极的作用,能够提高学生思维逻辑的有序性和严谨性,使学生能够对遇到的问题进行全方位的仔细分析,对其进行更深一步的探究,同时还能使学生的思维更加连贯。
虽然在初中数学中的分类讨论有很多的好处,但是其对于学生来说,具体学习和掌握起来有很大的难度.通过多年的教学工作和学生的学习效果来看,很多学生还是做不好分类讨论,表现为对分类讨论运用得不够,在进行分类讨论的过程中,对于问题的考虑不够全面,使得在考试中这方面问题的得分率不高。
对导致这种现象的原因进行分析,主要是在实际的初中数学的教学中,教师对于分类讨论思想的强调和讲解不够,学生不能够熟练地运用分类讨论思想。
数学问题究其本质是一样的,只是在某些具体问题上存在着差异,在对这些数学问题进行分类时,导致需要进行分类讨论的原因主要有以下几种:第一,数学中相关概念的不同,例如对于绝对值的定义,我们将其分为小于零、等于零和大于零这三个具体的情况;对于求含有字母的绝对值的问题时,也要进行分类讨论;此外还包括对实数进行分类等等.第二,某些数学公式、定理以及性质等在进行变换时存在着特定的约束限制条件,这时候也需要进行分类讨论,如对一元二次方程根的解决。
分类讨论思想在初中数学教学中的应用
分类讨论思想在初中数学教学中的应用一、引言随着教育改革的不断深入,教学模式也在不断变革和创新。
分类讨论思想作为一种教学方法,被广泛用于初中数学教学中,从而提高学生的学习兴趣、激发学生的思维能力。
本文将探讨分类讨论思想在初中数学教学中的应用,并分析其优势和存在的问题。
二、分类讨论思想的定义与特点分类讨论思想是指教师在教学中将学生按照某种特定的标准或者条件进行分类讨论,通过梳理思路、归纳整理、分类比较等方式,引导学生深入思考问题。
其特点主要有以下几点。
1.引导学生独立思考。
通过设定分类标准和问题引导,学生需要独立思考并发挥创造力,从而解决问题。
2.激发学生的兴趣。
分类讨论思想可以培养学生的学习兴趣,提高其主动参与教学的积极性。
3.培养学生的逻辑思维能力。
学生在分类讨论思想的过程中需要运用逻辑思维进行分析、比较和总结,从而培养其逻辑思维能力。
4.促进学生的团队合作精神。
在分类讨论思想的过程中,学生需要互相合作、讨论和交流,从而培养其团队合作精神。
三、分类讨论思想在初中数学教学中的应用1.提高学生的学习兴趣分类讨论思想可以调动学生的积极性,增加他们对数学的兴趣。
通过引导学生思考数学问题的分类标准、运用分类思维去分析问题,学生能够更主动地参与到教学活动中。
例如,在教学平面图形的面积时,教师可以引导学生通过比较不同形状的面积分类来讨论,让学生参与其中,从而提高学生对数学的学习兴趣。
2.培养学生的逻辑思维能力分类讨论思想能够培养学生的逻辑思维能力。
在数学教学中,学生需要根据分类标准进行思维的划分和总结,通过归纳与分类,提取出问题的本质,这样有助于学生发展和提高其逻辑思维能力。
例如,在教学二次函数时,教师可以将不同种类的二次函数进行分类讨论,让学生通过比较不同种类的函数来总结二次函数的特点,从而形成逻辑思维。
3.促进学生的团队合作精神分类讨论思想可以促进学生的团队合作精神。
在分类讨论过程中,学生可以互相合作、讨论和交流,在共同努力的过程中互相提醒、解决问题。
浅谈数学中的分类讨论思想
