2020河南中考数学一模试卷(解析版)

合集下载

2020年河南省中考数学全真模拟试卷1解析版

2020年河南省中考数学全真模拟试卷1解析版

2020年河南省中考数学全真模拟试卷1一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡上1.(3分)下列四个数:﹣3,﹣0.5,,中,绝对值最大的数是()A.﹣3B.﹣0.5C.D.2.(3分)港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程投资总额1269亿元,1269亿用科学记数法表示为()A.1.269×1010B.1.269×1011C.12.69×1010D.0.1269×10123.(3分)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A.B.C.D.4.(3分)如图,OC是∠AOB的角平分线,l∥OB,若∠1=52°,则∠2的度数为()A.52°B.54°C.64°D.69°5.(3分)在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数239853这些男生跳远成绩的众数、中位数分别是()A.2.10,2.05B.2.10,2.10C.2.05,2.10D.2.05,2.05 6.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(3分)如图,正比例函数y=x的图象与一次函数y=x+的图象交于点A,若点P 是直线AB上的一个动点,则线段OP长的最小值为()A.1B.C.D.28.(3分)如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA 和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°9.(3分)如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC.其中正确的是()A.①②③④B.①②③C.①②④D.③④10.(3分)在边长为的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点,过P作EF∥AC,分别交正方形的两条边于点E,F.设BP=x,△OEF的面积为y,则能反映y与x之间关系的图象为()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)计算:﹣()﹣1+=.12.(3分)2019年永州市初中体育学业水平考试实行改革,增加了两类自选类项目:一类是运动技能测试,学生可以从篮球、足球、排球向上垫球三个项目中必须自选一项;另一类是身体力量测试,学生从一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远四个项目中再选一项,则某一初三男学生同时选择篮球和立定跳远这两项的概率是.13.(3分)关于x的一元二次方程a(x﹣h)2+k=x+n两根为x1=﹣1,x2=3,则方程a(x ﹣h﹣3)2+k+3=x+n的两根为.14.(3分)如图,7个腰长为1的等腰直角三角形(Rt△B1AA1,Rt△B2A1A2,Rt△B3A2A3…)有一条腰在同一条直线上,设△A1B2C1的面积为S1,△A2B3C2的面积为S2,△A3B4C3的面积为S3,则S1+S2+S3+S4+S5+S6=.15.(3分)如图,Rt△ABC中,∠ACB=90°,AC=2,BC=4,CD是△ABC的中线,E 是边BC上一动点,将△BED沿ED折叠,点B落在点F处,EF交线段CD于点G,当△DFG是直角三角形时,则CE=.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:,其中a是方程a2+a﹣6=0的解.17.(9分)如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,以D为圆心,DB长为半径作作⊙D.(1)求证:AC是⊙D的切线.(2)设AC与⊙D切于点E,DB=1,连接DE,BF,EF.①当∠BAD=时,四边形BDEF为菱形;②当AB=时,△CDE为等腰三角形.18.(9分)设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级;75≤x<85为B级;60≤x<75为C级;x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,A级人数占本次抽取人数的百分比为%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有1000名学生,请你估计该校D级学生有多少名?19.(9分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,经测量景点D位于景点A的北偏东30°方向8km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.(1)景区管委会准备由景点D向公路a修建一条距离最短的公路,不考虑其它因素,求出这条公路的长;(结果精确到0.1km)(2)求景点C与景点D之间的距离.(结果精确到1km)(参考数据:=1.73,=2.24,sin53°=cos37°=0.80,sin37°=cos53°=0.60,tan53°=1.33,tan37°=0.75,sin38°=cos52°=0.62,sin52°=cos38°=0.79,tan38°=0.78,tan52°=1.28,sin75°=0.97,cos75°=0.26,tan75°=3.73.)20.(9分)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)观察图象,直接写出当x>0时,不等式2x+6<0的解集;(3)当n为何值时,△BMN的面积最大?最大值是多少?21.(10分)某商场计划经销A,B两种新型节能台灯共50盏,这两种台灯的进价、售价如下表所示.A型B型进价(元/盏)4065售价(元/盏)60100(1)若该商场购进这批台灯共用去2500元,问这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少需购进B种台灯多少盏?(3)若该商场预计用不多于2600元的资金购进这批台灯,其中A种台灯不超过30盏,为了打开B种台灯的销路,商场决定每售出一盏B种台灯,返还顾客现金a元(10<a <20),问该商场该如何进货,才能获得最大的利润?22.(10分)(1)问题发现如图1,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,点D时线段AB上一动点,连接BE.填空:①的值为;②∠DBE的度数为.(2)类比探究如图2,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,点D是线段AB上一动点,连接BE.请判断的值及∠DBE的度数,并说明理由;(3)拓展延伸如图3,在(2)的条件下,将点D改为直线AB上一动点,其余条件不变,取线段DE 的中点M,连接BM、CM,若AC=2,则当△CBM是直角三角形时,线段BE的长是多少?请直接写出答案.23.(11分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点A、C的坐标分别为(﹣1,0),(0,﹣3),直线x=1为抛物线的对称轴.点D为抛物线的顶点,直线BC与对称轴相交于点E.(1)求抛物线的解析式并直接写出点D的坐标;(2)点P为直线x=1右方抛物线上的一点(点P不与点B重合).记A、B、C、P四点所构成的四边形面积为S,若S=S△BCD,求点P的坐标;(3)点Q是线段BD上的动点,将△DEQ延边EQ翻折得到△D′EQ,是否存在点Q 使得△D′EQ与△BEQ的重叠部分图形为直角三角形?若存在,请求出BQ的长,若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)请将唯一正确答案的序号涂在答题卡上1.(3分)下列四个数:﹣3,﹣0.5,,中,绝对值最大的数是()A.﹣3B.﹣0.5C.D.【分析】根据绝对值的性质以及正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小判断即可.【解答】解:∵|﹣3|=3,|﹣0.5|=0.5,||=,||=且0.5<<<3,∴所给的几个数中,绝对值最大的数是﹣3.故选:A.2.(3分)港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程投资总额1269亿元,1269亿用科学记数法表示为()A.1.269×1010B.1.269×1011C.12.69×1010D.0.1269×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:1269亿=126900000000,用科学记数法表示为1.269×1011.故选:B.3.(3分)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A.B.C.D.【分析】根据图形、找出几何体的左视图与俯视图,判断即可.【解答】解:A、左视图第一层两个小正方形,俯视图第一层一个小正方形,故A不符合题意;B、左视图和俯视图相同,故B符合题意;C、左视图第一层两个小正方形,俯视图第一层一个小正方形,故C不符合题意;D、左视图是一列两个小正方形,俯视图一层三个小正方形,故D不符合题意;故选:B.4.(3分)如图,OC是∠AOB的角平分线,l∥OB,若∠1=52°,则∠2的度数为()A.52°B.54°C.64°D.69°【分析】依据平行线的性质以及角平分线的定义,即可得到∠BOC=64°,再根据平行线的性质,即可得出∠2的度数.【解答】解:∵l∥OB,∴∠1+∠AOB=180°,∴∠AOB=128°,∵OC平分∠AOB,∴∠BOC=64°,又l∥OB,且∠2与∠BOC为同位角,∴∠2=64°,故选:C.5.(3分)在中考体育加试中,某班30名男生的跳远成绩如下表:成绩/m 1.95 2.00 2.05 2.10 2.15 2.25人数239853这些男生跳远成绩的众数、中位数分别是()A.2.10,2.05B.2.10,2.10C.2.05,2.10D.2.05,2.05【分析】中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:由表可知,2.05出现次数最多,所以众数为2.05;由于一共调查了30人,所以中位数为排序后的第15人和第16人的平均数,即:2.10.故选:C.6.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别解不等式进而得出不等式组的解集,进而得出答案.【解答】解:,解①得:x>﹣6,解②得:x≤13,故不等式组的解集为:﹣6<x≤13,在数轴上表示为:.故选:B.7.(3分)如图,正比例函数y=x的图象与一次函数y=x+的图象交于点A,若点P 是直线AB上的一个动点,则线段OP长的最小值为()A.1B.C.D.2【分析】判断出OP⊥AB时,OP最小,利用三角形的面积建立方程求解即可得出结论.【解答】解:由得,∴A(2,3),由一次函数y=x+,令y=0,解得x=﹣2,∴(﹣2,0),∴S△AOB=OB•|y A|==3,AB==5,∵当OP⊥AB时,OP最小,∴S△AOB=AB•OP最小,∴×5OP最小=3∴OP最小=,故选:C.8.(3分)如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA 和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°【分析】分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于M,交OB于N,△PMN的周长=P1P2,然后得到等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,即可得出∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°.【解答】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,根据轴对称的性质,可得MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=80°,∴等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°,故选:B.9.(3分)如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC.其中正确的是()A.①②③④B.①②③C.①②④D.③④【分析】①由正方形证明OC=OD,∠ODF=∠OCE=45°,∠COM=∠DOF,便可得结论;②证明点O、E、C、F四点共圆,得∠EOG=∠CFG,∠OEG=∠FCG,进而得OGE∽△FGC便可;③先证明S△COE=S△DOF,∴便可;④证明△OEG∽△OCE,得OG•OC=OE2,再证明OG•AC=EF2,再证明BE2+DF2=EF2,得OG•AC=BE2+DF2便可.