高一数学知识点汇总讲解大全
高一数学全部知识点
高一数学全部知识点高中数学相比初中数学,在知识的深度和广度上都有了很大的提升。
高一是高中数学学习的基础阶段,掌握好这一阶段的知识点对于后续的学习至关重要。
以下是高一数学的全部知识点总结。
一、集合与函数概念1、集合集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体。
集合中的元素具有确定性、互异性和无序性。
常见的集合表示方法有列举法、描述法和图示法。
集合之间的关系有子集、真子集、相等。
集合的运算包括交集、并集和补集。
2、函数函数是两个非空数集之间的一种对应关系。
设A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。
函数的三要素是定义域、值域和对应法则。
函数的表示方法有解析法、列表法和图象法。
常见的函数类型有一次函数、二次函数、反比例函数等。
一次函数的表达式为 y = kx + b(k ≠ 0),其图象是一条直线。
二次函数的表达式为 y = ax²+ bx + c(a ≠ 0),图象是一条抛物线。
当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
函数的单调性是指函数在某个区间上是递增还是递减。
如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x₁,x₂,当 x₁< x₂时,都有 f(x₁) < f(x₂),那么就说函数 f(x)在区间 D 上是增函数;如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x₁,x₂,当x₁< x₂时,都有 f(x₁) > f(x₂),那么就说函数 f(x)在区间 D 上是减函数。
函数的奇偶性是指函数图象关于原点对称(奇函数)或关于 y 轴对称(偶函数)。
如果对于函数 f(x)的定义域内任意一个 x,都有 f(x) =f(x),那么函数 f(x)就叫做奇函数;如果对于函数 f(x)的定义域内任意一个 x,都有 f(x) = f(x),那么函数 f(x)就叫做偶函数。
高一数学知识点全部总结
高一数学知识点全部总结一、代数1.1 一元二次方程一元二次方程是高一数学的重点内容之一,一元二次方程的定义是形式为ax^2+bx+c=0的方程,其中a≠0。
解一元二次方程的方法有因式分解、配方法、公式法等。
1.2 不等式高一数学的不等式内容主要包括一元一次不等式、一元二次不等式以及一元三次不等式的求解方法,包括图像法、取值范围法、代数法等。
1.3 二次函数二次函数是高一数学代数部分的重点内容,涉及了函数的定义、性质、图像、极值、单调性、解析式等多个方面的内容。
1.4 基本初等函数高一数学还包括了基本初等函数的概念和性质,包括幂函数、指数函数、对数函数、三角函数等的定义、性质及其在实际问题中的应用。
1.5 绝对值函数绝对值函数也是高一数学中的一个重要内容,主要包括了绝对值函数的性质、图像及其在实际问题中的应用。
1.6 平面直角坐标系中的直线和圆平面直角坐标系中的直线和圆也是高一数学的重要内容,主要包括了直线的方程、性质、圆的方程、性质及其在实际问题中的应用。
1.7 数列数列也是高一数学的一个重要内容,包括等差数列、等比数列、递推数列等的概念、性质、求和公式及其在实际问题中的应用。
1.8 集合与函数高一数学的内容还包括了集合的基本概念、基本运算、集合的关系和函数的概念、性质、运算、基本初等函数的图像等内容。
1.9 二项式定理二项式定理是高一数学中的一个重要概念,包括二项式的展开式、二项式系数、二项式定理的应用等方面的内容。
1.10 逻辑与命题关系逻辑与命题关系也是高一数学的一个知识点,主要包括了命题、充分必要条件、等价命题、逻辑联结词、命题公式等内容。
二、几何2.1 几何图形的性质高一数学的几何内容主要包括了基本的几何图形的性质,包括直线、角、三角形、四边形、圆等的基本性质、判定方法和应用题。
2.2 相似三角形相似三角形是高一数学中的重点内容,主要包括了相似三角形的性质、判定方法及其在实际问题中的应用。
高一数学知识点全总结归纳
高一数学知识点全总结归纳数学作为一门理科学科,对于高中生们来说无疑是一门重要的学科之一。
高一是数学学科的起点,是打下扎实数学基础的关键阶段。
为了帮助广大高一学生掌握和巩固数学知识,本文将全面总结和归纳高一数学知识点,帮助学生们更好地学习和理解。
一、代数1. 数与代数式2. 数的四则运算3. 一元一次方程与不等式4. 二元一次方程组与解法5. 平方差与完全平方公式6. 平方根与立方根7. 二次根式与整式的乘法8. 因式分解与最大公因数、最小公倍数9. 分式及其性质10. 一元二次方程与不等式11. 二次函数与一次函数二、几何1. 平面直角坐标系与二维坐标变换2. 向量及其运算3. 直线与线段的性质4. 角与角度的度量5. 三角函数与三角恒等式6. 圆的性质与相关定理7. 相似与全等三角形8. 数列与等差数列9. 数列与等比数列10. 空间坐标系与三维向量11. 空间中的直线与平面12. 空间中的平面与直线三、概率与统计1. 事件与概率的基本概念2. 概率的计算方法3. 条件概率与独立事件4. 随机变量与概率分布5. 二项分布与泊松分布6. 抽样与统计分布7. 统计图与直方图8. 统计数据的分析与应用四、数学建模与应用1. 数学建模的基本步骤与方法2. 函数模型与线性规划3. 排队论与图论4. 矩阵与运算5. 微分与微分方程6. 积分与应用问题以上是高一数学的主要知识点总结,涵盖了代数、几何、概率与统计以及数学建模与应用等重要内容。
在学习过程中,要注重基础知识的理解和掌握,应用数学解题的方法和技巧,并通过大量的练习和实际应用,不断提升数学能力。
希望本文对高一学生的数学学习有所帮助,让他们能够在数学领域取得优秀的成绩。
高一数学知识点的讲解大全
高一数学知识点的讲解大全随着中学生的进一步学习,高一数学成为了学生们的主要科目之一。
高一数学知识是中学数学学科的基础,为后续学习和应用各个数学领域打下了坚实的基础。
在本文中,将对高一数学中重要的知识点进行讲解,帮助学生们更好地理解数学知识。
一、函数与方程高一数学中,最常见的数学概念之一就是函数与方程。
函数是一种关系,它将一个集合的每个元素映射到另一个集合中唯一的元素。
函数可以用来描述自然界中的各种变化和规律。
常见的函数类型有线性函数、二次函数、指数函数和对数函数等。
方程是两个表达式之间用等号连接的数学语句。
方程是数学建模和问题解决中的重要工具,它可以帮助我们找到未知数的值。
常见的方程类型有一元一次方程、一元二次方程、一元高次方程和二元方程等。
解方程需要掌握多种转化和求解方法。
二、三角函数三角函数作为数学中的重要分支,被广泛用于物理、工程、建筑和计算机图形等领域。
在高一数学中,常见的三角函数有正弦函数、余弦函数和正切函数。
这些函数可以帮助我们描述和计算各种三角形的边长和角度。
在学习三角函数时,需要熟悉三角函数的定义和性质,掌握如何在单位圆上确定角度和弧度的关系,以及如何应用三角函数解决实际问题。
此外,还需要了解三角函数的图像和周期性特点,以及求解三角方程的方法。
三、数列与数列的通项公式数列是按照一定规律排列的数的集合。
在高一数学中,需要学习如何根据给定的规律确定数列的通项公式,并利用通项公式计算数列的各项值。
常见的数列有等差数列和等比数列。
等差数列是指相邻两项之差恒定的数列,其通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
而等比数列是指相邻两项之比恒定的数列,其通项公式为an = a1 *r^(n-1),其中a1为首项,r为公比。
四、平面几何平面几何是数学的一个分支,它研究平面上的点、线、面与其之间的关系。
在高一数学中,我们将学习平面几何中的基本概念和定理,如点、直线、射线、角度、四边形等。
高一数学全部知识点总结
高一数学全部知识点总结数学是一门既抽象又具体,既纯粹又实用的科学。
在高中数学中,我们不仅需要掌握基本的数学概念和运算技巧,还需要理解和应用各种数学理论和方法。
本文将以高一数学的全部知识点为基础,总结并介绍这一学年所涉及的主要内容。
一、数与代数1. 实数与有理数实数包括有理数和无理数,其中有理数可以表示为两个整数的比值,而无理数无法被表示为有理数的比值。
2. 整式与分式整式是只包含常数、变量及其指数幂次及其运算符号(加、减、乘、除)的代数式。
分式是包含一个以上的整式,并以除法运算为中心的代数式。
3. 方程与不等式方程是通过等号连接的两个代数式,要求在一定条件下使该方程成立,而不等式则是通过不等号连接的两个代数式。
二、函数与图像1. 函数的概念函数是两个集合之间的一对一对应关系,其中一个集合称为自变量集合,另一个集合称为因变量集合。
2. 一次函数与二次函数一次函数是自变量的最高次数为一的函数,通常表达为y=kx+b 的形式;二次函数则是自变量的最高次数为二的函数,通常表达为y=ax^2+bx+c的形式。
3. 幂函数与指数函数幂函数是以自变量的幂次作为函数的指数,例如y=x^n;指数函数则是以一个固定的底数为底,自变量为指数的函数,例如y=a^x。
4. 对数函数与三角函数对数函数是幂函数的逆运算,三角函数则是描述角度、周期性等数学概念的函数。
三、平面几何1. 向量与坐标向量是具有大小和方向的量,可以表示为有方向的线段。
在坐标系中,向量可以表示为一对有序数字。
2. 直线与圆直线是由无限多个点组成的无痕道路,圆则是以一个固定点为圆心,以一个固定长度为半径的点的集合。
3. 三角形与多边形三角形是由三条边和三个角组成的几何形体,多边形是由多条边和多个角组成的几何形体。
4. 相似与全等相似是指两个几何图形的形状和内角分别对应相等,但尺寸不同;全等则是指两个几何图形的形状、大小和内角均相等。
四、概率与统计1. 概率的基本概念概率是指某一事件发生的可能性,通常用0到1之间的数值表示。
高一数学必修一知识点梳理与总结
高一数学必修一知识点梳理与总结鹏博教育高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念集合是由一些元素组成的整体。
元素具有确定性、互异性和无序性。
例如,{a,b,c}和{a,c,b}表示同一集合。
集合可以用列举法和描述法表示。
例如,集合A可以表示为A={我校的篮球队员},或者用描述法表示为A={x R|x-3>2}。
常用的数集有非负整数集N、正整数集N*或N+、整数集Z、有理数集Q和实数集R。
二、集合间的基本关系集合间有包含关系和相等关系。
如果集合A包含于集合B,则称A为B的子集,记作A B。
如果A与B是同一集合,则记作A=B。
空集是不含任何元素的集合,记为Φ。
空集是任何集合的子集,也是任何非空集合的真子集。
三、集合的运算集合的运算有交集、并集和补集。
交集是由所有属于A且属于B的元素所组成的集合,记作A B。
并集是由所有属于集合A或属于集合B的元素所组成的集合,记作A B。
补集是由S中所有不属于A的元素组成的集合,记作A的补集。
1.定义集合B为由集合A和集合B'中的元素组成的集合,即B={x|x∈A或x∈B'}。
如图1所示。
2.定义集合CSA为由集合S中属于A的元素和不属于A但属于S的元素组成的集合,即CSA={x|x∈S且(x∈A或x∉A)}。
如图2所示。
3.关于集合A的性质:A与自身的交集等于A本身,即A∩A=A。
A与空集的交集等于空集,即A∩Φ=Φ。
A与集合B的交集包含于A和B中元素共有的部分,即A∩B⊆A且A∩B⊆B。
A与集合B的并集包含于A和B中所有元素的集合,即A∪B包含于A和B的并集。
A与集合B的并集等于A和B中所有元素的集合加上A和B中共有的元素的集合,即A∪B=(A∖B)∪(B∖A)∪(A∩B)。
A与集合B的并集等于集合B与A的补集的补集的并集,即A∪B=(CuA')∩(CuB')。
4.选择题答案:A。
5.集合{a,b,c}的真子集共有7个。
高一数学知识点大全全部
高一数学知识点大全全部
数学是一门具有重要实用性和抽象性的学科,是我们在高中阶
段学习的重要科目之一。
在高一数学的学习过程中,我们将接触
到许多重要的数学知识点。
本文将对高一数学知识点进行归纳和
总结,以便同学们能够全面了解和掌握。
1. 代数与函数
代数是数学的基础部分,涉及到数与量的关系、式子的运算等
内容。
高一数学的代数部分主要包括多项式及其运算、函数的概
念和性质等。
- 多项式及其运算:了解多项式的定义,学会对多项式进行加、减、乘运算,掌握多项式的因式分解和配方法。
- 函数的概念和性质:了解函数的定义及其图像特征,学会绘
制函数图像并进行函数的平移、翻折和伸缩等操作,掌握函数的
性质和分类。
2. 知识点2。
高一数学各个知识点总结归纳
高一数学各个知识点总结归纳在高一的数学学习中,我们接触到了许多不同的知识点和概念。
这些知识点是构建我们后续数学学习的基础,对我们理解和应用数学起着重要的作用。
本文将对高一数学的各个知识点进行总结和归纳,帮助大家回顾和梳理所学内容。
一、集合与函数1. 集合的概念与运算- 集合的定义和表示方法- 集合的基本运算:交集、并集、差集- 子集和真子集的关系2. 函数的概念与性质- 函数的定义和表示方法- 定义域、值域和像- 一次函数和二次函数的性质- 函数的复合和反函数二、数列与数学归纳法1. 数列的概念与性质- 等差数列和等比数列的定义- 通项公式和前n项和公式的推导- 递推关系和递推公式2. 数学归纳法的原理与应用- 数学归纳法的基本思想- 数学归纳法证明的步骤和技巧- 利用数学归纳法证明等式和不等式三、平面几何1. 角的概念与性质- 角的定义和表示方法- 锐角、直角、钝角和平角- 同位角、对顶角和补角的关系2. 三角形与四边形- 三角形的分类和性质- 三角形内角和定理- 等腰三角形、等边三角形和直角三角形的性质- 四边形的分类和性质,包括平行四边形、矩形和菱形3. 直线和圆的性质- 直线平行和垂直的判定方法- 同位角和内错角的关系- 圆的定义和性质,包括弦、弧和切线的概念四、解析几何1. 坐标系与点的坐标- 笛卡尔坐标系和极坐标系- 点的坐标表示和运算规则2. 直线方程与曲线方程- 直线的一般方程和截距式方程- 圆的方程和二次曲线的标准方程3. 几何图形的性质和方程的应用- 利用解析几何的方法证明几何定理- 运用方程求解几何问题五、概率与统计1. 概率的基本概念- 随机事件、样本空间和概率的定义- 古典概型和几何概型的概率计算2. 随机变量和概率分布- 随机变量和离散型、连续型随机变量的概念- 期望和方差的计算- 二项分布、正态分布和指数分布的性质和应用3. 统计学的基本概念- 总体和样本的概念- 参数估计和假设检验的基本原理- 利用统计学方法进行数据分析和决策通过以上对高一数学各个知识点的总结归纳,我们对数学的学习内容有了更清晰的认识。
高一上册数学知识点全面总结及详细解析2024版
高一上册数学知识点全面总结及详细解析2024版引言高一上册数学是高中数学学习的基础阶段,涵盖了代数、几何、函数等多个方面的知识点。
本文将对这些知识点进行详细总结,帮助学生更好地掌握和应用这些知识。
第一章:集合与函数1. 集合的概念集合的定义与表示方法:集合是指某些确定的、不同的对象的全体。
常用大写字母表示集合,小写字母表示集合中的元素。
集合的表示方法有列举法和描述法。
集合的基本运算(并集、交集、补集):并集是指两个集合中所有元素的集合,交集是指两个集合中共有元素的集合,补集是指全集中不属于某集合的元素的集合。
子集与全集:如果集合A的所有元素都是集合B的元素,则A是B的子集。
全集是指包含所有讨论对象的集合。
2. 函数的概念函数的定义与表示方法:函数是指两个集合之间的一种对应关系,其中每个元素在第一个集合中都有唯一的元素与之对应。
常用符号f(x)表示函数。
函数的性质(单调性、奇偶性、周期性):单调性指函数在某区间内是否保持递增或递减,奇偶性指函数是否关于原点对称或关于y轴对称,周期性指函数是否存在一个周期使得函数值重复出现。
反函数与复合函数:反函数是指将原函数的自变量与因变量互换得到的新函数,复合函数是指两个函数的组合。
第二章:基本初等函数1. 一次函数一次函数的定义与图像:一次函数是指形如y=ax+b的函数,其图像是一条直线。
一次函数的性质与应用:一次函数的斜率a决定了直线的倾斜程度,截距b 决定了直线与y轴的交点。
一次函数广泛应用于实际问题的建模与求解。
2. 二次函数二次函数的定义与图像:二次函数是指形如y=ax^2+bx+c的函数,其图像是一条抛物线。
二次函数的性质(顶点、对称轴、开口方向):二次函数的顶点是抛物线的最高或最低点,对称轴是通过顶点的垂直线,开口方向由系数a的正负决定。
二次函数的应用:二次函数在物理、经济等领域有广泛应用,如抛物运动、利润最大化等问题。