浅谈数学中的分类讨论思想在中学数学中,分类讨论的数学思想是颇为常见的.用代数语言表述事物具有一般性.通常用一个字母表示实数时,如果没有特殊规定,该字母可以是正数,可以是零,还可以是负数.当含有字母的式子用来表示几何关系时,就可能出现不同的情况.因此,分类讨论是不可避免的.分类是在题目部分条件缺失或不明确的情况下,按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法.掌握分类的方法,领会其实质,对于加深基础知识的理解,提高分析问题、解决问题的能力是十分重要的.正确的分类必须是周全的,既不重复、也不遗漏.分类是根据对象的相同点和差异点将对象区分为不同类的逻辑方法.分类也叫划分.分类是以比较为基础的,通过比较认识对象之间的异同,根据相同点将对象归纳为较大的类,根据差异点将对象划分为较小的类,从而将对象区分为具有一定从属关系的不同等级的系统.分类的目的在于使知识合理化,进而系统化.分类具有不可缺少的三要素:母项、子项和根据.母项是被划分的总概念,子项是划分后的类概念,划分的根据就借以划分为标准.分类的标准在于根据对象本身的某种属性和关系来进行划分.由于客观事物有多方面的属性,事物之间有多方面的联系,因此,分类的标准也是多方面的,可根据不同的需要采用不同的分类标准,对事物进行不同的分类.但每一次分类应按照同一标准进行,所取的标准应服从于研究的目的或观察问题的角度.任何分类必须遵循以下原则,只有这样,才能在分类过程中防止出现遗漏、重复或者混淆不清的现象.1.分类具有同一标准性.在分类前,应当从被分类的概念属性中,取一个属性作为依据,这与其说是原则不如说是方法.它有两层意思:一是判断概念应放在哪一类的衡量尺度;二是对两个不同的概念要用同一尺度衡量,否则就会出现划分的结果重叠或过宽的逻辑错误,使划分后的结果混淆不清.2.分类具有完备性.分类所得各子项外延之和必须与被分类的目项的外延相等.从量方面要求一个都不能丢掉.从集合观念看,被分类概念的外延应被分类所得各属概念的外延覆盖,各属概念的并集等于被分概念外延的全集,否则会出现过宽或过窄的逻辑错误.2.分类具有纯粹性.分类所得的各子项必须互相排斥,划分的子项概念的外延之间是不相容的关系.从集合的角度看,被分成的任何两类之间的不相交,即无共同元素,每一类元素之间满足一个标准或关系,不满足该标准或关系的不能属于同一类,即各属概念外延之交集为空集.如把平行四边形分为矩形、菱形和正方形,就不仅违反了第二个原则,而且也犯了“交叉”和“从属”的毛病.所谓分类是根据对象的相同点和差异将对象区分为不同种类的逻辑方法.分类也叫划分.分类是以比较为基础的,通过比较识别对象之间的异同,根据相同点将对象归为较大的类,根据差异将对象划分为较小的类,从而将对象区分为具有一定从属关系的不同等级系统.分类讨论的目的在于使知识组成条理化、系统化.而分类的标准是母项、子项和根据.母项是被划分的种概念,子项是划分后得到的类概念,划分的根据就是借以划分的标准.分类讨论的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行用分类讨论思想解题的一般步骤:(1)确定分类讨论的对象.(2)进行合理的分类讨论.(3)逐步逐级分类讨论.(4)综合归纳结论.分类讨论的常规方法:(1)依据数学公式、原则、法则的适用范围进行.如等比数列求和公式.(2)根据数学概念的定义进行分类.如绝对值、直线与平面所成的角等.(3)根据数形结合分类.如集合的交、并、补用数轴讨论.(4)依据位置关系进行分论.如几何中点与点,点与线,面与面等位置关系.(5)依据数学性质进行分类.如偶次算术根的性质,二次函数、幂函数的性质.(6)依据参数的变化范围进行分类.(7)依据整数的奇偶性进行分类.在中学数学教学中,利用分类的方法处理问题的情况主要有:(1)给概念下定义和对概念进行归纳总结.