【解答】解:①∵四边形ABCD是正方形,∴OC=OD,AC⊥BD,∠ODF=∠OCE=45°,∵∠MON=90°,∴∠COM=∠DOF,∴△COE≌△DOF(ASA),故①正确;②∵∠EOF=∠ECF=90°,∴点O、E、C、F四点共圆,∴∠EOG=∠CFG,∠OEG=∠FCG,∴OGE∽△FGC,故②正确;③∵△COE≌△DOF,∴S△COE=S△DOF,∴,故③正确;④)∵△COE≌△DOF,∴OE=OF,又∵∠EOF=90°,∴△EOF是等腰直角三角形,∴∠OEG=∠OCE=45°,∵∠EOG=∠COE,∴△OEG∽△OCE,∴OE:OC=OG:OE,∴OG•OC=OE2,∵OC=AC,OE=EF,∴OG•AC=EF2,∵CE=DF,BC=CD,∴BE=CF,又∵Rt△CEF中,CF2+CE2=EF2,∴BE2+DF2=EF2,∴OG•AC=BE2+DF2,故④错误,故选:B.10.(3分)在边长为的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点,过P作EF∥AC,分别交正方形的两条边于点E,F.设BP=x,△OEF的面积为y,则能反映y与x之间关系的图象为()A.B.C.D.【分析】分析,EF与x的关系,他们的关系分两种情况,依情况来判断抛物线的开口方向.【解答】解:∵四边形ABCD是正方形,∴AC=BD=2,OB=OD=,①当P在OB上时,即0≤x≤1,∵EF∥AC,∴△BEF∽△BAC,∴EF:AC=BP:OB,∴EF=2BP=2x,∴y=EF•OP=×2x(1﹣x)=﹣x2+x;②当P在OD上时,即1<x≤2,∵EF∥AC,∴△DEF∽△DAC,∴EF:AC=DP:OD,即EF:2=(2﹣x):1,∴EF=4﹣2x,∴y=EF•OP==﹣x2+3x﹣2,这是一个二次函数,根据二次函数的性质可知:二次函数的图象是一条抛物线,开口方向取决于二次项的系数.当系数>0时,抛物线开口向上;系数<0时,开口向下.根据题意可知符合题意的图象只有选项B.故选:B.二、填空题(每小题3分,共15分)11.(3分)计算:﹣()﹣1+=0.【分析】直接利用负指数幂的性质以及二次根式的性质分别化简得出答案.【解答】解:原式=﹣4+4=0.故答案为:0.12.(3分)2019年永州市初中体育学业水平考试实行改革,增加了两类自选类项目:一类是运动技能测试,学生可以从篮球、足球、排球向上垫球三个项目中必须自选一项;另一类是身体力量测试,学生从一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远四个项目中再选一项,则某一初三男学生同时选择篮球和立定跳远这两项的概率是.【分析】用A、B、C分别表示篮球、足球、排球向上垫球三个项目,用a、b、c、d分别表示一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远四个项目,画树状图展示所有9种等可能的结果数,找出某一初三男学生同时选择篮球和立定跳远这两项的结果数,然后根据概率公式求解.【解答】解:用A、B、C分别表示篮球、足球、排球向上垫球三个项目,用a、b、c、d 分别表示一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远四个项目,画树状图为:共有12种等可能的结果数,其中某一初三男学生同时选择篮球和立定跳远这两项的结果数为1,所以某一初三男学生同时选择篮球和立定跳远这两项的概率=.故答案为.13.(3分)关于x的一元二次方程a(x﹣h)2+k=x+n两根为x1=﹣1,x2=3,则方程a(x ﹣h﹣3)2+k+3=x+n的两根为2或6.【分析】根据函数与方程的关系及函数平移的规律,变形要求的方程,利用平移规律可解.【解答】解:由方程a(x﹣h﹣3)2+k+3=x+n得a(x﹣h﹣3)2+k=x+n﹣3①方程①可看作左边是二次函数y=a(x﹣h﹣3)2+k,右边是一次函数y=x+n﹣3根据平移知识,可知方程①相当于关于x的一元二次方程a(x﹣h)2+k=x+n②,左右两边都向右平移3个单位而方程②的两根为x1=﹣1,x2=3∴方程①的两根为x1=2,x2=6故答案为2或6.14.(3分)如图,7个腰长为1的等腰直角三角形(Rt△B1AA1,Rt△B2A1A2,Rt△B3A2A3…)有一条腰在同一条直线上,设△A1B2C1的面积为S1,△A2B3C2的面积为S2,△A3B4C3的面积为S3,则S1+S2+S3+S4+S5+S6=.【分析】连接B1、B2、B3、B4点,显然它们共线且平行于AC1,依题意可知△B1B2C1与△C1AA1相似,求出相似比,根据三角形面积公式可得出S1,同理:B2B3:AA2=1:2,所以B2C2:C2A=1:2,进而S2的值可求出,同样的道理,即可求出S3,S4…S6的值,即可求解.【解答】解:解:连接B1、B2、B3、B4.∵n+1个边长为1的等腰三角形有一条边在同一直线上,∴=×1×1=,=×2×1=1,=×3×1=,…==3,连接B1、B2、B3点,显然它们共线且平行于AA1易知S1=,∵B2B3∥AA2,∴△B2C2B3∽△A2C2A,∴=,∴S2==,同理可求,S3==,S4=×2=,S5==,S6==,∴S1+S2+S3+S4+S5+S6==,故答案为:.15.(3分)如图,Rt△ABC中,∠ACB=90°,AC=2,BC=4,CD是△ABC的中线,E 是边BC上一动点,将△BED沿ED折叠,点B落在点F处,EF交线段CD于点G,当△DFG是直角三角形时,则CE=1或﹣.【分析】分两种情形:①如图1中,当∠DGF=90°时,作DH⊥BC于H.②如图2中,当∠GDF=90°,作DH⊥BC于H,DK⊥FG于K.【解答】解:①如图1中,当∠DGF=90°时,作DH⊥BC于H.在Rt△ACB中,∵∠ACB=90°,AC=2,BC=4,∴AB===2,∵AD=DB,∴CD=AB=,∵DH∥AC,AD=DB,∴CH=BH,∴DH=DG=AC=1,∴CG=﹣1,∵DC=DB,∴∠DCB=∠B,∴cos∠DCB=cos∠B=,∴CE=CG÷cos∠DCB=﹣.②如图2中,当∠GDF=90°,作DH⊥BC于H,DK⊥FG于K.易证四边形DKEH是正方形,可得EH=DH=1,∵CH=BH=2,∴CE=1,综上所述,满足条件的CE的值为1或﹣.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:,其中a是方程a2+a﹣6=0的解.【分析】根据分式的减法和除法可以化简题目中的式子,然后由方程a2+a﹣6=0可以求得a的值,然后将a的值代入化简后的式子即可解答本题,注意代入a的值必须使得原分式有意义.【解答】解:====,由a2+a﹣6=0,得a=﹣3或a=2,∵a﹣2≠0,∴a≠2,∴a=﹣3,当a=﹣3时,原式==.17.(9分)如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,以D为圆心,DB长为半径作作⊙D.(1)求证:AC是⊙D的切线.(2)设AC与⊙D切于点E,DB=1,连接DE,BF,EF.①当∠BAD=30°时,四边形BDEF为菱形;②当AB=+1时,△CDE为等腰三角形.【分析】(1)作DM⊥AC于M,由角平分线的性质可得DM=DB,由切线的判定可证AC是⊙D的切线;(2)①由菱形的性质可得BD=BF,且BD=DF,可证△BDF是等边三角形,可得∠ADB =60°,即可求解;②由切线的性质可得DE⊥AC,由等腰直角三角形的性质可得CD=DE=,∠C=45°,可证AB=BC=+1.【解答】证明:(1)如图1,作DM⊥AC于M,∵∠B=90°,AD平分∠BAC,DM⊥AC,∴DM=DB,∵DB是⊙D的半径,∴AC是⊙D的切线;(2)①如图2,∵四边形BDEF是菱形,∴BD=DE=EF=BF,∵BD=DF=DE,∴BD=DF=DE=EF=BF,∴△BDF,△DEF是等边三角形,∴∠ADB=∠ADE=60°,∵∠ABC=90°,∴∠BAD=30°,∴当∠BAD=30°时,四边形BDEF是菱形,故答案为:30°;②∵AC与⊙D切于点E,∴DE⊥AC,∵△DEC是等腰三角形,且DE⊥AC,∴DE=EC,∠C=∠EDC=45°,∴DC=DE,∵∠ABC=90°,∠C=45°,∴∠BAC=∠C=45°,∴AB=BC,∵BD=DE=EC=1,∴DC=x,∴AB=BC=+1,∴当AB=+1时,△CDE为等腰三角形,故答案为:+1.18.(9分)设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级;75≤x<85为B级;60≤x<75为C级;x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了50名学生,A级人数占本次抽取人数的百分比为24%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为72度;(4)若该校共有1000名学生,请你估计该校D级学生有多少名?【分析】(1)根据B级的人数和所占的百分比求出抽取的总人数,再用A级的人数除以总数即可求出α;(2)用抽取的总人数减去A、B、D的人数,求出C级的人数,从而补全统计图;(3)用360度乘以C级所占的百分比即可求出扇形统计图中C级对应的圆心角的度数;(4)用D级所占的百分比乘以该校的总人数,即可得出该校D级的学生数.【解答】解:(1)在这次调查中,一共抽取的学生数是:24÷48%=50(人),α=×100%=24%;故答案为:50,24;(2)等级为C的人数是:50﹣12﹣24﹣4=10(人),补图如下:(3)扇形统计图中C级对应的圆心角为×360°=72°;故答案为:72;(4)根据题意得:1000×=80(人),答:该校D级学生有80人.19.(9分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,经测量景点D位于景点A的北偏东30°方向8km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.(1)景区管委会准备由景点D向公路a修建一条距离最短的公路,不考虑其它因素,求出这条公路的长;(结果精确到0.1km)(2)求景点C与景点D之间的距离.(结果精确到1km)(参考数据:=1.73,=2.24,sin53°=cos37°=0.80,sin37°=cos53°=0.60,tan53°=1.33,tan37°=0.75,sin38°=cos52°=0.62,sin52°=cos38°=0.79,tan38°=0.78,tan52°=1.28,sin75°=0.97,cos75°=0.26,tan75°=3.73.)【分析】过点D作DE⊥AC于点E,过点A作AF⊥DB,交DB的延长线于点F,求DE 的问题就可以转化为求∠DBE的度数或三角函数值的问题.Rt△DCE中根据三角函数就可以求出CD的长.【解答】解:(1)如图,过点D作DE⊥AC于点E,过点A作AF⊥DB,交DB的延长线于点F,在Rt△DAF中,∠ADF=30°,∴AF=AD=×8=4,∴DF=,在Rt△ABF中BF==3,∴BD=DF﹣BF=4﹣3,sin∠ABF=,在Rt△DBE中,sin∠DBE=,∵∠ABF=∠DBE,∴sin∠DBE=,∴DE=BD•sin∠DBE=×(4﹣3)=≈3.1(km),∴景点D向公路a修建的这条公路的长约是3.1km;(2)由题意可知∠CDB=75°,由(1)可知sin∠DBE==0.8,所以∠DBE=53°,∴∠DCB=180°﹣75°﹣53°=52°,在Rt△DCE中,sin∠DCE=,∴DC=≈4(km),∴景点C与景点D之间的距离约为4km.20.(9分)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)观察图象,直接写出当x>0时,不等式2x+6<0的解集;(3)当n为何值时,△BMN的面积最大?最大值是多少?【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)结合函数图象找到直线在双曲线下方对应的x的取值范围;(3)构建二次函数,利用二次函数的性质即可解决问题.【解答】解:(1)∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴k=8,∴反比例函数的解析式为y=;(2)不等式2x+6<0的解集为0<x<1;(3)由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴>0∴S△BMN=|MN|×|y M|==(n﹣3)2+,∴n=3时,△BMN的面积最大,最大值为.21.(10分)某商场计划经销A,B两种新型节能台灯共50盏,这两种台灯的进价、售价如下表所示.A型B型进价(元/盏)4065售价(元/盏)60100(1)若该商场购进这批台灯共用去2500元,问这两种台灯各购进多少盏?(2)在每种台灯销售利润不变的情况下,若该商场销售这批台灯的总利润不少于1400元,问至少需购进B种台灯多少盏?(3)若该商场预计用不多于2600元的资金购进这批台灯,其中A种台灯不超过30盏,为了打开B种台灯的销路,商场决定每售出一盏B种台灯,返还顾客现金a元(10<a <20),问该商场该如何进货,才能获得最大的利润?【分析】(1)首先设该商场购进A种台灯x盏,购进B种台灯(50﹣x)盏,然后根据题意,即可得方程,解方程即可求得答案;(2)设至少需购进B种台灯x盏,然后由该商场销售这批台灯的总利润不少于1400元,即可得一元一次不等式35y+20(50﹣y)≥1400,解此不等式即可求得答案;(3)首先设该商场购进A种台灯m盏,由该商场预计用不多于2600元的资金购进这批台灯,可通过不等式组求得m的取值范围,然后求得该商场获得的总利润与该商场购进A种台灯的盏数的一次函数,由10<a<20,根据一次函数的增减性即可求得答案.