3. 指数函数与对数函数指数函数的定义与性质:指数函数是指形如y=a^x的函数,其图像呈指数增长或衰减。
高一数学知识要点概述
高一数学知识要点概述
1. 直线与坐标系
- 直线的斜率和截距的求法
- 直线的方程(一般式、斜截式、截距式)
- 坐标系的建立及其应用
2. 几何图形的性质
- 垂线、角平分线、中位线的性质及应用
- 三角形的分类和性质
- 等腰三角形、直角三角形、等边三角形的性质
3. 向量与坐标
- 向量的定义、加减和数量积的运算法则
- 坐标的表示和应用
- 线段的中点和向量的共线关系
4. 平面几何与解析几何
- 平面几何的基本概念和性质
- 解析几何的基本思想和方法
- 点、直线和圆的位置关系及其应用
5. 不等式与绝对值
- 一元一次不等式的解法和应用
- 绝对值的基本性质和不等式的解法
6. 函数与方程
- 函数的定义、性质和图像
- 一次函数、二次函数和反比例函数的性质及应用- 方程的定义和基本思想
7. 三角函数和三角恒等式
- 三角函数的定义、性质和图像
- 常用三角函数的值和恒等式
- 三角函数的运算规则和应用
8. 导数与微分
- 导数的定义和基本性质
- 函数的增减性和极值问题
- 微分的定义和应用
9. 概率与统计
- 随机试验和事件的概念
- 频率与概率的关系
- 统计数据的图表表示和分析
10. 解析几何与向量的综合应用
- 解析几何和向量的综合应用问题解析
- 综合应用题的解题方法和策略
以上是高一数学的知识要点概述,希望对您有所帮助。
高一数学预习知识点汇总
高一数学预习知识点汇总高一数学预知识点——集合的定义一、知识点讲解1.集合的概念:研究对象统称为元素,一些元素组成的总体叫做集合,也简称集。
2.集合中元素的特性:确定性、互异性、无序性。
3.元素与集合的关系:1) 如果a是集合A的元素,就说a属于A,记作a∈A。
2) 如果a不是集合A的元素,就说a不属于A,记作a∉A。
4.常用数集及其记法:全体非负整数的集合:N或N+;所有正整数的集合:N;全体整数的集合:Z;全体有理数的集合:Q;全体实数的集合:R。
5.集合的分类:1) 有限集:含有有限个元素的集合。
2) 无限集:含有无限个元素的集合。
3) 空集:不含任何元素的集合∅。
二、经典例题1.下列所给对象能构成集合的是(D)圆心为定点,半径为1的圆内的点能组成一个集合。
2.集合{1,3,5,7,9}用描述法表示应是(A){x|x是不大于9的非负奇数}。
3.已知集合A={(x,y)|x=y+1,|x|<2,x∈Z},用列举法表示集合A= {(-1,0),(0,-1),(1,0)}。
高一数学预知识点——集合的运算一、知识点讲解1.包含关系:1) 子集:任意x∈A,都有x∈B,则称集合A是集合B的子集。
记作A⊆B(或B⊇A),读作A含于B或B包含A。
2) 规定:任何一个集合是它本身的子集。
对于集合A、B、C,如果A⊆B,且B⊆C,则A⊆C。
3≤x≤7},集合A={x|x∈S。
x为偶数},集合B={x|x∈S。
x为奇数},则A∩B=()A){5}(B){4,6}C){}(D)∅解析】集合A包含S中的4和6,集合B包含S中的3、5、7,它们的交集为空集。
答案】D正确判断的序号是2.对于③,f(x)=x-2x+1化简得f(x)=-x+1,而g(t)=t-2t+1化简得g(t)=-t+1,所以f(x)和g(t)不是同一函数。
对于④,f(x)=|x-1|-|x|,当x≥1时,f(x)=x-1-x=-10.所以f(f(x))<0,即正确判断的序号是4.2.已知函数f(x)=x-3,g(x)=2x+1,则f(g(x))=________.解析】f(g(x))=f(2x+1)=(2x+1)-3=2x-2.所以f(g(x))=2x-2.答案】2x-2.1.图象与直线x=1最多有一个交点;对于③,f(x)与g(x)的定义域、值域和对应关系均相同,因此f(x)和g(x)表示同一函数;对于④,由于f(1)=1-1/2=1/2,所以f(1/2)=2f(1)=2.1.图象和直线x=1最多只有一个交点。
高一数学知识点全解
高一数学知识点全解必修一第一章,集合与函数概念 一,集合1.集合的有关概念:1) 集合的含义:一般的指定的某些对象的全体称为集合(也称为集),集合中的每个对象是集合的一个元素。
2) 集合元素的三个特性:① 元素的确定性 ,如:世界上最高的山② 元素的互异性, 如:由HAPPY 的字母组成的集合{H,A,P,Y ,} ③ 元素的无序性, 如:{A,B,C}和{A,C,B}表示同一个集合 3) 集合的表示方法:① 列举法,将集合中的元素一一列举出来。
如:{我们班的全体学生},{太平洋,大西洋,印度洋,北冰洋}② 描述法,将集合中元素的公共属性描述出来,写在大括号内。
如:{x 23|>-∈x R },{(x,y)|2x+3y=0,x R y R ∈∈,}③ Venn 图,例题:(集合的意义与表示方法)1.一直集合A={33,,222)1(++++a a a a } 若1A ∈,求实数a 的值2.试用列举法和描述法分别表示下列集合① 方程022=-x 所有实根组成的集合 ② 由大于10小于20的整数组成的集合*思考:能否用例举法表示不等式?37<-X作业:基础篇1,基础篇下列集合中,表示方程组的解集的是( )(A ) (B )(C )(D )2,若集合只有一个元素,则实数的值加强篇1,集合A 的元素由0232=+-x kx 的解组成,其中,R k ∈若A 中的元素之多有一个,求k 的 值 2,若,求实数的值。
二,集合间的基本关系 1,“包含”关系--子集注意:A BA AB B A B A B A B ⊄⊆,记作不包含,或者集合不包含于集合反之:集合是同一集合与)的一部分:(是)有两种可能(212“相等”关系:A=B (5》5,且5《5)实例:设 }1,1{},01|{2-==-=B x x A “两个集合表示的元素相通则集合相等”即:① 任何一个集合是它本身的子集② 真子集:如果A B A B ≠⊆,且那就是说集合A 是集合B 的真子集,记作A B(或者B A )③ 如果A B ⊆,C B ⊆,那么C A ⊆ ④ 如果B A A B B A =⊆⊆那么同时 3,不含任何元素的集合叫空集,记作* 有N 个元素的集合,含有个真子集子集,122-N N例题(集合间的基本关系) 1,设,,若,则实数的取值范围是( )(A ) (B ) (C ) (D )2,若集合、、,满足,,则与之间的关系为( )(A ) (B )(C ) (D )作业:基础篇1、图中阴影部分表示的集合是 ( ) A. B C A U I B. B A C U I C. )(B A C UI D. )(B A C UY2、已知集合A={x x ≤2,R x ∈},B={x x ≥a},且B A ⊆,则实数a 的取值范围是( ) (A )a ≥-2 (B )a ≤-2 (C )a ≥2 (D )a ≤23、设全集{}+∈≤=N x x x U ,8|,若{}8,1)(=B C A U I ,{}6,2)(=B A C U I , {}7,4)()(=B C A C U U I ,则 ( )(A ){}{}6,2,8,1==B A (B ){}{}6,5,3,2,8,5,3,1==B A (C ){}{}6,5,3,2,8,1==B A (D ){}{}6,5,2,8,3,1==B A 4、设P=}|),{(},|{22x y y x Q x y x ===,则P 、Q 的关系是 ( ) (A )P ⊆Q(B )P ⊇Q(C )P=Q (D )P ⋂Q=∅加强篇 1,已知集合,,且,求实数的取值范围。
高一数学知识点大全集
高一数学知识点大全集高一是学生们进入高中的第一年,也是数学学科中扎实基础知识的学习年份。
在这一年里,学生们将会接触到许多重要的数学知识点。
本篇文章将为大家整理高一数学知识点的大全集,帮助大家更好地准备和复习数学课程。
1. 代数运算1.1. 四则运算:加法、减法、乘法、除法1.2. 指数与根:乘方、开方、科学计数法1.3. 数列与数列运算:等差数列、等比数列、递归公式1.4. 多项式运算:多项式加减、乘法公式、整式除法2. 几何基础2.1. 几何图形:点、线、面、体2.2. 直线与角:直线的性质、平行线与垂直线、角的性质、角平分线2.3. 三角形:三角形的分类、三角形的性质、三角形的相似与全等2.4. 四边形:正方形、长方形、平行四边形、梯形、菱形2.5. 圆与圆的性质:圆的元素、圆的弧长、面积、扇形、切线、切圆问题3. 函数3.1. 函数的概念与性质:自变量与因变量、定义域与值域、奇偶性、周期性3.2. 一次函数:函数图像、求解一次方程与不等式、一次函数的斜率3.3. 二次函数:函数图像、求解二次方程与不等式、二次函数的顶点及其性质、最值问题3.4. 指数函数与对数函数:指数函数的性质、指数方程及不等式的解、对数函数的性质、换底公式4. 三角函数4.1. 三角比的概念与性质:正弦、余弦、正切、余切4.2. 三角函数的图像与性质:周期性、对称性、增减性4.3. 三角函数的运算:和差化积、积化和差、辅助角公式4.4. 三角恒等式与解三角方程:和差化积恒等式、积化和差恒等式、解三角方程5. 统计与概率5.1. 数据的收集与整理:数据的调查方法、数据的图表表示5.2. 数据的分析与解读:中心位置的测度、离散程度的测度、数据的解读与应用5.3. 概率的概念与性质:样本空间与事件、概率与它的性质5.4. 概率的计算与应用:古典概型、条件概率、排列组合6. 数学证明6.1. 数学归纳法:基本思想、结构与步骤6.2. 数学证明的基础:逻辑与推理、等价命题、逆否命题、充分必要条件6.3. 平面几何证明:点、线、角的结构与性质的证明6.4. 三角函数的证明:三角函数的恒等式证明、三角方程的证明以上是高一数学的主要知识点大全集。
高一数学知识点与习题讲解
高一数学知识点与习题讲解第一章集合与函数基础知识点整理第1讲1.1.1 集合的含义与表示知识要点:1.把一些元素组成的总体叫作集合(set),其元素具有三个特征,即确定性、互异性、无序性.2.集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“ {}”括起来,基本形式为佝盘忌,耳},适用于有限集或元素间存在规律的无限集.描述法,即用集合所含元素的共同特征来表示,基本形式为{X A|P(x)},既要关注代表元素x,也要把握其属性P(x),适用于无限集.3.通常用大写拉丁字母A,B,C,表示集合.要记住一些常见数集的表示,如自然数集N,正整数集N*或N ,整数集Z有理数集Q, 实数集R4.元素与集合之间的关系是属于(belong to )与不属于(not belong to),分别用符号、表示,例如3 N, 2 N .例题精讲:【例1】试分别用列举法和描述法表示下列集合:(1)由方程x(x2 2x 3) 0的所有实数根组成的集合;(2)大于2且小于7的整数.解:(1)用描述法表示为:{x R|x(x2 2x 3) 0};用列举法表示为{0, 1,3}.(2)用描述法表示为:{x Z|2 x 7};用列举法表示为{3,4,5,6}.【例2 ]用适当的符号填空:已知A {x|x 3k 2,k Z},B {x|x 6m 1,m Z},则有:17 ____ A; —5 ____ A 17 __________ B解:由3k 2 17,解得k 5 Z,所以17 A ;由3k 2 5 ,解得k 7 Z,所以5 A ;3由6m 1 17,解得m 3 Z,所以17 B.【例3]试选择适当的方法表示下列集合:(教材P6练习题2, P13 A 组题4)(1)一次函数y x 3与y 2x 6的图象的交点组成的集合;(2)二次函数y x2 4的函数值组成的集合;(3)反比例函数y 2的自变量的值组成的集合.x解: (1) {(x,y)| ' % 3 } {(1,4)}.y 2x 6(2){y|y x2 4} {y|y 4}.(3){x|y 2} {x|x 0}.x点评:以上代表元素,分别是点、函数值、自变量.在解题中不能把点的坐标混淆为{1,4},也注意对比(2)与(3)中的两个集合,自变量的范围和函数值的范围,有着本质上不同,分析时一定要细心.【例4]已知集合A {a|戶1有唯一实数解},试用列举法表示集合x 2A.解:化方程—1为:x2 x (a 2) 0 .应分以下三种情况:x 2⑴方程有等根且不是 2 :由4=0,得a 9 ,此时的解为x 1,4 2 合.⑵方程有一解为• 2,而另一解不是2:将x 2代入得a 2, 此时另一解x1 2,合.⑶方程有一解为2,而另一解不是V :将x 2代入得a 2 , 此时另一解为x .2 1,合.综上可知,A { 9, ,2, 2}.4点评:运用分类讨论思想方法,研究出根的情况,从而列举法表示•注意分式方程易造成增根的现象•第2讲1.1.2 集合间的基本关系知识要点:1.一般地,对于两个集合A B,如果集合A中的任意一个元素都是集合B中的元素,则说两个集合有包含关系,其中集合A是集合B的子集(subset),记作A B(或B A),读作“ A含于B” (或“ B 包含A').2.如果集合A是集合B的子集(A B),且集合B是集合A的子集(B A),即集合A与集合B的元素是一样的,因此集合A与集合B相等,记作A B.3.如果集合A B,但存在兀素x B,且x A,则称集合A是集合B 的真子集(proper subset ),记作A B (或B A).4.不含任何元素的集合叫作空集(empty set),记作,并规定空集是任何集合的子集(1){菱形}{平行四边形三角形}.等腰三角形}等边(2) {x R|x2 2 0};{0};N {0}.(2) =, €, 吕,亍.【例2】设集合A {x|x二n2 能A_B歸_AA. B.表示A与B关系的是(). Z}, B12,n Z},则下列图形!:A. ' B〕解:简单列举两个集合的一些元素, 1, 丄,0,二,1,二,},2 2 2B { , i, 2,2,i, },易知B A,故答案选A.另解:由B {x|x 2n 1 2 ,nZ},易知A,故答案选A.【例3】若集合M x|x2x 6 0 ,Nx|ax 1 0,且N M ,求实数5.性质:A A ;若A B , B C,则A C ;若Ap|B A,贝卩A B ;若A^B A,贝卩B A.例题精讲:【例1】用适当的符号填空:a的值.解:由x2 x 6 0 x 2或(i )若a 0时,得N ,此时,N M ;(ii )若a 0时,得N {-}.若NM ,满足12或13,解得a a a1或a 12 3故所求实数a的值为0或1或1.2 3点评:在考察“ A B ”这一关系时,不要忘记“”,因为A时存在A B.从而需要分情况讨论.题中讨论的主线是依据待定的元素进行•【例4】已知集合A={a, a+b, a+2b},B={a, ax, ax2}.若A=B,求实数x的值.解:若 a b ax2a+ax2-2 ax=0,所以a( x-1) 2=0,即a=0 或x=1.a 2b ax当a=0时,集合B中的元素均为0,故舍去;当x=1时,集合B中的元素均相同,故舍去.. 2若a ax2ax2- ax- a=0.a 2b ax因为a z0,所以2x2-x-1=0,即(x-1)(2 x+1)=0. 又x工1,所以只有x 1.2经检验,此时A=B成立.综上所述x -.2点评:抓住集合相等的定义,分情况进行讨论.融入方程组思想,结合元素的互异性确定集合.第3讲1.1.3 集合的基本运算(一)知识要点:解:在数轴上表示出集合A B, A|[B{X|3 x集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的训练,而达到掌握的层次.下面以表格的形式归纳三种基本运算如下.例题精讲:【例1】设集合U R,A {X| 1 X 5},B {X|3 X19},求A B B,(U(A U B).C U(A B) {X|X 1或X 9},【例2】设A {x Z||x| 6} , B 1,2,3 , C 3,4,5,6,求:(1)Af](B「|C) ;(2) AplOLJc).解:;A 6, 5, 4, 3, 2, 1,0,1,2,345,6 .(1)又T B% 3,二A「(B「|C) 3 ;(2)又丫B|JC 1,2,3,4,5,6 ,得C A(B^C) 6, 5, 4, 3, 2, 1,0 .•••A^C A(B U C) 6, 5, 4, 3, 2, 1,0 .【例3】已知集合A {x| 2 x 4} , B {x|x m},且A* A,求实数m的取值范围.解:由Ap|B A,可得A B.在数轴上表示集合A与集合B,如右图所示:由图形可知,m 4 .点评:研究不等式所表示的集合问题,常常由集合之间的关系, 得到各端点之间的关系,特别要注意是否含端点的问题【例4】已知全集U {x|x 10且x N*},A {2,4,5,8},B {1,3,5,8},求C U(A U B),C u(A「|B),(C U A^(C U B),(C d A) J (C d B),并比较它们的关系解:由A「B {1,2,3,4,5,8},贝S C U(A J B) {6,7,9}. 