关于绝对值的概念,可以有这样一种定义方式:(2)定理、结论的论证求解过程及结论的表现形式.在现行的初中数学课本中,关于圆周角和圆心角的关系定理“同弧上的圆周角等于圆心角的度数的一半”的证明就采用了圆心与圆周角的关系的不同情况来分类的.同样,在中学数学的解题教学中,无论是计算题、作图题还是论证题等,运用分类的思想方法可以帮助学生进行全面严谨的思考、分析、讨论和论证,从而获得合理的解题思路和方法.(3)对已有结论进行推广.此外,我们还可以在已有结论的范围基础上,对尚未讨论的情况进行探究,从而达到对结论的扩展和推广.如,在有了关于二次、三次方程的根式解以后,按照方程的次数分类,就会想到四次、五次等方程的解的问题而得到新的理论.再如,若我们已经推导出了圆台(或棱台)中截面的面积公式,那么,我们可以进一步推导其它位置的截面的面积公式.运用分类讨论思想可以解决许多数学问题.一、代数(一)数、式。
例谈分类讨论思想在解初中数学题中的应用
例谈分类讨论思想在解初中数学题中的应用1. 引言1.1 概述数统计等。
【概述】分类讨论思想是指在解决问题时,将问题按照不同的特征或条件进行分类,然后分别讨论每个类别下的情况,最终得出综合结论的思维方法。
在初中数学学习中,分类讨论思想被广泛运用于解决各种类型的数学问题,尤其在解决复杂的问题和提高问题解题能力方面具有重要意义。
通过分类讨论思想,学生可以将复杂的问题进行分解,逐步解决,提高问题解决的效率和准确性,培养逻辑思维和分析问题的能力。
本文将重点讨论分类讨论思想在解初中数学题中的应用,分析其基本概念、应用案例、具体技巧,比较与其他解题方法的优劣以及在数学学习中的重要性。
通过本文的探讨,旨在深入探析分类讨论思想在数学学习中的实际意义,并探讨未来在该领域的研究方向。
1.2 研究背景在传统的教学模式中,学生往往是被passively 授予知识,缺乏对知识的主动探索和应用能力。
而分类讨论思想的引入可以打破这种被动学习的模式,鼓励学生思考问题的本质和解决方法,培养其独立思考和创新能力。
通过对不同情况的分类讨论和比较,学生可以更深入地理解问题,掌握解题的基本思路和方法,提高解题效率和准确度。
研究分类讨论思想在初中数学题中的应用具有积极意义,可以有效促进学生数学思维的发展,提高其解决实际问题的能力。
也为教师提供了一种新的教学方法和手段,有助于激发学生学习兴趣,提高教学效果。
通过深入探讨分类讨论思想的具体应用和技巧,可以为数学教育的改革和发展提供有益启示。
1.3 研究目的研究目的:本文旨在探讨分类讨论思想在解初中数学题中的应用,通过对分类讨论思想的基本概念、具体应用技巧以及与其他解题方法的比较分析,揭示其在数学学习中的重要性。
通过对分类讨论思想在解题过程中的实际操作和应用案例分析,旨在帮助读者更深入理解该方法的实际运用情况,从而提高解题效率和思维能力。
通过对未来研究方向的探讨和展望,寻求分类讨论思想在数学问题解决中的更广泛应用可能性,为数学教育的改革和提升提供参考。
浅谈初中数学中的分类讨论思想
浅谈初中数学中的分类讨论思想分类讨论是人们常用的重要思想方法,无论是在生产活动、科学实验中,还是在日常的生活中,都常常需要用到它。
这里我们重点研究初中数学中的分类讨论思想。
1. 分类讨论思想的意义有关初中数学中分类讨论的原因本文归纳了以下几个方面:由于问题涉及到分类讨论思想的有关概念而需要对其进行分类讨论;由于问题的题设和结论有多种可能情况而需要对其进行分类讨论;由于问题中含有的参变量的不同取值会导致不同结果而需要对其进行分类讨论;由于问题中几何图形的不确定而需要对其进行分类讨论。