【解答】解:(1)设该商场购进A种台灯x盏,购进B种台灯(50﹣x)盏,由题意得:40x+65(50﹣x)=2500,解得:x=30,∴该商场购进A种台灯30盏,购进B种台灯20盏.(2)设购进B种台灯y盏,由题意得:35y+20(50﹣y)≥1400,解得:y≥,∴y的最小整数解为27,∴至少需购进B种台灯27盏;(3)设该商场购进A种台灯m盏,由题意得:40m+65(50﹣m)≤2600,解得:m≥26,∴26≤m30,设该商场获得的总利润为w元,则w=20m+(35﹣a)(50﹣m)=(a﹣15)m+1750﹣50a,∵10<a<20,∴当10<a≤15时,m=26,即购进A种台灯26盏,购进B种台灯24盏,该商场获得的总利润最大,当15<a<20时,m=30,即购进A种台灯30盏,购进B种台灯20盏,该商场获得的总利润最大.22.(10分)(1)问题发现如图1,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,点D时线段AB上一动点,连接BE.填空:①的值为1;②∠DBE的度数为90°.(2)类比探究如图2,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,点D是线段AB上一动点,连接BE.请判断的值及∠DBE的度数,并说明理由;(3)拓展延伸如图3,在(2)的条件下,将点D改为直线AB上一动点,其余条件不变,取线段DE 的中点M,连接BM、CM,若AC=2,则当△CBM是直角三角形时,线段BE的长是多少?请直接写出答案.【分析】(1)由直角三角形的性质可得∠ABC=45°,可得∠DBE=90°,通过证明△ACD∽△BCE,可得的值;(2)通过证明△ACD∽△BCE,可得的值,∠CBE=∠CAD=60°,即可求∠DBE 的度数;(3)分点D在线段AB上和BA延长线上两种情况讨论,由直角三角形的性质可证CM =BM=,即可求DE=2,由相似三角形的性质可得∠ABE=90°,BE=AD,由勾股定理可求BE的长.【解答】解:(1)∵∠ACB=90°,∠CAB=45°∴∠ABC=∠CAB=45°∴AC=BC,∠DBE=∠ABC+∠CBE=90°∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,且∠CAB=∠CDE=45°,∴△ACD∽△BCE∴故答案为:1,90°(2),∠DBE=90°理由如下:∵∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,∴∠ACD=∠BCE,∠CED=∠ABC=30°∴tan∠ABC=tan30°==∵∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,∴Rt△ACB∽Rt△DCE∴∴,且∠ACD=∠BCE∴△ACD∽△BCE∴=,∠CBE=∠CAD=60°∴∠DBE=∠ABC+∠CBE=90°(3)若点D在线段AB上,如图,由(2)知:=,∠ABE=90°∴BE=AD∵AC=2,∠ACB=90°,∠CAB=90°∴AB=4,BC=2∵∠ECD=∠ABE=90°,且点M是DE中点,∴CM=BM=DE,且△CBM是直角三角形∴CM2+BM2=BC2=(2)2,∴BM=CM=∴DE=2∵DB2+BE2=DE2,∴(4﹣AD)2+(AD)2=24∴AD=+1∴BE=AD=3+若点D在线段BA延长线上,如图同理可得:DE=2,BE=AD∵BD2+BE2=DE2,∴(4+AD)2+(AD)2=24,∴AD=﹣1∴BE=AD=3﹣综上所述:BE的长为3+或3﹣23.(11分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点A、C的坐标分别为(﹣1,0),(0,﹣3),直线x=1为抛物线的对称轴.点D为抛物线的顶点,直线BC与对称轴相交于点E.(1)求抛物线的解析式并直接写出点D的坐标;(2)点P为直线x=1右方抛物线上的一点(点P不与点B重合).记A、B、C、P四点所构成的四边形面积为S,若S=S△BCD,求点P的坐标;(3)点Q是线段BD上的动点,将△DEQ延边EQ翻折得到△D′EQ,是否存在点Q 使得△D′EQ与△BEQ的重叠部分图形为直角三角形?若存在,请求出BQ的长,若不存在,请说明理由.【分析】(1)利用抛物线的对称性得到B(3,0),则设交点式为y=a(x+1)(x﹣3),把C(0,﹣3)代入求出a即可得到抛物线解析式,然后把解析式配成顶点式即可得到D点坐标;(2)设P(m,m2﹣2m﹣3),先确定直线BC的解析式y=x﹣3,再确定E(1,﹣2),则可根据三角形面积公式计算出S△BDC=S△BDE+S△CDE=3,然后分类讨论:当点P在x 轴上方时,即m>3,如图1,利用S=S△P AB+S△CAB=S△BCD得到2m2﹣4m=;当点P在x轴下方时,即1<m<3,如图2,连结OP,利用S=S△AOC+S△COP+S△POB=S△BCD 得到﹣m2+m+6=,再分别解关于m的一元二次方程求出m,从而得到P点坐标;(3)存在.直线x=1交x轴于F,利用两点间的距离公式计算出BD=2,分类讨论:①如图3,EQ⊥DB于Q,证明Rt△DEQ∽Rt△DBF,利用相似比可计算出DQ=,则BQ=BD﹣DQ=;②如图4,ED′⊥BD于H,证明Rt△DEQ=H∽Rt△DBF,利用相似比计算出DH=,EH=,在Rt△QHD′中,设QH=x,D′Q=DQ =DH﹣HQ=﹣x,D′H=D′E﹣EH=DE﹣EH=2﹣,则利用勾股定理可得x2+(2﹣)2=(﹣x)2,解得x=1﹣,于是BQ=BD﹣DH+HQ﹣=+1;③如图5,D′Q⊥BC于G,作EI⊥BD于I,利用①得结论可得EI=,BI=,而BE=2,则BG=BE﹣EG=2﹣,根据折叠性质得∠EQD=∠EQD′,则根据角平分线性质得EG=EI=,接着证明△BQG∽△BEI,利用相似比可得BQ=﹣,所以当BQ为或+1或﹣时,将△DEQ沿边EQ翻折得到△D′EQ,使得△D′EQ与△BEQ的重叠部分图形为直角三角形.【解答】解:(1)∵点A与点B关于直线x=1对称,∴B(3,0),设抛物线解析式为y=a(x+1)(x﹣3),把C(0,﹣3)代入得﹣3a=﹣3,解得a=1,∴抛物线就笑着说为y=(x+1)(x﹣3)=x2﹣2x﹣3,∵y=(x﹣1)2﹣4,∴抛物线顶点D的坐标为(1,﹣4);(2)设P(m,m2﹣2m﹣3),易得直线BC的解析式为y=x﹣3,当x=1时,y=x﹣3=﹣3,则E(1,﹣2),∴S△BDC=S△BDE+S△CDE=×3×(﹣2+4)=3,当点P在x轴上方时,即m>3,如图1,S=S△P AB+S△CAB=•3•(3+1)+•(3+1)•(m2﹣2m﹣3)=2m2﹣4m,∵S=S△BCD,∴2m2﹣4m=,整理得4m2﹣8m﹣15=0,解得m1=,m2=(舍去),∴P点坐标为(,);当点P在x轴下方时,即1<m<3,如图2,连结OP,S=S△AOC+S△COP+S△POB=•3•1+•3•m+•3•(﹣m2+2m+3)=﹣m2+m+6,∵S=S△BCD,∴﹣m2+m+6=,整理得m2﹣3m+1=0,解得m1=,m2=(舍去)∴P点坐标为(,),综上所述,P点坐标为(,)或(,);(3)存在.直线x=1交x轴于F,BD==2,①如图3,EQ⊥DB于Q,△DEQ沿边EQ翻折得到△D′EQ,∵∠EDQ=∠BDF,∴Rt△DEQ∽Rt△DBF,∴=,即=,解得DQ=,∴BQ=BD﹣DQ=2﹣=;②如图4,ED′⊥BD于H,∵∠EDH=∠BDF,∴Rt△DEQ=H∽Rt△DBF,∴==,即==,解得DH=,EH=,在Rt△QHD′中,设QH=x,D′Q=DQ=DH﹣HQ=﹣x,D′H=D′E﹣EH=DE﹣EH=2﹣,∴x2+(2﹣)2=(﹣x)2,解得x=1﹣,∴BQ=BD﹣DQ=BD﹣(DH﹣HQ)=BD﹣DH+HQ=2﹣+1﹣=+1;③如图5,D′Q⊥BC于G,作EI⊥BD于I,由①得EI=,BI=,∵BE==2,∴BG=BE﹣EG=2﹣,∵△DEQ沿边EQ翻折得到△D′EQ,∴∠EQD=∠EQD′,∴EG=EI=,∵∠GBQ=∠IBE,∴△BQG∽△BEI,∴=,即=,∴BQ=﹣,综上所述,当BQ为或+1或﹣时,将△DEQ沿边EQ翻折得到△D′EQ,使得△D′EQ与△BEQ的重叠部分图形为直角三角形.。

2020年河南省中考数学一模试卷及解析(3月份)

2020年河南省中考数学一模试卷及解析(3月份)

2020年河南省中考一模试卷(3月份)数学试卷一、选择题(本大题共10小题,共30分) 1. 下列整数中,比−π小的数是( )A. −3B. 0C. 1D. −42. 2018年是打赢脱贫攻坚战三年行动起步之年.国家统计局2月15日发布的数据显示,2018年年末,全国农村贫困人口比上年末减少1386万人,其中1386万用科学记数法表示应为( )A. 0.1386×108B. 1.386×107C. 1.386×108D. 1386×1043. 下列运算正确的是( )A. x 2+x 3=x 5B. (x −2)2=x 2−4C. (3x 3)2=6x 6D. x −2÷x −3=x4. 如图,是一个由5个相同的正方体组成的立体图形,它的左视图是( )A.B.C.D.5. 如图,一个含有30°角的直角三角形的30°角的顶点和直角顶点放在一个矩形的对边上,若∠1=117°,则∠2的度数为( )A. 27°B. 37°C. 53°D. 63°6. 年龄岁 12 13 14 15 频数69a15−a对于不同的正整数,下列关于年龄的统计量不会发生改变的是( ) A. 平均数 B. 众数 C. 方差 D. 中位数7. 下列各图中,OP 是∠MON 的平分线,点E ,F ,G 分别在射线OM ,ON ,OP 上,则可以解释定理“角的平分线上的点到角的两边的距离相等”的图形是( )A. B. C. D.8. 已知关于x 的不等式组{3x −1<4(x −1)x <m无解,则m 的取值范围是( )A. m ≤3B. m >3C. m <3D. m ≥39. 如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,BD =2AD ,E 、F 、G 分别是OC 、OD 、AB 的中点,下列结论:①BE ⊥AC ;②四边形BEFG 是平行四边形;③△EFG ≌△GBE ;④EG =EF ,其中正确的个数是( )A. 1B. 2C. 3D. 410.如图,在等腰△ABC中,AB=AC=4m,∠B=30°,点P从点B出发,以√3cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发以2cm的速度沿B→A→C运动到点C停止.若△BQ的面积为y运动时间为x(s),则下列图象中能大致反映y与x之间关系的是()A. B.C. D.二、填空题(本大题共5小题,共15.0分)11.计算:2−1+(2√2−3)0=______.12.在一个不透明的布袋中装有三个小球,小球上分别标有数字−2,1,2,它们除了数字不同外,其他都完全相同.小红先从布袋中随机摸出一个小球,记下数字作为k的值,再把此球放回袋中搅匀,再随机摸出一个小球,记下数字作为b的值,则直线y=kx+b不经过第二象限的概率是______.13.若关于x的分式方程xx−3+a3−x=2a无解,则a的值为______.14.已知每个正方形网格中正方形的边长都是1,图中的阴影部分图案是以格点为圆心,半径为1的圆弧围成的,则阴影部分的面积是______.15.如图,Rt△ABC中,∠ACB=90°,AC=2,BC=4,CD是△BC的中线,E是边BC上一动点,将△BED沿ED折叠,点B落在点F处,EF交线段CD交于点G,当△DFG是直角三角形时,则CE=______.四、解答题(本大题共8小题,共65分)16.先化简,再求值:m2−4m+4m−1÷(3m−1−m−1)其中m是方程m2−4m−12=0的根.17.某重点中学为了解学生课下阅读所用时间的情况,从各年级学生中随机抽查了一部分学生进行统计,下面是针对此次统计所制作的不完整的频数分布表和频数分布直方图,请根据图表信息回答下列问题:(1)表中a=______b=______;(2)请补全频数分布直方图;(3)样本中,学生日阅读所用时间的中位数落在第______组;组别时间段(小时)频数频率10≤x<0.5100.0520.5≤x<1.0200.103 1.0≤x<1.580b4 1.5≤x<2.0a0.355 2.0≤x<2.5120.066 2.5≤x<3.080.0418.如图,已知BC是⊙O的直径,AD切⊙于点A,CD//OA交⊙O于另一点E.(1)求证:△ACD∽△BCA;(2)若A是⊙O上一动点,则①当∠B=______时,以A,O,C,D为顶点的四边形是正方形;②当∠B=______时,以A,O,C,D为顶点的四边形是菱形.(x>0)交于点19.如图,在平面直角坐标系xOy中,直线y=kx+k与双曲线y=4xA(1,a).(1)求a,k的值;(2)已知直线l过点D(2,0)且平行于直线y=kx+k,点P(m,n)(m>3)是直线l上(x>0)于点M、N,双一动点,过点P分别作x轴、y轴的平行线,交双曲线y=4x曲线在点M、N之间的部分与线段PM、PN所围成的区域(不含边界)记为W.横、纵坐标都是整数的点叫做整点.①当m=4时,直接写出区域W内的整点个数;②若区域W内的整点个数不超过8个,结合图象,求m的取值范围.20.