由A「B {5,8},贝S C u(Ap)B) {1,2,346,7,9}由C U A {1,3,6,7,9} , C U B {2,4,6,7,9},则(C u A)f](C u B) {6,7,9},(C U A)U(C U B) {1,2,3,4,6,7,9}.由计算结果可以知道,(C u A)U(C u B) C u(A『B),(C u A)f|(C u B) C u(^.B).另解:作出Venn图,如右图所示,由图形可以直接观察出来结点评:可用Venn图研究(C U A)U GB)C U(A『B)与(C u A)p|(C u B)C U(A J B),在理解的基础记住此结论,有助于今后迅速解决一些集合问题.第4讲1.1.3 集合的基本运算(二)知识要点:1.含两个集合的Venn图有四个区域,分别对应着这两个集合运算的结果.我们需通过Venn图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算.通过图形,我们还可以发现一些集合性质:C U (A 口B) (C U A) I (C U B) , C U(^J B)(C U A)『G B).2.集合元素个数公式:n(A「B) n(A) n(B) n(A^B).3.在研究集合问题时,常常用到分类讨论思想、数形结合思想等.也常由新的定义考查创新思维.例题精讲:【例1】设集合A 4,2a 1,a2,B 9,a 5,1 a,若A^B 9,求实数a的值.解:由于A 4,2a 1,a2,B 9,a 5,1 a,且B 9,则有:当2a 1=9时,解得a=5 ,此时A={-4, 9, 25}, B={9, 0, -4},不合题意,故舍去;当a2=9时,解得a=3或—3 .a=3时,A={-4,5,9}, B={9, -2,-2},不合题意,故舍去;a= —3, A={ —4, —7,9}, B={9, —8, 4},合题意、.所以,a=—3.【例2】设集合A {x|(x 3)(x a) 0,a R} , B {x|(x 4)(x1) 0},求A U B ,A". (教材P14 B组题2) 解:B {1,4}.当a 3 时,A {3},则A「B {1,3,4}, B ;当a 1时,A {1,3},则A「B {1,3,4} , A^B {1};当a 4 时,A {3,4},则A「B {1,3,4}, A「B {4};当a 3 且a 1 且a 4 时,A {3,a},贝卩A J B {1,3,4,a} , B .点评:集合A含有参数a,需要对参数a进行分情况讨论.罗列参数a的各种情况时,需依据集合的性质和影响运算结果的可能而进行分析,不多不少是分类的原则.【例3】设集合A ={ x| x2 4x 0},B ={x| x2 2(a 1)x a2 1 0,a R},若A B=B,求实数a的值.解:先化简集合A={ 4,0}.由A B=B,则B A可知集合B可为,或为{0},或{- 4},或{ 4,0}.(i )若B=,贝S 4(a 1)2 4(a2 1) 0,解得a V 1 ;(ii )若o B,代入得a2 1 =0 a=1 或a= 1 ,当a = 1时,B=A,符合题意;当a= 1时,B={0} A,也符合题意.(iii )若一4 B,代入得a2 8a 7 0 a =7或a=1,当a = 1时,已经讨论,符合题意;当a=7时,B={ —12, —4},不符合题意.综上可得,a=1或a < 1 .点评:此题考查分类讨论的思想,以及集合间的关系的应用.通过深刻理解集合表示法的转换,及集合之间的关系,可以把相关问题化归为解方程的问题,这是数学中的化归思想,是重要数学思想方法.解该题时,特别容易出现的错误是遗漏了A=B和B=的情形,从而造成错误.这需要在解题过程中要全方位、多角度审视问题.【例4】对集合A与B,若定义A B {x|x A,且x B},当集合A {x|x 8,x N*},集合B {x|x(x 2)(x 5)(x 6) 0}时,有A B= .(由教材P12补集定义“集合A相对于全集U的补集为C U A {x|x U,且X A} ”而拓展)解:根据题意可知,A {123,4,5,6,7,8},B {0,2,5,6}由定义A B {x|x A,且x B},贝SA B {1,3,4,7,8}.点评:运用新定义解题是学习能力的发展,也是一种创新思维的训练,关键是理解定义的实质性内涵,这里新定义的含义是从A中排除B的元素.如果再给定全集U则A B也相当于Ap|(C u B).第5讲1.2.1 函数的概念知识要点:1.设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f : A—B为从集合A到集合B的一个函数(function ), 记作y=f(x),x A.其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{f(x)|x A}叫值域(range).2.设a、b是两个实数,且a<b,贝卩:{x| a< x< b} = [ a, b]叫闭区间;{ x| a<x<b} = (a, b)叫开区间;{x| a<x<b} =[a,b), { x| a<x< b} = (a,b],都叫半开半闭区间.符号:Q”读“无穷大” ;“―^”读“负无穷大” ;“ +乂”读“正解:(1)要使函数有意义,则5 4x 0,解得x ;■所以原函数的3x 2 y 5 4x 1 12x 84 5 4x3(4x 5) 234x3234 5 4x;,所以值域(2) (x 1 22)所以原函数的定义域是R,值域【例3】已知函数f(1求:(1)f(2)的值;(2)f(x)的表无穷大”.则{x|x a} (a, ) , {x|x a} [a, ) , {x|x b} ( ,b) , {x|x b} ( ,b], R (,).3.决定函数的三个要素是定义域、值域和对应法则.当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.例题精讲:【例1】求下列函数的定义域:(1)V 1;(2)y 3「x—3.y |x 2 i, 2 解:(1)由x 2 1 0,解得x 1且x 3,所以原函数定义域为( ,3尢(3, MJ(1)•(2)由 3 ,解得x 3且x 9,Vx 1 2 0所以原函数定义域为[3,9)卩(9,).【例2】求下列函数的定义域与值域:(1)y;(2)5 4xy x2 x 2.定义域是{x|x J.为{y| y -}■4达式1 x r_x2x2 ,x R .1 x(1 )求f(x) f( f(1) f(2)f(3)f(4) f1 1 9 f(3)解: (1) 由 f (x)f()丄)的 xf(》i -2X 1 1 2x2x21 x1 x2 21.1 x点评:对规律的发现,f(-))2(f ⑶ (f(4)f(-)) - 3 4 2能使我们实施巧算•正确探索出前一问的 解:("由Y 2,解得x 3,所以f (2)1(2)设一 t ,解得x 」,所以f (t ) 口,即f (x )1 x1 t1 t点评:此题解法中突出了换元法的思想.这类问题的函数式没有 直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等.结论,是解答后一问的关键第6讲1.2.2 函数的表示法知识要点:1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势) ;列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可 看出函数值).2. 分段函数的表示法与意义(一个函数,不同范围的x ,对应法 则不同)【例4】已知函数f (x )x(2)原式 f (i ) (f ⑵【例2】已知f(x)二3x 3 * 2x 233x x3. 一般地,设A B 是两个非空的集合,如果按某一个确定的对 应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一 确定的元素y 与之对应,那么就称对应f :A B 为从集合A 到集合B 的一个映射(mappi ng ).记作“ f: A B ” .判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f.例题精讲:【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各 截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是 ________________________________________ ,这个解:(1)由绝对值的概念,有y |x 2| x 2, x 22 x, x 2所以,函数y |x 2|的图象如右图所示3x 3, x 1(2) y |x 1| |2x 4| x 5, 2 x 1 ,3x 3, x 2所以,函数y |X 1| |2x 4|的图象如右图所示点评:含有绝对值的函数式,可以采用分零点讨论去绝对值的方法,将函数式化为分段函数,然后根据定义域的分段情况,选择相应的解析式作出函数图象.【例4】函数f (x) [x]的函数值表示不超过X的最大整数,例如[3.5] 4,[2.1] 2,当x ( 2.5,3]时,写出f(x)的解析式,并作出函数的图象.3, 2.5 x 22, 2 x 11, 1 X 0解:f(x) 0, 0 x 1 .函数图象如右:1, 1 x 22, 2 x 33, x 3点评:解题关键是理解符号m的概念,抓住分段函数的对应函数式•第7讲1.3.1 函数的单调性知识要点:1.增函数:设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量X1, x,当X1VX2 时,都有f(X1)Vf(X2),那么就说f (x)在区间D上是增函数(increasing function ).仿照增函数的定义若 a 0,当 X 1X 2b2a 时,有XX 2 0 , X 1X 2-,即 a(x 1 x 2) b 0 , a从而 f(xj f (X 2) 0,即 f (X 1) f(X 2), 所以f(x)在(却上单调递增.同【例1】试用函数单调性的定义判断函数f(x)互在区间(0, 1)x 1X 1,X 2€(0,1)且X 1 X 22x .2x 2fg g f2(X 2 xj x 1 1 x 2(X i 1)(X 21)由于 0 x 1 x 2 1 , x 1 1 0 , x 20,故 f(x 1) f 区)0,即f(x)化).所以,函数f(x)X2X1 在(0,1) 上是减函数.【例2】求二次函数 f(x) ax 2bx c(a 0)的单调区间及单调性. 解:设任意X 1, X 2且X 1X 2 .则 2f(X 1)f (X 2) (ax 1 bxc) (ax 22bx 2 c)a(x 122X 2 ) b(x 1X 2)可定义减函数.2. 如果函数f(x)在某个区间D 上是增函数或减函数,就说f(x) 在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间.在 单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数 的图象从左向右是下降的(如右图 2).由此,可以直观观察函数图 象上升与下降的变化趋势,得到函数的单调区间及单调性 .3. 判断单调性的步骤:设X !、x 2 €给定区间,且x !<x 2;-计 算f(Xj — f(X 2)-判断符号-下结论.例题精讲:上的单调性.(x 1 X 2)[a(N X 2) b].时,函数取最大值4ac b 2 4a【例3】求下列函数的单调区间: (1) y |x 1| |2x 4| ; (2) y X 2 2|x| 3.3x 3, x 1解:(1) y |X 1| |2x 4| x 5, 2 x 1,其图象如右.由图可知,函数在( 减函数.点评:函数式中含有绝对值,可以采用分零点讨论去绝对值的方 法,将函数式化为分段函数.第2小题也可以由偶函数的对称性,先 作y 轴右侧的图象,并把y 轴右侧的图象对折到左侧,得到f (|x|)的 图象.由图象研究单调性,关键在于正确作出函数图象.第8讲1.3.1函数最大(小)值知识要点:1. 定义最大值:设函数y f (x )的定义域为I ,如果存在实数M 满 足:对于任意的x € I ,都有f (x )< M 存在x o € I ,使得f (x °)= M 那 么,称M 是函数y f (x )的最大值(Maximum Value ).仿照最大值定义,可以给出最小值(Minimum Value )的定义.2.配方法:研究二次函数y ax 2 bx c (a 0)的最大(小)值,先2 2配方成y a (x 卫)2 4a 」后,当a 0时,函数取最小值为 如卫;当2a 4a4a3.单调法:一些函数的单调性,比较容易观察出来,或者可以由图可知,函数在[2, (2)y x 2 2|x| 31]、[0,1]上是增函数,在[1,0]、[1,)上是解:配方为y由(X 1)2(x2) (x -)22【例2】某商人如果将进货单价为8元的商品按每件10元售出先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小4.图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值.例题精讲:【例1】求函数y 26的最大值•x x 1所以函数的最大值为8.时,每天可售出100件.现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润.解:设他将售出价定为x元,则提高了(x 10)元,减少了10(x 10) 件,所赚得的利润为y (x 8)^100 10(x 10)].即y 10x2 280x 1600 10(x 14)2 360. 当x 14 时,y max 360.所以,他将售出价定为14元时,才能使每天所赚得的利润最大,最大利润为360元.【例3】求函数y 2x •. x 1的最小值.解:此函数的定义域为1,,且函数在定义域上是增函数,所以当x 1时,y min 2 1 1 2,函数的最小值为2.点评:形如y ax b Jex d的函数最大值或最小值,可以用“单调性法研究,也可以用换元法研究. 厂\【另解】令4X1 t,则to ,x t2 1 ,所以■…“ 丁y 2t2t 2 2(t 4)4罟,在t 0时是增函数,当t 0时,y min 2,I ;故函数的最小值为2.【例4】求下列函数的最大值和最小值:(1)y 3 2x x2, x [ I,2] ;(2)y |x 11 |x 2|.解:(1)二次函数y 3 2x x2的对称轴为x —,即x 1.2a2x 1 ( 1 x 2).最小值为-3.点评:二次函数在闭区间上的最大值或最小值,常根据闭区间与 对称轴的关系,结合图象进行分析.含绝对值的函数,常分零点讨论 去绝对值,转化为分段函数进行研究.分段函数的图象注意分段作出第9讲1.3.2 函数的奇偶性知识要点:画出函数的图象, 9 4 *所以函数y 3 2x 由图可知,当x 1时,ymaxx 2, x [ 5,3]的最大值为2 2当x4,最小值为(2) y |x 1| |x 2|作出函数的图象,由图可知, y [ 3,3].所以函数的最大值为3,g(x)1.定义:一般地,对于函数f (x )定义域内的任意一个 X ,都有 f( x) f(x),那么函数f(x)叫偶函数(even function ).如果对于函 数定义域内的任意一个X ,都有f( x) f(x)),那么函数f(x)叫奇函数(odd function ).2. 具有奇偶性的函数其定义域关于原点对称,奇函数的图象关 于原点中心对称,偶函数图象关于 y 轴轴对称.3. 判别方法:先考察定义域是否关于原点对称,再用比较法、 计算和差、比商法等判别f( X)与f(x)的关系.例题精讲:【例1】判别下列函数的奇偶性: (1)f(x) x 3 - ; ( 2) f(x) |x 1| |x 1| ; ( 3) f (x) x 2 x 3.x解:(1)原函数定义域为{x|x 0},对于定义域的每一个X ,都有 f ( x) ( x)3丄(x 3 -)f (x),所以为奇函数.xx(2) 原函数定义域为R,对于定义域的每一个X ,都有f( x) | x 1| | x 1| |x 1| |x 1| f(x),所以为偶函数.(3) 由于f( x) x 2 x 3 f(x),所以原函数为非奇非偶函数.【例2】已知f (x)是奇函数,g(x)是偶函数,且f (x)f(x)、g(x).1f (x) g(x) 则x 11 f( x) g( x)x 11f(x) g(x)即X 11 f (X) g(x)X 1解:盒子的高为X ,长、宽为a -2x ,所以体积为V = x(a -2x)* 2.解:T f (x)是奇函数,g(x)是偶函数, f ( x) f(x) , g( x)g(x).两式相减,解得f(x)4 ;两式相加,解得X 1g(x)1 x2 1又由a-2x 0,解得x a.2所以,体积V以x为自变量的函数式是V x(a-2x)2,定义域为{x|0 x |}.X ( ,1),求f[f (0)]的值.x (1,)解:T 0 ( ,1),二f (0)= 32 .又T 32>1,f ( 3 2 )=( 3 2 ) 3+( 3 2 ) -3=2+^ =5,即f [ f (0)]= 5.2 2 2【例3】画出下列函数的图象:(1)y |x 2|;(教材P26练习题3)(2)y |x 1| |2x 4|.3 (x 2)3 (x 1)。