2. 分类的四大原则2.1同一性原则。
分类应按同一标准进行,即每次分类不能同时使用几个不同的分类根据。
2.2互斥性原则。
分类后的每个子项应当互不相容,即做到各子项相互排斥,也就是分类后不能有一些事物既属于这个子项,又属于另一个子项。
2.3相称性原则。
分类应当相称,即划分后子项外延的总和(并集),应当与母项的外延相等。
2.4层次性原则。
分类有一次分类和多次分类之分。
一次分类是对被讨论对象只分类一次;多次分类是把分类后所得的子项作为母项,再进行分类,直至满足需要为止。
3. 分类讨论的步骤用分类讨论思想解决问题的一般步骤是:3.1先明确需讨论的对象及讨论对象的取值范围。
3.2正确选择分类的标准,进行合理分类。
3.3逐类讨论解决。
3.4归纳并作出结论。
4. 归纳需要分类讨论的几种常见例子掌握用分类讨论思想解题的关键,在于搞清楚哪些情况下会引起分类讨论。
下面就引起分类讨论的一些常见情况作一归纳:4.1由于问题涉及到分类讨论思想的有关概念而需要对其进行分类讨论。
有些数学概念是分类定义的(如实数的绝对值),所以应用这些概念解题时,就需进行分类讨论。
有些数学概念在下定义时已经对所考虑的对象的范围作了限制(如二次方程,求二次项系数不为零),当解题过程的变换需要突破这些限制时,就必须分类讨论。
例如:解方程|4x-4|-|2x+2|=14解:当x≥1时, 原方程化为 (4x-4)-(2x+2)=14, x=10当-1≤x≤1时,原方程化为4 - 4x-2x-2=14,x=-2, 应舍去.当x≤-1时,原方程化为4-4x+2x+2=14, x=-4∴ x=10或-4说明: 若在x的某个范围内求解方程时,若求出的未知数的值不属于此范围内,则这样的解不是方程的解“应舍去”.绝对值概念是一个需要分类讨论的概念,要讲清这一概念应从绝对值的几何意义说起,也就是一个数的绝对值就是数轴上表示这个数的点与原点的距离。
关于分类讨论思想在初中数学教学中的应用 (5)
分类讨论思想在初中数学教学中的应用数学分类讨论是一种常见的思维方法。
所谓分类讨论,就是把一个复杂或不确定的问题按不同情况分类讨论,从而得到简化或明确的。
在初中数学教学中,分类讨论思想的应用可以激发学生的思维,提高他们的分析、归纳、判断和解决问题的能力。
本文将深入探讨分类讨论思想在初中数学教学中的应用,并提出一些具体的教学实践建议。
一、分类讨论思想的基本原理分类讨论思想是指将一个复杂的问题,根据不同情况分类进行研究和讨论的思维方法。
其基本原理是“分而治之”,通过将一个问题分解成若干个相对简单的部分,再从不同角度考虑、分析和讨论,最终得出全面、准确的。
分类讨论的基本方法主要包括以下几个步骤:1. 将问题进行分类,找到不同情况。
2. 对每一种情况进行详细分析和讨论,寻找规律。
3. 综合各种情况的结果,得出最终。
分类讨论思想在数学中的应用非常广泛,例如在解决几何问题、方程式、概率统计等问题中,都可以通过分类讨论的方法得出较为简单明了的。
二、分类讨论思想在初中数学教学中的应用1. 解决数学问题分类讨论思想可以帮助学生更加深入地理解和掌握各种数学概念和定理。
例如,在解决一些复杂的几何问题时,学生可以把问题进行分类,分别研究每一种情况,并通过综合得出。
这样,学生的思维会更加开阔,能力也会得到提升。
2. 强化数学推理能力分类讨论思想在初中数学教学中还可以强化学生的推理能力。