改革开放40年来,中国已经成为领先世界的基建强国,如图①是建筑工地常见的塔吊,其主体部分的平面示意图如图②,点F在线段HG上运动,BC//HG,AE⊥BC,垂足为点E,AE的延长线交HG于点G,经测量,∠ABD=11°,∠ADE=26°,∠ACE= 31°,BC=20m,EG=0.6m.(1)求线段AG的长度;(2)连接AF,当线段AF⊥AC时,求点F和点G之间的距离.(所有结果精确到0.1m.参考数据:tan11°≈0.19,tan26°≈0.49,tan31°≈0.60)21.郑州某商场在“六一”儿童节购进一批儿童智力玩具.已知成批购进时单价20元,调查发现:该玩具的月销售量y(个)与销售单价x(元)之间满足一次函数关系,下表是月销售量、销售单价的几组对应关系:月销售单价x/元30354045月销售量y/个230180130m(1)求y与x的函数关系式;(2)根据以上信息填空:①m=______;②当销售单价x=______元时,月销售利润最大,最大利润是______元;(3)根据物价部门规定,每件玩具售价不能高于40元,若月销售利润不低于2520元,试求销售单价x的取值范围.22.问题发现:如图(1)在Rt△ABC和Rt△BDE中,∠A=∠DEB=30°,BC=BE=6,Rt△BDE绕点B逆时针旋转,H为CD的中点,当点C与点E重台时,BH与AE 的位置关系为______,BH与AE的数量关系为______;问题证明:在Rt△BDE绕点B旋转的过程中,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明若不成立,请说明理由;拓展应用:在Rt△BDE绕点B旋转的过程中,当DE//BC时,请直接写出BH2的长.23.在平面直角坐标系中,抛物线y=−x2+bx+c经过点A、B、C,已知A(−1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△CDP为等腰三角形时,求点P的坐标;(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是直线EF上一动点,M(m,0)是MB的最小值以及此时点M、N的坐标.x轴一个动点,请直接写出CN+MN+12答案和解析1.【答案】D【解析】【分析】可根据有理数大小比较的方法:正数>0>负数,两个负数比较大小,绝对值越大的反而越小.通过比较直接得出.本题考查有理数比大小,深刻理解有理数中正数>0>负数,两个负数比较大小,绝对值越大的反而越小.【解答】解:∵−3>−π,0>−π,1>−π,−4<−π故选:D.2.【答案】B【解析】解:1386万用科学记数法表示为1.386×107,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】解:A、原式不能合并,不符合题意;B、原式=x2−4x+4,不符合题意;C、原式=9x6,不符合题意;D、原式=x,符合题意,故选:D.各项计算得到结果,即可作出判断.此题考查了同底数幂的除法,合并同类项,幂的乘方与积的乘方,熟练掌握公式及法则是解本题的关键.4.【答案】B【解析】解:从几何体的左边看可得两个正方形,如图所示:,故选:B.找到从几何体的左边看所得到的图形即可.此题主要考查了简单几何体的三视图,注意所有的看到的棱都应表现在三视图中.5.【答案】A【解析】解:如图,∵四边形ABCD是矩形,∴AB//CD,∴∠1=∠BEF=117°,∵∠FEG=90°,∴∠2=117°−90°=27°,故选:A.利用矩形的性质,直角三角形的性质即可解决问题.本题考查矩形的性质,平行线的性质,直角三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.【答案】D【解析】解:∵14岁和15岁的频数之和为15−a+a=15,∴频数之和为6+9+15=30,=13.5,则这组数据的中位数为第15、16个数据的平均数,即13+142∴对于不同的正整数a,中位数不会发生改变,故选:D.由频数分布表可知后两组的频数和为15,即可得知总人数,结合前两组的频数知第15、16个数据的平均数,可得答案.本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.7.【答案】D【解析】解:∵OP是∠MON的平分线,且GE⊥OM,GF⊥ON,∴GE=GF,(角的平分线上的点到角的两边的距离相等)故选:D.角的平分线上的点到角的两边的距离相等,这里的距离是指点到角的两边垂线段的长.本题主要考查了角平分线的性质,解题时注意:角的平分线上的点到角的两边的距离相等.8.【答案】A【解析】解:解不等式3x−1<4(x−1),得:x>3,∵不等式组无解,∴m≤3,故选:A.先按照一般步骤进行求解,因为大大小小无解,那么根据所解出的x的解集,将得到一个新的关于m不等式,解答即可.主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,注意:当符号方向不同,数字相同时(如:x>a,x<a),没有交集也是无解但是要注意当两数相等时,在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).9.【答案】D【解析】解:∵四边形ABCD是平行四边形BD,AO=CO,AB//CD∴AB=CD,AD=BC,BO=DO=12∵BD=2AD∴BO=DO=AD=BC,且点E是AC中点∴BE⊥AC,∴①正确∵E、F、分别是OC、OD中点∴EF//DC,CD=2EF∵G是AB中点,BE⊥AC∴AB=2BG=2GE,且CD=AB,CD//AB∴BG=EF=GE,EF//CD//AB∴四边形BGFE是平行四边形,∴②④正确,∵四边形BGFE是平行四边形,∴BG=EF,GF=BE,且GE=GE∴△BGE≌△FEG(SSS)∴③正确故选:D.由平行四边形的性质可得AB=CD,AD=BC,BO=DO=12BD,AO=CO,AB//CD,即可得BO=DO=AD=BC,由等腰三角形的性质可判断①,由中位线定理和直角三角形的性质可判断②④,由平行四边形的性质可判断③,即可求解.本题考查了平行四边形的判定和性质,全等三角形的判定和性质,直角三角形的性质,等腰三角形的性质,熟练运用这些性质进行推理是本题的关键.10.【答案】B【解析】解:当点Q在BA上运动时,y=12BP×BQsin30°=12×√3x×2x×12=√32x2;当点Q在AC上运动时,同理可得:y=12(4√3−√3x)(8−2x)sin30°=√32(x−4)2;故选:B.分点Q在BA上运动、点Q在AC上运动两种情况,分别求出函数表达式,即可求解.本题考查的是动点图象问题,涉及到二次函数、解直角三角形等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.11.【答案】32【解析】解:原式=12+1=32,故答案为:32.根据负整数指数幂的运算法则、零指数幂的运算法则计算,得到答案.本题考查的是二次根式的混合运算,掌握负整数指数幂的运算法则、零指数幂的运算法则是解题的关键.12.【答案】29【解析】解:列表:共有9种等可能的结果数,其中符合条件的结果数为2,所以直线y=kx+b不经过第二象限的概率=29.故答案为:29.先列表或画树状图,列出k、b的所有可能的值,进而得到直线y=kx+b不经过第二象限的概率.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率13.【答案】3或12【解析】【分析】此题主要考查了分式方程的解,正确分类讨论是解题关键.直接解分式方程,再分类讨论当1−2a=0时,当1−2a≠0时,分别得出答案.【解答】解:去分母得:x−a=2a(x−3),整理得:(1−2a)x=−5a,当1−2a=0时,方程无解,故a=12;当1−2a≠0时,x=5a2a−1=3时,分式方程无解,则a=3,则a的值为:3或12;故答案为:3或12.14.【答案】2−π4【解析】解:观察图形可知,阴影部分的面积=1×2−90⋅π×1360=2−π4,故答案为:2−π4.根据扇形和矩形的面积公式求解即可.此题主要考查了扇形的面积公式,应用与设计作图,关键是需要同学们熟练掌握基础知识.15.【答案】1或52−√52【解析】解:①如图1中,当∠DGF=90°时,作DH⊥BC于H.在Rt△ACB中,∵∠ACB=90°,AC=2,BC=4,∴AB=√AC2+BC2=√22+42=2√5,∵AD=DB,∴CD=12AB=√5,∵DH//AC,AD=DB,∴CH=BH,∴DH=DG=12AC=1,∴CG=√5−1,∵DC=DB,∴∠DCB=∠B,∴cos∠DCB=cos∠B=2√55,∴CE=CG÷cos∠DCB=52−√52.②如图2中,当∠GDF=90°,作DH⊥BC于H,DK⊥FG于K.易证四边形DKEH是正方形,可得EH=DH=1,∵CH=BH=2,∴CE=1,综上所述,满足条件的CE的值为1或52−√52.分两种情形:①如图1中,当∠DGF=90°时,作DH⊥BC于H.②如图2中,当∠GDF= 90°,作DH⊥BC于H,DK⊥FG于K.本题考查翻折变换,直角三角形斜边上的中线,勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题. 16.【答案】80 36.5 2722.5【解析】解:(1)设y =kx +b(k ≠0), 根据题意得:{30k +b =23035k +b =180,解得:{k =−10b =530,∴y 与x 的函数关系式为:y =−10x +530;(2)①当x =45时,m =−45×10+530=80, 故答案为:80;②设销售利润为w 元,则w =(x −20)(530−10x)=−10x 2+730x −10600=−10(x −36.5)2+2722.5, ∵−10<0,∴当x =6.5时,y 有最大值为2722.5,答:当销售单价x 为36.5元时,月销售利润最大,最大利润是2722.5元; 故答案为:36.5,2722.5;(3)当y =2520时,得−10(x −36.5)2+2722.5=2520, 解得x 1=32,x 2=41(不合题意,舍去), ∵w ≥2520, ∴32≤x ≤40,答:销售单价x 的取值范围是32≤x ≤40. (1)根据待定系数可求得y 与x 的函数关系式; (2)①直接将x =45代入可得m 的值;②根据月销售利润=一个玩具的利润×月销售量即可求出函数关系式,配方可得最大利润;(3)把y =2520时代入y =−10(x −36.5)2+2722.5中,求出x 的值即可,根据增减性可得结论.本题主要考查了二次函数的实际应用,解题的关键是分析题意,找到关键描述语,求出函数的解析式,用到的知识点是二次函数的性质和解一元二次方程.17.【答案】解:原式=(m−2)2m−1÷(3m−1−m 2−1m−1) =(m −2)2m −1÷4−m 2m −1 =(2−m)2m −1⋅m −1(2+m)(2−m)=2−m2+m .解方程m 2−4m −12=0 得m =−2或6, 当m =−2时,分式无意义,所以m =6. 当m =6时,原式=2−62+6=−12.【解析】先把分式运算中的括号里化简,再用括号外分式乘以其倒数,最后化简;解一元二次方程得到m 两个值,根据分式有意义的条件进行取舍后代入化简后的式子可求值.本题主要考查了分式的化简求值,以及解一元二次方程,解决这类问题要注意在计算的过程中要使分式有意义的条件.18.【答案】70 0.40 3【解析】解:(1)∵调查的总人数为10÷0.05=200,∴a=200×0.35=70,b=80÷200=0.40,故答案为:70,0.40;(2)补全直方图,如下图:(3)样本中一共有200人,中位数是第100和101人的读书时间的平均数,即第3组:1~1.5小时;故答案为:3;(4)3000×(0.35+0.06+0.04)=1350(人),答:估计该校学生日阅读量不少于1.5小时的人数为1350.(1)根据“频数÷百分比=数据总数”先计算总数为200人,再根据表中的数分别求a和b;(2)根据a的值即可补全频数直方图;(3)第100和第101个学生读书时间都在第3组;(4)后三组的读书时间不少于1.5小时,用总数3000乘以这三组的百分比之和即可.本题主要考查频率分布直方图和频率分布表的知识和分析问题以及解决问题的能力,解题的关键是能够读懂统计图,并从中读出有关信息.19.【答案】45°60°【解析】解:(1)证明:∵AD切⊙O于点A,∴OA⊥AD,∵CD//OA,∴∠ADC=90°,∵BC是⊙O的直径,∴∠BAC=90°,∴∠BAC=∠ADC,又∵CD//OA,∴∠ACD=∠CAO,∵OA=OC,∴∠ACO=∠CAO,∴∠ACD=∠ACO,∴△ACD∽△BCA;(2)①∵四边形AOCD为正方形,∴∠AOC=90°,∵OA=OC,∠OCA=∠OAC=45°,∵∠BAC=90°,∴∠90°−45°=45°,故答案为45°;②连接AE,∵AD为切线,∴∠DAE=∠ECA,∠OAD=90°∵四边形AOCE为菱形,∠OAC=∠EAC,∴∠DAE=∠ECA=∠OAC=30°∴∠ACO=30°,∴∠AOB=∠ACO+∠OAC=30°+30°=60°∵OA=OB,∴∠B=60°.故答案为60°.(1)证明∠BAC=∠ADC与∠ACD=∠ACO,即可证明△ACD∽△BCA;(2)①当∠B=45°时,以A,O,C,D为顶点的四边形是正方形;②当∠B=60°时,以A,O,C,D为顶点的四边形是棱形.本题是圆综合题,熟练掌握正方形与菱形的性质是解题的关键.20.