第19章四边形测试题及解答

合集下载

初中数学 第19章 平行四边形综合检测题(三)及答案

初中数学 第19章 平行四边形综合检测题(三)及答案

第19章 平行四边形综合检测题(三)一、选择题(每题3分,共30分)1、一块均匀的不等边三角形的铁板,它的重心在( )A.三角形的三条角平分线的交点B.三角形的三条高线的交点C.三角形的三条中线的交点D.三角形的三条边的垂直平分线的交点 2、如图1,如果□ABCD 的对角线AC 、BD 相交于点O ,那么图中的全等三角形共有( )A.1对B.2对C.3对D.4对3、平行四边形的一边长是10cm ,那么这个平行四边形的两条对角线的长可以是( )A.4cm 和6cmB.6cm 和8cmC.8cm 和10cmD.10cm 和12cm4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是( )A.AC =BD ,AB =CD ,AB ∥CDB.AD //BC ,∠A =∠CC.AO =BO =CO =DO ,AC ⊥BDD.AO =CO ,BO =DO ,AB =BC5、如图2,过矩形ABCD 的四个顶点作对角线AC 、BD 的平行线,分别相交于E 、F 、G 、H 四点,则四边形EFGH 为( )A.平行四边形 B 、矩形 C 、菱形 D. 正方形6、如图3,大正方形中有2个小正方形,如果它们的面积分别是S 1、S 2,那么S 1、S 2的大小关系是( )A.S 1 > S 2B.S 1 = S 2C.S 1<S 2D.S 1、S 2 的大小关系不确定 7、矩形一个角的平分线分矩形一边为1cm 和3cm 两部分,则这个矩形的面积为( )A.3cm 2B. 4cm 2C. 12cm 2D. 4cm 2或12cm 28、如图4,菱形花坛 ABCD 的边长为 6m ,∠B =60°,其中由两个正六边形组成的图形部分种花,则种花部分的图形的周长(粗线部分)为( ) A.123m B.20m C.22m D.24m图3A DCBHEFG图2OABD C图19、如图5,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则折痕EF 的长是( ) A .3B .23C .5D .2510、如图6,是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心O 1,再从中心O 1走到正方形O 1GFH 的中心O 2,又从中心O 2走到正方形O 2IHJ 的中心O 3,再从中心O 3走2走到正方形O 3KJP 的中心O 4,一共走了31 2 m ,则长方形花坛ABCD 的周长是( ) A.36 m B.48 mC.96 mD.60 m二、填空题(每题3分,共30分)11、如图7, 若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的值等于___.12、如图8,过矩形ABCD 的对角线BD 上一点K 分别作矩形两边的平行线MN 与PQ ,那么图中矩形AMKP 的面积S 1与矩形QCNK 的面积S 2的大小关系是S 1 S 2(填“>”或“<”或“=”).13、如图9,四边形ABCD 是正方形,P 在CD 上,△ADP 旋转后能够与△ABP ′重合,若AB =3,DP =1,则PP ′=___.14、已知菱形有一个锐角为60°,一条对角线长为6cm ,则其面积为___cm 2.图6图4FEDCBA图5D CBA 图7图9图8 KNM Q CB15、如图10,在梯形ABCD 中,已知AB ∥CD ,点E 为BC 的中点, 设△DEA 的面积为S 1,梯形ABCD 的面积为S 2,则S 1与S 2的关系为___.16、如图11,四边形ABCD 的两条对角线AC 、BD 互相垂直,A 1B 1C 1D 1四边形ABCD 的中点四边形.如果AC =8,BD =10,那么四边形A 1B 1C 1D 1的面积为___.17、如图12,□ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,则FC 的长为___. 18、将一张长方形的纸对折,如图13所示,可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到 条折痕,如果对折n 次,可以得到 条折痕.三、解答题(共40分)19、如图14,等腰梯形ABCD 中,AD ∥BC ,∠DBC =45°,翻折梯形ABCD ,使点B 重合于D ,折痕分别交边AB 、BC 于点F 、E ,若AD =2,BC =8.求BE 的长.……第一次对折第二次对折第三次对折图13图11A 1B 1C 1D 1D ABC D ABCEF图12FE DCBA 图14图10ED CB A20、在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD 分割成四个部分,使含有一组对顶角的两个图形全等;(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有___组;(2)请在图15的三个平行四边形中画出满足小强分割方法的直线; (3)由上述实验操作过程,你发现所画的饿两条直线有什么规律?21、如图16,已知四边形ABCD 是平行四边形,∠BCD 的平分线CF 交边AB 于F ,∠ADC 的平分线DG 交边AB 于G . (1)线段AF 与GB 相等吗?(2)请你在已知条件的基础上再添加一个条件,使得△EFG 为等腰直角三角形,并说明理由.ABCDABCDDCBA图15图1622、如图17,已知□ABCD 中,E 为AD 的中点,CE 的延长线交BA 的延长线于点E .(1)试说明线段CD 与F A 相等的理由;(2)若使∠F =∠BCF ,□ABCD 的边长之间还需再添加一个什么条件?请你补上这个条件,并说明你的理由(不要再增添辅助线).23、如图,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且ACE △是等边三角形. (1)求证:四边形ABCD 是菱形;(2)若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.ECDBAOABCDE F图1724、已知:如图19,四边形ABCD 是菱形,E 是BD 延长线上一点,F 是DB 延长线上一点,且DE =BF .请你以F 为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可). (1)连结____________;(2)猜想:______=______; (3)证明:25、如图20,已知正方形ABCD 的对角线AC 、BD 相交于点O ,E 是AC 上一点,连结EB ,过点A 作AM ⊥BE ,垂足为M ,AM 交BD 于点F .(1)试说明OE =OF ;(2)如图21,若点E 在AC 的延长线上,AM ⊥BE 于点M ,交DB 的延长线于点F ,其它条件不变,则结论“OE =OF ”还成立吗?如果成立,请给出说明理由;如果不成立,请说明理由.O C图19DABEF图20EM F CO DBA图21EFOCMDAB参考答案一、1,C ;2,D ;3,D ;4,C ;5,C ;6,A ;7,D ;8,B ;9,D ;10,C .二、11,30°;12,=;13,14,;15,1212S S =;16,20;17,7;18,15、2n -1.三、21,由题意得△BEF ≌△DFE,∴DE=BE,∵在△BDE 中,DE=BE,∠DBE=45°,∴∠BD E=∠DBE=45°,∴∠DEB=90°,∴DE ⊥BC.∴EC=12(BC -AD)= 12(8-2)=3.∴BE=5;22,(1)无数;(2)只要两条直线都过对角线的交点即可;(3)这两条直线过平行四边形的对称中心(或对角线的交点); 23,:(1)四边形ABCD 是平行四边形,AO CO ∴=.又ACE △是等边三角形,EO AC ∴⊥,即DB AC ⊥.∴平行四边形ABCD 是菱形;(2)ACE △是等边三角形,60AEC ∴∠=.EO AC ⊥,1302AEO AEC ∴∠=∠=.2AED EAD ∠=∠,15EAD ∴∠=.45ADO EAD AED ∴∠=∠+∠=.四边形ABCD 是菱形,290ADC ADO ∴∠=∠=.∴四边形ABCD 是正方形.24,(1)说明△CED ≌△CEA 即可,(2)BC =2AB ,理由略;25,(1)四边形ABCD 是矩形.连结OE .∵四边形ABCD 是平行四边形,∴DO =OB ,∵四边形DEBF 是菱形,∴DE =BE ,∴EO ⊥BD ,∴∠DOE = 90°,即∠DAE = 90°,又四边形ABCD 是平行四边形,∴四边形ABCD 是矩形.(2)解:∵四边形DEBF 是菱形,∴∠FDB =∠EDB ,又由题意知∠EDB =∠EDA ,由(1)知四边形ABCD 是矩形,∴∠ADF =90°即∠FDB +∠EDB +∠ADE =90°,则∠ADB = 60°,∴在Rt △ADB 中,有AD ∶AB =1:3,即3=BCAB;26,(1)连结AF ;(2)猜想AF =AE ;(3)连结AC ,交BD 于O ,因为四边形ABCD 是菱形,所以AC ⊥BD 于O ,DO =BO ,因为DE =BF ,所以EO =BO 所以AC 垂直平分EF ,所以AF =AE ;27,(1)因为四边形ABCD 是正方形,所以∠BOE =∠AOF =90°,OB =OA ,又因为AM ⊥BE ,所以∠MEA +∠MAE =90°=∠AFO +∠MAE ,所以∠MEA =∠AFO ,所以Rt △BOE 可以看成是绕点O 旋转90°后与Rt △AOF 重合,所以OE =OF ;(2)OE =OF 成立.证明:因为四边形ABCD是正方形,所以∠BOE=∠AOF=90°,OB=OA又因为AM BE,所以∠F+∠MBF=90°=∠B+∠OBE,又因为∠MBF=∠OBE,所以∠F=∠E,所以Rt△BOE可以看成是由Rt△AOF绕点O旋转90°以后得到的,所以OE=OF;。

第19章四边形的基本题型

第19章四边形的基本题型

第19章四边形基本题型一.求线段的长1.平行四边形的一边的长为10cm,则这个平行四边形的两条对角线的长可以是( )A. 4cm,6cmB. 6cm.8cmC. 8cm,10cmD. 10cm,12cm2.在□ABCD中,周长为20cm,对角线AC交BD于点O,△OAB比△OBC的周长多4,则边AB =_____,BC=_____3.平行四边形的一个角的平分线把一条边分成长是2cm和3cm•的两条线段,则平行四边形周长是()cmA 14B 12C 16或14D 不能确定4平行四边形的一边的长为10cm,则这个平行四边形的两条对角线的长可以是( )A. 4cm,6cmB. 6cm.8cmC. 8cm,10cmD.10cm,12cm5.如图:在矩形ABCD中,AB=6,BC=8,P为AD上任一点,过点P作PE⊥AC于点E,PF⊥BD 于点F,求PE+PF6.如图,正方形ABCD边长为1cm,点E在对角线BD上,BE=BC,P是CE上一动点,PF⊥BD,PG⊥BC,求PF+PG的值7.矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86cm,对角线是13cm,那么矩形的周长是____________二证明线段相等8. 如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求AE的长.9.如图,矩形ABCD中,AC与BD交于O点,BE⊥AC于E,CF⊥BD于F.求证:BE=CF.10.在△ABC 中,∠C=90O ,AC=BC ,AD=BD ,PE ⊥AC 于点E , PF ⊥BC 于点F 。

求证:DE=DF11.如图,在正方形ABCD 中,取AD 、CD 边的中点E 、F ,连接CE 、BF 交于点G ,连接AG 。

试判断AG 与AB 是否相等,并说明道理。

三.求角的度数12.如图,E 是正方形ABCD 内一点,如果△ABE 是等边三角形,那么∠DCE = °,如果DE 的延长线交BC 于G ,则∠BEG = °13 如图,四边形ABCD 中,AB=DC=4,AD ≠BC ,BD ⊥DC 于D ,M 、N 、H 分别是AD 、BC 、BD的中点,并且∠ABD=30°,∠BDC=70°(1)分别求MH 、MN 的长;(2)求∠NMH14已知如图,菱形ABCD 中,E 是AB 的中点,且DE ⊥AB ,AE=2。

2022年沪科版八年级数学下册第19章 四边形章节测试试题(含解析)

2022年沪科版八年级数学下册第19章 四边形章节测试试题(含解析)