在讨论分类的过程中,学生需要分析各种情况的规律,找到相同点和不同点,然后对每种情况进行比较和推理。
这样,学生的推理能力会得到很好的锻炼,在以后的学习和工作中也会受益匪浅。
3. 激发解决问题的热情分类讨论思想可以激发学生对数学问题的兴趣和热情,促进他们的思维发展。
在课堂上,老师可以通过举一些有趣的例子来引导学生讨论和发现规律,从而培养学生解决问题的兴趣和自信心。
三、分类讨论思想在初中数学教学中的实践建议1. 合理设置问题为了引导学生正确运用分类讨论思想解决问题,老师在教学中应该合理设置问题。
分类讨论思想在初中数学中的应用
分类讨论思想在初中数学中的应用分类讨论思想是初中数学中常用的一种解题方法。
它是指将问题分成几类,分别进行讨论,最后综合各类情况得出结论的思考方式。
分类讨论思想的应用可以帮助我们更好地解决数学问题,提高数学能力。
一、常用的分类讨论思想(一)分情况讨论法所谓分情况讨论法,就是把原问题划分为若干不同的情况,对每种情况分别进行讨论,最后根据所有情况的讨论结果得出原问题的解决办法。
例如:某电影院座位有两种,一种是普通座位,票价为25元;一种是豪华座位,票价为50元。
售票系统统计,当电影院所有座位都售出时,收入最高为1200元,最少为900元。
这时要求你编写程序,计算出电影院的总座位数,普通座位数和豪华座位数分别为多少。
这个问题一共有三个未知量,构成了一个三元一次方程组。
假设总座位数为x,普通座位数为y,豪华座位数为z,则可以列出如下方程组:y+z=x25y+50z=120025y+50z=900很显然,这个方程组无解。
因为一张普通座位和一张豪华座位的票价差距是25元,显然不可能造成1200元和900元这种巨大的差距。
则此时需要用到分情况讨论法。
只使用普通座位的收入为25x,只使用豪华座位的收入为50x,则此时有以下两种情况:①只使用普通座位的情况25x=900,得x=36;知道x=36后,已知经过统计全部座位都已售出,故有:y+z=x=36;由此可得:y=9,z=27。
②只使用豪华座位的情况50x=1200,得x=24;知道x=24后,已知经过统计全部座位都已售出,故有:y+z=x=24;由此可得:y=24,z=0。
因此,分情况讨论法的最终解决办法是电影院的总座位数是36,普通座位数是9,豪华座位数是27。
(二)合情况讨论法所谓合情况讨论法,就是将原题设想为一个更大的问题,再将其划分为若干个子问题,对每个子问题进行讨论,最后综合所有的子问题的情况,得出原问题的答案。
这种方法主要是利用排除法以及一些特殊的性质。
浅谈初中数学解题教学中的分类讨论思想
浅谈初中数学解题教学中的分类讨论思想摘要:分类讨论是数学领域非常重要的思想方法,也是不容忽视的解题方法,不单单将数学的内在特点体现得淋漓尽致,还涵盖数学归纳总结等方法。
不过因为受传统教育模式影响比较深刻,不少教师在实际教学当中关注的是理论知识的传授,忽视了学生数学能力的培养。
这样的思想以及做法与新课改要求不符,同时也不利于分类讨论思想在学生群体当中的渗透与数学解题中的应用。
对此,初中数学教师要加大教学创新力度,注意在解题教学环节渗透分类讨论思想,在减少学生解题难度的同时,提高学生的数学理解能力。
关键词:分类讨论思想初中数学解题运用初中数学解题教学是一项至关重要的教学环节,主要关注的是学生解题能力的培养,引导学生运用已学数学知识与方法解决数学难题和生活中的数学问题,提升解题有效性,推动思维进步。
分类讨论思想在解题教学实践当中有着显著的应用价值,是提高学生解题准确性和解题效率的策略,也有助于提高学生思维的完善性和解题的正确率。