【答案】解:(1)∵点A(1,a)在双曲线y=4上,x∴a=4=4,1∴点A的坐标为(1,4),将A(1,4)代入y=kx+k,得:k+k=4,∴k=2.(2)①∵直线l过点D(2,0)且平行于直线y=2x+2,∴直线l的解析式为y=2x−4.当m=4时,n=2m−4=4,∴点P的坐标为(4,4).依照题意画出图象,如图1所示.观察图形,可知:区域W内的整点个数是3.②如图2所示:当2x−4=4时,即x=4,此时线段PM和PN上有5个整点;当2x−4=5时,即x=4.5,此时线段PM上有整点.观察图形,可知:若区域W内的整点个数不超过8个,m 的取值范围为3<m ≤4.5.【解析】(1)利用反比例函数图象上点的坐标特征可求出a 的值,进而可得出点A 的坐标,根据点A 的坐标,利用待定系数法可求出k 值;(2)①由直线l 过点D(2,0)且平行于直线y =2x +2可得出直线l 的解析式,利用一次函数图象上点的坐标特征找出当m =4时点P 的坐标,画出图形,观察后即可得出结论;②找出:当x =4时,线段PM 和PN 上有5个整点;当x =4.5时,线段PM 上有整点.结合函数图象,即可求出当区域W 内的整点个数不超过8个时m 的取值范围. 本题考查了反比例函数图象上点的坐标特征、待定系数法求一次函数解析式、平行的性质以及数形结合,解题的关键是:(1)根据点的坐标,利用待定系数法求出k 值;(2)①②依照题意画出图形,利用数形结合找出结论. 21.【答案】解:(1)设AE =x , ∵tan ∠ABE =AEBE ,tan∠ACE =AECE , ∴BE =x0.19,CE =x0.60 ∵BE +CE =BC , ∴x 0.19+x 0.60=20,∴解得:x ≈2.9,∴AG =2.9+0.6=3.5m ; (2)当AF ⊥AC 时,∴∠FAG +∠EAC =∠EAC +∠ACE =90°,∴∠FAG =∠ACE =31°, ∴tan31°=FG AG,∴FG ≈2.1;【解析】(1)设AE =x ,由题意可知:BE =x0.19,CE =x0.60,根据BE +CE =BC 列出方程即可求出答案.(2)由于AF ⊥AC ,所以∠FAG =∠ACE =31°,利用锐角三角函数的定义即可求出AG 的值.本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.22.【答案】BH ⊥AE AE =2√3BH【解析】解:问题发现:如图1中,结论:AE=2√3BH,AE⊥BH.理由:在Rt△ABC中,∵BC=6,∠A=30°,∴AE=2BC=12,在Rt△CDB中,∵∠DCB=30°,∴CD=BCcos30∘=4√3,∵CH=DH,∴BH=12CD=2√3,∴AEBH =2√3=2√3,∴AE=2√3BH.故答案为AE⊥BH,AE=2√3BH.问题证明:如图2中,(1)中结论成立.理由:延长BH到F使得HF=BH,连接CF.设AE交BF于O.∵CH=DH,BH=HF,∠CHF=∠BHD,∴△CHF≌△DHB(SAS),∴BD=CF,∠F=∠DBH,∴CF//BD,∵AB=√3BC,BE=√3BD,∴BE=√3CF,∴ABBC =BECF=√3,∵CF//BD,∴∠BCF+∠CBD=180°,∵∠ABC+∠DBE=∠ABD+∠CBD+∠CBD+∠CBE=∠CBD+∠ABE=180°,∴∠BCF=∠ABE,∴△ABE∽△BCF,∴∠CBF=∠BAE,AEBF =ABBC=√3,∴AE=√3BF=2√3BH,∵∠CBF+∠ABF=90°,∴∠ABF+∠BAE=90°,∴∠AOB=90°,∴BH⊥AE.拓展应用:如图3−1中,当DE在BC的下方时,延长AB交DE于F.∵DE//BC∴∠ABC=∠BFD=90°,由题意BC=BE=6,AB=6√3,BD=2√3,DE=4√3,∵12⋅BD⋅BE=12⋅DE⋅BF,∴BF=√34√3=3,∴EF=√3BF=3√3,∴AF=6√3+3,∴AE2=AF2+EF2=(6√3+3)2+(3√3)2=144+36√3.∵AE=2√3BH,∴AE2=12BH2,∴BH2=12+3√3如图3−2中,当DE在BC的上方时,同法可得AF=6√3−3,EF=3√3,∴BH2=AE212=((6√3−3)2+(3√3)212=12−3√3.问题发现:如图1中,结论:AE=2√3BH,AE⊥BH.解直角三角形求出AC,BH即可判断.问题证明:如图2中,(1)中结论成立.延长BH到F使得HF=BH,连接CF.设AE交BF于O.证明△ABE∽△BCF即可解决问题.拓展应用:分两种情形:①如图3−1中,当DE在BC的下方时,延长AB交DE于F.②当DE在BC的上方时,利用上面结论求出AE2即可解决问题.本题属于几何变换综合题,考查了旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.23.【答案】解:(1)∵抛物线y=−x2+bx+c经过点A、B、C,把A(−1,0),C(0,3)代入解析式得,∴{−1−b+c=0c=3,解得b=2,c=3.故该抛物线解析式为:y=−x2+2x+3.(2)令−x2+2x+3=0,解得x1=−1,x2=3,即B(3,0),设直线BC的解析式为y=kx+b′,则,解得:,故直线BC的解析式为y=−x+3;∴设P(t,3−t),∴D(t,−t2+2t+3),∴PD=(−t2+2t+3)−(3−t)=−t2+3t,∵OB=OC=3,∴△BOC是等腰直角三角形,∴∠OCB=45°,当CD=PC时,则∠CPD=∠CDP,∵PD//y轴,∴∠CPD=∠OCB=45°,∴∠CDP =45°, ∴∠PCD =90°,∴直线CD 的解析式为y =x +3, 解{y =x +3y =−x 2+2x +3得{x =0y =3或{x =1y =4, ∴D(1,4), 此时P(1,2);当CD =PD 时,则∠DCP =∠CPD =45°, ∴∠CDP =90°, ∴CD//x 轴,∴D 点的纵坐标为3,代入y =−x 2+2x +3得,3=−x 2+2x +3, 解得x =0或x =2, 此时P(2,1);当PC =PD 时,∵PC =√2t , ∴√2t =−t 2+3t ,解得t =0或t =3−√2, 此时P(3−√2,√2);综上,当△CDP 为等腰三角形时,点P 的坐标为(1,2)或(2,1)或(3−√2,√2).(3)CN +MN +12MB 的最小值为3√3+3,N 坐标为(1,3−√3),M 坐标为(√3,0). 理由如下:如图,取G 点坐标为(0,−√3),连接BG , ∵B(3,0),∴直线BG 解析式为:y =√33x −√3,∴tan ∠GBO =30°,过M 点作MB′⊥BG ,∴B′M =12BM , ∴CN +MN +12MB =CN +MN +B′M , ∴CN +MN +12MB 取最小值时,C 、M 、N 、B′在同一条直线上, 即CB′⊥BG ,设直线CB′解析式为y =−√3x +b ,∵C(0,3) 故直线CB′解析式为为y =−√3x +3,∵抛物线的顶点为E 坐标为(1,4),EF ⊥x 轴,N 在EF 、CB′上, ∴N 坐标为(1,3−√3),M(m,0)是x 轴一个动点,也是CB′与x 轴交点, ∴M(√3,0).∵CG =3+√3,∠CGB =60°,∴CB′=CGsin∠CGB =(3+√3)×√3=3√3+3,综上所述:CN +MN +12MB 的最小值为3√3+3,N 坐标为(1,3−√3),M 坐标为(√3,0).【解析】(1)利用待定系数法即可求得此抛物线的解析式;(2)由待定系数法即可求得直线BC的解析式,再设P(t,3−t),即可得D(t,−t2+2t+3),即可求得PD的长,然后分三种情况讨论,求点P的坐标;MB转化为线段M到BG的距离,从而可知C、(3)如图2,构造BG与x轴成30°角,将12MB取最小值,根据CG的长和∠CGB=60°M、N、B′在同一条直线上时,CN+MN+12即可求出最小值.根据直线BG求出直线CB′解析式,即求出MN坐标.此题考查了待定系数法求函数的解析式、平行线的性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.。

2020年河南省鹤壁市中考数学一模试卷 (含解析)

2020年河南省鹤壁市中考数学一模试卷 (含解析)

2020年河南省鹤壁市中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1. −13的相反数是( ) A. −13 B. 13 C. −3 D. 32. 北京时间2019年4月10日人类首次直接拍摄到黑洞的照片,它是一个“超巨型”质量黑洞,位于室女座星系团中一个超大质量星系−M87的中心,距离地球5500万光年.数据“5500万光年”用科学记数法表示为( )A. 5500×104光年B. 055×108光年C. 5.5×103光年D. 5.5×107光年3. 如图是一个几何体的三视图,则该几何体的名称是( )A. 圆锥B. 棱柱C. 圆柱D. 棱锥4. 关于数据:25,26,23,27,26,23,20.下列说法正确的是( )A. 中位数是27B. 众数是23和26C. 极差是6D. 平均数是24.55. 下列运算正确的是( )A. (a −b)2=a 2−b 2B. (2a +1)(2a −1)=4a −1C. (−2a 3)2=4a 6D. x 2−8x +16=(x +4)26. 若一元二次方程x 2−2x −m =0无实数根,则一次函数y =(m +1)x +m −1的图象不经过第 象限.( )A. 四B. 三C. 二D. 一 7. 求不等式组{23x +1>02−x ≥0的整数解是( ) A. 1,2 B. 1,1,2 C. −1,1,2 D. −1,0,1,28. 如图是一个正方体的表面展开图,这个正方体可能是( )A.B.C.D.9.如图,在Rt△ABC中,∠C=90°.D为边CA延长线上一点,DE//AB,∠B=42°,则∠ADE的大小为()A. 42°B. 45°C. 48°D. 58°10.如图,在平面直角坐标系xOy中,正方形A1B1C1O、A2B2C2C1、A3B3C3C2、…、A n B n C n C n−1的顶点A1、A2、A3、…、A n均在直线y=kx+b上,顶点C l、C2、C3、…、C n在x轴上,若点B1的坐标为(1,1),点B2的坐标为(3,2),那么点A10的坐标为()A. (11,10)B. (29,28)C. (29−1,28)D. (29−1,29)二、填空题(本大题共5小题,共15.0分)11.√8−(3.14−π) 0+2cos45°=______.12.小芳的爸爸买了一篮梨回家,小芳想分给家里的每一个人,如果每人分3个,那么剩下3个梨;如果每人分4个,那么还差2个梨.小芳家共有___________人,小芳爸爸买了___________个梨.13.小明有两双不同的运动鞋,上学时,小明从中任意拿出两只,恰好能配成一双的概率是______.14.如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是______.15.如图,在等腰直角三角形△ABC中,AC=6√2,∠C=90°,∠DCE=45°,AD=3,则BE的长为______.三、解答题(本大题共8小题,共75.0分)16.先化简,再求值:(1m −1n)÷m2−2mn+n2mn,其中m=−3,n=5.17.如图,以△ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接AE、DE.(1)求证:DE是⊙O的切线;(2)设△CDE的面积为S1,四边形ABED的面积为S2.若S2=5S1,求tan∠BAC的值;(3)在(2)的条件下,若AE=3√2,求⊙O的半径长.18.如图,反比例函数y=kx 的图象经过点A(−1,4),直线y=−x+b(b≠0)与双曲线y=kx在第二、四象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点.(1)求k的值;(2)当b=−2时,求△OCD的面积;(3)连接OQ,是否存在实数b,使得S△ODQ=S△OCD?若存在,请求出b的值;若不存在,请说明理由.19.为帮助社区一位白血病儿童,某校团委向全校800名学生发起了爱心捐款活动,为了解学生捐款情况,校团委随机调查了部分学生的捐款金额,并用得到的数据绘制了如图所示的扇形统计图和条形统计图,请根据相关信息,解答下列问题:(1)本次抽样调查了几名学生?并补全条形统计图;(2)求被调查学生捐款的平均数和中位数;(3)估计全校捐款金额在捐款平均数以上的学生人数.20.如图,为了测量旗杆的高度BC,在距旗杆底部B点10米的A处,用高1.5米的测角仪DA测得旗杆顶端C的仰角∠CDE为52°,求旗杆BC的高度.(结果精确到0.1米)【参考数据sin52°=0.79,cos52°=0.62,tan52°=1.28】21.某学校计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?22.如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形,若能,求出BE的长;若不能,请说明理由;(3)当线段AM=16时,求出BE的长,并求此时重叠部分的面积.523.如图,已知二次函数y=ax2+bx+2(a≠0)的图象经过A(−1,0)、B(4,0)两点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于第一象限上的一动点,连接PA分别交BC、y轴于点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1−S2的最大值.