高一数学必修一全册知识点(定义公式定理)
高一数学必修一全册知识点(定义、公式、定理)第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
◆注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是同注意:B一集合。
⊆/B反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊇/A或B2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A A②真子集:如果A B,且A B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A B, B C ,那么 A C④如果A B 同时 B A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
◆有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交 集 并 集 补 集 定 义由所有属于A 且属于B 的元素所组成的集合,叫做A,B 的交集.记作A B (读作‘A 交B ’),即A B={x|x ∈A ,且x ∈B }. 由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A,B 的并集.记作:A B (读作‘A 并B ’),即A B ={x|x ∈A ,或x ∈B}).设S 是一个集合,A 是S 的一个子集,由S 中所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集) 记作A C S ,即 C S A=},|{A x S x x ∉∈且韦 恩 图 示A B图1AB图2性质 A A=A A Φ=Φ A B=B A A B ⊆A A B ⊆B A A=A A Φ=A A B=B A A B ⊇A A B ⊇B(C u A) (C u B)= C u (A B) (C u A) (C u B)= C u (A B) A (C u A)=U A (C u A)= Φ.例题:1.下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 .4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。
(完整版)高一数学知识点汇总讲解大全
高中数学知识点汇总(高一)高中数学知识点汇总(高一) (1)一、集合和命题 (2)二、不等式 (4)三、函数的基本性质 (6)四、幂函数、指数函数和对数函数 (12)(一)幂函数 (12)(二)指数& 指数函数 (13)(三)反函数的概念及其性质 (14)(四)对数& 对数函数 (15)五、三角比 (17)六、三角函数 (24)一、集合和命题一、集合:(1)集合的元素的性质:确定性、互异性和无序性;(2)元素与集合的关系:① a A a 属于集合 A ;② a A a 不属于集合 A .(3)常用的数集:N 自然数集;N *正整数集;Z 整数集;Q 有理数集;R 实数集;空集;C 复数集;Z 正整数集Q;Z 负整数集Q 正有理数集R;负有理数集R正实数集.负实数集(4)集合的表示方法:有限集集合无限集列举法;描述法例如:①列举法:{ z, h, a, n, g }(5)集合之间的关系:;②描述法:{ x x 1} .①A B 集合A 是集合B 的子集;特别地, A A ;A BA C .B CA B② A B 或A B集合 A 与集合 B 相等;③ A B 集合A 是集合B 的真子集.例:N Z Q R C ;N Z Q R C .④空集是任何集合的子集,是任何非空集合的真子集.(6)集合的运算:①交集:A B { x x A且x B} 集合A 与集合B 的交集;②并集:A B { x x A或x B} 集合A 与集合B 的并集;③补集:设U 为全集,集合 A 是U 的子集,则由U 中所有不属于 A 的元素组成的集合,叫做集合 A 在全集U 中的补集,记作CUA .④得摩根定律:CU( A I B )C U A U C U B ;C U ( A U B) C U A I C U B(7)集合的子集个数:若集合 A 有 n(n N *) 个元素,那么该集合有 2n个子集; 2n1个真子集; 2n1个非空子集;2n2 个非空真子集.二、四种命题的形式:(1)命题:能判断真假的语句.(2)四种命题:如果用 和 分别表示原命题的条件和结论,用 和 分别表示 和 的否定,那么四种命题形式就是:逆否命题关系同真同假关系 原命题逆否命题逆命题否命题(3)充分条件,必要条件,充要条件:①若,那么 叫做 的充分条件, 叫做 的必要条件;②若且,即,那么 既是 的充分条件,又是的必要条件,也就是说, 是 的充分必要条件,简称充要条件.③欲证明条件是结论 的充分必要条件,可分两步来证:第一步:证明充分性:条件 结论 ; 第二步:证明必要性:结论条件 .(4)子集与推出关系:设 A 、 B 是非空集合, A{ x x 具有性质} , B{ y y 具有性质 } ,则 A B 与等价.结论:小范围 大范围;例如:小明是上海人小明是中国人.小范围是大范围的充分非必要条件; 大范围是小范围的必要非充分条件.命题原命题逆命题否命题逆否命题表示形式 若 ,则若 ,则 ; 若 ,则 ; 若 ,则 . 逆命题关系 原命题 逆命题逆否命题 否命题 否命题关系 原命题 否命题 逆否命题 逆命题1 2 0 0 1 2 二、不等式一、不等式的性质:1、a b,b ca c ; 2、ab ac b c ;不等式的性质3、a b,c 0ac bc ;4、a b, c d a c b d ;5、a b 0, c d 0ac bd ;6、 a b 01 1 ;ab7、a b 0二、一元一次不等式:anb n(n N *) ;8、a b 0 nanb (n N *,n 1) .一元一次不等式 ax b a 0a 0解集xb xb aaa 0b 0b 0R三、一元二次不等式:ax 2bx c0(a 0)△ b24ac 0△ b24 a c 0△ b 24ac 0的根的判别式y ax2bx c(a 0)ax 2bx c 0(a 0){ x 1 , x 2} ,x 1 x 2{ x 0 }ax 2bx c 0(a 0) ( , x ) U (x , ) ( , x ) (x , )Rax 2bx c 0(a 0) ( x 1 , x 2 )ax 2bx c 0(a 0)( , x ] U [ x , )RR2axbx c 0(a 0)[ x 1 , x 2 ]{ x 0 }四、含有绝对值不等式的性质:(1) a ba b a b ;(2) a 1 a 2 a n a 1 a 2 a n .五、分式不等式:(1) ax b 0 cx d(ax b)(cx d) 0 ;( 2) ax b 0cx d(ax b )(cx d ) 0 .六、含绝对值的不等式:x aa 0a 0x aa 0 a 0 x aa 0 a 0 a 0 x aa 0 a 0 a 0a x ax a 或xaRa x ax 0x a 或xaR七、指数不等式:(1) af ( x )a( x)(a 1) f ( x)( x) ; ( 2) af ( x)a( x )(0a 1) f ( x)( x) .八、对数不等式:(x) 0 (1) log a f (x)log a ( x)(a 1)f (x);( x)(2) log af (x) log a ( x)(0 a 1)f (x) f (x)0 . ( x)九、不等式的证明:(1)常用的基本不等式:① a2b 22ab( a 、b R ,当且仅当 a b 时取“ ”号) ;②a b 2ab (a 、 b Ra2b2,当且仅当 aa b b 时取“ ”号) ;2 补充公式: 2ab.21 1 a b③ a3b3c3 3abc (a 、b 、c R ,当且仅当 a b c 时取“ ”号 ) ;④ a b c3 3abc (a 、b 、c R ,当且仅当 a b c 时取“ ”号 ) ; ⑤a 1 a 2n a nna 1 a 2a n (n 为大于 1 的自然数, a 1 , a 2 , , a nR ,当且仅当a 1a 2a n 时取“ ”号) ;(2)证明不等式的常用方法:①比较法; ②分析法;③综合法.0 三、函数的基本性质一、函数的概念:(1)若自变量对应法则x 因变量y ,则y 就是x 的函数,记作y f (x), x D ;x 的取值范围 D 函数的定义域;y 的取值范围函数的值域.求定义域一般需要注意:①y1,f ( x)f ( x) 0 ;②y n f (x) , f ( x) 0 ;③y ( f ( x)) , f ( x) 0 ;④y logaf ( x) ,f ( x) 0 ;⑤y log f ( x ) N , f ( x) 0 且f ( x) 1 .(2)判断是否函数图像的方法:任取平行于y 轴的直线,与图像最多只有一个公共点;(3)判断两个函数是否同一个函数的方法:①定义域是否相同;②对应法则是否相同.二、函数的基本性质:(1)奇偶性:函数y f (x), x D“定义域D 关于0 对称”成立①“定义域 D 关于0 对称”;前提条件 f ( x) f ( x) f ( x) f ( x)②“ f(x) f ( x) ”;③“f (x) f ( x) ”成立成立①不成立或者①成立②、③都不成立奇偶性偶函数奇函数奇偶函数图像性质关于y 轴对称关于O(0,0) 对称非奇非偶函数注意:定义域包括0 的奇函数必过原点(2)单调性和最值:O(0,0) .前提条件y f ( x), x D ,I D ,任取x1, x2区间I单调增函数x1 x2或x1 x2f (x1 ) f (x2 ) f ( x1 ) f ( x2 )单调减函数x1 x2或x1 x2f (x1 ) f ( x2 ) f ( x1 ) f (x2 )最小值yminf ( x0 ) 任取x D ,存在x0 D , f (x) f (x0 )最大值ymax f ( x) 任取x D ,存在x0 D , f (x) f ( x) f注意:①复合函数的单调性:函数外函数 yf (x)内函数复合函数 y g (x)yf [g (x)]②如果函数 yf ( x) 在某个区间 I 上是增(减)函数,那么函数 y f (x) 在区间 I 上是单调函数,区间 I 叫做函数 yf ( x) 的单调区间 .(3)零点:若 yf ( x), x D , c D 且 f ( c) 0 ,则 x c 叫做函数 y f (x) 的零点.y零点定理 :f ( x ), x [a,b]存在x 0(a,b);特别地, 当yf ( x), x [ a, b] 是单调函数 ,f (a) f (b) 0 f (x 0 ) 0且 f (a ) f (b) 0 ,则该函数在区间 [a ,b] 上有且仅有 一个零点, 即存在 唯一 x 0 (a,b) ,使得 f (x 0 ) 0 .(4)平移的规律:“左加右减,下加上减” .函数 向左平移 k 向右平移 k向上平移 h向下平移 h备注yf ( x) y f (x k ) y f ( x k)y hf ( x)y hf ( x)k, h 0(5)对称性:①轴对称的两个函数:函数yf ( x)对称轴x 轴 y 轴y xyxx m y n函数yf ( x)yf ( x)xf ( y)xf ( y)yf (2 m x)2n yf (x)②中心对称的两个函数:函数 对称中心函数yf ( x) ( m, n)2n yf ( 2m x)③轴对称的函数:函数y f (x)对称轴y 轴x m条件f (x)f ( x)f ( x)f (2 m x)单调性ZZ Z]]Z ]] Z]]Z注意: f (a x)f (b x) f (x) 关于 xa b 对称;2f (a x)f (a x)f (x) 关于 x a 对称;f (x)f ( x)f (x) 关于 x 0 对称,即 f (x) 是偶函数.④中心对称的函数:函数对称中心yf (x)(m, n)条件f ( x) 2n f (2 m x)注意: f (a x) f (b x) cf (x) 关于点 ( a b , c) 对称;2 2 f (a x) f (b x) 0a bf (x) 关于点 ( ,0) 2 对称;f (a x)f (a x) 2bf ( x) 关于点 (a, b) 对称;f (x) f ( x) 0f (x) 关于点 (0,0) 对称,即 f (x) 是奇函数.(6)凹凸性:设函数 yf ( x), x D ,如果对任意 x , xD ,且 xx ,都有 f x 1 x 2 f ( x 1 ) f ( x 2 ),则称121222函数 yf ( x) 在 D 上是凹函数;例如: y x 2 .进一步,如果对任意x , x ,L xD ,都有 fx 1x 2 L x n f ( x 1 ) f ( x 2 ) L f (x n ) ,则称函1 2 nnn数 yf ( x) 在 D 上是凹函数;该不等式也称琴生不等式或詹森不等式;设函数 yf ( x), x D ,如果对任意 x , xD ,且 xx ,都有 f x 1 x 2 f ( x 1 ) f ( x 2 ),则称121222函数 yf ( x) 在 D 上是凸函数.例如: y lg x .进一步,如果对任意x , x ,L xD ,都有 fx 1x 2 L x n f ( x 1 ) f ( x 2 ) L f (x n ) ,则称函1 2 nnn数 y f ( x) 在 D 上是凸函数;该不等式也称琴生不等式或詹森不等式.(7)翻折:函数翻折后翻折过程y f ( x ) 将y f ( x) 在y 轴右边的图像不变,并将其翻折到y 轴左边,并覆盖.y f ( x) 将y f ( x) 在x 轴上边的图像不变,并将其翻折到x 轴下边,并覆盖.y f (x) y f ( x ) 第一步:将y f ( x) 在y 轴右边的图像不变,并将其翻折到左边,并覆盖;第二步:将x 轴上边的图像不变,并将其翻折到x 轴下边,并覆盖.y f (x) (8)周期性:将y f ( x) 在x 轴上边的图像保持不变,并将x 轴下边的图像翻折到x 轴上边,不覆盖.若y f ( x), x R ,T 0,任取x R ,恒有 f ( x T ) f ( x) ,则称T 为这个函数的周期.注意:若T 是y f ( x) 的周期,那么kT (k Z ,k 0) 也是这个函数的周期;周期函数的周期有无穷多个,但不一定有最小正周期.① f ( x a) f ( x b) ,a b f ( x) 是周期函数,且其中一个周期T a b ;(阴影部分下略)② f (x) f ( x p) ,p 0 T 2 p ;③ f (x a) f ( x b ),a b T 2 a b ;④ f (x) 1 或f (x p )f ( x)1,p 0f ( x p )T 2 p ;⑤ f (x) 1 f ( x p)或f ( x) f (x p) 1,p 0T 2 p ;11 ⑥ f (x) f ( x p )f ( x p )或f ( x)f (x p) 1f (x p) 1,p 0T 4 p ;1 f ( x p) f (x p) 1⑦ f (x) 关于直线x a ,x b ,a b 都对称T 2 a b ;⑧ f (x) 关于两点( a, c) ,(b, c) ,a b 都成中心对称T 2 a b ;⑨ f (x) 关于点(a, c) ,a 0 成中心对称,且关于直线x b ,a b 对称T 4 a b ;⑩若 f ( x) f (x a ) f ( x 2a) L f (x na ) m(m 为常数,n N *),则f ( x) 是以(n 1)a 为周期的周期函数;若 f ( x) f (x a) f ( x 2a )L f ( x na ) m (m 为常数,n 为正偶数),则 f ( x) 是以2( n 1)a 为周期的周期函数.