沪科版八年级数学下册第19章四边形章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上,若∠DCE=128°,则∠A=()A.32°B.42°C.52°D.62°2、下面各命题都成立,那么逆命题成立的是()A.邻补角互补B.全等三角形的面积相等C.如果两个实数相等,那么它们的平方相等D.两组对角分别相等的四边形是平行四边形3、在菱形ABCD中,对角线AC、BD相交于点O,AB=5,AC=6,过点D作AC的平行线交BC的延长线于点E,则△BDE的面积为()A.22 B.24 C.48 D.444、如图所示,四边形ABCD是矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=5,设AB=x,AD=y,则x2+(y﹣5)2的值为()A.10 B.25 C.50 D.75∠+∠的度数是()5、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中αβA.180°B.220°C.240°D.260°6、如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长是()A.12 B.15 C.18 D.247、下列说法中,不正确的是()A.四个角都相等的四边形是矩形B.对角线互相平分且平分每一组对角的四边形是菱形C.正方形的对角线所在的直线是它的对称轴D.一组对边相等,另一组对边平行的四边形是平行四边形8、下列四个命题中,正确的是()A.对角线相等的四边形是矩形B.有一个角是直角的四边形是矩形C.两组对边分别相等的四边形是矩形D.四个角都相等的四边形是矩形9、如图,点E是△ABC内一点,∠AEB=90°,D是边AB的中点,延长线段DE交边BC于点F,点F 是边BC的中点.若AB=6,EF=1,则线段AC的长为()A.7 B.152C.8 D.910、多边形每一个内角都等于150°,则从该多边形一个顶点出发,可引出对角线的条数为()A.9条B.8条C.7条D.6条第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系内,矩形OABC的顶点A(3,0),C(0,9),点D和点E分别位于线段AC,AB上,将△ABC沿DE对折,恰好能使点A和点C重合.若x轴上有一点P,使△AEP为等腰三角形,则点P的坐标为________.BC=,点E是BC边上一点,连接AE,把B沿AE折叠,使2、如图,在长方形ABCD中,3AB=,4点B落在点B′处.当CEB'为直角三角形时,BE的长为______.3、如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=6,∠DAC=60°,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④点E运动的路程是_____.4、已知一个多边形的内角和与外角和的比是2:1,则它的边数为 _____.5、如图,四边形ABCD和四边形OMNP都是边长为4的正方形,点O是正方形ABCD对角线的交点,正方形OMNP绕点O旋转过程中分别交AB,BC于点E,F,则四边形OEBF的面积为______.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC 中,90BAC ∠=︒,1AB AC ==,延长CB ,并将射线CB 绕点C 逆时针旋转90°得到射线l ,D 为射线l 上一动点,点E 在线段CB 的延长线上,且BE CD =,连接DE ,过点A 作AM DE ⊥于M .(1)依题意补全图1,并用等式表示线段DM 与ME 之间的数量关系,并证明;(2)取BE 的中点N ,连接AN ,添加一个条件:CD 的长为_______,使得12AN DE =成立,并证明.2、如图,在Rt△ABC 中,∠ACB =90°,D 为AB 中点,,BE CD CE AB ∥∥.(1)试判断四边形BDCE 的形状,并证明你的结论;(2)若∠ABC =30°,AB =4,则四边形BDCE 的面积为 .3、已知平行四边形ABCD 的两邻边AB 、AD 的长是关于x 的方程 ()244210x mx m -+-=的两个实数根.(1)当m 为何值时,平行四边形ABCD 是菱形?(2)若AB 的长为2,那么平行四边形ABCD 的周长是多少?4、如图,在△ABC 中,点D 是BC 边的中点,点E 是AD 的中点,过A 点作AF ∥BC ,且交CE 的延长线于点F ,联结BF .(1)求证:四边形AFBD 是平行四边形;(2)当AB=AC 时,求证:四边形AFBD 是矩形.5、如图,矩形ABCD 中,8AB =,4BC =,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形.(2)当四边形BEDF 是菱形时,求EF 的长.-参考答案-一、单选题1、C【分析】根据平行四边形的外角的度数求得其相邻的内角的度数,然后求得其对角的度数即可.【详解】解:∵∠DCE=128°,∴∠DCB=180°-∠DCE=180°-128°=52°,∵四边形ABCD是平行四边形,∴∠A=∠DCB=52°,故选:C.【点睛】本题主要考查了平行四边形的性质以及平角的定义,熟记平行四边形的各种性质是解题关键.平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形的对角线互相平分.2、D【分析】逐个写出逆命题,再进行判断即可.【详解】A选项,逆命题:互补的两个角是邻补角.互补的两个角顶点不一定重合,该逆命题不成立,故A选项错误;B选项,逆命题:面积相等的两个三角形全等.底为4高为6的等腰三角形和底为6高为4的等腰三角形面积相等,但这两个等腰三角形不全等,该逆命题不成立,故B选项错误;C选项,逆命题:如果两个实数的平方相等,那么这两个实数相等.这两个实数也有可能互为相反数,该逆命题不成立,故C选项错误;D选项,逆命题:平行四边形是两组对角分别相等的四边形.这是平行四边形的性质,该逆命题成立,故D选项正确.故答案选:D.【点睛】本题考查判断命题的真假,写一个命题的逆命题.把一个命题的条件和结论互换后的新命题就是这个命题的逆命题.3、B【分析】先判断出四边形ACED 是平行四边形,从而得出DE 的长度,根据菱形的性质求出BD 的长度,利用勾股定理的逆定理可得出△BDE 是直角三角形,计算出面积即可.【详解】 解: 菱形ABCD ,6,AC =,3,2,5,,AD BC OA OC BD BO AB BC AD AC BD ∥在Rt △BCO 中,224,BOBC OC 即可得BD =8,,AC DE ∥ ∴四边形ACED 是平行四边形,∴AC =DE =6,5,CE AD∴ BE =BC +CE =10,222100,BE BD DE∴△BDE 是直角三角形,90,BDE ∠=︒∴S △BDE =12DE •BD =24.故选:B .【点睛】本题考查了菱形的性质,勾股定理的逆定理及三角形的面积,平行四边形的判定与性质,求出BD 的长度,判断△BDE 是直角三角形,是解答本题的关键.4、B【分析】根据题意知点F 是Rt△BDE 的斜边上的中点,因此可知DF =BF =EF =5,根据矩形的性质可知AB =DC =x ,BC =AD =y ,因此在Rt△CDF 中,CD 2+CF 2=DF 2,即可得答案.【详解】解:∵四边形ABCD 是矩形,AB =x ,AD =y ,∴CD =AB =x ,BC =AD =y ,∠BCD =90°,又∵BD ⊥DE ,点F 是BE 的中点,DF =5,∴BF =DF =EF =5,∴CF =5-BC =5-y ,∴在Rt△DCF 中,DC 2+CF 2=DF 2,即x 2+(5-y )2=52=25,∴x 2+(y -5)2=x 2+(5-y )2=25,故选:B .【点睛】本题考查了直角三角形斜边中线等于斜边的一半、矩形的性质、勾股定理,做题的关键是利用直角三角形斜边中线等于斜边的一半求出BF 的长度.5、C【分析】根据四边形内角和为360°及等边三角形的性质可直接进行求解.【详解】解:由题意得:等边三角形的三个内角都为60°,四边形内角和为360°,∴3606060240αβ∠+∠=︒-︒-︒=︒;故选C .【点睛】本题主要考查多边形内角和及等边三角形的性质,熟练掌握多边形内角和及等边三角形的性质是解题的关键.6、B【分析】根据平行四边形的对边相等和对角线互相平分可得,OB=OD,又因为E点是CD的中点,可得OE是△BCD的中位线,可得OE=12BC,所以易求△DOE的周长.【详解】解:∵▱ABCD的周长为36,∴2(BC+CD)=36,则BC+CD=18.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=12BD=6.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=12CD,∴OE=12BC,∴△DOE的周长=OD+OE+DE=12BD+12(BC+CD)=6+9=15,故选:B.【点睛】本题考查了三角形中位线定理、平行四边形的性质.解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质.7、D【分析】根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解.【详解】解:A、四个角都相等的四边形是矩形,说法正确;B、正方形的对角线所在的直线是它的对称轴,说法正确;C、对角线互相平分且平分每一组对角的四边形是菱形,说法正确;D、一组对边相等且平行的四边形是平行四边形,原说法错误;故选:D.【点睛】本题主要考查特殊平行四边形的判定与性质,熟练掌握特殊平行四边形相关的判定与性质是解答本题的关键.8、D【分析】根据矩形的判定定理判断即可.【详解】解:A. 对角线相等的平行四边形是矩形,原选项说法错误,不符合题意;B. 有一个角是直角的平行四边形是矩形,原选项说法错误,不符合题意;C. 两组对边分别相等的四边形是平行四边形,原选项说法错误,不符合题意;D. 四个角都相等的四边形是矩形,原选项说法正确,符合题意;故选:D.【点睛】本题考查矩形的判定定理,熟记矩形的判定定理是解题关键.9、C【分析】根据直角三角形的性质求出DE,由EF=1,得到DF,再根据三角形中位线定理即可求出线段AC的长.解:∵∠AEB=90 ,D是边AB的中点,AB=6,AB=3,∴DE=12∵EF=1,∴DF=DE+EF=3+1=4.∵D是边AB的中点,点F是边BC的中点,∴DF是ABC的中位线,∴AC=2DF=8.故选:C.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线定理,求出DF的长是解题的关键.10、A【分析】多边形从一个顶点出发的对角线共有(n-3)条.多边形的每一个内角都等于150°,多边形的内角与外角互为邻补角,则每个外角是30度,而任何多边形的外角是360°,则求得多边形的边数;再根据不相邻的两个顶点之间的连线就是对角线,则此多边形从一个顶点出发的对角线共有(n-3)条,即可求得对角线的条数.【详解】解:∵多边形的每一个内角都等于150°,∴每个外角是30°,∴多边形边数是360°÷30°=12,则此多边形从一个顶点出发的对角线共有12-3=9条.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.二、填空题1、(8,0)或(-2,0)-2,0)或(8,0)【分析】由矩形的性质可得BC=OA =3,AB=OC=9,∠B=90°=∠OAE,由折叠的性质可得AE=CE,由勾股定理可求AE的长,由等腰三角形的性质可求解.【详解】解:∵四边形OABC矩形,且点A(3,0),点C(0,9),∴BC=OA =3,AB=OC=9,∠B=90°=∠OAE,∵将△ABC沿DE对折,恰好能使点A与点C重合.∴AE=CE,∵CE2=BC2+BE2,∴CE2=9+(9-CE)2,∴CE=5,∴AE=5,∵△AEP为等腰三角形,且∠EAP=90°,∴AE=AP=5,∴点E坐标(8,0)或(-2,0)故答案为:(8,0)或(-2,0)【点睛】本题考查了翻折变换,等腰三角形的性质,矩形的性质,勾股定理,坐标与图形变化-对称,求出AE的长是本题的关键.2、32或3 【分析】分两种情形:如图1中,当A ,B ′,C 共线时,90EB C ∠'=︒.如图2中,当点B ′落在AD 上时,90CEB ∠'=︒,分别求解即可.【详解】解:如图1中,当A ,B ′,C 共线时,90EB C ∠'=︒.四边形ABCD 是矩形,90B ∴∠=︒,5AC ∴,3AB AB ='=,532CB ∴'=-=,设BE EB x ='=,则4EC x =-,在'Rt CEB 中,222CE B E B C ='+',222(4)2x x ∴-=+,32x ∴=, 如图2中,当点B ′落在AD 上时,90CEB ∠'=︒,此时四边形ABEB'是正方形,3BE AB∴==,综上所述,满足条件的BE的值为32或3.故答案是:32或3.【点睛】本题考查了矩形的性质,折叠的性质,勾股定理,解题的关键是学会用分类讨论的思想思考问题.3、①②③④【分析】①根据∠DAC=60°,OD=OA,得出△OAD为等边三角形,再由△DFE为等边三角形,得∠DOA=∠DEF =60°,再利用角的等量代换,即可得出结论①正确;②连接OE,利用SAS证明△DAF≌△DOE,再证明△ODE≌△OCE,即可得出结论②正确;③通过等量代换即可得出结论③正确;④延长OE至E',使OE'=OD,连接DE',通过△DAF≌△DOE,∠DOE=60°,可分析得出点F在线段AO上从点A至点O运动时,点E从点O沿线段OE'运动到E',从而得出结论④正确;【详解】解:①设DB与EF的交点为G如图所示:∵∠DAC =60°,OD =OA ,∴△OAD 为等边三角形,∴∠DOA =∠DAO =∠ADO =60°,∵△DFE 为等边三角形,∴∠DEF =60°,∴∠DOA =∠DEF =60°,∴DGF BDE DEF =+∠∠∠,DGF EFC DOA =+∠∠∠∴BDE EFC ∠∠=故结论①正确;②如图,连接OE ,在△DAF 和△DOE 中,AD OD ADF ODE DF DE =⎧⎪∠=∠⎨⎪=⎩, ∴△DAF ≌△DOE (SAS ),∴∠DOE =∠DAF =60°,∵∠COD =180°﹣∠AOD =120°,∴∠COE =∠COD ﹣∠DOE =120°﹣60°=60°,∴∠COE =∠DOE ,在△ODE 和△OCE 中,OD OC DOE COE OE OE =⎧⎪∠=∠⎨⎪=⎩, ∴△ODE ≌△OCE (SAS ),∴ED =EC ,∠OCE =∠ODE ,故结论②正确;③∵∠ODE =∠ADF ,∴∠ADF =∠OCE ,即∠ADF =∠ECF ,故结论③正确;④如图,延长OE 至E ',使OE '=OD ,连接DE ',∵△DAF ≌△DOE ,∠DOE =60°,∴点F 在线段AO 上从点A 至点O 运动时,点E 从点O 沿线段OE '运动到E ',∵90906030BDA ADB =︒-=︒-︒=︒∠∠∴2DB AD =设DA x =,则2DB x =∴在Rt ADB 中,222AD AB DB +=即2226(2)x x +=解得:x =∴OE '=OD =AD =∴点E 运动的路程是故结论④正确;故答案为:①②③④.【点睛】本题主要考查了几何综合,其中涉及到了等边三角形判定及性质,相似三角形的判定及性质,全等三角形的性质及判定,三角函数的比值关系,矩形的性质等知识点,熟悉掌握几何图形的性质合理做出辅助线是解题的关键.4、6【分析】根据多边形内角和公式及多边形外角和可直接进行求解.【详解】解:由题意得:()18022360n ︒⨯-=⨯︒,解得:6n =,∴该多边形的边数为6;故答案为6.【点睛】本题主要考查多边形的内角和及外角和,熟练掌握多边形内角和及外角和是解题的关键.5、4【分析】过点O 作OG ⊥AB ,垂足为G ,过点O 作OH ⊥BC ,垂足为H ,把四边形OEBF 的面积转化为正方形OGBH的面积,等于正方形ABCD 面积的14. 【详解】如图,过点O 作OG ⊥AB ,垂足为G ,过点O 作OH ⊥BC ,垂足为H ,∵四边形ABCD 的对角线交点为O ,∴OA =OC ,∠ABC =90°,AB =BC ,∴OG ∥BC ,OH ∥AB ,∴四边形OGBH 是矩形,OG =OH =1122AB CB =,∠GOH =90°, ∴22211==()(4)22OGBH S OG AB =⨯四边形=4,∵∠FOH +∠FOG =90°,∠EOG +∠FOG =90°,∴∠FOH =∠EOG ,∵∠OGE =∠OHF =90°,OG =OH ,∴△OGE ≌△OHF ,∴=OGE OHF S S △△,∴=OGBH OEBF S S 四边形四边形,∴OEBF S 四边形=4,故答案为:4.【点睛】本题考查了正方形的性质,三角形的全等与性质,补形法计算面积,熟练掌握正方形的性质,灵活运用补形法计算面积是解题的关键.三、解答题1、(1)DM =ME ,见解析;(2)CD =,见解析【分析】(1)补全图形,连接AE 、AD ,通过∠ABE =∠ACD ,AB =AC ,BE =CD ,证明 △ABE ≌ △ACD ,得AE =AD ,再利用AM ⊥DE 于M ,即可得到DM =EM .(2)连接AD ,AE ,BM ,可求出BC =CD =时,可得BE BC =,由(1)得DM =EM ,可知BM 是△CDE 的中位线从而得到12BM CD =,BM ∥CD ,得到∠ABM =135°=∠ABE .因为N 为BE 中点,可知1122BN BE CD ==从而证明△ABN ≌ △ABM 得到AN =AM ,由(1),△ABE ≌ △ACD ,可证明∠EAB =∠DAC ,AD =AE 进而得到∠EAD =90°,又因为DM =EM ,即可得到12AN AM DE ==. 【详解】(1)补全图形如下图,DM与ME之间的数量关系为DM=ME.证明:连接AE,AD,∵ ∠BAC=90°,AB=AC,∴ ∠ABC=∠ACB=45°.∴ ∠ABE=180°-∠ABC=135°.∵ 由旋转,∠BCD=90°,∴ ∠ACD=∠ACB+∠BCD=135°.∴ ∠ABE=∠ACD.∵ AB=AC,BE=CD,∴ △ABE≌ △ACD.∴ AE=AD.∵ AM⊥DE于M,∴ DM=EM.(2)CD证明:连接AD,AE,BM.∵ AB=AC=1,∠BAC=90°,∴ BC = ∵BE CD ==∴ BE BC =.∵ 由(1)得DM =EM ,∴ BM 是△CDE 的中位线. ∴ 12BM CD =,BM ∥CD .∴ ∠EBM =∠ECD =90°.∵ ∠ABE =135°,∴ ∠ABM =135°=∠ABE .∵ N 为BE 中点, ∴ 1122BN BE CD ==.∴ BM =BN .∵ AB =AB ,∴ △ABN ≌ △ABM .∴ AN =AM .∵ 由(1),△ABE ≌ △ACD ,∴ ∠EAB =∠DAC ,AD =AE .∵ ∠BAC =∠DAC +∠DAB =90°,∴ ∠EAD =90°.∵ DM =EM , ∴ 12AM DE =.∴ 12AN DE =.【点睛】本题考查了旋转的性质和三角形全等的判定及性质,熟练掌握三角形全等的判定及性质是解题的关键.2、(1)四边形BDCE 是菱形,证明见解析;(2)【分析】(1)先证明四边形BDCE 是平行四边形,再利用直角三角形斜边上的中线等于斜边的一半,证明,CD BD =从而可得结论;(2)先求解,,AC BC 再求解,ACB BCD 的面积,再利用菱形的性质可得菱形的面积.【详解】证明:(1)四边形BDCE 是菱形,理由如下:,BE CD CE AB ∥∥,∴ 四边形BDCE 是平行四边形,∠ACB =90°,D 为AB 中点,,CD BD ∴=∴ 四边形BDCE 是菱形.(2) ∠ABC =30°,AB =4,∠ACB =90°,12,2AC AB BC ∴==== 122ABCS ∴=⨯⨯= D 为AB 中点, 1122BCD ABCS S ∴==⨯ 四边形BDCE 是菱形,2DBCBDCE S S ∴==菱形故答案为:【点睛】本题考查的是平行四边形的判定,菱形的判定与性质,直角三角形斜边上的中线的性质,含30的直角三角形的性质,勾股定理的应用,掌握“有一组邻边相等的平行四边形是菱形”是解本题的关键.3、(1)当m 为1时,四边形ABCD 是菱形.(2)▱ABCD 的周长是5.【分析】(1)根据一元二次方程有实根求出△=16(m -1)2≥0,结合根的判别式,当△=0时,AB =AD ,平行四边形ABCD 为菱形,得出16(m -1)2=0求出m 的值即可;(2)根据AB =2,AB 的长是关于x 的方程 ()244210x mx m -+-=的根,将x =2代入原方程可求出m 的值,将m 的值代入原方程,求出方程的另一根AD 的长,再根据平行四边形的周长公式即可求出▱ABCD 的周长.【详解】解:(1)∵平行四边形ABCD 的两邻边AB 、AD 的长是关于x 的方程()244210x mx m -+-=的两个实数根∴△=(-4m )2-4×4(21m -)=16(m -1)2≥0,当△=0时,AB =AD ,平行四边形ABCD 为菱形,∴16(m -1)2=0∴m =1,∴当m 为1时,四边形ABCD 是菱形.(2)∵AB =2,AB 的长是关于x 的方程 ()244210x mx m -+-=的根把x =2代入原方程,得:()4442210m m ⨯-⨯+-=解得:m =52.将m =52代入原方程,得:24104=0x x -+整理得2252=0x x -+,因式分解得()()2120x x --=∴x 1=2,x 2=12∴AD =12,∴▱ABCD 的周长是2×(2+12)=5.【点睛】本题考查一元二次方程的根的判别式,菱形的性质,平四边形周长,一元二次方程的解,解一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4、(1)见解析(2)见解析【分析】(1)首先证明△AEF ≌△DEC (AAS ),得出AF =DC ,进而利用AF ∥B D 、AF =BD 得出答案;(2)利用等腰三角形的性质,结合矩形的判定方法得出答案.【小题1】解:证明:(1)∵AF ∥BC ,∴∠AFC =∠FC D .在△AFE 和△DCE 中,AEF DEC AFE DCE AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△DEC (AAS ).∴AF =DC ,∵BD =DC ,∴AF =BD ,∴四边形AFBD 是平行四边形;【小题2】∵AB =AC ,BD =DC ,∴AD ⊥B C .∴∠ADB =90°.∵四边形AFBD 是平行四边形,∴四边形AFBD 是矩形.【点睛】此题主要考查了平行四边形的判定以及矩形的判定方法、全等三角形的判定与性质,正确掌握平行四边形的判定方法是解题关键.5、(1)证明见解析;(2)EF=【分析】(1)由题意知BE DF ∥,OD OB =,通过BOE DOF ≌得到BE DF =,证明四边形BEDF 平行四边形.(2)四边形BEDF 为菱形,DB EF ⊥,DB =BE BF x ==,8CF AE x ==-;在Rt BCF 中用勾股定理,解出BF 的长,在Rt BOF 中用勾股定理,得到OF 的长,由2EF OF =得到EF 的值.【详解】(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点∴BE DF ∥,OD OB =OBE ODF ∴∠=∠ 在BOE △和DOF △中OBE ODF OB ODBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BOE DOF △△≌(ASA ) ∴BE DF =∴四边形BEDF 是平行四边形.(2)解:∵四边形BEDF 为菱形,∴BE BF =,DB EF ⊥又∵8AB =,4BC =∴BD ==BO =设BE BF x ==,则8CF AE x ==-在Rt BCF 中,()22248x x +-=∴5x =在Rt BOF 中,OE =∴2EF OE ==【点睛】本题考察了平行四边形的判定,三角形全等,菱形的性质,勾股定理.解题的关键与难点在于对平行四边形的性质的灵活运用.。