【答案与解析】1.答案:B解析:解:−13的相反数是13.故选:B.根据只有符号不同的两个数互为相反数,可得答案.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.答案:D解析:解:5500万=55000000,∴数据“5500万光年”用科学记数法表示为5.5×107光年.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.答案:C解析:解:根据题意得:该几何体的名称是圆柱,故选C.根据几何体的三视图确定出几何体的名称即可.此题考查了由三视图判断几何体,能识别三视图表示的几何体是解本题的关键.4.答案:B解析:解:把这组数据从小到大排列为:20,23,23,25,26,26,27,最中间的数是25,则中位数是25;平均数是:(20+23+23+25+26+26+27)÷7=2427;极差是:27−20=7;23和26都出现了2次,出现的次数最多,则众数是23和26;故选B.根据平均数、众数、中位数及极差的定义和公式分别对每一项进行分析,再进行判断即可.此题考查了平均数、众数、中位数及极差的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数,极差是用最大值减去最小值.5.答案:C解析:解:A、结果是a2−2ab+b2,故本选项错误;B、结果是4a2−1,故本选项错误;C、结果是4a6,故本选项正确;D、结果是(x−4)2,故本选项错误;故选:C.先根据完全平方公式,平方差公式,幂的乘方和积的乘方分别求出每个式子的值,再判断即可.本题考查了乘法公式,幂的乘方和积的乘方,完全平方公式等知识点,能正确求出每个式子的值是解此题的关键.6.答案:D解析:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一次函数图象与系数的关系.根据判别式的意义得到△=(−2)2+4m<0,解得m<−1,然后根据一次函数的性质可得到一次函数y=(m+1)x+m−1图象经过的象限.解:∵一元二次方程x2−2x−m=0无实数根,∴Δ=b2−4ac=4−4×(−m)=4+4m<0,∴m <−1,∴m +1<−1+1,即m +1<0,m −1<−1−1,即m −1<−2,∴一次函数y =(m +1)x +m −1的图象不经过第一象限.故选D .7.答案:D解析:【试题解析】解:∵解不等式23x +1>0得:x >−32,解不等式2−x ≥0得::x ≤2,∴不等式组的解集为−32<x ≤2,∴不等式组的整数解为−1,0,1,2,故选D .先求出不等式的解集,再求出不等式组的解集,即可得出答案.本题考查了解一元一次不等式组,一元一次不等式的应用,解此题的关键是能根据不等式的解集求出不等式组的解集.8.答案:B解析:【试题解析】解:由题意,得四个小正方形组合成一个正方体的面,34是阴影,14是空白,故选:B .根据展开图折叠成几何体,四个小正方形组合成一个正方体的面,可得答案.本题考查了几何体的展开图,利用四个小正方形组合成一个正方体的面是解题关键.9.答案:C解析:本题考查平行线的性质,直角三角形的性质,先根据直角三角形的性质求出∠CAB ,根据平行线的性质求出∠ADE 的度数即可解答.解: ∵ 在 Rt △ABC 中, ∠C =90∘ ,∠B =42°,∴∠CAB =90∘−∠B =90∘−42∘=48∘,∵DE // AB ,∴∠CAB =∠ADE =48∘.故选C .10.答案:D解析:本题考查了一次函数图象上点的坐标特征.设直线方程y =kx +b 时,不要漏掉k ≠0这一条件. 首先利用待定系数法求得直线A 1A 2的解析式,然后求得A 10的坐标.解:∵B 1的坐标为(1,1),点B 2的坐标为(3,2),∴正方形A 1B 1C 1O 1边长为1,正方形A 2B 2C 2C 1边长为2,∴A 1的坐标是(0,1),A 2的坐标是:(1,2),代入y =kx +b(k ≠0)得:{ b =1 k +b =2, 解得:{ k =1 b =1, 则直线A 1A 2的解析式是:y =x +1.∵A 1B 1=1,点B 2的坐标为(3,2),∴点A 3的坐标为(3,4),∴根据点的坐标规律,可知点A n 的坐标为(2n−1−1,2n−1),∴点A 10的坐标为(29−1,29).故选D .11.答案:−1+3√2解析:解:原式=2√2−1+2×√22 =2√2−1+√2=3√2−1.故答案为:3√2−1.直接利用零指数幂的性质以及二次根式的性质和特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.12.答案:5;18解析:【试题解析】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.设小芳家有x个人,根据梨总数不变及“如果每人分3个,就剩下3个梨分不完,如果每人分4个,则还差2个梨才够分”列出方程,解方程即可.解:设小芳家有x人3x+3=4x−2x=53x+3=18答:小芳家有5人,爸爸买了18个梨.故答案为5;18.13.答案:13解析:解:设其中一双鞋分别为a,a′;另一双鞋分别为b,b′.画树状图得:∵共有12种等可能的结果,恰好能配成一双的有4种情况,∴恰好能配成一双的概率是:412=13,故答案为:13.首先设其中一双鞋分别为a,a′;另一双鞋分别为b,b′,然后根据题意画树状图,由树状图即可求得所有等可能的结果与恰好能配成一双的情况,再利用概率公式即可求得答案.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.14.答案:1解析:解:如图:设AT与圆O相交于点C,连接BC∵BT是⊙O的切线∴AB⊥TB,又∵∠ATB=45°∴∠TAB=45°=∠ATB∴AB=TB=2∵AB是直径∴∠ACB=90°∴∠CAB=∠CBA=45°=∠ATB∴AC=BC=TC∴点C是ACB⏜的中点∴S阴影=S△TCB∴S阴影=12S△ABT=12×12×2×2=1故答案为:1由题意可得:∠CAB=∠CBA=45°=∠ATB,AB=TB=2,可得AC=BC=TC,即点C是ACB⏜的中点,则S阴影=S△TCB,即S阴影=12S△ABT=12×12×2×2=1.本题考查了切线的性质,圆周角的定理,熟练运用这些性质是本题的关键.15.答案:4解析:解:如图,将△BCE绕点C逆时针旋转90°得到△ACF,连接DF,∵∠ACB=90°,AC=BC=6√2,∴AB=12,∠CAB=∠ABC=45°,∵AD=3,∴BD=9=DE+BE,∵将△BCE绕点C逆时针旋转90°得到△ACF∴△AFC≌△BEC∴AF=BE,CF=CE,∠FAC=∠ABC=45°=∠CAB,∠ACF=∠BCE,∴∠FAD=90°∵∠DCE=45°,∠ACB=90°,∴∠ACD+∠BCE=45°,∴∠ACD+∠FCA=45°=∠DCE,且CF=BC,CD=CD,∴△FCD≌△ECD(SAS)∴DE=DF,在Rt△ADF中,DF2=AD2+AF2,∴(9−BE)2=9+BE2,∴BE=4故答案为:4将△BCE绕点C逆时针旋转90°得到△ACF,连接DF,由旋转的性质可得AF=BE,CF=EC,∠FAC=∠ABC=45°=∠CAB,∠ACF=∠BCE,即可证△FCD≌△ECD,可得DE=DF,根据勾股定理可求BE的长度.本题考查了全等三角形判定和性质,等腰三角形的性质,旋转的性质,添加恰当的辅助线构造全等三角形是本题的关键.16.答案:解:(1m −1n)÷m2−2mn+n2mn,=n−mmn ÷(m−n)2mn=n−mmn ×mn(m−n)2=n−mmn ×mn(n−m)2=1n−m将m=−3,n=5代入原式得:原式=1n−m=15−(−3)=18.解析:将原式括号中两项通分并利用同分母分式的减法法则计算,整理后再利用完全平方公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,即可得到原式的值.此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找出公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.17.答案:(1)证明:连接OD,∴OD=OB∴∠ODB=∠OBD.∵AB是直径,∴∠ADB=90°,∴∠CDB=90°.∵E为BC的中点,∴DE=BE,∴∠EDB=∠EBD,∴∠ODB+∠EDB=∠OBD+∠EBD,即∠EDO=∠EBO.∵BC是以AB为直径的⊙O的切线,∴AB⊥BC,∴∠EBO=90°,∴∠ODE=90°,∴DE是⊙O的切线;(2)∵S2=5S1∴S△ADB=2S△CDB∴AD DC=21∵△BDC∽△ADB∴ADDB=DBDC∴DB2=AD⋅DC∴DBAD=√22∴tan∠BAC=DBAD =√22.(3)∵tan∠BAC=DBAD=√22∴BCAB =√22,得BC=√22AB∵E为BC的中点∴BE=√24AB∵AE=3√2,∴在Rt△AEB中,由勾股定理得(3√2)2=(√24AB)2+AB2,解得AB=4故⊙O的半径R=12AB=2.解析:(1)连接DO,由圆周角定理就可以得出∠ADB=90°,可以得出∠CDB=90°,根据E为BC 的中点可以得出DE=BE,就有∠EDB=∠EBD,OD=OB可以得出∠ODB=∠OBD,由等式的性质就可以得出∠ODE=90°就可以得出结论.(2)由S2=5S1可得△ADB的面积是△CDE面积的4倍,可求得AD:CD=2:1,可得AD:BD=2:√2.则tan∠BAC的值可求;(3)由(2)的关系即可知DBAD =BCAB,在Rt△AEB中,由勾股定理即可求AB的长,从而求⊙O的半径本题考查了圆周角定理的运用,直角三角形的性质的运用,等腰三角形的性质的运用,切线的判定定理的运用,勾股定理的运用,相似三角形的判定和性质,解答时正确添加辅助线是关键.18.答案:解:(1)将点A(−1,4)代入y=kx可得k=−4;(2)当b=−2时,直线PQ的解析式为y=−x−2,当y=0时,x=−2,即C(−2,0);当x=0时,y=−2,即D(0,−2),∴CO=DO=2.∴S△OCD=12OC⋅OD=12×2×2=2.(3)①当b<0时,易知C、D点的坐标分别为(b,0),(0,b),过Q作QE⊥y轴于点E.∵OC=OD,,,∴DE=EQ,∵S△ODQ=S△OCD,∴12DO·CO=12DO·QE,∴CO=QE,得Q(−b,2b),∵点Q在双曲线y=−4x上,∴−b·2b=−4,得b=±√2,又∵b<0,∴b=−√2.②当b>0时,易知S△ODQ=S△OCD+S△OCQ,∴S△ODQ>S△OCD不符合题意.综上所述,当b=−√2时,S△ODQ=S△OCD.解析:本题考查了反比例函数与一次函数的交点:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了反比例函数图象上点的坐标特征和三角形面积公式.(1)根据反比例函数的图象上点的坐标特征易得k=−4;(2)当b=−2时,直线解析式为y=−x−2,则利用坐标轴上点的坐标特征可求出C(−2,0),D(0,−2),然后根据三角形面积公式求解;(3)先表示出C(b,0),D(0,b),根据三角形面积公式,由于S△ODQ=S△OCD,所以点Q和点C到OD 的距离相等,则Q的横坐标为−b,利用直线解析式可得到Q(−b,2b),再根据反比例函数的图象上点的坐标特征得到−b⋅2b=−4,然后解方程即可得到满足条件的b的值.19.答案:解:(1)本次抽样调查了810%=80名学生,捐款10元的有80−(8+34+8+2)=28人,补全条形图如下:(2)捐款平均数为8×5+28×10+34×15+8×20+2×2580=13(元),中位数为15+152=15;(3)34+8+280×800=440(人),答:估计全校捐款金额在捐款平均数以上的学生有440人.解析:(1)根据捐款5元的人数及其所占百分比可得总人数,再根据各项目人数之和等于总人数可得捐款10元的人数;(2)根据加权平均数和中位数的计算方法可得答案;(3)用样本中捐款13元以上的人数所占比例乘以总人数可得.本题主要考查了条形统计图,扇形统计图,平均数和众数和中位数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.20.答案:解:过点D 作DE ⊥BC 交BC 于E ,在△CDE 中,有CE =tan52°×DE =1.28×10≈12.8米,故BC =BE +CE =1.5+12.8≈14.3米,答:旗杆的高度为14.3米.解析:此题考查的知识点是解直角三角形的应用−仰角俯角问题,关键是本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.首先分析图形:根据题意构造直角三角形△CDE ,解其可得CE 的长,进而借助BC =EC +EB 可解即可求出答案.21.答案:解:(1)设A 型空调和B 型空调每台各需x 元、y 元,{3x +2y =390004x −5y =6000,解得{x =9000y =6000, 答:A 型空调和B 型空调每台各需9000元、6000元;(2)设购买A 型空调a 台,则购买B 型空调(30−a)台,{a ≥12(30−a)9000a +6000(30−a)≤217000, 解得,10≤a ≤1213,∴a =10、11、12,共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,方案三:采购A 型空调12台,B 型空调18台;(3)设总费用为w元,w=9000a+6000(30−a)=3000a+180000,∴当a=10时,w取得最小值,此时w=210000,即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.