初中数学教师应该让学生认识到分类讨论思想在数学解题中的应用价值,让学生掌握在解答数学问题时进行分类讨论的方法。
一、分类讨论思想在初中数学解题教学中的应用重要性初中数学的解题教学关键点是让学生掌握数学解题的思路以及有效方法,不过学生在实际解题时经常会接触到需要进行分类讨论的一类问题,而此类问题也能够助推学生思维能力的发展。
分类讨论在数学解题当中至关重要,是不容忽视的数学思想方法,也是解决实际问题、提升解题有效性的一个重要因素。
不过不少学生在实际解题时却不知道要怎样进行分类讨论,不能够明确其应用价值,因此需要教师结合教学内容和学生的学习实际创设一定的学习情境来引导学生合理应用这一方法,启迪和引导学生在解题当中灵活把握和运用分类讨论,揭露这一思想方法的本质,逐步引导学生建立分类讨论的意识。
掌握分类讨论思想的应用方法是初中生的必备素质,也是数学解题教学的要点。
二、分类讨论思想在初中数学解题教学中的应用策略1.分类讨论思想在初中几何解题教学中的应用。
【初中数学】分类讨论思想在初中数学 解题教学中的运用
【初中数学】分类讨论思想在初中数学解题教学中的运用【初中数学】分类讨论思想在初中数学解题教学中的运用数学思想是人们在长期的实践经验和社会生活中得出的有关现实世界的数量关系、空间结构等科学意识的反应,是人类思维活动的结晶。
数学思想在漫长的历史演变中逐渐发展,帮助人类掌握学习知识的技巧,提供最优质的解决方案,常见的数学思想包括数形结合、分类讨论、换元思想、函数与方程、等效思想等等。
本文就以分类讨论思想为例,探讨其在初中数学中的具体运用。
一、分类探讨思想的意义分类讨论思想其最主要本质就是“化整为零,积零为整”的解题策略。
当我们在解决数学问题时,当所面对的问题不能进行整体统一的研究时,根据数学的本质属性需进行分类讨论和研究,这种逻辑思维解决方法就是“分类讨论思想”。
而分类讨论思想在中学数学中,历年是考试的侧重点,主要是考查学生对于知识面的分析能力和解题思路技巧,分类讨论思想不仅有利于提高学生在学习数学中的广泛兴趣,还有利于培养思维能力的条理性和缜密性。
学生可以通过分类讨论思想掌握数学当中分类方法、一题多解和对知识结构认知的能力。
在教学中,教师可以利用小组合作充分发挥分类讨论的作用,为学生营造一种合作交流积极应变的氛围。
因此,分类讨论思想可以有效地培养学生的思维灵活性和解题思路的能力,在初中数学解题应用中具有非常重要的作用和意义。
二、分类探讨思想具体内容解题步骤深入探讨在学生能够基本掌握分类讨论思想的情况下,教师要引导学生运用正确的解题思路,大体可以从以下几个方面去引导,一是要认真仔细阅读题目,明白题目要考查的知识点;二是要明确分类讨论的对象,列举所有可能的结果,不可以遗漏,不可以重复;三是要讨论出所有列举问题的结论;四是要认真总结归纳,对于做过的题目要能够总结出规律和解题思路。
对于数学问题的研究要有效针对各种属性的对象,研究的结果也自然会因为研究对象的不同而产生差异,因此对于不同的研究对象就需要采用不同的研究思想,又或者说在研究过程中出现了不同的状况,就需要采用不同的分类研究的思想。
浅谈初中数学中的分类讨论思想
浅谈初中数学中的分类讨论思想浅谈初中数学中的分类讨论思想⼀、分类思想定义与特点所谓分类讨论思想,就是当⼀个数学问题在⼀定的题设下,其结论并不唯⼀时,我们就需要对这⼀问题进⾏必要的分类。
将⼀个数学问题根据题设分为有限的若⼲种情况,在每⼀种情况中分别求解,最后再将各种情况下得到的答案进⾏归纳综合。