第十九章四边形单元练习试卷含答案解析

第十九章四边形单元练习试卷含答案解析

沪科版八年级下册数学第十九章四边形练习题(附解析)考试范围:xxx;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________ 题号一二三四五总分得分注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释评卷人得分一、单选题(注释)1、若一个多边形的内角和等于720°,则这个多边形的边数是()A.5 B.6 C.7 D.82、在平行四边形、矩形、菱形、正方形、等腰梯形中,对角线相等的有()A.1个B.2个C.3个D.4个3、如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③.其中正确的是A.①②B.①③C.②③D.①②③4、如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是A.25 B.20 C.15 D.105、下列命题中,真命题是( )A.四边相等的四边形是正方形B.对角线相等的菱形是正方形C.正方形的两条对角线相等,但不互相垂直平分D.矩形、菱形、正方形都具有“对角线相等”的性质6、四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有A.3种B.4种C.5种D.6种7、如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC的长是A.2 B.4 C.D.8、下列命题中,真命题是A.对角线相等的四边形是等腰梯形B.对角线互相垂直平分的四边形是正方形C.对角线互相垂直的四边形是菱形D.四个角相等的四边形是矩形9、如图,E是边长为1的正方形ABCD的对角线BD上一点,且,P为CE上任意一点,于点Q,于点R,则的值是()A.B.C.D.10、如图,将一张矩形纸片对折两次,然后剪下一个角,打开。

备战中考数学(沪科版)巩固复习第十九章四边形(含解析)

备战中考数学(沪科版)巩固复习第十九章四边形(含解析)

备战中考数学(沪科版)巩固复习第十九章四边形(含解析)一、单选题1.一个多边形有14条对角线,那么那个多边形的边数是()A.5B.6C.7D.82.若平行四边形的一边长为5,则它的两条对角线长能够是()A.12和2B.3和4C.4和6D.4和83.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把剩下的部分拼成一个矩形,通过运算两处图形的面积,验证了一个等式,此等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab+b24.下列结论正确的是()A.在平面内,有四条线段组成的图形叫做四边形。

B.由不在同一直线上的四条线段组成的图形叫做四边形。

C.在平面内,由不在同一直线上的四条线段组成的图形叫做四边形。

D.在平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。

5.如图,在▱ABCD中,AM,CN分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判定四边形AMCN为菱形的是()A.AM=ANB.MN⊥AC C.MN是∠AMC的平分线 D.∠BAD=120°6.依照图中所给的边长长度及角度,判定下列选项中的四边形是平行四边形的为()A.B.C. D.7.一个多边形自一个顶点引对角线把它分割为六个三角形,那么它是()A.六边形B.七边形C.八边形D.九边形8.如图,正方形ABCD中,AB=6,点E,F分别在AD,BC边上,点G,H分别在AB,CD边上,EF=2 ,EF与GH相交所得的锐角为45°,则GH的长为()A.6B.3C.2D.59.已知四边形ABCD,从下列条件中:(1)AB∥CD;(2)BC∥AD;(3)AB=CD;(4)BC=AD;(5)∠A=∠C;(6)∠B=∠D.任取其中两个,能够得出“四边形ABCD是平行四边形”这一结论的情形有()A.4种B.9种C.13种D.15种二、填空题10.已知一个多边形的每一个内角都等于108°,则那个多边形的边数是________.11.如图,在△ABC中,AB=AC ,将△ABC绕点C旋转180°得到△FEC ,连接AE、BF .当∠ACB为________度时,四边形ABF E为矩形.12.木工师傅要检验一块长方形木板的一组对边是否平行,先用直角尺的一边紧靠木板边缘,读出与这边相对的另一边缘在直角尺上的刻度,换一个位置再读一次.试问这两次的读数相是否相等________13.假如△ABC的三条中位线分别为3cm,4cm,5cm,那么△ABC的周长为________cm.14.如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是________.15.将边长相等的一个正方形与一个正五边形,按如图重叠放置,则∠1度数=________.16.如图,64、400分别为所在正方形的面积,则图中字母所代表的正方形面积是336.17.如图,四边形ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件________,使ABCD成为菱形(只需添加一个即可)18.如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD.下列结论:①E G⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG= (BC-AD),⑤四边形EFGH是菱形.其中正确的是________(把所有正确结论的序号都选上).三、解答题19.(1)六边形从一个顶点可引出几条对角线?共有几条对角线?(2)n边形从一个顶点能够引出几条对角线?共有几条对角线?20.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作C E⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.四、综合题21.如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8 cm,E点F点分别为AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)求菱形AEDF的面积;(3)若H从F点动身,在线段FE上以每秒2cm的速度向E点运动,点P从B点动身,在线段BC上以每秒3cm的速度向C点运动,问当t为何值时,四边形BPHE是平行四边形?当t取何值时,四边形PCFH是平行四边形?22.如图,□ABCD的对角线AC、BD相交于点O,AE=CF.(1)求证:△BOE≌△DOF;(2)若BD=EF,连接DE、BF,判定四边形EBFD的形状,并说明理由.23.如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE ∥BD.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.答案解析部分一、单选题1.【答案】C【考点】多边形的对角线【解析】【分析】依照n边形的对角线条数.【解答】设多边形有n条边,则,n=7或n=-4(负值舍去).故选C.【点评】熟悉n边形的对角线条数的公式,依照条件列方程求解,熟练运用因式分解法解方程.2.【答案】D【考点】平行四边形的性质【解析】【解答】解:如图,过点C作CF∥BD,交AB延长线于点F,∴四边形BFCD为平行四边形,∴CF=BD,∴在△AFC中:AC﹣CF<AF<AC+CF,即AC﹣BD<2AB<AC+BD,∵AB=5,∴选项中只有D中的数据能满足此关系:8﹣4=4<5×2<8+4=12,故选D.【分析】作辅助线,再依照三角形的三边关系求出两条对角线的长.3.【答案】A【考点】正方形的性质,正方形的判定与性质【解析】【解答】解:由题意得:a2﹣b2=(a+b)(a﹣b).故选A.【分析】利用正方形的面积公式可知剩下的面积=a2﹣b2 ,而新形成的矩形是长为a+b,宽为a﹣b,依照两者相等,即可验证平方差公式.4.【答案】D【考点】多边形内角与外角【解析】【解答】四边形的概念与三角形的概念类似,三角形的概念:在平面内,由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形;因此,D项的结论更准确.【分析】此题考查多边形的定义:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形;四边形也是多边形的一种.5.【答案】D【考点】菱形的判定【解析】【解答】解:如图,∵四边形ABCD是平行四边形,∴∠B=∠D,∠DAB=∠DCB,AB=CD,AD=BC,∵AM,CN分别是∠BAD和∠BCD的平分线,∴∠DCN=∠DCB,∠BAM=∠BAD,∴∠BAM=∠DCN,在△ABM和△CDN中,∴△ABM≌△CDN(ASA),∴AM=CN,BM=DN,∵AD=BC,∴AN=CM,∴四边形AMCN是平行四边形,A、∵四边形AMCN是平行四边形,AM=AN,∴平行四边形AMCN是菱形,故本选项错误;B、∵MN⊥AC,四边形AMCN是平行四边形,∴平行四边形AMCN是菱形,故本选项错误;C、∵四边形AECF是平行四边形,∴AF∥BC,∴∠FAC=∠ACE,∵AC平分∠EAF,∴∠FAC=∠EAC,∴∠EAC=∠ECA,∴AE=EC,∵四边形AECF是平行四边形,∴四边形AECF是菱形,故本选项错误;D、依照∠BAD=120°和平行四边形AMCN不能推出四边形是菱形,故本选项正确;故选D.【分析】依照平行四边形性质推出∠B=∠D,∠DAB=∠DCB,AB=CD,A D=BC,求出∠BAM=∠DCN,证△ABM≌△CDN,推出AM=CN,BE=D N,求出AN=CM,得出四边形AMCN是平行四边形,再依照菱形的判定判定即可.6.【答案】B【考点】平行四边形的判定【解析】【解答】解:A、上、下这一组对边平行,可能为等腰梯形;B、上、下这一组对边平行,左右一组对边相等,可能为等腰梯形,也可能为平行四边形,但等腰梯形的底角不可能是90°,因此为平行四边形,C、上、下这一组对边平行,可能为梯形;D、上、下这一组对边平行,可能为梯形.故答案为:B.【分析】利用“一组对边平行且相等的四边形是平行四边形”,可判定出B 符合题意.7.【答案】C【考点】多边形的对角线【解析】【解答】设多边形有n条边,则n﹣2=6,得:n=8,故多边形是八边形.故选:C.【分析】依照n边形过一个顶点有(n﹣3)条对角线,它们把n边形分割成了(n﹣2)个三角形.8.【答案】A【考点】正方形的性质【解析】【解答】略【分析】9.【答案】B【考点】平行四边形的判定【解析】【解答】解:依照平行四边形的判定,符合四边形ABCD是平行四边形条件的有九种:(1)(2);(3)(4);(5)(6);(1)(3);(2)(4);(1)(5);(1)(6);(2)(5);(2)(6)共九种.故选B.【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.依照平行四边形的判定,任取两个进行推理.二、填空题10.【答案】5【考点】多边形内角与外角【解析】【解答】设那个多边形的边数是n,则,解得n =5.【分析】依照多边形的每一个内角的度数公式,列出方程,求解即可11.【答案】60【考点】矩形的判定【解析】【解答】假如四边形ABFE为矩形,依照矩形的性质,那么A F=BE ,AC=BC ,又因为AC=AB ,那么三角形ABC是等边三角形,因此∠ACB=60°.【分析】本题要紧考查了矩形的性质:矩形的对角线相等且互相平分.12.【答案】相等【考点】平行四边形的性质【解析】【解答】两次读数相等.长方形对边平行,又直角尺两次位置平行,由两平行线间的平行线段长度相等得读数相等.【分析】依照两平行线间的平行线段长度相等可得两次读数相等。

八年级数学第十九章《四边形》单元卷-最新,经典试题,通用

八年级数学第十九章《四边形》单元卷-最新,经典试题,通用

良存中学八年级数学第十九章《四边形》单元卷09.5班级 姓名 座号 总分 一、选择题(本大题8个小题,每小题4分,共32分)1、如图,□ABCD 中,∠C=108°,BE 平分∠ABC,则∠ABE 等于………………( ) A 、18° B、36° C、72° D、108°2、如图,平行四边形ABCD 中,∠A 的平分线AE 交CD 于E ,AB=5,BC=3,则EC 的长…………………………………………………………………………………( ) A 、1 B 、1.5 C 、2 D 、33、顺次连结任意四边形四边中点所得的四边形一定是………………………( ) A 、平行四边形 B 、矩形 C 、菱形 D 、正方形4、正方形具有而菱形不一定具有的性质是………………………………………( ) (A )四条边相等 (B )对角线互相垂直平分 (C )对角线平分一组对角 (D )对角线相等5、如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是………………………………………………………………( )A 、3:4B 、5:8C 、9:16D 、1:26、下列命题中,真命题是……………………………………………………………( ) A 、有两边相等的平行四边形是菱形 B 、有一个角是直角的四边形是直角梯形 C 、四个角相等的菱形是正方形 D 、两条对角线相等的四边形是矩形7、如图10,在梯形ABCD 中,AD ∥BC ,AB=CD 度数比可能为)A 、3:4:5:6B 、4:5:4:5C 、2:3:3:2D 、2:4:3:3 8、如图,E 、F 分别是正方形ABCD 的边CD 、AD 、BF相交于点O,下列结论①AE=BF ;②AE ⊥BF;③AO=OE;④S △AOB =S 四边形DEOF 中,错误的有………………………………………………………………………( ) A.1个 B.2个 C.3个 D.4个C 第5题图E D C B A 第2题图 A BC DE 第8题图第1题图二、填空题(本大题7个小题,每小题4分,共28分)9、如图,□ABCD 中,AE ⊥CD 于E ,∠B=55°,则∠DAE= °.10、如图,△ABC 、△ACE 、△ECD 都是等边三角形,则图中的平行四边形 有 个。

沪科版八年级数学下第19章《四边形》测试题(含答案)

沪科版八年级数学下第19章《四边形》测试题(含答案)