三、V 函数:定义形如y a x m h(a 0) 的函数,称作V 函数.分类y a x m h, a 0 y a x m h, a 0 图像定义域R值域[ h, ) ( , h]对称轴x m开口向上向下顶点( m, h)在( , m] 上单调递减;在( , m] 上单调递增;单调性在[ m, ) 上单调递增.在[ m, ) 上单调递减.注意当m 0时,该函数为偶函数四、分式函数: 定义 形如 y xa (a x0) 的函数,称作 分式函数 .分类y x a ,ax0 (耐克函数 )y x a, a 0x图像定义域(,0) U (0, )值域(, 2 a ] U [2 a,)R渐近线x 0, y x单调性在 ( , a ] , [ a , ) 上单调递增;在( ,0) , (0,) 上单调递增;在[a ,0) , (0, a ] 上单调递减.五、曼哈顿距离:在平面上, M ( x 1, y 1 ) , N ( x 2 , y 2 ) ,则称 dx 1 x 2y 1 y 2 为 MN 的曼哈顿距离.六、某类带有绝对值的函数:1、对于函数 yx m ,在 x m 时取最小值;2、对于函数 y x mx n , m n ,在 x [ m , n] 时取最小值;3、对于函数 y x mx n x p , m n p ,在 x n 时取最小值;4、对于函数 y x mx n x px q , m n p q ,在 x [ n, p ] 时取最小值;x 2n , x 1x 2 L x 2n ,在 x [ x n , x n 1 ] 时取最小值;x 2n 1 ,x 1 x 2 Lx 2 n 1 ,在 x x n 时取最小值.思考:对于函数 y x 1 2 x 3 x 2 ,在 x时取最小值.5、推广到 y x x 1x x 2 L x y x x 1x x 2Lx四、幂函数、指数函数和对数函数(一)幂函数(1)幂函数的定义:形如y x a (a R) 的函数称作幂函数,定义域因 a 而异.(2)当a 0,1 时,幂函数y x a (a R) 在区间[ 0, ) 上的图像分三类,如图所示.(3)作幂函数y x a ( a0,1) 的草图,可分两步:①根据a 的大小,作出该函数在区间[ 0, ) 上的图像;②根据该函数的定义域及其奇偶性,补全该函数在( ,0] 上的图像.(4)判断幂函数y x a (a R) 的a 的大小比较:方法一:y x a ( a R) 与直线x m(m 1) 的交点越靠上, a 越大;方法二:y x a ( a R) 与直线x m(0 m 1) 的交点越靠下, a 越大(5)关于形如y ax b(ccx d0) 的变形幂函数的作图:①作渐近线(用虚线):x d、ya;c c②选取特殊点:任取该函数图像上一点,建议取(0, b ) ;d③画出大致图像:结合渐近线和特殊点,判断图像的方位(右上左下、左上右下).x x xx xxy(二)指数 & 指数函数1、指数运算法则:①a a yax y;② (a )a ;③ (a b)xxa xa b ;④ ( )a xx ,其中( a, b 0, x 、y R) .2、指数函数图像及其性质:/yxa (a 1)bbxy a (0a 1)图像定义域R值域(0,)奇偶性 非奇非偶函数渐近线x 轴单调性在( ,) 上单调递增;在(,) 上单调递减;①指数函数 ya x的函数值恒大于零;②指数函数 y性质a 的图像经过点 (0,1) ;③当 x 0 时, y 1;③当 x 0时, 0 y 1;当 x 0 时, 0y 1 .当 x 0时, y 1 .3、判断指数函数 y a 中参数 a 的大小:方法一: y a 与直线x m(m 0) 的交点越靠上, a 越大;方法二: y a x与直线 x m(m 0) 的交点越靠下, a 越大.yx11 1(三)反函数的概念及其性质1、反函数的概念:对于函数y f (x) ,设它的定义域为 D ,值域为 A ,如果对于 A 中任意一个值y ,在D 中总有唯一确定的x 值与它对应,且满足y f ( x) ,这样得到的x 关于y 的函数叫做y f ( x) 的反函数,记作x f ( y) .在习惯上,自变量常用x 表示,而函数用y 表示,所以把它改写为y f ( x)( x A) .2、求反函数的步骤:(“解”“换”“求”)①将y f ( x) 看作方程,解出x f ( y) ;②将x 、y 互换,得到y f 1( x) ;③标出反函数的定义域(原函数的值域).3、反函数的条件:定义域与值域中的元素一一对应.4、反函数的性质:①原函数y f ( x) 过点(m, n) ,则反函数y f 1 ( x) 过点(n, m) ;②原函数y f ( x) 与反函数y f (x) 关于y x 对称,且单调性相同;③奇函数的反函数必为奇函数.5、原函数与反函数的关系:/ 函数y f (x) y f 1 ( x)定义域 D A值域 A D(四)对数 & 对数函数1、指数与对数的关系:ab NabNlog a Nb指数幂 底数对数真数2、对数的运算法则:① log a 1 0 , log a a 1 , a loga NN ;②常用对数 lg Nlog 10 N ,自然对数 ln Nlog e N ;③ log a (MN ) log a Mlog a M N ,log a Nlog a M log a N , log a Mn log a M ;④ log Nlog aN,log b1 m, log nbm log b , log c bloglog bb ,a Nlog abN.blog a blog b aana3、对数函数图像及其性质:/y log a x(a 1) y log a x(0 a 1)图像定义域(0, )值域 R 奇偶性非奇非偶函数渐近线y 轴单调性在(0, ) 上单调递增;在(0, ) 上单调递减;①对数函数 y log a x 的图像在 y 轴的右方;②对数函数 y 性质log a x 的图像经过点 (1,0) ;③当 x 1时, y 0 ;③当 x 1时, y 0 ;当 0 x 1 时, y 0 .当 0 x 1 时, y 0 .a a a cn4、判断对数函数y logx, x 0 中参数a 的大小:a方法一:y logx, x 0 与直线y m( m 0) 的交点越靠右,a 越大;a方法二:y logx, x 0 与直线y m(m 0) 的交点越靠左,a 越大.a五、三角比1、角的定义:(1)终边相同的角:①与2k , k Z 表示终边相同的角度;②终边相同的角不一定相等,但相等的角终边一定相同;③与k , k Z 表示终边共线的角(同向或反向).(2)特殊位置的角的集合的表示:位置角的集合在x 轴正半轴上{ 2k, k Z}在x 轴负半轴上{ 2k, k Z}在x 轴上{k , k Z} 在y 轴正半轴上{ 2k , k Z }2在y 轴负半轴上{ 2k 3,k Z } 2在y 轴上{k , k Z }2在坐标轴上{k , k Z }2在第一象限内{ 2k 2 k, k Z }2在第二象限内{ 2k22k , k Z }在第三象限内{ 2k 2k 32, k Z }在第四象限内{ 2k 322k 2 ,k Z }(3)弧度制与角度制互化:180①rad 180 ;②1rad ;③1180rad .(4)扇形有关公式:①l;r②弧长公式:l r ;③扇形面积公式:S 1 lr 1r 2(想象三角形面积公式).2 2 (5)集合中常见角的合并:x 2k x 2kx 2k x 2k x 2kx kxk2x k2224x kxk, k Z4x 2k x 2k 5 44xk3 2 4x 2k4x k4 4(6)三角比公式及其在各象限的正负情况:以角的顶点为坐标原点,始边为x 轴的正半轴建立直角坐标系,在的终边上任取一个异于原点的点P( x, y) ,点P 到原点的距离记为r ,则( 7)特殊角的三角比:角度制弧度制0 sin1 2270360 3 222 3 1 0 1 022cos13 2 2 1 0 1 0 122tan3 13无 0 无 03( 8)一些重要的结论: (注意,如果没有特别指明, k 的取值范围是 k Z )①角 和角 的终边:角 和角 的终边关于 x 轴对称关于 y 轴对称关于原点对称sin sin cos cos tantansin sin cos cos tantansin sin cos cos tantan② 的终边与的终边的关系. 2的终边在第一象限 (2k,2 k ) 2(k , k) ; 2 4 的终边在第二象限 (2 k ,2 k 2 ) (k 2, k ) ; 4 2 的终边在第三象限 (2k ,2 k 3 )( k, k 3) ; 2 22 4的终边在第四象限 (2k3 ,2 k2 )(k 3 , k ) .③ sin 与 cos 的大小关系: 32, 2 k 24 0 ); 4 4,2 k50 ); 4 4 ,2k 5 0 ). 44 304560901806432sin cos (2 k sin cos (2 k sin cos{2 k) 的终边在直线 y x 右边( x y )} 的终边在直线的终边在直线 y y x 左边(x 上( x xy y④sin 与cos 的大小关系:, k ) 4 4x y的终边在x y0 x y 0或;0 x y 0, k 3)x y的终边在0 x y 0或;4 4 x y 0 x y 0, k 3} ,k Z 的终边在y x .4 42、三角比公式:(1)诱导公式:(诱导公式口诀:奇变偶不变,符号看象限)第一组诱导公式:第二组诱导公式:第三组诱导公式:(周期性)(奇偶性)(中心对称性)sin( 2k) sin sin( ) sin sin( ) sincos(2 k) cos cos( ) cos cos( ) costan(2k ) tan tan( ) tan tan( ) tancot( 2k) cot cot( ) cot cot( ) cot第四组诱导公式:(轴对称)第五组诱导公式:(互余性)第六组诱导公式:sin( ) sin sin(2) cos sin(2) coscos( tan( cot( ) cos) tan) cotcos(2tan(2cot(2) sin) cot) tancos( )2tan( )2cot( )2sincottan(2)同角三角比的关系:倒数关系:商数关系:平方关系:sin csc 1 tan sin (cos 0) sin 2cos 2 1cos tan sec 1cot 1 cotcoscossin(sin 0)21 tan21 cot2sec2csc(3)两角和差的正弦公式:sin( ) sin cos cos sin ;两角和差的余弦公式:两角和差的正切公式:cos(tan() cos cos)tan tansin.sin ;1 tan tansin cos (k sin cos (k sin cos { k( 4)二倍角的正弦公式: sin 22 sin cos ;二倍角的余弦公式:二倍角的正切公式: cos 2tan 2cos 22 tansin2;1 2 sin22 cos21 ;1 tan 2降次公式:万能置换公式:1 cos 2sin 2sin221 cos22 2 1 cos 2cos 21 cos2 2sin 22 tan 1 tan 21 tan2 cos2 2;1 sinsincos cos 2 1 tan 2 tan21 cos2 1 cos22 221 sin sin cos2 2tan 22 tan 1 tan 2sin1 cos半角公式: tan ;2 1 cos( 5)辅助角公式:①版本一:sinsinb a 2b 2a sinb cos②版本二: a2b2sin( ) ,其中 0 2 ,cos. a a2b2a sinbcosa2b 2sin() ,其中 a, b 0,0, tan b .2a3、正余弦函数的五点法作图:以 y sin( x) 为例,令 x依次为 0, , , 3, 2 2 2,求出对应的 x 与 y 值,描点 ( x, y) 作图.4、正弦定理和余弦定理:( 1)正弦定理: a sin A b sin B csin C2R(R 为外接圆半径 ) ;其中常见的结论有: ① a 2Rsin A , b 2Rsin B , c 2Rsin C ;② sin A a , sin B2Rb , sin Cc ; 2R 2R ③ sin A : sin B : sin C a : b : c ;aRsin B sin C④S △ ABC 2R 2sin A sin B sin C ; S △ ABCbR sin A sin C ; S △ ABC abc .4 R cRsin A sin B( 2)余弦定理:版本一:a2b 2c 2 b2 a 2c2 c2a2b22bc cosA 2accosB 2abcosC;版本二:cos AcosB cosCb2c2a22bca 2c 2b ;2ac b2a 2 c 2 2ab( 3)任意三角形射影定理(第一余弦定理) :5、与三角形有关的三角比:( 1)三角形的面积:a b c os C c cos B b c cos A a cos C . ca cos Bb cos A① S △ ABC② S △ ABC 1dh ; 2 1 absin C 1 bcsin A1ac sin B ;2 2 2③ S △ ABCl l al b l c , l 为 △ABC 的周长. 2 2 2 2( 2)在 △ABC 中,① a b A B sin A sin B cos A cosB cot A cot B ;②若 △ ABC 是锐角三角形,则 sin A cosB ;sin( A B ) sin C cos( A B ) cos C tan( A B ) tan C ③ sin( B C ) sin A ; cos(B C ) cos A ; tan( B C )tan A ;sin( A C ) sin Bcos( A C )cos Btan( A C )tan Bsin A cos B C tan A cot B C22 2 2 ④ sinBcos A C ; tan B cot A C; 2 2 2 2 sinC cos A B tan C cot A B22 2 2sin Acos Bsin Bcos A sin C cos A⑤ 2 2 ;sin A cos C2 2 ; sin B cos C 2 2 ; sin C cos B 2 2 2 2 2 2sin A sin B cos A cos B2 2 2 2 sin A sin C cos A cosC sin A sin B sinCcos A cos B cos C;2 2 2 2 2 2 2 2 2 2sin B sin C cos B cos C2 2 2 22( ] sin A sin B sin C 4cos A cos B cosC2 2 2⑥ cos A cosB cosC 1 4sin A sin B sin C;2 2 2 sin A sin B sin C 4sin A sin B cosC2 2 2sin 2A sin 2B sin 2C 4sin Asin B sin C ; cos2A cos2B cos2C4cos A cosB cosC 1sin A ⑦cos A sin B cosBsin C cosC(0,3 3 ] 2 ; 3(1, 2sin Asin B sin C sin Asin B sin C cos A cosB cosC (0,3 3] 8 cosA cosB cosC . 1 1, 8其中,第一组可以利用琴生不等式来证明;第二组可以结合第一组及基本不等式证明.( 3)在 △ABC 中,角 A 、 B 、 C 成等差数列 B.3( 4) △ABC 的内切圆半径为 r6、仰角、俯角、方位角:略2S .a b c7、和差化积与积化和差公式(理科) :( 1)积化和差公式: sin coscos sincos cossin sin1[sin( ) sin( )] 2 1[sin( ) sin( )] 2 ; 1[cos( ) cos( )] 2 1[cos( ) cos()]2( 2)和差化积公式: sin sin 2sinsinsin 2coscoscos 2coscoscos2sincos 22 sin2 2.cos 2 2 sin22]六、三角函数1、正弦函数、余弦函数和正切函数的性质、图像:y sin xy cosxy tan x定 义 RR域{ x x k, k Z}2值 [ 1,1]域 奇 [ 1,1]R偶 奇函数偶函数奇函数性 周期 性 最小正周期 T 2最小正周期 T 2 最小正周期 T[2 k 单 ,2 k 2 ] Z ; 2 [2 k, 2k ] Z ;(k, k ) Z 调 [2 k,2 k 3] ] . [2 k , 2 k] ] .22性22( k Z )( k Z )( k Z )当 x 2k最时, y min 1 ; 2当 x 2k时, y min1 ;无值 当 x 2k时, y 2max1;当 x 2k 时, y max 1 ;图像例 1:求函数 y 5sin(2 x) 的周期、单调区间和最值. (当 x 的系数为负数时,单调性相反) 3解析:周期 T22,由函数 y sin x 的递增区间 [2 k , 2 k 22] ,可得2k2x2k ,即 k5 x k , 232 1212 5 于是,函数 y 5sin(2 x) 7 的递增区间为 [ k 3, k ] . 