实质上,分类讨论是“化整为零,各个击破,再积零为整”的策略.分类思想有三个明显特点,⼀是对什么东西分类,即确定分类的对象;⼆是按什么标准分类,即选择分类的标准;三是分成哪⼏类,即确定分类的结果。
通过正确的分类,可以使复杂的问题得到清晰、完整、严密的解答。
划分只是⼿段,分类研究才是⽬的.既可以将复杂的问题分解成若⼲个简单的问题,⽽且恰当的分类可避免丢值漏解,从⽽提⾼全⾯考虑问题的能⼒,提⾼周密严谨的数学素养。
⼆、分类讨论思想应遵循以下的原则1、同⼀性原则。
分类应按同⼀标准进⾏,即每次分类不能同时使⽤⼏个不同的分类根据。
有些同学把三⾓形分为锐⾓三⾓形、直⾓三⾓形、钝⾓三⾓形、不等边三⾓形、等腰三⾓形。
这个分类就不正确了,因为这个分类同时使⽤了按边和按⾓两个分类标准。
2、相称性原则。
分类应当相称,即划分后⼦项外延的总和,应当与母项的外延相等。
3、互斥性原则。
分类后的每个⼦项应当互不相容,即做到各⼦项相互排斥,也就是分类后不能有⼀些事物既属于这个⼦项,⼜属于另⼀个⼦项。
4、层次性原则。
分类有⼀次分类和多次分类之分。
⼀次分类是对被讨论对象只分类⼀次;多次分类是把分类后所得的⼦项作为母项,再进⾏分类,直⾄满⾜需要为⽌。
有些对象的分类情况⽐较复杂,这时常采⽤“⼆分法”来分类,就是按对象有⽆某性质来进⾏分类。
按“⼆分法”作分类,就是把讨论对象的外延⼀直分为两个互相⽭盾的概念,⼀直分到不必再分为⽌。
四、分类讨论思想主要步骤通过上述问题的讨论,分类讨论的思想⽅法在初中数学教材中有着⼴泛的渗透。
在运⽤分类思想解题时主要步骤有:(1)明确讨论的对象:即对哪个参数进⾏讨论;(2)对所讨论的对象进⾏合理分类(分类时要做到不重复、不遗漏、标准要统⼀、分层不越级);(3)逐类讨论:即对各类问题详细讨论,逐步解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈初中数学分类讨论思想在解题中的应用摘要:在初中数学解题中,分类讨论不仅是一种非常重要的数学思想,而且它还也是一种非常有效的解题策略,其主要体现在“集零为整,化整为零”思想和归类整理思想这两个部分。
在初中数学教学中,如果教师在进行初中数学的教学时,对分类讨论思想加以运用,可以使学生对数学知识有更加深入的认识和理解,同时它能够进一步的培养学生的思维能力。
本文主要是对分类讨论在初中数学解题的应用进行探讨。
关键词:分类讨论思想初中数学教学应用
俗话说的好,“数学是思维的体操”,要想进行数学学习,就一定是离不开思维运用,在对数学进行每一步探索,都是需要思维来完成。
因此,在初中的数学教学中,教师要对学生慢慢的进行数学思想方法的渗透,使学生的思维能力得到进一步的提升,使其能够形成一个良好的数学思维习惯,这样不仅符合了新课改的新要求,而且其还是实施数学素质教育的一个很好的切入点。
一、分类讨论思想在初中数学解题中的重要作用
简单的来说,分类讨论起本质上就是一种逻辑上划分的思维方式。
其在教学中的具体表现为对题目“化整为零”,一个一个的进行逐步击破,这样的就实现了积零为整的教学方式。
在目前,分类讨论思想已经成为一种非常重要的数学思想,其在我国数学教学中得到了广泛的应用。
它不仅只是一种独特的数学逻辑方法,而且在进行数学知识教学时其更是一种有效的解题策略。
由于分类讨论在对不同的问题进
行综合考虑时,其在逻辑上具有优势,特别是在培养学生的学习能力以及提升学生的思维严谨性有很好的促进作用。
在对数学题进行解答时,如果因为题目的题意中存在着一些不确定因素,进而导致无法解答出来,这样的情况下,就可以将题目分为若干个小问题,对其进行分类讨论,使相对复杂的问题变得简单化,方便对其进行解答。