第19章四边形测试题一、选择题(本大题共6小题,每小题4分,共24分;在每小题列出的四个选项中,只有一项符合题意)1.已知一个多边形的内角和是540°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形2.若一个正多边形的每个外角都等于45°,则它是()A.正六边形B.正八边形C.正十边形D.正十二边形3.若一个多边形的每一个内角都等于150°,则从此多边形一个顶点出发引出的对角线有()A.7条B.8条C.9条D.10条4.如图2-G-1所示,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B 两点间的距离,但绳子不够长.一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10 m,则A,B间的距离为()图2-G-1A.15 mB.20 mC.25 mD.30 m5.如图2-G-2,在四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()图2-G-2A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB∥DC,AD=BC6.如图2-G-3所示,在▱ABCD中,CE⊥AB,E为垂足.若∠A=125°,则∠BCE图2-G-3A.55°B.35°C.30°D.25°二、填空题(本大题共6小题,每小题4分,共24分)7.如果一个多边形的内角和等于外角和的3倍,那么这个多边形的边数n=__________.8.如果一个四边形三个内角度数之比为2∶1∶3,第四个内角为60°,那么这三个内角的度数分别为______________________.9.正八边形一个内角的度数为________.10.如图2-G-4所示,若▱ABCD与▱EBCF关于BC所在的直线对称,∠ABE=90°,则∠F=________.图2-G-411.如图2-G-5,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等________.图2-G-512.如图2-G-6,点D,E,F分别是△ABC各边的中点,连接DE,EF,DF.若△ABC 的周长为10,则△DEF的周长为________.图2-G-6三、解答题(本大题共5小题,共52分)13.(6分)如果某个多边形的各个内角都相等,且它的每个内角比其外角大100°,那么这个多边形的边数是多少?14.(10分)如图2-G-7所示,△ABC的中线BD,CE相交于点O,F,G分别是BO,求证:四边形DEFG是平行四边形.图2-G-715.(10分)如图2-G-8,在▱ABCD中,点E,F在对角线BD上,且BE=DF.求证:(1)AE=CF;(2)四边形AECF是平行四边形.图2-G-816.(12分)如图2-G-9,在▱ABCD中,点E,F分别在AB,DC上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.图2-G-917.(14分)(1)如图2-G-10①,在△ABC中,D,E分别为AB,AC的中点.请说明DE与BC的数量关系;(不必说明理由)图2-G-10(2)如图2-G-10②,点O是△ABC所在平面内一动点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接.如果点D,E,F,G能构成四边形,根据问题(1)的结论,判断四边形DEFG是否为平行四边形,请说明理由;(3)当点O移动到△ABC外时,(2)中的结论是否仍然成立?画出图形,不必说明理由.详答1.B[解析] 本题主要考查n边形的内角和公式(n-2)·180°,由(n-2)·180°=540°,得n =5.本题也用到方程的解题思想.2.B3.C [解析] 由题意求得该多边形的每一个外角为180°-150°=30°,所以这个多边形的边数为360°÷30°=12,所以从一个顶点出发引出的对角线有12-3=9(条).4.B5.D [解析] A 项,由“AB ∥DC ,AD ∥BC ”可知,四边形ABCD 的两组对边互相平行,所以该四边形是平行四边形.故本选项不符合题意;B 项,由“AB =DC ,AD =BC ”可知,四边形ABCD 的两组对边分别相等,所以该四边形是平行四边形.故本选项不符合题意;C 项,由“AO =CO ,BO =DO ”可知,四边形ABCD 的两条对角线互相平分,所以该四边形是平行四边形.故本选项不符合题意;D 项,由“AB ∥DC ,AD =BC ”可知,四边形ABCD 的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.故选D .6.B [解析] 根据平行四边形的性质得∠B =180°-∠A =55°.在Rt △BCE 中,∠BCE =90°-∠B =35°.故选B.7.8 [解析] 由题意,得(n -2)·180°=360°×3,解得n =8.8.100°,50°,150° [解析] 设这三个内角的度数分别为2x ,x ,3x ,则有2x +x +3x =360°-60°,解得x =50°,则2x =100°,3x =150°. 故答案为100°,50°,150°.9.135° [解析] 正八边形的内角和为(8-2)×180°=1080°,每一个内角的度数为18×1080°=135°.10.45° [解析] 根据轴对称的性质,得∠EBC =∠ABC =45°,因为平行四边形的对角相等,所以∠F =∠EBC =45°.11.20 [解析] ∵四边形ABCD 为平行四边形,∴AE ∥BC ,AD =BC ,AB =CD ,∴∠AEB =∠EBC .∵BE 平分∠ABC ,∴∠ABE =∠EBC ,∴∠ABE =∠AEB ,∴AB =AE ,∴AE +DE =AD =BC =6,∴AE =4,∴AB =CD =4,∴▱ABCD 的周长=4+4+6+6=20.12.5 [解析] ∵D ,E 分别是AB ,BC 的中点,∴DE 是△ABC 的中位线,∴DE =12AC ,同理有EF =12AB ,DF =12BC ,∴△DEF 的周长=12(AC +BC +AB )=12×10=5.13.解:设每个内角的度数为x ,边数为n . 则x -(180°-x )=100°,解得x =140°. ∴(n -2)·180°=140°·n ,解得n =9. 即这个多边形的边数是9.14.证明:∵E ,D 分别是AB ,AC 的中点, ∴DE 是△ABC 的中位线,∴DE ∥BC ,DE =12BC .又∵F ,G 分别是OB ,OC 的中点, ∴FG 是△OBC 的中位线,∴FG ∥BC ,FG =12BC .∴DE ∥FG ,DE =FG ,∴四边形DEFG 是平行四边形.15.证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD , ∴∠ABE =∠CDF .在△ABE 和△CDF 中,⎩⎨⎧AB =CD ,∠ABE =∠CDF ,BE =DF ,∴△ABE ≌△CDF (SAS ), ∴AE =CF .(2)∵△ABE ≌△CDF , ∴∠AEB =∠CFD , ∴∠AEF =∠CFE , ∴AE ∥CF . ∵AE =CF ,∴四边形AECF 是平行四边形.16.证明:(1)∵四边形ABCD 是平行四边形, ∴AD =CB ,∠A =∠C ,AD ∥CB , ∴∠ADB =∠CBD .∵ED ⊥DB ,FB ⊥BD , ∴∠EDB =∠FBD =90°, ∴∠ADE =∠CBF ,在△AED 和△CFB 中,⎩⎨⎧∠ADE =∠CBF ,AD =CB ,∠A =∠C ,∴△AED ≌△CFB (ASA ). (2)作DH ⊥AB ,垂足为H ,在Rt △ADH 中,∠A =30°,∴AD =2DH . 在Rt △DEB 中,∠DEB =45°, ∴EB =2DH ,∴AD =EB . ∵△AED ≌△CFB , ∴DE =BF .∵∠EDB =∠DBF =90˚, ∴ED ∥BF ,∴四边形EBFD 为平行四边形, ∴FD =EB ,∴DA =DF .17.解:(1)根据三角形的中位线定理得DE =12BC .(2)四边形DEFG 是平行四边形.理由如下:∵D ,G 分别为AB ,AC 的中点, ∴DG 是△ABC 的中位线,∴DG ∥BC 且DG =12BC .∵E ,F 分别为OB ,OC 的中点, ∴EF 是△OBC 的中位线,∴EF ∥BC 且EF =12BC ,∴DG ∥EF 且DG =EF ,∴四边形DEFG 是平行四边形.(3)(2)中的结论仍然成立,如图所示.。

初中数学 第十九章《四边形》单元总复习题(含答案)

初中数学 第十九章《四边形》单元总复习题(含答案)

第十九章《四边形》提要:本章重点是四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用.本章难点在于四边形的概念及四边形不稳定性的理解和应用.在前面学习三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思不容易理解,所以是难点.习题一、填空题1.如图19-1,一个矩形推拉窗,窗高1.5米,则活动窗扇的通风面积A(平方米)与拉开长度b(米)的关系式是:.2.用黑白两种颜色的正六边形地面砖按如图19-2所示的规律,拼成若干个图形:(1)第4个图形中有白色地面砖块;(2)第n个图形中有白色地面砖块.3.黑板上画有一个图形,学生甲说它是多边形,学生乙说它是平行四边形,学生丙说它是菱形,学生丁说它是矩形,老师说这四名同学的答案都正确,则黑板上画的图形是___________________.4.在正方形ABCD所在的平面内,到正方形三边所在直线距离相等的点有__个.5.四边形ABCD为菱形,∠A=60°, 对角线BD长度为10c m,则此菱形的周长c m.6.已知正方形的一条对角线长为8c m,则其面积是__________c m2.7.平行四边形ABCD中,AB=6c m,AC+BD=14c m,则∠AOC的周长为_______.8.在平行四边形ABCD中,∠A=70°,∠D=_________, ∠B=__________.9.等腰梯形ABCD中,AD∠BC,∠A=120°,两底分别是15c m和49c m,则等腰梯形的腰长为______.10.用一块面积为450c m2的等腰梯形彩纸做风筝,为了牢固起见,用竹条做梯形的对角线,对角线恰好互相垂直,那么至少需要竹条c m.11.已知在平行四边形ABCE中,AB=14cm,BC=16cm,则此平行四边形的周长为cm. 12.要说明一个四边形是菱形,可以先说明这个四边形是形,再说明图19-2图19-1ABCDO图19-3(只需填写一种方法)13.如图19-3,正方形ABCD 的对线AC 、BD 相交于点O .那么图中共有 个等腰直角三角形.14.把“直角三角形、等腰三角形、等腰直角三角形”填入下列相应的空格上.(1)正方形可以由两个能够完全重合的 拼合而成; (2)菱形可以由两个能够完全重合的 拼合而成; (3)矩形可以由两个能够完全重合的 拼合而成. 15.矩形的两条对角线的夹角为 60,较短的边长为12cm ,则对角线长为 cm . 16.若直角梯形被一条对角线分成两个等腰直角三角形,那么这个梯形中除两个直角外,其余两个内角的度数分别为 和 .17.平行四边形的周长为24cm ,相邻两边长的比为3:1,那么这个平行四边形较短的边长为___________cm .18.如图19-4,根据图中所给的尺寸和比例,可知这个“十”字标志的周长为 m .19.已知菱形的两条对角线长为12cm 和6cm ,那么这个菱形的面积为 2cm . 20.如图19-5,l 是四边形ABCD 的对称轴,如果AD ∥BC ,有下列结论: (1)AB ∥CD ;(2)AB=CD ;(3)AB BC ;(4)AO=OC .其中正确的结论是 . (把你认为正确的结论的序号都填上)二、选择题21.给出五种图形:∠矩形; ∠菱形; ∠等腰三角形(腰与底边不相等); ∠等边三角形; ∠平行四边形(不含矩形、菱形).其中,能用完全重合的含有300角的两块三角板拼成的图形是( )A .∠∠B .∠∠∠C .∠∠∠∠D .∠∠∠∠∠22.如图19-6,设将一张正方形纸片沿右图中虚线剪开后,能拼成下列四个图形,则其中是中心对称图形的是( )AB C D图19-611图19-4 A BCO图19-523.四边形ABCD 中,∠A ︰∠B ︰∠C ︰∠D =2︰2︰1︰3,则这个四边形是( ) A .梯形 B .等腰梯形C .直角梯形D .任意四边形24.要从一张长40c m ,宽20c m 的矩形纸片中剪出长为18c m ,宽为12c m 的矩形纸片则最多能剪出( ) A .1张 B .2张 C .3张 D .4张25.如图19-7,在平行四边形ABCD 中,CE 是∠DCB 的平分线,F 是AB 的中点,AB =6,BC =4,则AE ︰EF ︰FB 为( )A .1︰2︰3B . 2︰1︰3C . 3︰2︰1D . 3︰1︰2 26.下列说法中错误的是( )A .两条对角线互相平分的四边形是平行四边形;B .两条对角线相等的四边形是矩形;C .两条对角线互相垂直的矩形是正方形;D .两条对角线相等的菱形是正方形. 27.下列说法正确的是( )A .任何一个具有对称中心的四边形一定是正方形或矩形;B .角既是轴对称图形又是中心对称图形;C .线段、圆、矩形、菱形、正方形都是中心对称图形;D .正三角形、矩形、菱形、正方形是轴对称图形,且对称轴都有四条.28.点A 、B 、C 、D 在同一平面内,从∠AB //CD ;∠AB =CD ;∠BC //AD ;∠BC =AD 四个条件中任意选两个,能使四边形ABCD 是平行四边形的选法有( ) A .∠∠ B .∠∠ C . ∠∠ D . ∠∠29.已知ABCD 是平行四边形,下列结论中不一定正确的是( )A .AB =CD B .AC =BDC .当AC ∠BD 时,它是菱形 D .当∠ABC =90°时,它是矩形 30.平行四边形的两邻边分别为6和8,那么其对角线应( )A .大于2,B .小于14C .大于2且小于14D .大于2或小于1231.在线段、角、等边三角形、等腰三角形、平行四边形、矩形、菱形、正方形、圆、等腰梯形这十种图形中,既是轴对称图形又是中心对称图形的共有 ( ) A .4种 B .5种 C .7种 D .8种32.下列说法中,错误的是 ( ) A .平行四边形的对角线互相平分 B .对角线互相平分的四边形是平行四边形 C .菱形的对角线互相垂直 D .对角线互相垂直的四边形是菱形33.给出四个特征(1)两条对角线相等;(2)任一组对角互补;(3)任一组邻角互补;(4)是轴对称图形但不是中心对称图形,其中属于矩形和等腰梯形共同具有的特征的共有 ( )A .1个B .2个C .3个D .4个34.如果一个四边形的两条对角线互相平分,互相垂直且相等,那么这个四边形是 ( )A D CB F E 图19-7 ·A .矩形B .菱形C .正方形D .菱形、矩形或正方形 35.如图19-8,直线a ∠b ,A 是直线a 上的一个定点,线段BC 在直线b 上移动,那么在移动过程中ABC ∆的面积 ( ) A .变大 B .变小 C .不变 D .无法确定36.如图19-10,矩形ABCD 沿着AE 折叠,使D 点落在BC 边上的F 点处,如果 60=∠BAF ,则DAE ∠ 等于 ( )A . 15B . 30C . 45D . 6037.如图19-11,在ABC ∆中,AB=AC =5,D 是BC 上的点,DE ∠AB 交AC 于点E ,DF ∠AC 交AB于点F ,那么四边形AFDE 的周长是 ( ) A .5 B .10 C .15 D .2038.已知四边形ABCD 中,AC 交BD 于点O ,如果只给条件“AB ∠CD ”,那么还不能判定四边形ABCD 为平行四边形,给出以下四种说法:(1)如果再加上条件“BC=AD ”,那么四边形ABCD 一定是平行四边形;(2)如果再加上条件“BCD BAD ∠=∠”,那么四边形ABCD 一定是平行四边形; (3)如果再加上条件“AO=OC ”,那么四边形ABCD 一定是平行四边形;(4)如果再加上条件“CAB DBA ∠=∠”,那么四边形ABCD 一定是平行四边形其中正确的说法是 ( ) A .(1)(2) B .(1)(3)(4) C .(2)(3) D .(2)(3)(4) 三、解答题39.如图19-12,已知四边形ABCD 是等腰梯形, CD //BA ,四边形AEBC 是平行四边形.请说明:∠ABD =∠ABE .40.如图19-13,在∠ABC 中,点O 是AC 边上的一动点, 过点O 作直线MN //BC , 设MNA BC D EF图19-9 图19-10 图19-11 D A EBC图19-12交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F . (1)说明EO =FO ;(2)当点O 运动到何处时,四边形AECF 是矩形?说明你的结论.41.如图19-14,AD 是∠ABC 的角平分线,DE ∠AC 交AB 于点E ,DF ∠AB 交AC 于F . 试确定AD 与EF 的位置关系,并说明理由.42.如图19-15,在正方形ABCD 的边BC 上任取一点M ,过点C 作CN ∠DM 交AB 于N ,设正方形对角线交点为O ,试确定OM 与ON 之间的关系,并说明理由.43.如图19-16,等腰梯形ABCD 中,E 为CD 的中点,EF ∠AB 于F ,如果AB =6,EF =5,AE B CF O N M D图19-13 A EB DC F1图19-142O图19-15 A BN M C D O AD求梯形ABCD 的面积.44.如图19-17,有一长方形餐厅,长10米,宽7米,现只摆放两套同样大小的圆桌和椅子,一套圆桌和椅子占据的地面部分可看成半径为1.5米的圆形(如左下图所示).在保证通道最狭窄处的宽度不小于0.5米的前提下,此餐厅内能否摆下三套或四套同样大小的圆桌和椅子呢?请在摆放三套或四套的两种方案中选取一种,在右下方 14×20方格纸内画出设计示意图.(提示:∠画出的圆应符合比例要求; ∠为了保证示意图的清晰,请你在有把握后才将设计方案正式画在方格纸上.说明:正确地画出了符合要求的三个圆得5分,正确地画出了符合要求的四个圆得8分.)45.如图19-18, 在正方形ABCD 中, M 为AB 的中点,MN ∠MD ,BN 平分∠CBE 并交MN 于N .试说明:MD =MN .46.如图19-19, 中,DB=CD , 70=∠C ,AE ∠BD 于E .试求DAE ∠的度数.D A B C ME N图19-18图19-17ABCD47.如图19-20, 中,G 是CD 上一点,BG 交AD 延长线于E ,AF=CG ,100=∠DGE . (1)试说明DF=BG ; (2)试求AFD ∠的度数.48..工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图19-21∠),使AB=CD,EF=GH ;(2)摆放成如图∠的四边形,则这时窗框的形状是 形,根据的数学道理是: ;(3)将直角尺靠紧窗框的一个角(如图∠),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图∠),说明窗框合格,这时窗框是 形,根据的数学道理是: .(图∠) (图∠) (图∠) (图∠)49.如图19-22,已知平行四边形ABCD ,AE 平分∠DAB 交DC 于E ,BF 平分∠ABC 交DC于F ,DC =6c m ,AD =2c m ,求DE 、EF 、FC 的长.图19-19图19-20图19-21ABCD图19-2250.如图19-23,已知矩形ABCD中,AC与BD相交于O,DE平分∠ADC交BC于E,∠BDE =15°,试求∠COE的度数。