12 12 7同理可得函数 y 5sin(2 x) 7 递减区间为 [ k 3, k ] . 1212当 2x 2k3,即 x k 2 时,函数 y 12 5sin(2 x ) 取最大值 5; 3当2x 2k ,即3 2 x k5时,函数y125sin(2 x ) 取最大值 5 .3例2:求函数y 5sin(2x ) 7, x3 [0, ] 的单调区间和最值.2解析:由x [0, ] ,可得2x2[ ,4] .3 3 3然后画出 2 x的终边图,然后就可以得出3当2x [ , ] ,即x3 3 24 [0, ] 时,函数y125sin(2 x ) 7 单调递增;3当2x [ , ] ,即x3 2 3 [ , ] 时,函数y12 25sin(2 x ) 7 单调递减.3同时,当2x ,即x3 2时,函数y125sin(2 x ) 7 取最大值12;3当2 x4,即3 3x 时,函数y25sin(2 x ) 7 取最小值735 3;2注意:当x 的系数为负数时,单调性的分析正好相反.2、函数y A s in( x ) h &y A cos( x ) h &y A tan( x ) h ,其中A0, 0 :(1)复合三角函数的基本性质:三角函数y A s in( x ) h y A c os( x ) h y A tan( x ) h其中A0, 0 其中A0, 0 其中A0, 0 振幅 A 无基准线y h定义域( , ) { x x k , k Z }2 值域[ A h, A h] ( , )最小正周期T2T1 1频率 f fT 2 T 相位x初相2( 2)函数 y A s in( x) h 与函数 y sin x 的图像的关系如下:①相位变换: 当0 时, ysin x向左平移个单位y sin( x ) ;当0 时, y ②周期变换: sin x向右平移 个单位y sin( x) ;当1时, ysin( x所有各点的横坐标缩短到原来的)1倍(纵坐标不变)y sin( x) ;当 01时, y ③振幅变换:sin( x所有各点的横坐标伸长到原来的)1倍(纵坐标不变)y sin( x) ;当 A 1时, y sin( x) 所有各点的纵坐标伸长到原来的A 倍(横坐标不变)y A sin( x ) ;当 0 A 1时, y sin( x)所有各点的纵坐标缩短到原来的A 倍(横坐标不变)y A s in( x) ;④最值变换:当 h 0时,当 h 0 时, y A s in( xy A s in( x所有各点向上平行移动所有各点向下平行移动 h 个单位h 个单位y A sin( xy A sin( x) h ;) h ;注意:函数 y A cos( x) h 和函数 y A tan( x) h 的变换情况同上.3、三角函数的值域:(1)) y a sin x b 型:设 t sin x ,化为一次函数 y at b 在闭区间 [ 1,1] 上求最值.(2)) ya sinx b cos x c , a ,b 0 型:引入辅助角 , tanb,化为 ya ab sin(x) c .(3)) ya sin2x b sin x c 型:设 t sin x [ 1,1],化为二次函数 y at 2 bt c 求解.(4)) ya sinxcos x b(sin x cos x) c 型:a (t21)设t sin x cos x [ 2, 2] ,则t 21 2sin x cos x ,化为二次函数 ybt c 在闭2区间 t [ 2, 2] 上求最值.2) )22 2(5)) y a tan x b cot x 型:设 t(6)) y tan x ,化为a sin x b 型:c sin x dy atb ,用“ Nike 函数”或“差函数”求解.t方法一:常数分离、分层求解;方法二:利用有界性,化为 1 sin x 1 求解.(7)) y a sin x b 型: c cosx d化为 a sin x yc cos x b dy ,合并 ay c sin( x) b dy ,利用有界性,sin(x)b dy [ 1,1]求解.a2y 2c2(8)) a sinx cos x b sin 2 x c cos 2x ,( a 0,b, c 不全为 0)型:利用降次公式,可得 asin x cosx b sin 2x ccos 2xasin 2 x c b cos2x b c,然后利用辅 助角公式即可. 4、三角函数的对称性: 2 2 2对称中心 对称轴方程y sin x(k ,0) , k Z xk , k Z2y cos x ( k,0) , k Z 2x k , k Zytan xy cot xk( ,0) k Z / 2 ( k,0) k Z /2备注:① y sin x 和 y cosx 的对称中心在其函数图像上;② y tan x 和 y cot x 的对称中心不一定在其函数图像上. (有可能在渐近线上)例 3:求函数 y 5sin(2 x) 7 的对称轴方程和对称中心.3解析:由函数 ysin x 的对称轴方程 x k, k Z 2,可得 2x k3 , k Z2解得 xk , k Z .122k 所以,函数 y 5sin(2 x) 7 的对称轴方程为 3 x , k Z . 122由函数 y sin x 的中心对称点 (k ,0) , k Z ,可得 2x3k , k Z解得 xk , k Z .62所以,函数 y 5sin(2 x) 7 的对称中心为 ( 3 k ,7) , k Z .6 25、反正弦、反余弦、反正切函数的性质和图像:y arcsin x y arccosx y arctanx 定义域[ 1,1] [ 1,1] ( , )值域[ , ]2 2 [ 0, ] ( , )2 2奇偶性奇函数非奇非偶函数奇函数单调性在[ 1,1]上是增函数在[ 1,1]上是减函数在( , ) 上是增函数对称中心点(0,0) 点(0, )2点(0,0) 图像重要结论:(1)先反三角函数后三角函数:①a [ 1,1] sin(arcsin a) cos(arccosa ) a ;②a R tan(arctan a ) a .(2)先三角函数后反三角函数:①[ , ]2 2arcsin(sin ) ;②[0, ] arccos(cos ) ;③( , )2 2arctan(tan ) .(3)反三角函数对称中心特征方程式:①a [ 1,1] arcsin( a)arcsin a ;②a [ 1,1] arccos( a) arccos a;③a ( , ) arctan( a )arctan a.6、解三角方程公式:sin x a, a 1 x k ( 1)k arcsina, k Zcos x a, a 1 x 2k arccosa, k Z.tan x a, a R x k arctana, k Z。
高一数学知识点归纳及解析
高一数学知识点归纳及解析导言:数学是一门既有逻辑性又有实践性的科学,它贯穿于我们日常生活的方方面面。
高中数学作为数学学科的延续,承接了初中数学的基础,同时也引入了新的知识点和数学思维方式。
本文将对高一数学的一些关键知识点进行归纳及解析,帮助同学们更好地理解和学习数学。
一、函数与方程1. 函数的定义与性质函数是描述变量之间关系的工具,它可以将自变量的取值映射到因变量的取值上。
函数通常用符号y=f(x)表示,在高一数学中,我们主要学习了一次函数、二次函数和绝对值函数等。
2. 方程与不等式方程是等式的一种特殊形式,它通过未知数与已知数之间的关系来求解未知数的值。
高一数学中,我们学习了一元一次方程、一元二次方程等。
不等式则表达了不同量的大小关系,同样在高一数学中有着重要的地位。
二、数列与数列的应用1. 等差数列与等比数列数列是一组按照一定规律排列的数,它由前项、公式、通项、首项和公差等组成。
等差数列中,每一项与前一项之差都相等;等比数列中,每一项与前一项的比值都相等。
这些数列不仅具有独特的性质,而且在实际问题中也有广泛的应用。
2. 数列的和与数列的极限数列的和是数列中所有项的求和,它涉及到了数列的前n项和与部分和的概念。
数列的极限则是指数列在无限项下的最终趋势,例如常见的无穷等差数列极限是正无穷。
三、平面向量与坐标系1. 平面向量的基本概念与性质平面向量是用有向线段表示的物理量,它有大小和方向,并遵循平行四边形法则和三角形法则。
在高一数学中,我们学习了平面向量的加法、数量积与向量的模等重要概念与性质。
2. 坐标系与平面向量的坐标表示坐标系是研究平面几何的重要工具,其中直角坐标系是最常见的一种。
平面向量可以利用坐标系进行表示,通过平移、旋转等运算可以简化向量的分析与计算。
四、三角函数与立体几何1. 三角函数的定义及常用公式三角函数是描述角与边的关系的函数,其主要有正弦函数、余弦函数、正切函数等。
在高一数学中,我们学习了三角函数的定义、性质以及常用公式,这对解决三角函数相关的问题非常有帮助。
高一数学知识点归纳总结
高一数学知识点归纳总结高中数学是学生进入高等教育的关键学科之一,也是学生综合素质评价的重要组成部分。
高一是高中数学学习的起点,掌握和巩固高一数学知识点对于学生后续学习和应用数学知识都有重要的意义。
本文将对高一数学知识点进行详细的介绍和总结。
一、集合论和函数1.集合与常用符号:集合的基本概念,空集、全集、子集、真子集等,集合的运算(交集、并集、补集、差集),元素的包含关系。
2.集合的表示方法:列举法和描述法。
3.集合的应用:利用集合解决实际问题,如概率问题、统计问题等。
4.函数的概念与性质:函数的定义、定义域、值域、单调性、奇偶性等。
5.基本初等函数:常数函数、幂函数、指数函数、对数函数、三角函数等。
6.函数的图像与性质:函数图像的绘制与分析,函数的周期性、奇偶性等。
二、数列与数学归纳法1.数列的概念:数列的定义、公式、项数、通项公式等。
2.等差数列与等差数列的性质:等差数列的定义、性质、通项公式、求和等。
3.等比数列与等比数列的性质:等比数列的定义、性质、通项公式、求和等。
4.等差数列与等比数列的应用:利用等差数列和等比数列解决实际问题,如等差数列求值、等比数列求值等。
5.数学归纳法:数学归纳法的原理和基本步骤,利用数学归纳法证明数学命题。
三、函数的运算与初等函数1.函数的四则运算:函数的加减乘除运算法则,函数的复合运算法则。
2.初等函数的性质与图像:常数函数、幂函数、指数函数、对数函数、三角函数等初等函数的性质与图像。
3.函数的单调性与极值:函数的单调性和极值的概念,利用导数判定函数的单调性和极值。
4.函数的求导法则:基本初等函数的导数法则,例如多项式函数、幂函数、指数函数、对数函数、三角函数等。
5.函数的应用:函数的应用问题,例如极值问题、最大最小值问题、斜率问题等。
四、平面向量与坐标系1.平面向量的定义与表示:平面向量的定义、零向量、向量的坐标表示等。
2.向量的运算:向量的加减运算、数量积、向量积(叉乘)等。
高一数学上册全部讲解知识点
高一数学上册全部讲解知识点一、知识概述《集合》①基本定义:集合就像是把一些有共同特征的东西放在一起的一个“大筐”。
比如你们班的同学就可以组成一个集合,这些同学就是这个集合里的元素。
②重要程度:在高一数学中算是入门基础的东西,是理解函数等很多知识的基石。
③前置知识:基本的数的概念,像自然数、整数啥的要有个大概了解。
④应用价值:在生活中安排活动分组时就像划分集合,比如打篮球分组把人分成两组,这两组就是两个集合。
《函数的概念》①基本定义:函数就像一个机器,给它一个输入(自变量),然后就会有确定的输出(因变量)。
例如,一个卖水果的,你输入要的苹果数量(自变量),根据苹果的单价,就会得到要付的钱(因变量)。
②重要程度:函数贯穿整个高中数学,是非常重要的内容。
③前置知识:集合的知识要掌握,因为函数是建立在两个非空数集之间的对应关系。
④应用价值:在经济领域计算成本与利润关系等,通过改变生产量(自变量)得出利润(因变量)的值。
《函数的定义域与值域》①基本定义:定义域就是自变量能取的那些值的范围,值域就是函数值(因变量的值)的范围。
好比做蛋糕,面粉(自变量)的量有个可用的范围(定义域),最后做出蛋糕的大小(函数值)也有个范围(值域)。
②重要程度:这对于准确理解函数很重要。
③前置知识:函数概念要清楚。
④应用价值:在现实中规划产量(定义域)时要考虑最终产出(值域),避免资源浪费或者产量不足。
二、知识体系①知识图谱:集合是基础,函数的定义域、值域等都是函数这个大内容下的细分部分。
②关联知识:集合与函数是层层递进的关系,后续的函数性质等都和定义域值域等相关知识有关。
③重难点分析:- 集合那里难点在于集合元素的性质理解准确。
比如互异性,说实话有时候很容易忽略。
- 函数概念重点在于理解对应关系,难点在于一些复杂的函数关系的理解。
- 定义域值域难点在于准确求出根据不同情况的取值范围。
④考点分析:- 集合在考试中会考查元素的从属关系,集合间的运算(交、并、补)等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学知识点汇总(高一)高中数学知识点汇总(高一)0一、集合和命题1二、不等式3三、函数的基本性质5四、幂函数、指数函数和对数函数11(一)幂函数11(二)指数&指数函数12(三)反函数的概念及其性质13(四)对数&对数函数14五、三角比16六、三角函数23一、集合和命题一、集合:(1)集合的元素的性质:确定性、互异性和无序性; (2)元素与集合的关系: ①a A ∈↔a 属于集合A ; ②a A ∉↔a 不属于集合A . (3)常用的数集:N ↔自然数集;↔*N 正整数集;Z ↔整数集;Q ↔有理数集;R ↔实数集;Φ↔空集;C ↔复数集;⎪⎩⎪⎨⎧↔↔-+负整数集正整数集Z Z ;⎪⎩⎪⎨⎧↔↔-+负有理数集正有理数集Q Q ;⎪⎩⎪⎨⎧↔↔-+负实数集正实数集R R . (4)集合的表示方法:集合⎩⎨⎧↔↔描述法无限集列举法有限集;例如:①列举法:{,,,,}z h a n g ;②描述法:{1}x x >. (5)集合之间的关系:①B A ⊆↔集合A 是集合B 的子集;特别地,A A ⊆;A BA CBC ⊆⎧⇒⊆⎨⊆⎩.②B A =或A BA B ⊆⎧⎨⊇⎩↔集合A 与集合B 相等; ③A B ⊂≠↔集合A 是集合B 的真子集.例:N Z Q R ⊆⊆⊆C ⊆;N Z Q R C ⊂⊂⊂⊂≠≠≠≠. ④空集是任何集合的子集,是任何非空集合的真子集. (6)集合的运算:①交集:}{B x A x x B A ∈∈=且 ↔集合A 与集合B 的交集; ②并集:}{B x A x x B A ∈∈=或 ↔集合A 与集合B 的并集;③补集:设U 为全集,集合A 是U 的子集,则由U 中所有不属于A 的元素组成的集合,叫做集合A 在全集U 中的补集,记作A C U .④得摩根定律:()U U U C A B C A C B =;()U U U C A B C A C B =(7)集合的子集个数:若集合A 有*()n n N ∈个元素,那么该集合有2n 个子集;21n -个真子集;21n -个非空子集;22n -个非空真子集.二、四种命题的形式:(1)命题:能判断真假的语句.(2)四种命题:如果用α和β分别表示原命题的条件和结论,用α和β分别表示α和β的否定,①若βα⇒,那么α叫做β的充分条件,β叫做α的必要条件;②若βα⇒且αβ⇒,即βα⇔,那么α既是β的充分条件,又是β的必要条件,也就是说,α是β的充分必要条件,简称充要条件.③欲证明条件α是结论β的充分必要条件,可分两步来证: 第一步:证明充分性:条件⇒α结论β; 第二步:证明必要性:结论⇒β条件α. (4)子集与推出关系:设A 、B 是非空集合,}{α具有性质x x A =,}{β具有性质y y B =, 则B A ⊆与βα⇒等价.结论:小范围⇒大范围;例如:小明是上海人⇒小明是中国人. 小范围是大范围的充分非必要条件; 大范围是小范围的必要非充分条件.