解析:(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意求出函数,结合(2)中的结果,即可求出答案.本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.22.答案:(1)证明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.解:∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC−EC=6−5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴CEAC =ACCB,∴CE=AC2CB =256,∴BE=6−256=116;∴BE=1或116.若AE=AM,此时E点与B点重合,M点与C点重合,即BE=0.∴BE=1或116或0.(3)解:设BE=x,又∵△ABE∽△ECM,∴CMBE =CEAB,即:CMx =6−x5,∴CM=−x25+65x=−15(x−3)2+95,∴AM=5−CM═15(x−3)2+165,∴当x=3时,AM最短为165,又∵当BE=x=3=12BC时,∴点E为BC的中点,∴AE⊥BC,∴AE=√AB2−BE2=4,此时,EF⊥AC,∴EM=√CE2−CM2=125,S△AEM=12×165×125=9625.解析:此题考查了相似三角形的判定与性质、全等三角形的判定与性质以及二次函数的最值问题.此题难度较大,注意数形结合思想、分类讨论思想与函数思想的应用是解此题的关键.(1)由AB =AC ,根据等边对等角,可得∠B =∠C ,又由△ABC≌△DEF 与三角形外角的性质,易证得∠CEM =∠BAE ,则可证得:△ABE∽△ECM ;(2)首先由∠AEF =∠B =∠C ,且∠AME >∠C ,可得AE ≠AM ,然后分别从AE =EM 与AM =EM 去分析,注意利用全等三角形与相似三角形的性质求解即可求得答案;(3)首先设BE =x ,由△ABE∽△ECM ,根据相似三角形的对应边成比例,易得CM =−x 25+65x =−15(x −3)2+95,继而求得AM 的值,利用二次函数的性质,即可求得线段AM 的最小值,继而求得重叠部分的面积.23.答案:解:(1)把点A(−1,0)和B(4,0)代入y =ax 2+bx +2中,得:{a −b +2=016a +4b +2=0,解得:{a =−12b =32, ∴二次函数的解析式为:y =−12x 2+32x +2;(2)当点D 在x 轴上方时,过C 作CD//AB 交抛物线于点D ,如图,∵A 、B 关于对称轴对称,C 、D 关于对称轴对称,∴四边形ABDC 为等腰梯形,∴∠CAO =∠DBA ,即点D 满足条件,∴D(3,2);当点D 在x 轴下方时,∵∠DBA =∠CAO ,∴BD//AC ,∵C(0,2),∴设直线AC 的解析式为y =kx +2,把A(−1,0)代入可得:k =2,∴直线AC 的解析式为y =2x +2,∴设直线BD 的解析式为y =2x +m ,把B(4,0)代入可得:m =−8,∴直线BD 的解析式为y =2x −8,联立直线BD 和抛物线解析式可得:{y =2x −8y =−12x 2+32x +2,解得:{x =4y =0或{x =−5y =−18, ∴D(−5,−18);综上所述,满足条件的点D 的坐标为(3,2)或(−5,−18);(3)设P(t,−12t 2+32t +2),∵AB =5,OC =2,∴S △PAB =12·(−12t 2+32t +2)×5=−54t 2+154t +5, ∵OF−12t 2+32t+2=1t+1, ∴OF =−12(t −4),∴S △AFO =12×1×[−12(t −4)]=−14(t −4),S △BOC =12×2×4=4, ∴S 1−S 2=−54t 2+154t +5+14(t −4)−4=−54(t −85)2+165, ∴当t =85时,S 1−S 2有最大值,最大值为165.解析:本题考查了待定系数法求一次函数解析式和二次函数解析式,三角形的面积,平行线的判定与性质,分类讨论思想.(1)把A ,B 的坐标代入,利用待定系数法即可求得二次函数的解析式;(2)分两种情况讨论:当点D 在x 轴上方时,则CD//AB 时,满足条件,由对称性即可求得D 的坐标;当点D 在x 轴下方时,证得BD//AC ,待定系数法求直线AC ,BD 的解析式,再联立直线BD 和抛物线解析式即可求得点D 坐标;(3)可设出点P 的坐标,表示出△PAB ,△AFO ,△BOC 的面积,即可把S 1−S 2表示成关于P 点坐标的二次函数,根据二次函数的性质即可得到结论.。

2020年河南省中考数学一模试卷(解析版)

2020年河南省中考数学一模试卷(解析版)

2020年河南省中考数学一模试卷一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的)1.(3分)下列各数中,最大的数是()A.﹣B.C.0D.﹣22.(3分)据统计,今年“五一”小长假期间,我市约有26.8万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是()A.268×103B.26.8×104C.2.68×105D.0.268×106 3.(3分)如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.4.(3分)下列计算正确的是()A.a3+a3=a6B.(x﹣3)2=x2﹣9C.a3•a3=a6D.5.(3分)下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差6.(3分)若关于x的方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k<﹣1C.k≥﹣1且k≠0D.k>﹣1且k≠0 7.(3分)系统找不到该试题8.(3分)阿信、小怡两人打算搭乘同一班次电车上学,若此班次电车共有5节车厢,且阿信从任意一节车厢上车的机会相等,小怡从任意一节车厢上车的机会相等,则两人从同一节车厢上车的概率为何()A.B.C.D.9.(3分)如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD=AD,∠B=20°,则下列结论中错误的是()A.∠CAD=40°B.∠ACD=70°C.点D为△ABC的外心D.∠ACB=90°10.(3分)在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A 出发沿AB向点B运动,动点F从点D出发,沿折线D﹣C﹣B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x的图象大致为()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)若,则x2+2x+1=.12.(3分)已知反比例函数y=,当x>0时,y随x增大而减小,则m的取值范围是.13.(3分)不等式组有2个整数解,则实数a的取值范围是.14.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=,分别以点A,B 为圆心,AC,BC的长为半径画弧,交AB于点D,E,则图中阴影部分的面积是.15.(3分)如图,在菱形ABCD中,∠A=60°,AB=3,点M为AB边上一点,AM=2,点N为AD边上的一动点,沿MN将△AMN翻折,点A落在点P处,当点P在菱形的对角线上时,AN的长度为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+.17.(9分)如图,△ABC内接于圆O,且AB=AC,延长BC到点D,使CD=CA,连接AD交圆O于点E.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为时,四边形AOCE是菱形.②若AE=,AB=2,则DE的长为.18.(9分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.(1)该班共有名留守学生,B类型留守学生所在扇形的圆心角的度数为;(2)将条形统计图补充完整;(3)已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?19.(9分)如图,某小区有甲、乙两座楼房,楼间距BC为50米,在乙楼顶部A点测得甲楼顶部D点的仰角为37°,在乙楼底部B点测得甲楼顶部D点的仰角为60°,则甲、乙两楼的高度为多少?(结果精确到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)20.(9分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x<0)的图象经过AO的中点C,交AB于点D.若点D 的坐标为(﹣4,n),且AD=3.(1)求反比例函数y=的表达式;(2)求经过C、D两点的直线所对应的函数解析式;(3)设点E是线段CD上的动点(不与点C、D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.21.(10分)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.22.(10分)【问题提出】在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=120°,连接AD,求∠ADB的度数.(不必解答)【特例探究】小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是三角形;∠ADB的度数为.【问题解决】在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;【拓展应用】在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=2.请直接写出线段BE的长为.23.(11分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y 轴交于点C,且过点D(2,﹣3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求△POD面积的最大值.(3)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.2020年河南省中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的)1.(3分)下列各数中,最大的数是()A.﹣B.C.0D.﹣2【分析】比较确定出最大的数即可.【解答】解:﹣2<﹣<0<,则最大的数是,故选:B.【点评】此题考查了有理数大小比较,熟练掌握运算法则是解本题的关键.2.(3分)据统计,今年“五一”小长假期间,我市约有26.8万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是()A.268×103B.26.8×104C.2.68×105D.0.268×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将26.8万用科学记数法表示为:2.68×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【解答】解:从左面看所得到的图形是正方形,切去部分的棱能看到,用实线表示,故选:C.【点评】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.4.(3分)下列计算正确的是()A.a3+a3=a6B.(x﹣3)2=x2﹣9C.a3•a3=a6D.【分析】直接利用合并同类项法则以及完全平方公式和同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、a3+a3=2a3,故此选项错误;B、(x﹣3)2=x2﹣6x+9,故此选项错误;C、a3•a3=a6,正确;D、+无法计算,故此选项错误.故选:C.【点评】此题主要考查了合并同类项以及完全平方公式和同底数幂的乘除运算,正确掌握相关运算法则是解题关键.5.(3分)下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10﹣x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:=14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.6.(3分)若关于x的方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k<﹣1C.k≥﹣1且k≠0D.k>﹣1且k≠0【分析】根据△的意义得到k≠0且△=4﹣4k×(﹣1)>0,然后求出两不等式的公共部分即可.【解答】解:∵x的方程kx2+2x﹣1=0有两个不相等的实数根,∴k≠0且△=4﹣4k×(﹣1)>0,解得k>﹣1,∴k的取值范围为k>﹣1且k≠0.