第19章四边形调研试题

第19章四边形调研试题

第十九章四边形调研试题一、选择题(每题4分,共40分)1,如图1,在平行四边形ABCD 中,下列各式不一定正确的是( )A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°2,如图2,在□ABCD 中,EF //AB ,GH //AD ,EF 与GH 交于点O ,则该图中的平行四边形的个数共有( )A.7 个B.8个C.9个D.11个3,如图3,在平行四边形ABCD 中,∠B =110°,延长AD 至F ,延长CD 至E ,连接EF ,则∠E +∠F =( )A. 110° B .30° C.50° D.70°4,对角线互相垂直平分且相等的四边形一定是( )A .正方形B .菱形C .矩形D .等腰梯形5,下列说法中,正确的是( )A. 正方形是轴对称图形且有四条对称轴B.正方形的对角线是正方形的对称轴C.矩形是轴对称图形且有四条对称轴D.菱形的对角线相等6,菱形、矩形、正方形都具有的性质是( )A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线平分一组对角 7,已知:如图4,菱形ABCD 中,对角线AC 与BD 相交于点O ,OE ∥DC 交BC 于点E ,AD =6cm ,则OE 的长为( )A.6 cmB.4 cmC.3 cmD.2 cm8,在学习“四边形”一章时,小明的书上有一图因不小心被滴上墨水(如图5),看不清所印的字,请问被墨迹遮盖了的文字应是( )A .等边三角形B .四边形C .等腰梯形D .菱形 图4 A C 图7图6 E F A B C D 图3 图8 图1DC B A 图2 H GD OF E C B A 图1 4D 231B A9,如图6,在宽为20m ,长为30m 的矩形地面上修建两条同样宽的道路,余下部分作为耕地. 根据图中数据,计算耕地的面积为( )A .600m 2B .551m 2C .550 m 2D .500m 2 10,如图7,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是 ( )A.3∶4B.5∶8C.9∶16D.1∶2二、填空题(每题4分,共32分)11,如图8,AB ∥DC ,AD ∥BC ,如果∠B =50°,那么∠D =___度.12,已知梯形ABCD 中,AD ∥BC ,∠ABC =60°,BD =AE 是梯形的高,且BE =1,则AD =___.13,一个平行四边形被分成面积为S 1、S 2、S 3、S 4的四个小平行四边形(如图9),当CD 沿AB 自左向右在平行四边形内平行滑动时, S 1·S 4与S 2·S 3与的大小关系是___.14,如图10,已知AB ∥DC ,AE ⊥DC ,AE =12,BD =15,AC =20, 则梯形ABCD 的面积为___.15,矩形纸片ABCD 中,AD =4cm ,AB =10cm ,按如图11方式折叠,使点B 与点D 重合,折痕为EF ,则DE =___cm.16,矩形ABCD 中,对角线AC 、BD 相交于点O ,∠AOB =2∠BOC .若AC =18cm,则AD =___cm.17,如图12,矩形ABCD 的相邻两边的长分别是3cm 和4cm ,顺次连接矩形ABCD 各边的中点,得到四边形EFGH ,则四边形EFGH 的周长等于___cm ,四边形EFGH 的面积等于___cm 2.18,在直线l 上依次摆放着七个正方形(如图13所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=___.A EBCD F C 1 图11 C 图12 H D AE BFG 图13 l 321S 4S 3S 2S 1S 4S 3S 2S 1D C B A 图9 图10 E D C BA三、解答题(19-24每题8分,共48分)19,如图14,等腰梯形ABCD 中,AD ∥BC ,AD =3,AB =4,BC =7.求∠B 的度数.20,如图15,四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,过点O 画直线EF 分别交AD 、BC 于点E 、F .求证:OE =OF .21,如图17,在□ABCD 中,∠ABC =5∠A ,过点B 作BE ⊥DC 交AD 的延长线于点E ,O 是垂足,且DE =DA =4cm ,求:(1)□ABCD 的周长;(2)四边形BDEC 的周长和面积(结果可保留根号).22,如图18,□ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于点E 、F .求证:四边形AFCE 是菱形.图18 图17A BC D O E 图16 E D C O B F A 图14A C D B23,如图19,正方形ABCD 中,P 是CD 边上一点,DF ⊥AP ,BE ⊥AP .求证:AE =DF .24,如图20,在矩形ABCD 中,P 是形内一点,且PA =PD .求证:PB =PC .25,(选做)如图,在梯形ABCD 中,AD BC ∥,AB DC AD ==,60C ∠=°,AE BD ⊥于点E ,F 是CD 的中点,DG 是梯形ABCD 的高.(1)求证:四边形AEFD 是平行四边形;(2)设AE x =,四边形DEGF 的面积为y ,求y 关于x 的函数关系式.图19图20参考答案:一、1,D ;2,C ;3,D ;4,A ;5,A ;6,C ;7,C ;8,D ;9,B ;10,B .二、11,50;12,2;13,S 1·S 4=S 2·S 3;14,150;1516,9;17,10、6;18,4.三、19,过A 点作AE ∥CD ,有□AECD ,则△ABE 为等边三角形. 即∠B=60°;20,因为四边形ABCD 是平行四边形,所以AD ∥BC ,AO =CO ,即∠EAO =∠FCO ,又∠AOE =∠COF ,则△AOE ≌△COF ,故OE =OF ;21,在□ABCD 中,因为∠ABC =5∠A ,又∠A+∠B =180°,所以∠A =30°,而AB ∥DC ,BE ⊥DC ,所以BE ⊥AB ,在Rt △ABE 中,∠ABE =90°,AE =2AD =8cm ,∠A =30°,所以BE =12AE=4cm ,由勾股定理,得AB cm ),所以□ABCD 的周长=()cm ;(2)因为BC ∥AD ,BC =AD ,而AD =DE ,所以DE =BC 且DE ∥BC ,即四边形BDEC 是平行四边形,又BE ⊥DC ,所以□BDEC 是菱形,所以四边形BDEC 的周长=4DE =16(cm ),面积=12DC ·BE =cm 2);22,易证△AOE ≌△COF ,所以OE =OF ,所以四边形AFCE 是平行四边形,又AC ⊥EF ,所以四边形AFCE 是菱形;23,证△ABE ≌△DAF 即得;24,证△PBA ≌△PCD 即得; 25,【答案】:(1) 证明: ∵AB DC =,∴梯形ABCD 为等腰梯形.∵∠C=60°,∴120BAD ADC ∠=∠= ,又∵AB AD =,∴30ABD ADB ∠=∠= .∴30DBC ADB ∠=∠= .∴90BDC ∠=. 由已知AE BD ⊥,∴AE∥DC.又∵AE 为等腰三角形ABD 的高, ∴E 是BD 的中点,∵F 是DC 的中点, ∴EF∥BC. ∴EF∥AD.∴四边形AEFD 是平行四边形.(2)解:在Rt△AED 中, 30ADB ∠= ,∵AE x =,∴2AD x =.在Rt△DGC 中 ∠C=60°,并且2DC AD x ==,∴DG =.由(1)知: 在平行四边形AEFD 中2EF AD x ==,又∵DG BC ⊥,∴DG EF ⊥, ∴四边形DEGF 的面积12EF DG =,∴ 2122y x =⨯=(0)x >.。

沪科版2019-2020学年八年级数学下册第19章《四边形》单元测试卷(含答案)

沪科版2019-2020学年八年级数学下册第19章《四边形》单元测试卷(含答案)

密学校 班级姓名 学号密 封 线 内 不 得 答 题沪科版8年级数学(下)第19章《四边形》单元测试卷满分:150分,一、单选题(共10题;共40分)1.下列给出的条件中,能识别一个四边形是菱形的是( )A. 有一组对边平行且相等,有一个角是直角B. 两组对边分别相等,且有一组邻角相等C. 有一组对边平行,另一组对边相等,且对角线互相垂直D. 有一组对边平行且相等,且有一条对角线平分一个内角2.下列条件不能判定四边形ABCD 为平行四边形的是( )A. AB=CD,AD=BC B. AB ∥CD ,AB=CD C. AB=CD ,AD ∥BC D. AB ∥CD ,AD ∥BC 3.如图,在四边形ABCD 中,对角线AC 与BD 交于点O ,下列条件中不一定能判定这个四边形是平行四边形的是( )A. AB ∥DC ,AD=BCB. AD ∥BC ,AB ∥DCC. AB=DC ,AD=BCD. OA=OC ,OB=OD 4.如图,矩形ABCD 的两条对角线相交于点O ,∠AOB =120°,AD =2,点E 是BC 的中点,连结OE ,则OE 的长是( )A.B. 2C. 2D. 45.已知一个多边形的内角和是900°,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形 6.下列条件中,不能判定四边形ABCD 是平行四边形的是( )A. ∠A=∠C ,∠B=∠DB. AB ∥CD ,AB=CD C. AB ∥CD ,AD ∥BC D. AB=CD ,AD ∥BC 7.菱形ABCD 中,已知AC=6,BD=8,则此菱形的周长为( )A. 5B. 10C. 20D. 408.如图,过平行四边形ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与GH ,那么图中的过平行四边形AEMG 的面积S 1与▱HCFM 的面积S 2的大小关系是( )A. S 1>S 2B. S 1=S 2C. S 1<S 2D. 不能确定 9.下列图中不是凸多边形的是( )A. B. C. D.10.一个多边形的内角和与外角和为540°,则它是( )边形。

人教版八年级数学第十九章四边形测试题

人教版八年级数学第十九章四边形测试题

人教版八年级数学第十九章四边形测试题人教版八年级数学第十九章四边形试题一、多项选择题(本大题共有10个子题,每个子题得3分,共计30分)1.□abcd中,∠a比∠b大40°,则∠c的度数为()a、60°b.70°c.100°d.110°2.□abcd的周长为40cm,△abc的周长为25cm,则对角线ac长为()a.5cmb.6cmc.8cmd.10cm3.在□ ABCD,∠ a=43°,交叉点a作为BC和CD的垂直线,则这两条垂直线的夹角为()a.113°b.115°c.137°d.90°4,如图所示,在□ ABCD,EF穿过对角线o的交点,ab=4,ad=3,of=1.3,则四边形bcef的周长为()deca.8.3b.9.6c.12.6d.13.6o5.下列命题:①一组对边平行,另一组对边相等的四边形ab是平行四边形;②对角线互相平分的四边形是平行四边形;f第4题图③在四边形abcd中,ab=ad,bc=dc,那么这个四边形abcd是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形.其中正确命题的个数是()a.0个b.1个c.3个d.4个6.四边形的三个内角的度数如下,其中平行四边形的度数为()a.88°、108°、88°b.88°、104°、108°c.88°、92°、92°d.88°、92°、88°7矩形具有一般平行四边形不一定具有的特征()a.对角相等b.对角线互相平分c.对角线相等d.对边相等8.如图,矩形abcd沿ae折叠,使d点落在bc边上的f点处,如果∠ BFA=30°,则∠ C EF等于20°b.30°c.45°d.60°9.菱形具有而一般平行四边形不一定具有的特征是()ea。

八年级数学下册第19章四边形单元综合测验试题

八年级数学下册第19章四边形单元综合测验试题

四边形制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日一、单项选择题〔每一小题4分,一共40分〕1、在四边形ABCD中,O是对角线的交点,能断定这个四边形是下方形的条件是( )A. AC=BD,AD CDB. AD∥BC,∠A=∠CC. AO=BO=OC=DO,AB=BCD. AO=CO,BO=DO,AB=BC2、矩形的四个内角平分线围成的四边形( )A. 一定是正方形B. 是矩形C. 菱形D. 只能是平行四边形3、从正方形铁片,截去2cm宽的一条长方形,余下的面积是48cm 2,那么原来的正方形铁片的面积是( )A. 8cmB. 64cmC. 8cm 2D. 64cm 24、如图,D,E分别为△ABC的AC,BC边的中点,将此三角形沿DE折叠,使点C落在AB 边上的点P处.假设∠CDE=48°,∠APD等于( )A. 42°B. 48°C. 52°D. 58°5、如图,□ABCD中,对角线AC和BD相交于点O,假如AC=12、BD=10、AB=m,那么m的取值范围是( )A. 1<m<11B. 2<m<22C. 10<m<12D. 5<m<66、如图,在矩形ABCD中,AB=3,AD=4,点P在AB上,PE⊥AC于E,PF⊥BD于F,那么PE+PF 等于( )A. B. C. D.7、如以下图,延长方形ABCD的一边BC至E,使CE=AC,连结AE交CD于F,那么∠AFC的度数是( )A. 112.5°B. 120°C. 122.5°D. 135°8、如图,E是平行四边形内任一点,假设S □ABCD=8,那么图中阴影局部的面积是( )A. 3B. 4C. 5D. 69、如图,在□ABCD的面积是12,点E,F在AC上,且AE=EF=FC,那么△BEF的面积为( )A. 6B. 4C. 3D. 210、四边形ABCD的对角线AC、BD交于点O,设有以下论断:<1>AB=BC:<2>∠DAB=90°:<3>BO=DO,AO=CO:<4>矩形ABCD;<5>菱形ABCD;<6>下方形ABCD,那么以下推论中不正确的选项是( )A. B. C. D.二、填空题〔每一小题5分,一共20分〕11、如图,正方形ABCD边长为1,E、F、G、H分别为其各边的中点,那么图中阴影局部的面积为( )。