二、不等式不等式的性质1、c a c b b a >⇒>>,;2、c b c a b a +>+⇒>;3、bc ac c b a >⇒>>0,;4、d b c a d c b a +>+⇒>>,;5、bd ac d c b a >⇒>>>>0,0;6、ba b a 1100<<⇒>>; 7、)(0*N n b a b a n n ∈>⇒>>; 8、)1,(0*>∈>⇒>>n N n b a b a n n .一元一次不等式b ax >0>a0<a0=a0≥b0<b解集ab x >ab x <Φ R)0(02>=++a c bx ax的根的判别式042>-=ac b △ 042=-=ac b △ 042<-=ac b △)0(2>++=a c bx ax y)0(02>=++a c bx ax },{21x x ,21x x < }{0x Φ )0(02>>++a c bx ax 12(,)(,)x x -∞+∞),(),(00+∞-∞x xR)0(02><++a c bx ax ),(21x x Φ Φ )0(02>≥++a c bx ax 12(,][,)x x -∞+∞RR)0(02>≤++a c bx ax],[21x x }{0xΦ四、含有绝对值不等式的性质:(1)b a b a b a -≥±≥+; (2)n n a a a a a a +++≥+++ 2121. 五、分式不等式:(1)0))((0>++⇔>++d cx b ax d cx b ax ; (2)0))((0<++⇔<++d cx b ax dcx bax .(1))()()1()()(x x f a a a x x f ϕϕ>⇔>>; (2))()()10()()(x x f a a a x x f ϕϕ<⇔<<>. 八、对数不等式:(1)⎩⎨⎧>>⇔>>)()(0)()1)((log )(log x x f x a x x f a a ϕϕϕ;(2)⎩⎨⎧<>⇔<<>)()(0)()10)((log )(log x x f x f a x x f a a ϕϕ.九、不等式的证明:(1)常用的基本不等式:①R b a ab b a ∈≥+、(222,当且仅当b a =时取“=”号); ②+∈≥+R b a ab ba 、(2,当且仅当b a =时取“=”号); 211a b+. ③+∈≥++R c b a abc c b a 、、(3333,当且仅当c b a ==时取“=”号);④+∈≥++R c b a abc c b a 、、(33,当且仅当c b a ==时取“=”号); ⑤n a a a na a a n n n (2121 ≥+++为大于1的自然数,+∈R a a a n ,,,21 ,当且仅当n a a a === 21时取“=”号);(2)证明不等式的常用方法:①比较法; ②分析法; ③综合法.三、函数的基本性质一、函数的概念:(1)若自变量−−−→−fx 对应法则因变量y ,则y 就是x 的函数,记作D x x f y ∈=),(; x 的取值范围D ↔函数的定义域;y 的取值范围↔函数的值域.求定义域一般需要注意: ①1()y f x =,()0f x ≠;②y =()0f x ≥; ③0(())y f x =,()0f x ≠; ④log ()a y f x =,()0f x >; ⑤()log f x y N =,()0f x >且()1f x ≠.(2)判断是否函数图像的方法:任取平行于y 轴的直线,与图像最多只有一个公共点; (3)判断两个函数是否同一个函数的方法:①定义域是否相同;②对应法则是否相同. 二、函数的基本性质:注意:定义域包括0的奇函数必过原点(0,0)O . (注意:②如果函数)(x f y =在某个区间I 上是增(减)函数,那么函数)(x f y =在区间I 上是单调函数,区间I 叫做函数)(x f y =的单调区间.(3)零点:若D x x f y ∈=),(,D c ∈且0)(=c f ,则c x =叫做函数)(x f y =的零点.零点定理:⎩⎨⎧<⋅∈=0)()(],[),(b f a f b a x x f y ⇒00(,)()0x a b f x ∈⎧⎨=⎩存在;特别地,当(),[,]y f x x a b =∈是单调函数, 且()()0f a f b ⋅<,则该函数在区间[,]a b 上有且仅有一个零点,即存在唯一0(,)x a b ∈,使得0()0f x =.(4 (5注意:()()f a x f b x +=-⇒()f x 关于2a bx +=对称; ()()f a x f a x +=-⇒()f x 关于x a =对称;()()f x f x =-⇒()f x 关于0x =对称,即()f x 是偶函数.注意:()()f a x f b x c ++-=⇒()f x 关于点(,)22对称; ()()0f a x f b x ++-=⇒()f x 关于点(,0)2a b+对称; ()()2f a x f a x b ++-=⇒()f x 关于点(,)a b 对称;()()0f x f x +-=⇒()f x 关于点(0,0)对称,即()f x 是奇函数.(6)凹凸性:设函数(),y f x x D =∈,如果对任意12,x x D ∈,且12x x ≠,都有1212()()22x x f x f x f ++⎛⎫< ⎪⎝⎭,则称函数()y f x =在D 上是凹函数;例如:2y x =. 进一步,如果对任意12,,n x x x D ∈,都有1212()()()n n x x x f x f x f x f n n +++++⎛⎫<⎪⎝⎭,则称函数()y f x =在D 上是凹函数;该不等式也称琴生不等式或詹森不等式;设函数(),y f x x D =∈,如果对任意12,x x D ∈,且12x x ≠,都有1212()()22x x f x f x f ++⎛⎫> ⎪⎝⎭,则称函数()y f x =在D 上是凸函数.例如:lg y x =. 进一步,如果对任意12,,n x x x D ∈,都有1212()()()n n x x x f x f x f x f n n +++++⎛⎫>⎪⎝⎭,则称函数()y f x =在D 上是凸函数;该不等式也称琴生不等式或詹森不等式.若R x x f y ∈=),(,0≠∃T ,x R ∈任取,恒有)()(x f T x f =+,则称T 为这个函数的周期. 注意:若T 是)(x f y =的周期,那么)0,(≠∈k Z k kT 也是这个函数的周期; 周期函数的周期有无穷多个,但不一定有最小正周期. ①()()f x a f x b +=+,a b ≠⇒()f x 是周期函数,且其中一个周期T a b =-; (阴影部分下略)②()()f x f x p =-+,0p ≠⇒2T p =; ③()()f x a f x b +=-+,a b ≠⇒2T a b =-; ④1()()f x f x p =+或1()()f x f x p =-+,0p ≠⇒2T p =;⑤1()()1()f x p f x f x p -+=++或()1()()1f x p f x f x p ++=+-,0p ≠⇒2T p =;⑥1()()1()f x p f x f x p ++=-+或()1()()1f x p f x f x p +-=++,0p ≠⇒4T p =;⑦()f x 关于直线x a =,x b =,a b ≠都对称⇒2T a b =-; ⑧()f x 关于两点(,)a c ,(,)b c ,a b ≠都成中心对称⇒2T a b =-;⑨()f x 关于点(,)a c ,0a ≠成中心对称,且关于直线x b =,a b ≠对称⇒4T a b =-; ⑩若()()(2)()f x f x a f x a f x na m +++++++=(m 为常数,*n N ∈),则()f x 是以(1)n a +为周期的周期函数;若()()(2)()f x f x a f x a f x na m -+++-++=(m 为常数,n 为正偶数),则()f x 是以2(1)n a +为周期的周期函数.定义 形如(0)y a x m h a =++≠的函数,称作V 函数.分类,0y a x m h a =++> ,0y a x m h a =++<图像定义域 R值域 [,)h +∞(,]h -∞对称轴 x m =-开口 向上向下顶点(,)m h -单调性在(,]m -∞-上单调递减;在[,)m -+∞上单调递增.在(,]m -∞-上单调递增;在[,)m -+∞上单调递减.注意 当0m =时,该函数为偶函数定义 形如(0)ay x a x=+≠的函数,称作分式函数.分类,0a y x a x=+>(耐克函数),0ay x a x =+< 图像定义域 (,0)(0,)-∞+∞值域 (,2][2,)a a -∞-+∞R渐近线0x =,y x =单调性在(,]a -∞-,[,)a +∞上单调递增;在[,0)a -,(0,]a 上单调递减.在(,0)-∞,(0,)+∞上单调递增;在平面上,11(,)M x y ,22(,)N x y ,则称1212d x x y y =-+-为MN 的曼哈顿距离. 六、某类带有绝对值的函数:1、对于函数y x m =-,在x m =时取最小值;2、对于函数y x m x n =-+-,m n <,在[,]x m n ∈时取最小值;3、对于函数y x m x n x p =-+-+-,m n p <<,在x n =时取最小值;4、对于函数y x m x n x p x q =-+-+-+-,m n p q <<<,在[,]x n p ∈时取最小值;5、推广到122n y x x x x x x =-+-++-,122n x x x <<<,在1[,]n n x x x +∈时取最小值;1221n y x x x x x x +=-+-++-,1221n x x x +<<<,在n x x ∈时取最小值.思考:对于函数1232y x x x =-+++,在x _________时取最小值.四、幂函数、指数函数和对数函数(一)幂函数(1)幂函数的定义:形如)(R a x y a ∈=的函数称作幂函数,定义域因a 而异.(2)当1,0≠a 时,幂函数)(R a x y a ∈=在区间),0[+∞上的图像分三类,如图所示.(3)作幂函数)1,0(≠=a x y a 的草图,可分两步: ①根据a 的大小,作出该函数在区间),0[+∞上的图像;②根据该函数的定义域及其奇偶性,补全该函数在]0,(-∞上的图像. (4)判断幂函数)(R a x y a ∈=的a 的大小比较:方法一:)(R a x y a ∈=与直线(1)x m m =>的交点越靠上,a 越大; 方法二:)(R a x y a ∈=与直线(01)x m m =<<的交点越靠下,a 越大(5)关于形如()ax by c cx d+=≠+0的变形幂函数的作图: ①作渐近线(用虚线):d x c=-、ay c =;②选取特殊点:任取该函数图像上一点,建议取(0,)bd;③画出大致图像:结合渐近线和特殊点,判断图像的方位(右上左下、左上右下).(二)指数&指数函数1、指数运算法则: ①yx yxaa a +=⋅;②xyyxa a =)(;③xxxb a b a ⋅=⋅)(;④()xx x a a b b=,其中),0,(R y x b a ∈>、.2/)1(>=a a y x)10(<<=a a y x图像定义域 R值域 ),0(+∞奇偶性 非奇非偶函数渐近线 x 轴单调性在(,)-∞+∞上单调递增;在(,)-∞+∞上单调递减;性质①指数函数x a y =的函数值恒大于零; ②指数函数x a y =的图像经过点)1,0(;③当0>x 时,1>y ;当0<x 时,10<<y .③当0>x 时,10<<y ; 当0<x 时,1>y .3、判断指数函数x y a =中参数a 的大小:方法一:x y a =与直线(0)x m m =>的交点越靠上,a 越大; 方法二:x y a =与直线(0)x m m =<的交点越靠下,a 越大.(三)反函数的概念及其性质1、反函数的概念:对于函数()y f x =,设它的定义域为D ,值域为A ,如果对于A 中任意一个值y ,在D 中总有唯一确定的x 值与它对应,且满足()y f x =,这样得到的x 关于y 的函数叫做()y f x =的反函数,记作1()x f y -=.在习惯上,自变量常用x 表示,而函数用y 表示,所以把它改写为1()()y f x x A -=∈.2、求反函数的步骤:(“解”→“换”→“求”) ①将()y f x =看作方程,解出()x f y =; ②将x 、y 互换,得到1()y f x -=; ③标出反函数的定义域(原函数的值域).3、反函数的条件:定义域与值域中的元素一一对应. 4、反函数的性质:①原函数)(x f y =过点),(n m ,则反函数)(1x f y -=过点),(m n ;②原函数)(x f y =与反函数)(1x f y -=关于x y =对称,且单调性相同;③奇函数的反函数必为奇函数. 5(四)对数&对数函数1ab N N a b =底数指数幂 b N a =log对数真数2①01log =a ,1log =a a ,N a N a =log ;②常用对数N N 10log lg =,自然对数N N e log ln =; ③N M MN a a a log log )(log +=,N M NMa a a log log log -=,M n M a n a log log =; ④bN N a a b log log log =,a b b a log 1log =,b n mb a m a n log log =,b b ac a c log log =,log log N N b a a b =.3/)1(log >=a x y a)10(log <<=a x y a图像定义域 ),0(+∞值域 R 奇偶性 非奇非偶函数渐近线 y 轴单调性在),0(+∞上单调递增;在),0(+∞上单调递减;性质①对数函数x y a log =的图像在y 轴的右方; ②对数函数x y a log =的图像经过点)0,1(;③当1>x 时,0>y ; 当10<<x 时,0<y .③当1>x 时,0<y ; 当10<<x 时,0y >.4、判断对数函数log ,0a y x x =>中参数a 的大小:方法一:log ,0a y x x =>与直线(0)y m m =>的交点越靠右,a 越大; 方法二:log ,0a y x x =>与直线(0)y m m =<的交点越靠左,a 越大.五、三角比1、角的定义:(1)终边相同的角:①α与2,k k Z πα+∈表示终边相同的角度;②终边相同的角不一定相等,但相等的角终边一定相同; ③α与,k k Z πα+∈表示终边共线的角(同向或反向). (2(3)弧度制与角度制互化:①180rad π=︒; ②1801rad π=︒; ③1180rad π︒=.(4)扇形有关公式:①rl=α;②弧长公式:r l α=;③扇形面积公式:21122S lr r α==(想象三角形面积公式).(5)集合中常见角的合并:22222222,244542424324424x k x k x k k x x k x k x k k x k Z x k x k x k k x x k x k x k ππππππππππππππππππππππππππ⎫⎫=⎫⎫=⎪⎪⎬⎪=+⎭⎪⎪⎪⎪⎪⎪⎫=⎬⎬⎪=+⎪⎪⎪⎪⎪=+⎬⎪⎪⎪⎪=-⎪⎪⎪⎪⎭⎭⎭⎪⎪⎫⎫⎫=∈⎬=+⎪⎪⎪⎪⎪⎪=+⎪⎬⎪⎪⎪⎪⎪=+⎪⎪⎪⎭⎪⎪⎪=+⎬⎬⎪⎫⎪⎪⎪=+⎪⎪⎪⎪⎪=-⎬⎪⎪⎪⎪⎪⎪=-⎪⎪⎪⎭⎪⎭⎭⎭(6)三角比公式及其在各象限的正负情况:以角α的顶点为坐标原点,始边为x 轴的正半轴建立直角坐标系,在α的终边上任取一个异 于原点的点(,)P x y ,点P 到原点的距离记为r ,则(7(8)一些重要的结论:(注意,如果没有特别指明,k 的取值范围是k Z ∈) ①角α和角β的终边:②α的终边与2的终边的关系. α的终边在第一象限⇔(2,2)2k k παππ∈+⇔(,)24k k απππ∈+;α的终边在第二象限⇔(2,2)2k k παπππ∈++⇔(,)242k k αππππ∈++;α的终边在第三象限⇔3(2,2)2k k παπππ∈++⇔3(,)224k k αππππ∈++;α的终边在第四象限⇔3(2,22)2k k παπππ∈++⇔3(,)24k k αππππ∈++.③sin θ与cos θ的大小关系:sin cos θθ<⇔3(2,2)44k k ππθππ∈-+⇔θ的终边在直线y x =右边(0x y ->); sin cos θθ>⇔5(2,2)44k k ππθππ∈++⇔θ的终边在直线y x =左边(0x y -<); sin cos θθ=⇔5{22}44k k ππθππ∈++,⇔θ的终边在直线y x =上(0x y -=).