二、分类讨论思想在初中数学解题的应用
1.在不等式中的运用
不等式在初中数学中是一种比较基础和普遍的内容。
因为不等式要涉及到绝对值,所以就要进行转换符号,同时一个不等式可能会存在不止一个绝对值问题,遇到这样的情况,学生往往会变得无所适从,这也就影响着学生的学习成绩的提升,运用分类谈论思想,就能够对不等式进行很好的解答。
因此,教师要注重在课堂上教授学生如何运用分类讨论来解答难题,例如:解方程 | x - 5| +| x + 4 | = 9 ,这个题目就要求对 x 的值进行求解.为了更好的对学生进行引导,培养学生运用分类谈论的良好习惯,在学生的心里树立这样一种观点:在解答关于绝对值的数学题时,应该要把绝对值符号里的数分为正数、零和负数三种情况来进行分类讨论。
教师也应该抓住好时机,可以向学生提出相关的问题,对学生进行引导,加深学生对问题的印象,进而使学生的学习效率得到提升。
对于这个方程来说可以分为当x>4、-5x《4和x<-5这三种情况,若当x>4时,原方程就可以表示为x - 4 + 5 + x = 9,通过计算可以求出x=4,所以它与假设是互相矛盾的,故不成立;若当x <-5时,原方程可以被看为- x + 4
- (x +5) = 9,计算得出x= - 5,因与假设矛盾,所以不成立;若当- 5 ≤ x ≤ 4 时,原方程表示为 4 - x + 5 +x = 9,这种情况是都成立的,所以这个方程的解就为- 5 ≤ x ≤ 4。
2.在几何知识教学中的应用
通过圆和直线之间的交点的个数,就可以判断出他们之间的位置关系,可以将他们的关系划分为相交关系、相切关系以及相离关系这三种关系。
这就是在数学的几何教学中运用分类讨论的很典型的一个例子。
与此同时,对直角三角形的边长进行判断时,也是适合使用分类讨论这一思想的,比如当已知一个三角形为直角三角形,它的两条边长分别为3、4,请求出第三条边的边长。
在讲解着一道题目时,教师可以适当的对学生提出“这第三条边是斜边呢,还是直角边呢”这样的问题,能够对学生的思维起到引导作用,使其有意识的运用分类讨论来解答问题,若第三条边为直角边,则依据勾股定理可以求出第三条边等于7,若第三条边卫直角边,则其边长就为5.
3.克服初中生对分类谈论思想的学习心理阴影
对于很多的初中生来说,数学是其在初中课程中的相对薄弱的学科,其对数学存在着畏难心理,对分类讨论思想的畏难心理就更加严重了,这也就导致其在进行数学学习中,缺乏学习的自信心,对分类讨论思想理解的不够彻底,导致其在解题时出现不必要丢分的情况。
为了更好的解决这种情况,教师应该要营造出良好的课堂气氛,充分的发挥出学生的主观能动性,使学生能够愉快的学习分类谈论思想,并对其进行熟练的运用。
四、结语
在初中数学中,分类讨论思想几乎都把所有的知识点都贯通起来了,在对其运用时,要注重分析清楚引起分类的原因,提出明确的分类标准,对题目中可能出现的一些因素进行准确的分类,并且对其进行逐个的讨论,最后得出正确的答案。
在初中数学的教学中,分类讨论是非常重要的一种数学思想, 通过加强对其的训练,可以培养学生思维的条理性和缜密性,同时还可以使学生的学习兴趣得到提高,进而提高学习的效率。
参考文献:
[1]许德贵,徐颖,王春清.转化思想在数学解题中的运用[J].中小学教学研究.
[2]蔡军.例谈递归思想在数学解题中的运用[J].数学教学研究.
[3]郭可银.谈分类讨论思想在解题中的应用[J].数理化学习(高中版)。