第19章《四边形》易错题集(05):19.2 特殊的平行四边形

第19章《四边形》易错题集(05):19.2 特殊的平行四边形

第19章《四边形》易错题集(05):19.2特殊的平行四边形第19章《四边形》易错题集(05):19.2 特殊的平行四边形选择题1.(2010•西城区二模)如图,在△ABC中,∠ACB=90°,AC=2,BC=1,点A、C分别在x轴、y轴上,当点A在x 轴运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为()A.B.C.1+D.32.一次数学课上,老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,则剪下的等腰三角形的面积为多少平方厘米()A.50 B.50或40 C.50或40或30 D.50或30或203.如图,在△ABC中,D、E、F分别为BC、AC、AB的中点,AH⊥BC于点H,FD=8cm,则HE的值为()A.20cm B.16cm C.12cm D.8cm4.菱形的两条对角线的长分别是10和24,则这个菱形的周长是()A.24 B.52 C.10 D.345.(2002•福州)下列说法中错误的是()A.两条对角线互相平分的四边形是平行四边形B.两条对角线相等的四边形是矩形C.两条对角线互相垂直的矩形D.两条对角线相等的菱形是正方形6.下列各句判定矩形的说法(1)对角线相等的四边形是矩形;(2)对角线互相平分且相等的四边形是矩形;(3)有一个角是直角的四边形是矩形;(4)有四个角是直角的四边形是矩形;(5)四个角都相等的四边形是矩形;(6)对角线相等,且有一个角是直角的四边形是矩形;是正确有几个()A.2个B.3个C.4个D.5个7.(2006•大兴安岭)如图所示,E、F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有()A.1个B.2个C.3个D.4个8.如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD 于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有()A.①②③B.①②④C.①③④D.①②③④9.顶点为A(6,6),B(﹣4,3),C(﹣1,﹣7),D(9,﹣4)的正方形在第一象限的面积是()A.25 B.36 C.49 D.3010.(2004•郑州)用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(3)菱形;(4)正方形;(5)等腰三角形,一定可以拼成的图形是()A.(1)(2)(5) B.(2)(3)(5) C.(1)(4)(5) D.(1)(2)(3)填空题11.(2006•河南)如图,把一个矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在A′的位置上.若OB=,,求点A′的坐标为_________.12.如图,在△ABC中,AB=AC=,BC=2,在BC上有50个不同的点P1,P2,…,P50,过这50个点分别作△ABC 的内接矩形P1E1F1G1,P2E2F2G2,…,P50E50F50G50,每个内接矩形的周长分别为L1,L2,…,L50,则L1+L2+…+L50= _________.13.如图,直线l是矩形ABCD的一条对称轴,点P是直线l上一点,且使得△PAB和△PBC均为等腰三角形,则满足条件的点P共有_________个.14.已知直角三角形两条边的长分别为8和6,则斜边上的中线为_________.15.直角三角形中两边长分别是5和3,则斜边上中线长为_________.16.如图,一块长为a米,宽为b米的矩形土地被踩出两条小路(过A,B间任意一点作AD的平行线,被每条小路截得的线段长都是2米).若小路①,②的面积分别为S1,S2,则S1,S2的大小关系是s1_________s2.17.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=1,则矩形的面积等于_________.18.如图,将矩形ABCD沿直线EF对折,点D恰好与BC边上的点H重合,∠GFP=62°,那么∠EHF的度数等于19.如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系、已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处,若在y轴上存在点P,且满足FE=FP,则P点坐标为_________.20.如图,所示,将五个边长都为1cm的正方形按如图所示摆放,其中点A、B、C、D分别是正方形对角线的交点、如果有n个这样大小的正方形这样摆放,则阴影面积的总和是_________cm2.第19章《四边形》易错题集(05):19.2 特殊的平行四边形参考答案与试题解析选择题1.(2010•西城区二模)如图,在△ABC中,∠ACB=90°,AC=2,BC=1,点A、C分别在x轴、y轴上,当点A在x 轴运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为()A.B.C.1+D.3考点:坐标与图形性质;三角形三边关系;直角三角形斜边上的中线;勾股定理.专题:动点型.分析:RT△AOC的外接圆圆心是AC中点,设AC中点为D,根据三角形三边关系有OB≤OD+BD=1+,即O、D、B三点共线时OB取得最大值.解答:解:作AC的中点D,连接OD、BD,∵OB≤OD+BD,∴当O、D、B三点共线时OB取得最大值,=,OD=AD=AC=1,∴点B到原点O的最大距离为1+.故选C.点评:能够理解在什么情况下,点B到原点O的距离最大.2.一次数学课上,老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,则剪下的等腰三角形的面积为多少平方厘米()A.50 B.50或40 C.50或40或30 D.50或30或20考点:等腰三角形的性质;勾股定理;矩形的性质.专题:压轴题;分类讨论.分析:本题中由于等腰三角形的位置不确定,因此要分三种情况进行讨论求解,①如图(1),②如图(2),③如图(3),分别求得三角形的面积.解答:解:如图四边形ABCD是矩形,AD=18cm,AB=16cm;本题可分三种情况:AE=AF=10cm;S△AEF=•AE•AF=50cm2;②如图(2):△AGH中,AG=GH=10cm;在Rt△BGH中,BG=AB﹣AG=16﹣10=6cm;根据勾股定理有:BH=8cm;∴S△AGH=AG•BH=×8×10=40cm2;③如图(3):△AMN中,AM=MN=10cm;在Rt△DMN中,MD=AD﹣AM=18﹣10=8cm;根据勾股定理有DN=6cm;∴S△AMN=AM•DN=×10×6=30cm2.故选C.点评:本题主要考查了等腰三角形的性质、矩形的性质、勾股定理进行正确的讨论.3.如图,在△ABC中,D、E、F分别为BC、AC、AB的中点,AH⊥BC于点H,FD=8cm,则HE的值为()A.20cm B.16cm C.12cm D.8cm考点:三角形中位线定理;直角三角形斜边上的中线.分析:先根据三角形中位线定理求出AC的长,再利用直角三角形斜边上的中线等于斜边的一半解答.解答:解:∵D、F是BC、AB的中点,∴AC=2FD=2×8=16cm,∵E是AC的中点,AH⊥BC于点H,∴EH=AC=8cm.故选D.点评:本题考查的知识点:三角形中位线定理和直角三角形斜边上的中线等于斜边的一半,是基础知识较简单.4.菱形的两条对角线的长分别是10和24,则这个菱形的周长是()A.24 B.52 C.10 D.34考点:菱形的性质;勾股定理.专题:计算题.分析:根据菱形的性质,菱形两对角线的一半分别为5,12,再由勾股定理求得斜边,及菱形的边长,最后求得周长.解答:解:∵菱形的对角线平分,∴菱形两对角线的一半分别为5,12,∵菱形的对角线互相垂直,∴菱形的边长为13,∴周长13×4=52,故选B.点评:本题主要利用菱形的对角线互相垂直平分及勾股定理来解决.5.(2002•福州)下列说法中错误的是()A.两条对角线互相平分的四边形是平行四边形B.两条对角线相等的四边形是矩形C.两条对角线互相垂直的矩形是正方形D.两条对角线相等的菱形是正方形考点:矩形的判定;平行四边形的判定;正方形的判定.角线相等平分和正方形的对角线互相垂直相等平分进行判定即可得出结论.解答:解:根据矩形的判定可知:A,C,D均是正确的,B中,等腰梯形也满足此条件,但不是矩形,故选B.点评:平行四边形的判定方法共有五种,在四边形中如果有:①四边形的两组对边分别平行;②一组对边平行且相等;③两组对边分别相等;④对角线互相平分;⑤两组对角分别相等.则四边形是平行四边形.6.下列各句判定矩形的说法(1)对角线相等的四边形是矩形;(2)对角线互相平分且相等的四边形是矩形;(3)有一个角是直角的四边形是矩形;(4)有四个角是直角的四边形是矩形;(5)四个角都相等的四边形是矩形;(6)对角线相等,且有一个角是直角的四边形是矩形;是正确有几个()A.2个B.3个C.4个D.5个考点:矩形的判定.专题:证明题.分析:根据矩形的判定定理进行判断.解答:解:(1)中也可能是等腰梯形,所以不对;(2)正确,(3)中有一个角是直角的四边形存在很多形式,错误,(4)(5)所述一样,四个角都是直角,所以两个都正确,(6)只有对角线相等,且有一个角是直角的四边形,不能判定其为矩形,所以不正确.所以只有(2),(4),(5)正确,故选B.点评:本题重在对矩形性质的考查,(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形,据此判定.熟练掌握其判定方法即可轻松解答此类问题.7.(2006•大兴安岭)如图所示,E、F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有()A.1个B.2个C.3个D.4个考点:正方形的性质.分析:根据四边形ABCD是正方形及CE=DF,可证出△ADE≌△BAF,则得到:①AE=BF,以及△ADE和△BAF的面积相等,得到;④S△AOB=S四;可以证边形DEOF出∠ABO+∠BAO=90°,则②AE⊥BF一定成立.错误的结论是:③AO=OE.解答:解:∵四边形ABCD是正方形,∴CD=AD∵CE=DF∴DE=AF∴△ADE≌△BAF∴①AE=BF,S△ADE=S△BAF,∠DEA=∠AFB,∠EAD=∠FBA∴④S△AOB=S四边形DEOF∵∠ABF+∠AFB=∠DAE+∠DEA=90°∴∠AFB+∠EAF=90°∴②AE⊥BF一定成立.错误的结论是:③AO=OE.故选A.点评:本题考查了全等三角形的判定和正方形的判定和性质.8.如图,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD 于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有()A.①②③B.①②④C.①③④D.①②③④考点:正方形的性质;全等三角形的判定与性质.专题:压轴题;动点型.分析:(1)作辅助线,延长HF交AD于点L,连接CF,通过证明△ADF≌△CDF,可得:AF=CF,故需证明FC=FH,可证:AF=FH;(2)由FH⊥AE,AF=FH,可得:∠HAE=45°;(3)作辅助线,连接AC交BD于点O,证BD=2FG,只需证OA=GF即可,根据△AOF≌△FGH,可证OA=GF,故可证BD=2FG;(4)作辅助线,延长AD至点M,使AD=DM,过点C作CI∥HL,则IL=HC,可证AL=HE,再根据△MEC≌△MIC,可证:CE=IM,故△CEH的周长为边AM的长,为定值.(1)连接FC,解答:解:延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF= 90°,∴∠LHC+∠DAF= 90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.(2)∵FH⊥AE,FH=AF,∴∠HAE=45°.(3)连接AC交BD于点O,可知:BD=2OA,∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=9 0°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.(4)延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,根据△MEC≌△CIM,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC= AL+LI+IM=AM =8.∴△CEH的周长为8,为定值.故(1)(2)(3)(4)结论都正确.故选D.点评:解答本题要充分利用正方形的特殊性质,在解题过程中要多次利用三角形全等.9.顶点为A(6,6),B(﹣4,3),C(﹣1,﹣7),D(9,﹣4)的正方形在第一象限的面积是()A.25 B.36 C.49 D.30考点:正方形的性质;坐标与图形性质.分析:根据正方形的顶点坐标,求出直线AD的方程,由方程式知AD与x轴的交点E的坐标,同理求得AB与y轴的交点F的坐标,连接OA,再去求两个三角形的面积,从而求得正方形在第一象限的面积.解答:解:连接OA,过A、D两点的直线方程是=,即y=﹣x+16,解得它与x轴的交点E的横坐标是x=7.8,同理求得过A、B两点的直线方程是y=﹣x+4.2,解得它与y轴的交点E的纵坐标是y=4.2,∴S△AOE==23.4,S△AFO==12.6,∴S△AOE+S△AFO=23.4+12.6=36,即顶点为A(6,6),B(﹣4,3),C(﹣1,﹣7),D(9,﹣4)的正方形在第一象限的面积是36.点评:解答本题要充分利用正方形的特殊性质.注意在正方形中的特殊三角形的应用,利用直角三角形求面积,在本题中,借助直线方程求的点E、F在坐标轴上的坐标,据此解得所求三角形的边长,代入面积公式求得结果.10.(2004•郑州)用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(3)菱形;(4)正方形;(5)等腰三角形,一定可以拼成的图形是()A.(1)(2)(5) B.(2)(3)(5) C.(1)(4)(5) D.(1)(2)(3)考点:正方形的判定.专题:证明题;压轴题.分析:两个全等的直角三角形直角边重合拼成的四边形一定是平行四边形;直角边重合拼成的三角形一定是等腰三角形;斜边重合拼成的四边形一定是长方形.拿两个全等的三角板动手试一试就能解决.解答:解:拿两个“90°、60°、30°的三角板一试可得:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(5)等腰三角形.而菱形、正方形需特殊的直角三角形:等腰直角三角形.故选A.点评:本题考查学生的动手能力,有些题只要学生动手就能很快求解,注意题目的要求有“一定”二字.填空题11.(2006•河南)如图,把一个矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在A′的位置上.若OB=,,求点A′的坐标为().考点:坐标与图形性质;矩形的性质;翻折变换(折叠问题).专题:压轴题.分析:由已知条件可得:BC=1,OC=2.设OC与A′B交于点F,作A′E⊥OC于点E,易得△BCF≌△OA′F,那么OA′=BC=1,设A′F=x,则OF=2﹣x.利用勾股定理可得A′F=,OF=,利用面积可得A′E=A′F×OA′÷OF=,利用勾股定理可得OE=,所以点A’的坐标为().解答:解:∵OB=,∴BC=1,OC=2设OC与A′B交于点F,作A′E⊥OC于点E∵纸片OABC沿OB折叠∴OA=OA′,∠BAO=∠BA′O=90°∵BC∥A′E∴∠CBF=∠FA′E∵∠AOE=∠FA′O∴∠A′OE=∠CBF∴△BCF≌△OA′F∴OA′=BC=1,设A′F=x∴OF=2﹣x∴x2+1=(2﹣x)2,解得x=∴A′F=,OF=∵A′E=A′F×OA′÷OF=∴OE=∴点A’的坐标为().故答案为:().点评:解决本题的关键是利用三角形的全等得到点A′所在的三角形的一些相关的线段的长度,进而利用面积的不同表示方法和勾股定理得到所求的点的坐标.12.如图,在△ABC中,AB=AC=,BC=2,在BC上有50个不同的点P1,P2,…,P50,过这50个点分别作△ABC 的内接矩形P1E1F1G1,P2E2F2G2,…,P50E50F50G50,每个内接矩形的周长分别为L1,L2,…,L50,则L1+L2+…+L50= 200.考点:等腰三角形的性质;矩形的性质.专题:规律型.分析:本题可过A作AD⊥BC于D,先找出每个△ABC的内接矩形与AD长的关系,再求这50个内接矩形的周长和.解答:解:根据题意,过A作AD垂直于BC,交BC于点D;易得BD=1,设E1F1与AD交于M,则E1M=AM•tan∠BAD=AM,∴AM=E1F1,因此矩形E1F1G1P1的周长L1=2E1F1+2E1P=2AM+2DM=2AD=4,同理可求得△ABC其它的内接矩形的周长均为4,因此L1+L2+…+L50=4×50=200.故答案为200.点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.13.如图,直线l是矩形ABCD的一条对称轴,点P是直线l上一点,且使得△PAB和△PBC均为等腰三角形,则满足条件的点P共有5个.考点:等腰三角形的判定;矩形的性质.专题:证明题;探究型.分析:利用分类讨论的思想,此题共可找到5个符合条件的点:一是作AB或DC的垂直平分线交l于P;二是在长方形内部在l上作点P,使PA=AB,PD=DC,同理,在l上作点P,使PC=DC,AB=PB;三是如图,在长方形外l上作点P,使AB=BP,DC=PC,同理,在长方形外l上作点P,使AP=AB,PD=DC.解答:解:如图,作AB或DC的垂直平分线交l于P,如图,在l上作点P,使PA=AB,PD=DC,同理,在l上作点P,使PC=DC,AB=PB,如图,在长方形外l上作点P,DC=PD,同理,在长方形外l上作点P,使AP=AB,PD=DC,故答案为5.点评:本题考查了等腰三角形的判定;解题中利用等腰三角形的判定来解决特殊的实际问题,其关键是根据题意,结合图形,再利用数学知识来求解.14.已知直角三角形两条边的长分别为8和6,则斜边上的中线为4或5.考点:勾股定理;直角三角形斜边上的中线.分析:本题利用直角三角形的性质及勾股定理解答即可.分两种情况.解答:解:(1)若8为直角三角形的斜边时,根据直角三角形的性质斜边上的中线等于斜边的一半,斜边上的中线为×8=4;(2)若8为直角三角形的直角边时,根据勾股定理斜边==10,根据直角三角上的中线等于斜边的一半,斜边上的中线为×10=5.∴斜边上的中线为4或5.点评:解答此题时要注意分8为直角边和斜边两种情况讨论,不要漏解.15.直角三角形中两边长分别是5和3,则斜边上中线长为 2.5或.考点:勾股定理;直角三角形斜边上的中线.专题:计算题.分析:由直角三角形斜边上的中线为斜边的一半,可得斜边上中线长;本题要分两种情况讨论:①当3为直角边,5为斜边时,可求得中线长;②当3、5都为直角边时,此时由勾股定理求得斜边长,即可得出中线长.解答:解:直角三角形中两边长分别是5和3,当3为直角边,5为斜边时,由直角三角形斜边上的中线为斜边的一半,可知斜边上中线长为2.5;当3、5都为直角边时,斜边长为=,斜边上中线长为故此题应该填2.5或.点评:本题主要考查了勾股定理在解直角三角形中的运用和直角三角形的性质以及分类讨论思想.16.如图,一块长为a米,宽为b米的矩形土地被踩出两条小路(过A,B间任意一点作AD的平行线,被每条小路截得的线段长都是2米).若小路①,②的面积分别为S1,S2,则S1,S2的大小关系是s1=s2.考点:矩形的性质.专题:代数几何综合题.分析:根据题意可知小路①、②的面积都相当于长为b米、宽为2米的长方形的面积.解答:解:∵过A,B间任意一点作AD的平行线,被每条小路截得的线段长都是2米,∴S1=2b平方米;S2=2b平方米.∴S1=S2.故答案为:=.点评:本题考查了不规则图形的面积计算,解题的关键是将不规则图形转化为规则图形.17.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=1,则矩形的面积等于.考点:矩形的性质.专题:计算题.分析:根据题意先求出矩形边长,再由面积公式即可得答案.解答:解:∵矩形的对角线互相平分,∴AO=BO,又∠AOB=60°⇒△ABO为等边三角形⇒AO=AB=1⇒AC=2⇒BC=;所以矩形的面积等于×1=.故答案为.点评:本题涉及矩形及等边三角形的相关性质,难度中等.18.如图,将矩形ABCD沿直线EF对折,点D恰好与BC边上的点H重合,∠GFP=62°,那么∠EHF的度数等于56°.考点:矩形的性质.专题:计算题.分析:易得∠CFG=2∠GFP,根据平角定义易得∠HFG的度数,由HE∥GF可得∠EHF=∠HFG.解答:解:∵矩形ABCD沿直线EF对折,点D恰好与BC边上的点H重合,∴∠CFP=∠GFP,HE∥GF∴∠CFG=2∠GFP=124°,∴∠HFG=180°﹣∠CFG=56°,∴∠EHF=∠HFG=56°.故答案为56.点评:用到的知识点为:翻折前后得到的对应角相等;矩形的对边平行;两直线平行,内错角相等.19.如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系、已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处,若在y轴上存在点P,且满足FE=FP,则P点坐标为(0,4),(0,0).考点:正方形的性质;坐标与图形性质;全等三角形的判定与性质.专题:几何图形问题.分析:连接EF,CF=BE=1,若EF=FP,显然Rt△FCP≌Rt△FBE,由此确定CP的长.解答:解:连接EF,∵OA=3,OC=2,∴AB=2,∵点E是AB的中点,∴BE=1,∵BF=AB,∴CF=BE=1,∵FE=FP,∴Rt△FCP≌Rt△FBE,∴PC=BF=2,∴P点坐标为(0,4)或(0,0),即图中的点P和点P′.故答案为:(0,4),(0,0)点评:本题考查了三角形翻折前后的不变量,利用三角形的全等解决问题.20.如图,所示,将五个边长都为1cm的正方形按如图所示摆放,其中点A、B、C、D分别是正方形对角线的交点、如果有n个这样大小的正方形这样摆放,则阴影面积的总和是cm2.考点:正方形的性质.专题:计算题.分析:求面积问题,因为点A、B、C、D分别是正方形对角线的交点,所以两个正方形之间的阴影面积为正方形总面积的,由此便可求解.解答:解:∵点A、B、C、D分别是正方形对角线的交点∴两个正方形之间的阴影面积为正方形总面积的,即×1×1=,当有三个正方形时,其面积为=当有四个时,其面积为=所以当n个正方形时,其面积为.故答案为.点评:熟练掌握正方形的性质,会运用正方形的性质进行一些简单的计算问题.。