④sin θ与cos θ的大小关系:sin cos θθ<⇔(,)44k k ππθππ∈-+⇔θ的终边在00x y x y +>⎧⎨->⎩或00x y x y +<⎧⎨-<⎩; sin cos θθ>⇔3(,)44k k ππθππ∈++⇔θ的终边在00x y x y +>⎧⎨-<⎩或00x y x y +>⎧⎨-<⎩; sin cos θθ=⇔3{}44k k ππθππ∈++,,k Z ∈⇔θ的终边在y x =±.2、三角比公式: (1)诱导公式:(诱导公式口诀:奇变偶不变,符号看象限)第一组诱导公式: 第二组诱导公式: 第三组诱导公式: (周期性) (奇偶性) (中心对称性)⎪⎪⎩⎪⎪⎨⎧=+=+=+=+ααπααπααπααπcot )2cot(tan )2tan(cos )2cos(sin )2sin(k k k k ⎪⎪⎩⎪⎪⎨⎧-=--=-=--=-ααααααααcot )cot(tan )tan(cos )cos(sin )sin(⎪⎪⎩⎪⎪⎨⎧=+=+-=+-=+ααπααπααπααπcot )cot(tan )tan(cos )cos(sin )sin( 第四组诱导公式: 第五组诱导公式: 第六组诱导公式:(轴对称) (互余性)⎪⎪⎩⎪⎪⎨⎧-=--=--=-=-ααπααπααπααπcot )cot(tan )tan(cos )cos(sin )sin(⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=-=-=-ααπααπααπααπtan )2cot(cot )2tan(sin )2cos(cos )2sin(⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=+-=+-=+=+ααπααπααπααπtan )2cot(cot )2tan(sin )2cos(cos )2sin( (2)同角三角比的关系:倒数关系: 商数关系: 平方关系:⎪⎩⎪⎨⎧=⋅=⋅=⋅1cot tan 1sec cos 1csc sin αααααα⎪⎪⎩⎪⎪⎨⎧≠=≠=)0(sin sin cos cot )0(cos cos sin tan αααααααα⎪⎩⎪⎨⎧=+=+=+αααααα222222csc cot 1sec tan 11cos sin (3)两角和差的正弦公式:βαβαβαsin cos cos sin )sin(±=±;两角和差的余弦公式:βαβαβαsin sin cos cos )cos( =±; 两角和差的正切公式:βαβαβαtan tan 1tan tan )tan( ±=±.(4)二倍角的正弦公式:αααcos sin 22sin =;二倍角的余弦公式:1cos 2sin 21sin cos 2cos 2222-=-=-=ααααα;二倍角的正切公式:ααα2tan 1tan 22tan -=; 降次公式: 万能置换公式:22222221cos 2sin 21cos 2sin 21cos 2cos 21cos 2cos 21sin sin cos 221cos 2tan 1cos 21sin sin cos22ααααααααααααααααα⎧-=⎪-⎧⎪=⎪⎪+=⎪⎪+⎪⎪=⇒⎨⎨⎛⎫⎪⎪-=- ⎪-⎪⎪⎝⎭=⎪⎪+⎩⎛⎫⎪+=+ ⎪⎪⎝⎭⎩; ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+-=+=ααααααααα2222tan 1tan 22tan tan 1tan 12cos tan 1tan 22sin 半角公式:αααααsin cos 1cos 1sin 2tan -=+=; (5)辅助角公式: ①版本一:)sin(cos sin 22ϕααα++=+b a b a ,其中⎪⎪⎩⎪⎪⎨⎧+=+=<≤2222cos sin ,20b a a b a b ϕϕπϕ. ②版本二:sin cos )a b θθθϕ±±,其中,0,0,tan 2ba b aπϕϕ><<=.3、正余弦函数的五点法作图:以sin()y x ωϕ=+为例,令x ωϕ+依次为30,,,,222ππππ,求出对应的x 与y 值,描点(,)x y 作图.4、正弦定理和余弦定理:(1)正弦定理:R R CcB b A a (2sin sin sin ===为外接圆半径);其中常见的结论有:①A R a sin 2=,B R b sin 2=,C R c sin 2=;②R a A 2sin =,R b B 2sin =,RcC 2sin =;③c b a C B A ::sin :sin :sin =; ④22sin sin sin ABC S R A B C =△;sin sin sin sin sin sin ABCaR B CS bR A C cR A B⎧⎪=⎨⎪⎩△;4ABC abc S R =△.(2)余弦定理:版本一:⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222;版本二:⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=-+=-+=ab c a b C ac b c a B bc a c b A 2cos 2cos 2cos 222222222;(3)任意三角形射影定理(第一余弦定理):cos cos cos cos cos cos a b C c Bb c A a C c a B b A =+⎧⎪=+⎨⎪=+⎩.5、与三角形有关的三角比: (1)三角形的面积:①12ABC S dh =△;②111sin sin sin 222ABC S ab C bc A ac B ===△;③ABC S =△l 为ABC △的周长. (2)在ABC △中,①sin sin cos cos cot cot a b A B A B A B A B >⇔>⇔>⇔<⇔<; ②若ABC △是锐角三角形,则sin cos A B >;③sin()sin sin()sin sin()sin A B C B C A A C B +=⎧⎪+=⎨⎪+=⎩;cos()cos cos()cos cos()cos A B C B C A A C B +=-⎧⎪+=-⎨⎪+=-⎩;tan()tan tan()tan tan()tan A B CB C A A C B+=-⎧⎪+=-⎨⎪+=-⎩; ④sin cos 22sin cos 22sin cos 22AB C BA C CA B +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩;tan cot 22tan cot 22tan cot 22A B C B A C C A B +⎧=⎪⎪+⎪=⎨⎪+⎪=⎪⎩;⑤sin cos 22sin cos 22A B A C ⎧<⎪⎪⎨⎪<⎪⎩;sin cos 22sin cos 22B A B C ⎧<⎪⎪⎨⎪<⎪⎩;sin cos22sin cos 22C AC B ⎧<⎪⎪⎨⎪<⎪⎩; ⇒sin sin cos cos 2222sin sin cos cos 2222sin sin cos cos 2222A B A B AC A C BC B C ⎧<⎪⎪⎪<⎨⎪⎪<⎪⎩⇒sin sin sin cos cos cos 222222A B C A B C <;⑥sin sin sin 4cos cos cos 222cos cos cos 14sin sin sin 222sin sin sin 4sin sin cos 222A B C A B C A B C A B C A B C A B C ⎧++=⎪⎪⎪++=+⎨⎪⎪+-=⎪⎩;sin 2sin 2sin 24sin sin sin cos 2cos 2cos 24cos cos cos 1A B C A B CA B C A B C ++=⎧⎨++=--⎩; ⑦sin sin sin (0,]23cos cos cos (1,]2A B C A B C ⎧++∈⎪⎪⎨⎪++∈⎪⎩;sin sin sin (0,8sin sin sin cos cos cos 1cos cos cos (1,]8A B C A B C A B C A B C ⎧∈⎪⎪⎪>⎨⎪⎪∈-⎪⎩. 其中,第一组可以利用琴生不等式来证明;第二组可以结合第一组及基本不等式证明. (3)在ABC △中,角A 、B 、C 成等差数列⇔3B π=.(4)ABC △的内切圆半径为2Sr a b c=++.6、仰角、俯角、方位角: 略7、和差化积与积化和差公式(理科):(1)积化和差公式:1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ⎧=++-⎪⎪⎪=+--⎪⎨⎪=-++⎪⎪⎪=--+⎩; (2)和差化积公式:sin sin 2sin cos 22sin sin 2cos sin 22cos cos 2cos cos22cos cos 2sin sin 22αβαβαβαβαβαβαβαβαβαβαβαβ+-⎧+=⎪⎪+-⎪-=⎪⎨-+⎪+=⎪⎪-+⎪-=-⎩.六、三角函数x y sin =x y cos = x y tan =定义域 RR},2{Z k k x x ∈+≠ππ值域 ]1,1[-]1,1[-R 奇偶性 奇函数 偶函数奇函数周期性 最小正周期π2=T最小正周期π2=T最小正周期π=T单调性[2,2]22k k ππππ-+; 3[2,2]22k k ππππ++.(Z k ∈) [2,2]k k πππ-;[2,2]k k πππ+.(Z k ∈)(,)22k k ππππ-+(Z k ∈)最值当22ππ-=k x 时,1min -=y ; 当22ππ+=k x 时,1max =y ;当ππ+=k x 2时,1min -=y ;当πk x 2=时,1max =y ;无图像例1:求函数5sin(2)3y x π=+的周期、单调区间和最值.(当x 的系数为负数时,单调性相反)解析:周期22T ππ==,由函数x y sin =的递增区间[2,2]22k k ππππ-+,可得 222232k x k πππππ-≤+≤+,即51212k x k ππππ-≤≤+, 于是,函数5sin(2)73y x π=++的递增区间为5[,]1212k k ππππ-+. 同理可得函数5sin(2)73y x π=++递减区间为7[,]1212k k ππππ++.当2232x k πππ+=+,即12x k ππ=+时,函数5sin(2)3y x π=+取最大值5;当2232x k πππ+=-,即512x k ππ=-时,函数5sin(2)3y x π=+取最大值5-. 例2:求函数5sin(2)7,[0,]32y x x ππ=++∈的单调区间和最值.解析:由[0,]2x π∈,可得42[,]333x πππ+∈.然后画出23x π+的终边图,然后就可以得出当2[,]332x πππ+∈,即[0,]12x π∈时,函数5sin(2)73y x π=++单调递增; 当42[,]323x πππ+∈,即[,]122x ππ∈时,函数5sin(2)73y x π=++单调递减.同时,当232x ππ+=,即12x π=时,函数5sin(2)73y x π=++取最大值12; 当4233x ππ+=,即2x π=时,函数5sin(2)73y x π=++取最小值7;注意:当x 的系数为负数时,单调性的分析正好相反.2、函数sin()y A x h ωϕ=++&cos()y A x h ωϕ=++&tan()y A x h ωϕ=++,其中0,0A ϕ>≠: ((2)函数sin()y A x h ωϕ=++与函数sin y x =的图像的关系如下: ①相位变换:当0ϕ>时,sin sin()y x y x ϕϕ=−−−−−−→=+向左平移个单位; 当0ϕ<时,sin sin()y x y x ϕϕ=−−−−−−→=+向右平移个单位; ②周期变换:当1ω>时,1sin()sin()y x y x ωϕωϕ=+−−−−−−−−−−−−−−→=+所有各点的横坐标缩短到原来的倍(纵坐标不变); 当01ω<<时,1sin()sin()y x y x ωϕωϕ=+−−−−−−−−−−−−−−→=+所有各点的横坐标伸长到原来的倍(纵坐标不变); ③振幅变换:当1A >时,sin()sin()A y x y A x ωϕωϕ=+−−−−−−−−−−−−−−→=+所有各点的纵坐标伸长到原来的倍(横坐标不变); 当01A <<时,sin()sin()A y x y A x ωϕωϕ=+−−−−−−−−−−−−−−→=+所有各点的纵坐标缩短到原来的倍(横坐标不变); ④最值变换:当0h >时,sin()sin()h y A x y A x h ωϕωϕ=+−−−−−−−−−→=++所有各点向上平行移动个单位; 当0h <时,sin()sin()h y A x y A x h ωϕωϕ=+−−−−−−−−−→=++所有各点向下平行移动个单位; 注意:函数cos()y A x h ωϕ=++和函数tan()y A x h ωϕ=++的变换情况同上.3、三角函数的值域: (1)sin y a x b =+型:设sin t x =,化为一次函数y at b =+在闭区间[1,1]-上求最值. (2)sin cos y a x b x c =±+,,0a b >型:引入辅助角,tan baϕϕ=,化为)y x c ϕ=±+. (3)2sin sin y a x b x c =++型:设sin [1,1]t x =∈-,化为二次函数2y at bt c =++求解. (4)sin cos (sin cos )y a x x b x x c =+±+型:设sin cos [t x x =±∈,则212sin cos t x x =±,化为二次函数2(1)2a t y bt c -=±++在闭区间[t ∈上求最值.(5)tan cot y a x b x =+型:设tan t x =,化为by at t=+,用“Nike 函数”或“差函数”求解.(6)sin sin a x by c x d+=+型:方法一:常数分离、分层求解;方法二:利用有界性,化为1sin 1x -≤≤求解.(7)sin cos a x by c x d+=+型:化为sin cos a x yc x b dy -=-)x b dy ϕ+=-,利用有界性,sin()[1,1]x ϕ+=-求解.(8)22sin cos sin cos a x x b x c x ++,(0,,a b c ≠不全为0)型:利用降次公式,可得22sin cos sin cos sin 2cos 2222a cb bc a x x b x c x x x -+++=++,然后利用辅 助角公式即可.4备注:①x y sin =和x y cos =的对称中心在其函数图像上;②x y tan =和x y cot =的对称中心不一定在其函数图像上.(有可能在渐近线上) 例3:求函数5sin(2)73y x π=++的对称轴方程和对称中心.解析:由函数sin y x =的对称轴方程2ππ+=k x ,Z k ∈,可得232x k πππ+=+,Z k ∈解得122k x ππ=+,Z k ∈. 所以,函数5sin(2)73y x π=++的对称轴方程为122k x ππ=+,Z k ∈.由函数sin y x =的中心对称点)0,(πk ,Z k ∈,可得23x k ππ+=,Z k ∈解得62k x ππ=-+,Z k ∈. 所以,函数5sin(2)73y x π=++的对称中心为(,7)62k ππ-+,Z k ∈.5、反正弦、反余弦、反正切函数的性质和图像:x y arcsin = x y arccos =x y arctan =定义域 ]1,1[-]1,1[-),(+∞-∞值域 ]2,2[ππ-],0[π )2,2(ππ-奇偶性 奇函数非奇非偶函数 奇函数单调性 在[1,1]-上是增函数在[1,1]-上是减函数在),(+∞-∞上是增函数对称中心点(0,0)点(0,)2π点(0,0)图像重要结论:①[1,1]sin(arcsin )cos(arccos )a a a a ∈-⇒==; ②tan(arctan )a R a a ∈⇒=. (2)先三角函数后反三角函数: ①[,]22ππθ∈-⇒arcsin(sin )θθ=; ②[0,]θπ∈⇒arccos(cos )θθ=;③(,)22ππθ∈-⇒arctan(tan )θθ=. (3)反三角函数对称中心特征方程式:①[1,1]a ∈-⇒arcsin()arcsin a a -=-; ②[1,1]a ∈-⇒arccos()arccos a a π-=-; ③(,)a ∈-∞+∞⇒arctan()arctan a a -=-. 6、解三角方程公式:sin ,1(1)arcsin ,cos ,12arccos ,tan ,arctan ,k x a a x k a k Z x a a x k a k Z x a a R x k a k Z πππ⎧=≤=+-∈⎪=≤=±∈⎨⎪=∈=+∈⎩.。