沪科版八年级下册数学第19章 四边形含答案

沪科版八年级下册数学第19章 四边形含答案

沪科版八年级下册数学第19章四边形含答案一、单选题(共15题,共计45分)1、如图,菱形ABCD的边长为4,∠BAD=120°,点E是AB的中点,点F是AC 上的一动点,则EF+BF的最小值是()A.4B.2C.4D.22、如图,一块边长为10cm的正方形木板ABCD,在水平桌面上绕点D按顺时针方向旋转到A′B′C′D′的位置时,顶点B从开始到结束所经过的路程长为()A.20cmB. cmC.10πcmD. πcm3、如图,在△ABC中,∠B=90°,AB=BC=4,把△ABC绕点A逆时针旋转45°得到△ADE,过点C作CF⊥AE于F,DE交CF于G,则四边形ADGF的周长是()A.8B.4+4C.8+D.84、如图,矩形ABCD中,AB=5,AD=12,将矩形ABCD按如图所示的方式在直线l上进行两次旋转,则点B在两次旋转过程中经过的路径的长是()A. B.13π C.25π D.255、如图,在▱ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A.AG平分∠DABB.AD=DHC.DH=BCD.CH=DH6、平面直角坐标系中,正方形OABC如图放置,反比例函数的图像交AB 于点D,交BC于点E,已知A(,0),∠DOE=30°,则k的值为()A. B. C.3 D.37、如图,▱ABCD的对角线AC,BD交于点O,AC⊥AB,AB=,BO=3,那么AC的长为()A.2B.C.3D.48、若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是( )A.十三边形B.十二边形C.十一边形D.十边形9、已知如图,正方形ABCD中,AD=4,点E在CD上,DE=3CE,F是AD上异于D 的点,且∠EFB=∠FBC,则tan∠DFE=()A.2B.C.D.10、如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?()A.∠1<∠2B.∠1>∠2C.∠3<∠4D.∠3>∠411、如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰三角形有()A.4个B.6个C.8个D.10个12、如图,矩形ABCD中,AB=6,BC=4,点P、Q是边CD上的两个动点,AG⊥BQ 于点G,连接PG、PB,则PG+PB的最小值是( )A.2B.C. +3D. -313、如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S= .在以上4个结论中,正确的有⊿BEF()A.1B.2C.3D.414、如图,在菱形中,分别垂直平分,垂足分别为,则的度数是()A.90°B.60°C.45°D.30°15、如图,菱形的一边在轴上,将菱形绕原点顺时针旋转60°至的位置,若点与点重合,,,则点的坐标为()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在六边形,,则________°.17、如图,点E是矩形ABCD内任一点,若AB=3,BC=4.则图中阴影部分的面积为________.18、在矩形ABCD中,AB=4cm,AD=3cm,则AC=________cm.19、如图,在正方形中,点E是边的中点,连接、,分别交、于点P、Q,过点P作交的延长线于F,下列结论:①,②,③,④若四边形的面积为4,则该正方形的面积为36,⑤.其中正确的结论有________.20、已知在△ABC中,∠C=90°,AB=12,点G为△ABC的重心,那么CG=________.21、如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形④S四边形ABMD= AM2.其中正确结论的是________.22、从n边形的一个顶点出发,连接其余各顶点,可以将这个n边形分割成17个三角形,则n=________.23、如图,平面直角坐标系中,边长为1的正方形OAP1B的顶点A、B分别在x轴、y轴上,点P1在反比例函数y= (x>0)的图象上,过P1A的中点B1作矩形B1AA1P2,使顶点P2落在反比例函数的图象上,再过P2A1的中点B2作矩形B 2A1A2P3,使顶点P3落在反比例函数的图象上,…,依此规律,作出矩形Bn﹣1An﹣2An﹣1Pn时,落在反比例函数图象上的顶点Pn的坐标是________.24、如果一个正多边形的中心角为45°,那么这个正多边形的边数是________.25、正方形ABCD的边长为1,如果将线段BD绕着点B旋转后,点D落在BC延长线上的点D1处,那么tan∠BAD1=________三、解答题(共5题,共计25分)26、如图,点M、N在▱ABCD的对角线AC上,且AM=CN,求证:四边形BMDN是平行四边形.27、如图,依次连接四边形四边的中点,得到的新四边形是什么四边形?请证明.28、为提升城市品味、改善居民生活环境,我省某市拟对某条河沿线十余个地块进行片区改造,其中道路改造是难度较大的工程如图是某段河道坡路的横截面,从点A到点B,从点B到点C是两段不同坡度的坡路,CM是一段水平路段,CM与水平地面AN的距离为12米.已知山坡路AB的路面长10米,坡角BAN=15°,山坡路BC与水平面的夹角为30°,为了降低坡度,方便通行,决定降低坡路BC的坡度,得到新的山坡AD,降低后BD与CM相交于点D,点D,A,B在同一条直线上,即∠DAN=15°.为确定施工点D的位置,求整个山坡路AD的长和CD的长度(sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin30°=0.50,cos30°≈0.87,tan30°≈0.58结果精确到0.1米)29、请阅读下列材料:问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB= ,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.小刚同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PC是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠APB=150°,而∠BPC=∠AP′B=150°,进而求出等边△ABC的边长为,问题得到解决.请你参考小刚同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA= ,BP=2,PC= .求∠BPC度数的大小和正方形ABCD的边长.30、如图,矩形,为射线上一点,连接,为上一点,交于点,.求证:.参考答案一、单选题(共15题,共计45分)1、D2、D3、D4、A5、D6、B7、D8、A9、D10、D11、C12、D14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)30、。

安徽专版八年级数学下册第19章四边形达标测试卷新版沪科版(含答案)

安徽专版八年级数学下册第19章四边形达标测试卷新版沪科版(含答案)

八年级数学下册新版沪科版:第19章达标测试卷一、选择题(每题3分,共30分)1.下列图形中不是凸多边形的是( )2.一个多边形的内角和与外角和的和为540°,则它是( )A.五边形B.四边形C.三角形D.无法确定3.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD=8,∠ABD=∠CDB,则四边形ABCD的面积为( )A.40 B.24 C.20 D.15(第3题) (第5题) (第7题) (第8题)4.下列条件中,不能判定四边形ABCD是平行四边形的是( )A.∠A=∠C,∠B=∠D B.AB∥CD,AB=CDC.AB∥CD,AD∥BC D.AB=CD,AD∥BC5.如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,P是BC边上的一点,作PE⊥AB于点E,PF⊥AC于点F,则EF的最小值是( )A.2 B.2.2 C.2.4 D.2.56.设四边形的内角和等于a,六边形的外角和等于b,则a-b等于( ) A.180° B.-180° C.0° D.360°7.如图,已知凸五边形ABCDE的边长均相等,且∠DBE=∠ABE+∠CBD,AC=1,则BD必定满足( )A.BD<2 B.BD=2 C.BD>2 D.BD=38.如图,矩形ABCD的面积为20 cm2,对角线交于点O;以AB,AO为邻边作平行四边形AOC1B,对角线交于点O1,以AB,AO1为邻边作平行四边形AO1C2B,对角线交于点O2,…,以此类推,则平行四边形AO n C n+1B的面积为( )A.52n-2cm2 B.52n-1cm2C.52ncm2 D.52n+2cm29.如图,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE =∠FEA.若∠ACB=21°,则∠ECD的度数是( )A. 7° B.21° C.23° D.24°(第9题) (第10题) (第12题) (第13题)10.如图是一个由五张纸片拼成的平行四边形ABCD,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张矩形纸片EFGH的面积为S3,FH与GE相交于点O.当△AEO,△BFO,△CGO,△DHO的面积相等时,下列结论一定成立的是( )A.S1=S2B.S1=S3C.AB=AD D.EH=GH二、填空题(每题3分,共18分)11.用正多边形镶嵌一个平面,若每个顶点周围有m个正方形,n个正八边形,则m+n=________.12.如图,在▱ABCD中,对角线AC,BD相交于点O,点E是AB的中点,OE=5 cm,则AD的长为________cm.13.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为________.14.如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平,再一次折叠,使点D落到EF上G点处,并使折痕经过点A,展平纸片后∠DAG的大小为________.(第14题) (第15题) (第16题)15.如图,在边长为6的正方形ABCD中,点E是边AB上一动点(不与A,B两点重合),过点E作EF⊥AB交对角线AC于点F,连接DF.当△ADF是等腰三角形时,AE的长度等于____________.16.小亮用正三角形、正六边形和平行四边形拼成如图所示的正三角形ABC,若△ABC的面积为75,则图中阴影部分的面积为________.三、解答题(17~18题每题7分,19~20题每题8分,21题10分,22题12分,共52分) 17.如果某个多边形的各个内角都相等,且它的每个内角比其外角大100°,那么这个多边形的边数是多少?18.如图,在▱ABCD中,AC,BD相交于点O,点E在AB上,点F在CD上,EF经过点O.求证:四边形BEDF是平行四边形.(第18题)19.如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC,BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=5,AC=2,求OE的长.(第19题) 20.如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC的外角∠CAM的平分线,CE⊥AN,垂足为点E.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.(第20题) 21.操作与证明:如图,把一个含45°角的直角三角尺ECF和一个正方形ABCD摆放在一起,使三角尺的直角顶点和正方形的顶点C重合,点E,F分别在正方形的边CB,CD上,连接AC,AE,AF.其中AC与EF交于点N,取AF的中点M,连接MD,MN.(1)求证:△AEF是等腰三角形;(2)请判断MD,MN的数量关系和位置关系,并给出证明.(第21题) 22.在矩形ABCD中,AB=CD=6 cm,BC=10 cm,点P从点B出发,以2 cm/s的速度沿BC向点C运动,如图①.设点P的运动时间为t s.(第22题)(1)PC=________cm(用含t的代数式表示);(2)当t为何值时,△ABP≌△DCP?请说明理由;(3)如图②,当点P从点B开始运动的同时,点Q从点C出发,以v cm/s的速度沿CD向点D运动.是否存在这样的v,使△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.答案一、1.A 2.C 3.B 4.D 5.C 6.C7.A 点拨:∵AE=AB,∴∠ABE=∠AEB,同理∠CBD=∠CDB.∵∠DBE =∠ABE +∠CBD , ∴∠DBE =∠AEB +∠CDB , ∴∠AED +∠CDE =180°, ∴AE ∥CD .∵AE =CD , ∴四边形AEDC 为平行四边形. ∴BC =CD =DE =AC =1. 在△BCD 中,∵BD <BC +CD , ∴BD <2.故选A. 8.B9.C 点拨:在矩形ABCD 中,AB ∥CD ,∠BCD =90°,所以∠FEA =∠ECD ,∠ACD =90°-∠ACB =69°.因为∠ACF =∠AFC ,∠FAE =∠FEA ,∠AFC =∠FAE +∠FEA ,所以∠ACF =2∠FEA ,所以∠ACD =∠ACF +∠ECD =3∠ECD =69°,所以∠ECD =23°.故选C.10.A二、11.3 12.10 13.5 14.60° 点拨:如图所示:(第14题)由题意易得∠1=∠2,AN =MN , ∠MGA =90°, ∴NG =12AM ,∴AN =NG ,∴∠2=∠4. ∵EF ∥AB , ∴∠4=∠3,∴∠1=∠2=∠3=13×90°=30°,∴∠DAG =60°.15.3 2或3 点拨:①当AF =AD =6时,易知AF =2AE ,∴AE =3 2;②当AF =DF 时,△ADF 是等腰直角三角形,∴AD =2AF =6,∴AF =3 2.在等腰直角三角形AEF 中,AF=2AE ,∴AE =3;③当AD =DF 时,∠AFD =45°,此时点F 与点C 重合,点E 与点B 重合,不符合题意.综上所述,当△ADF 是等腰三角形时,AE 的长度等于3 2或3. 16.26三、17.解:设每个内角的度数为x ,边数为n ,则x -(180°-x )=100°,解得x =140°.∴(n -2)·180°=140°·n , 解得n =9.即这个多边形的边数是9. 18.证明:在▱ABCD 中,DC ∥AB ,OD =OB ,∴∠FDO =∠EBO ,∠DFO =∠BEO . ∴△ODF ≌△OBE ,∴OF =OE , ∴四边形BEDF 是平行四边形. 19.(1)证明:∵AD ∥BC ,∴∠ADB =∠CBD . ∵BD 平分∠ABC , ∴∠ABD =∠CBD , ∴∠ADB =∠ABD , ∴AD =AB . ∵AB =BC , ∴AD =BC . 又∵AD ∥BC ,∴四边形ABCD 是平行四边形. 又∵AB =BC ,∴四边形ABCD 是菱形. (2)解:∵四边形ABCD 是菱形, ∴AC ⊥BD ,OB =OD ,OA =OC =12AC =1.在Rt △OCD 中,由勾股定理得OD =CD 2-OC 2=2, ∴BD =2OD =4.∵DE ⊥BC , ∴∠DEB =90°. ∵OB =OD , ∴OE =12BD =2.20.(1)证明:∵在△ABC 中,AB =AC ,AD ⊥BC ,∴∠BAD =∠DAC .∵AN 是△ABC 的外角∠CAM 的平分线, ∴∠MAE =∠CAE ,∴∠DAE =∠DAC +∠CAE =12×180°=90°.又∵AD ⊥BC ,CE ⊥AN , ∴∠ADC =∠CEA =90°, ∴四边形ADCE 为矩形.(2)解:当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形.证明如下: 由(1)知∠BAD =∠DAC ,四边形ADCE 是矩形. ∵∠BAC =90°, ∴∠DAC =45°, ∴∠DCA =45°, ∴DC =AD .∴四边形ADCE 是正方形.21.(1)证明:∵四边形ABCD 是正方形,∴AB =AD =BC =CD ,∠ABE =∠ADF =90°. ∵△EFC 是等腰直角三角形, ∴CE =CF ,∴BE =DF , ∴△ABE ≌△ADF , ∴AE =AF ,∴△AEF 是等腰三角形. (2)解:MD =MN ,且MD ⊥MN . 证明:在Rt △ADF 中, ∵M 是AF 的中点,∴DM =12AF .∵EC =FC ,CA 平分∠ECF , ∴AC ⊥EF ,EN =FN , ∴∠ANF =90°, ∴MN =12AF ,∴MD =MN .由(1)知△ABE ≌△ADF , ∴∠BAE =∠FAD . ∵DM =12AF =AM ,∴∠FAD =∠ADM ,∴∠FMD =∠FAD +∠ADM =2∠FAD . ∵AM =FM ,EN =FN , ∴MN ∥AE ,∴∠FMN =∠EAF .∵∠BAD =∠EAF +∠BAE +∠FAD =∠EAF +2∠FAD =90°, ∴∠DMN =∠FMN +∠FMD =∠EAF +2∠FAD =90°, ∴MD ⊥MN . 22.解:(1)(10-2t )(2)当t =2.5时,△ABP ≌△DCP . 理由如下:当t =2.5时,BP =2×2.5=5(cm),∴PC =10-5=5(cm).∴BP =PC . 在△ABP 和△DCP 中,⎩⎪⎨⎪⎧AB =DC ,∠B =∠C =90°,BP =CP ,∴△ABP ≌△DCP (SAS). (3)存在.①当△ABP ≌△PCQ 时,AB =PC ,BP =CQ .即10-2t =6,2t =vt .解得t=2,v=2.②当△ABP≌△QCP时,AB=QC,BP=CP.即vt=6,2t=10-2t.解得t=2.5,v=2.4.综上所述,v=2或2.4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第19章四边形测试题时间:90分钟分值:100分班级姓名得分一、选择题(本大题共10小题,每小题3分,共30分)1.下列角度不可能是多边形的内角和的是( C )A.1260°B.900°C.800° D.360°2.在给定的条件中,能画出平行四边形的是()A.以60cm为一条对角线,20cm、34cm为两条邻边;B.以6cm、10cm为对角线,8cm为一边;C.以20cm、36cm为对角线,22cm为一边;D.以6cm为一条对角线,3cm、10cm为两条邻边3.下列命题中,真命题是( C )A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形[解析]C对角线相等且相互平分的四边形为矩形,故A错误;对角线互相垂直的平行四边形是菱形,故B错误;对角线互相平分的四边形是平行四边形,故C正确;对角线互相垂直平分且相等的四边形是正方形,故D错误.故选C.4.如图,在四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是( C )A.AB∥CD,AD∥BC B.OA=OC,OB=ODC.AD=BC,AB∥CD D.AB=CD,AD=BC第7题图5.矩形ABCD的对角线AC,BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为( )A.12 B.16 C.20 D.24[解析]A∵四边形ABCD是矩形,AC=8,∴AC=BD,AC=2AO,BD=2BO,∴AO=BO=4.∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=AO=4,∴△ABO的周长是4+4+4=12,故选A.6.如图,顺次连接四边形ABCD各边中点得到四边形EFGH,要使四边形EFGH为菱形,应添加的条件是( )A.AB∥DC B.AB=DCC.AC⊥BD D.AC=BD[解析]D连接AC,BD,如图19-Z-3,∵E ,F ,G ,H 为四边形ABCD 各边中点,∴EF ∥AC ,EF =12AC ,HG ∥AC ,HG =12AC ,∴四边形EFGH 为平行四边形.要使四边形EFGH 为菱形,则EF =EH ,而EF =12AC ,EH =12BD ,∴AC =BD.当AB ∥DC 和AB =DC 时,只能判定四边形EFGH 为平行四边形,所以A ,B 选项错误;当AC ⊥BD 时,只能判定四边形EFGH 为矩形,所以C 选项错误,故选D .7.如图,在△ABC 中,AC =BC ,点D ,E 分别是边AB ,AC 的中点,延长DE 到F ,使EF =DE ,连接AF ,CF ,则四边形ADCF 一定是( )A .矩形B .菱形C .正方形D .平行四边形[解析]A ∵AE =EC ,EF =DE , ∴四边形ADCF 是平行四边形. ∵D ,E 分别是AB ,AC 的中点, ∴BC =2DE.又∵DF =2DE ,AC =BC ,∴AC =DF , ∴四边形ADCF 是矩形.8.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为( )A .15°或30°B .30°或45°C .45°或60°D .30°或60°第8题图第9题图第10题图[解析]D 如图,∵四边形ABCD 是菱形,∴∠ABD =12∠ABC ,∠BAC =12∠BAD ,AD ∥BC.∵∠BAD =120°,∴∠ABC =180°-∠BAD =180°-120°=60°, ∴∠ABD =30°,∠BAC =60°.∴剪口与第二次折痕所成的角的度数应为30°或60°.故选D .9.如图,E ,F 分别是正方形ABCD 的边CD ,AD 上的点,且CE =DF ,AE ,BF 相交于点O ,有下列结论:(1)AE =BF ;(2)AE⊥BF;(3)AO =OE ;(4)S △AOB =S 四边形DEOF .其中正确的有( )A .1个B .2个C .3个D .4个[解析]C ∵四边形ABCD 为正方形, ∴AB =AD =DC ,∠D =∠BAD =90°. ∵CE =DF ,∴DE =AF , ∴△DEA ≌△AFB ,∴AE =BF ,∠DEA =∠AFB. 又∠DEA +∠DAE =90°, ∴∠AFB +∠DAE =90°, ∴∠AOF =90°, ∴AE ⊥BF.由△DEA ≌△AFB ,得S △DEA =S △AFB , ∴S △DEA -S △AOF =S △AFB -S △AOF , ∴S △AOB =S 四边形DEOF .∴(1)(2)(4)均正确.连接BE.∵BE >BC ,BC =AB ,∴BE >AB.而BO ⊥AE , ∴OA ≠OE ,所以(3)错误.故选C .10.如图,在ABCD 中,MN 分别是AB 、CD 的中点,BD 分别交AN 、CM 于点P 、Q ,在结论:①DP=PQ=QB ②AP=CQ ③CQ=2MQ ④S △ADP =14S ABCD 中,正确的个数为( )A .1B .2C .3D .4二、填空题(本大题共8小题,每小题3分,共24分)11.在ABCD 中,AC 与BD 交于O ,则其中共有_4__对全等的三角形.12.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20cm ,则其对角线长为_40cm ____,矩形的面积为_4003cm _____.13.如图,菱形ABCD 的周长为8 cm ,∠BAD =60°,则AC =________cm.[解析] 由菱形的四边相等得AD =AB =8×14=2(cm ),∠BAD =60°,△ABD 为等边三角形.又菱形的对角线互相垂直平分得AO ⊥BD ,AC =2AO.在等边三角形ABD 中,OB =12AB =1,所以AO = 3 (cm ),所以AC =2AO =23(cm ).14.如图,已知正方形ABCD 的边长为a ,连接AC ,BD ,CE 平分∠ACD 交BD 于点E ,则DE 的长为____________.[答案] (2-1)a[解析]∵四边形ABCD 是正方形, ∴∠ACB =∠DBC =∠ACD =45°. ∵CE 平分∠ACD 交BD 于点E , ∴∠ACE =∠DCE =22.5°, ∴∠BCE =45°+22.5°=67.5°. ∵∠CBE =45° ∴∠BEC =67.5° ∴BE =BC.∵正方形ABCD 的边长为a∴BC =CD =BE =a ,∠BCD =90° ∴BD =a 2+a 2=2a∴DE =BD -BE =2a -a =(2-1)a.15.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是________.第17题图第18题图[答案] 17[解析] 当两张纸条如图19-Z -11所示放置时,菱形周长最大,设这时菱形的边长为x ,在Rt △ABC 中,由勾股定理,得x 2=(8-x)2+22,解得x =174,∴4x =17.即菱形的最大周长为17.16.如图,在正方形ABCD 中,AE =AB ,直线DE 交BC 于点F ,则∠BEF=________度.[答案] 45[解析] 设∠BAE =x °,∵四边形ABCD 是正方形,∴∠BAD =90°,AB =AD. ∵AE =AB ,∴AB =AE =AD ,∴∠ABE =∠AEB =12(180°-∠BAE)=90°-12x °,∠DAE =90°-x °,∠AED =∠ADE =12(180°-∠DAE)=12[180°-(90°-x °)]=45°+12x °,∴∠BEF =180°-∠AEB -∠AED=180°-(90°-12x °)-(45°+12x °)=45°.故答案为45.17.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠AEB=_15°_. 18.如图,ABCD 中,过对角线交点O ,引一直线交BC 于E ,交AD 于F ,若AB=2.4cm ,BC=4cm ,OE=1.1cm ,则四边形CDFE 周长为__8.6cm______. 解:□ABCD 中,OC=OA ,AD ∥BC , ∴∠CEF=∠AFE ,∠DAC=∠BCA , ∴△AFO ≌△CEO , ∴OE=OF ,CE=AF ,∴四边形CDFE 的周长为:CD+CE+EF+FD=3+AF+FD+2=3+4+2=9. 三、解答题(本大题共4小题,共52分)19.(8分)如图,在矩形ABCD 中,AC 、BD 相交于O ,AE 平分∠BAD ,交BC 于E ,若∠CAE =15°,求∠BOE 的度数. 解:在矩形ABCD 中,因为AE 平分∠BAD ,所以∠BAE =∠EAD =45°.又因为∠CAE=15°,所以∠BAO=∠BAE+∠CAE=60°.因为△AOB为等边三角形,所以OB=AB,∠ABO=60°.所以∠OBE=∠ABC-∠ABO=90°-60°=30°.因为∠BAE=45°,∠BEA=45°,所以AB=BE,OB=BE.所以∠BOE===75°.20.(8分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边三角形ACD 及等边三角形ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.解:(1)∵△ABC是等边三角形,EF⊥AB,∴∠AEF=12∠AEB=30°=∠BAC,AE=AB,∠EFA=90°.又∵∠ACB=90°,∴∠EFA=∠ACB,∴Rt△AEF≌Rt△BAC,∴AC=EF.(2)证明:∵△ACD是等边三角形,∴AC=AD,∠DAC=60°.由(1)的结论得AC=EF,∴AD=EF.又∵∠BAC=30°,∴∠FAD=∠BAC+∠DAC=90°.又∵∠EFA=90°,∴EF∥AD,∴四边形ADFE是平行四边形.21.(10分)如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.证明:(1)∵四边形ABCD是平行四边形,∴DC∥AB,即DF∥BE.又∵DF=BE,∴四边形BFDE为平行四边形.又∵DE⊥AB,即∠DEB=90°,∴四边形BFDE为矩形.(2)∵四边形BFDE为矩形,∴∠BFC=90°.∵CF=3,BF=4,∴BC=32+42=5.∵四边形ABCD是平行四边形,∴AD=BC=5.∴AD=DF=5,∴∠DAF=∠DFA.又∵DC∥AB,∴∠DFA=∠FAB.∴∠DAF=∠FAB,即AF平分∠DAB.22.(10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)试判断线段BD与CD的大小关系;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论;(3)若△ABC为直角三角形,且∠BAC=90°,判断四边形AFBD的形状,并说明理由.解:(1)∵AF∥BC,∴∠FAE=∠CDE.又∵∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC,∴AF=CD.又∵AF=BD,∴BD=CD.(2)四边形AFBD是矩形.证明:∵AF∥BC,AF=BD,∴四边形AFBD是平行四边形.∵AB=AC,BD=CD,∴AD⊥BC,∴∠ADB=90°,∴四边形AFBD是矩形.(3)四边形AFBD是菱形.理由:∵∠BAC=90°,BD=CD,∴BD=AD(直角三角形斜边上的中线等于斜边的一半).又∵四边形AFBD是平行四边形,∴四边形AFBD是菱形.23.(10分)如图所示,M为正方形ABCD的边AB的中点,E是AB延长线上的一点,MN⊥DM,交∠CBE的平分线于点N.(1)求证:MD=MN;(2)若将上述条件中的“M为AB边的中点”改为“M为AB边上任意一点”,其余条件不变,则结论“MD=MN”还成立吗?请说明理由.解:(1)证明:取AD的中点P,连接MP,则由四边形ABCD是正方形可得∠A=∠ABC=90°,DP=AP=AM=MB,∴∠APM=45°.又∵BN平分∠CBE,∴∠EBN=45°,∴∠EBN=∠APM,∴∠DPM=∠MBN.又∵∠PDM+∠DMA=90°,∠NMB+∠DMA=90°,∴∠PDM=∠NMB,∴△PDM≌△BMN,∴MD=MN.(2)结论“MD=MN”仍然成立.理由:与(1)类似,在AD上截取DP=BM,连接PM.易得∠PDM=∠BMN,∠DPM=∠MBN,从而△PDM≌△BMN,∴MD=MN.。

相关文档
最新文档