故选:D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.7.(3分)系统找不到该试题8.(3分)阿信、小怡两人打算搭乘同一班次电车上学,若此班次电车共有5节车厢,且阿信从任意一节车厢上车的机会相等,小怡从任意一节车厢上车的机会相等,则两人从同一节车厢上车的概率为何()A.B.C.D.【分析】根据阿信、小怡各有5节车厢可选择,共有25种,两人在不同车厢的情况数是20种,得出在同一节车厢上车的情况数是5种,根据概率公式即可得出答案.【解答】解:二人上5节车厢的情况数是:5×5=25,两人在不同车厢的情况数是5×4=20,则两人从同一节车厢上车的概率是=;故选:B.【点评】此题主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.9.(3分)如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD=AD,∠B=20°,则下列结论中错误的是()A.∠CAD=40°B.∠ACD=70°C.点D为△ABC的外心D.∠ACB=90°【分析】由题意可知直线MN是线段BC的垂直平分线,故BN=CN,∠B=∠C,故可得出∠CDA的度数,根据CD=AD可知∠DCA=∠CAD,故可得出∠CAD的度数,进而可得出结论.【解答】解:∵由题意可知直线MN是线段BC的垂直平分线,∴BD=CD,∠B=∠BCD,∵∠B=20°,∴∠B=∠BCD=20°,∴∠CDA=20°+20°=40°.∵CD=AD,∴∠ACD=∠CAD==70°,∴A错误,B正确;∵CD=AD,BD=CD,∴CD=AD=BD,∴点D为△ABC的外心,故C正确;∵∠ACD=70°,∠BCD=20°,∴∠ACB=70°+20°=90°,故D正确.故选:A.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.10.(3分)在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A 出发沿AB向点B运动,动点F从点D出发,沿折线D﹣C﹣B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x的图象大致为()A.B.C.D.【分析】根据题意找到临界点,E、F分别同时到达D、C,画出一般图形利用锐角三角函数表示y即可.【解答】解:在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,∴AD=DC=DB=2,∠CDB=60°∵EF两点的速度均为1cm/s∴当0≤x≤2时,y=当2≤x≤4时,y=由图象可知A正确故选:A.【点评】本题为动点问题可函数图象探究题,考查了二次函数图象和锐角三角函数函数的应用,解答关键是分析动点到达临界点前后图形的变化.二、填空题(每小题3分,共15分)11.(3分)若,则x2+2x+1=2.【分析】首先把所求的式子化成=(x+1)2的形式,然后代入求值.【解答】解:原式=(x+1)2,当x=﹣1时,原式=()2=2.【点评】本题考查了二次根式的化简求值,正确对所求式子进行变形是关键.12.(3分)已知反比例函数y=,当x>0时,y随x增大而减小,则m的取值范围是m>2.【分析】根据反比例函数y=,当x>0时,y随x增大而减小,可得出m﹣2>0,解之即可得出m的取值范围.【解答】解:∵反比例函数y=,当x>0时,y随x增大而减小,∴m﹣2>0,解得:m>2.故答案为:m>2.【点评】本题考查了反比例函数的性质,根据反比例函数的性质找出m﹣2>0是解题的关键.13.(3分)不等式组有2个整数解,则实数a的取值范围是8≤a<13.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:解不等式3x﹣5>1,得:x>2,解不等式5x﹣a≤12,得:x≤,∵不等式组有2个整数解,∴其整数解为3和4,则4≤<5,解得:8≤a<13,故答案为:8≤a<13.【点评】本题考查解不等式组及不等组的整数解,正确解出不等式组的解集,确定a的范围是解决本题的关键.14.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=,分别以点A,B为圆心,AC,BC的长为半径画弧,交AB于点D,E,则图中阴影部分的面积是﹣.【分析】根据题意和图形可知阴影部分的面积是扇形BCE 与扇形ACD 的面积之和与Rt △ABC 的面积之差.【解答】解:∵在Rt △ABC ,∠C =90°,∠A =30°,AC =, ∴∠B =60°,BC =tan30°×AC =1,阴影部分的面积S =S 扇形BCE +S 扇形ACD ﹣S △ACB =+﹣=﹣,故答案为:﹣. 【点评】本题考查扇形面积的计算、含30°角的直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.15.(3分)如图,在菱形ABCD 中,∠A =60°,AB =3,点M 为AB 边上一点,AM =2,点N 为AD 边上的一动点,沿MN 将△AMN 翻折,点A 落在点P 处,当点P 在菱形的对角线上时,AN 的长度为 2或5﹣ .【分析】分两种情况:①当点P 在菱形对角线AC 上时,由折叠的性质得:AN =PN ,AM =PM ,证出∠AMN =∠ANM =60°,得出AN =AM =2;②当点P 在菱形对角线BD 上时,设AN =x ,由折叠的性质得:PM =AM =2,PN =AN=x ,∠MPN =∠A =60°,求出BM =AB ﹣AM =1,证明△PDN ∽△MBP ,得出==,求出PD =x ,由比例式=,求出x 的值即可.【解答】解:分两种情况:①当点P 在菱形对角线AC 上时,如图1所示::由折叠的性质得:AN =PN ,AM =PM ,∵四边形ABCD是菱形,∠BAD=60°,∴∠PAM=∠PAN=30°,∴∠AMN=∠ANM=90°﹣30°=60°,∴AN=AM=2;②当点P在菱形对角线BD上时,如图2所示:设AN=x,由折叠的性质得:PM=AM=2,PN=AN=x,∠MPN=∠A=60°,∵AB=3,∴BM=AB﹣AM=1,∵四边形ABCD是菱形,∴∠ADC=180°﹣60°=120°,∠PDN=∠MBP=∠ADC=60°,∵∠BPN=∠BPM+60°=∠DNP+60°,∴∠BPM=∠DNP,∴△PDN∽△MBP,∴==,即==,∴PD=x,∴=x解得:x=5﹣或x=5+(不合题意舍去),∴AN=5﹣,综上所述,AN的长为2或5﹣;故答案为:2或5﹣.【点评】本题考查了翻折变换的性质、菱形的性质、相似三角形的判定与性质、等腰三角形的判定以及分类讨论等知识;熟练掌握翻折变换的性质,证明三角形相似是关键.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+.【分析】根据分式的运算法则以及实数的运算法则即可求出答案.【解答】解:当x=sin30°+2﹣1+时,∴x=++2=3原式=÷==﹣5【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9分)如图,△ABC内接于圆O,且AB=AC,延长BC到点D,使CD=CA,连接AD交圆O于点E.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为60°时,四边形AOCE是菱形.②若AE=,AB=2,则DE的长为.【分析】(1)根据AAS证明两三角形全等;(2)①先证明∠AOC=∠AEC=120°,∠OAE=∠OCE=60°,可得▱AOCE,由OA =OC可得结论;②由△ABE≌△CDE知AE=CE=,AB=CD=2,证△DCE∽△DAB得=,据此求解即可.【解答】解:(1)∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD,∵四边形ABCE是圆内接四边形,∴∠ECD=∠BAE,∠CED=∠ABC,∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≌△CDE(AAS);(2)①当∠ABC的度数为60°时,四边形AOCE是菱形;理由是:连接AO、OC,∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180°,∵∠ABC=60,∴∠AEC=120°=∠AOC,∵OA=OC,∴∠OAC=∠OCA=30°,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠ACB=∠CAD+∠D,∵AC=CD,∴∠CAD=∠D=30°,∴∠ACE=180°﹣120°﹣30°=30°,∴∠OAE=∠OCE=60°,∴四边形AOCE是平行四边形,∵OA=OC,∴▱AOCE是菱形;②∵△ABE≌△CDE,∴AE=CE=,AB=CD=2,∵∠DCE=∠DAB,∠D=∠D,∴△DCE∽△DAB,∴=,即=,解得DE=,故答案为:.【点评】本题是圆的综合题,考查了等腰三角形的性质、等边三角形的性质和判定、三角形相似和全等的性质和判定、四点共圆的性质、菱形的判定等知识,难度适中,正确判断圆中角的关系是关键.18.(9分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.(1)该班共有10名留守学生,B类型留守学生所在扇形的圆心角的度数为144;(2)将条形统计图补充完整;(3)已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?【分析】(1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B 类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;(2)依据D类型留守学生的数量,即可将条形统计图补充完整;(3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益.【解答】解:(1)2÷20%=10(人),×100%×360°=144°,故答案为:10,144;(2)10﹣2﹣4﹣2=2(人),如图所示:(3)2400××20%=96(人),答:估计该校将有96名留守学生在此关爱活动中受益.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.19.(9分)如图,某小区有甲、乙两座楼房,楼间距BC为50米,在乙楼顶部A点测得甲楼顶部D点的仰角为37°,在乙楼底部B点测得甲楼顶部D点的仰角为60°,则甲、乙两楼的高度为多少?(结果精确到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)【分析】作AE⊥CD于E.则四边形ABCE是矩形.解直角三角形分别求出CD,DE即可解决问题.【解答】解:作AE⊥CD于E.则四边形ABCE是矩形.在Rt△BCD中,CD=BC•tan60°=50×≈87(米),在Rt△ADE中,∵DE=AE•tan37°=50×0.75≈38(米),∴AB=CE=CD﹣DE=87﹣38=49(米).答:甲、乙两楼的高度分别为87米,49米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(9分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x<0)的图象经过AO的中点C,交AB于点D.若点D 的坐标为(﹣4,n),且AD=3.(1)求反比例函数y=的表达式;(2)求经过C、D两点的直线所对应的函数解析式;(3)设点E是线段CD上的动点(不与点C、D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.【分析】(1)先确定出点A坐标,进而得出点C坐标,将点C,D坐标代入反比例函数中即可得出结论;(2)由n=1,求出点C,D坐标,利用待定系数法即可得出结论;(3)设出点E坐标,进而表示出点F坐标,即可建立面积与m的函数关系式即可得出结论.【解答】解:(1)∵AD=3,D(﹣4,n),∴A(﹣4,n+3),∵点C是OA的中点,∴C(﹣2,),∵点C,D(﹣4,n)在双曲线y=上,∴,∴,∴反比例函数解析式为y=﹣;②由①知,n=1,∴C(﹣2,2),D(﹣4,1),设直线CD的解析式为y=ax+b,∴,∴,∴直线CD的解析式为y=x+3;(3)如图,由(2)知,直线CD的解析式为y=x+3,设点E(m,m+3),由(2)知,C(﹣2,2),D(﹣4,1),∴﹣4<m<﹣2,∵EF∥y轴交双曲线y=﹣于F,∴F(m,﹣),∴EF=m+3+,=(m+3+)×(﹣m)=﹣(m2+3m+4)=﹣(m+3)2+,∴S△OEF∵﹣4<m<﹣2,最大,最大值为.∴m=﹣3时,S△OEF【点评】此题是反比例函数综合题,主要考查了待定系数法,线段的中点坐标公式,解与m的函数关系式.本题的关键是建立S△OEF21.(10分)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.【分析】(1)根据题意列函数关系式即可;(2)设每天扣除捐赠后可获得利润为w 元.根据题意得到w =(x ﹣20﹣a )(﹣10x +500)=﹣10x 2+(10a +700)x ﹣500a ﹣10000(30≤x ≤38)求得对称轴为x =35+a ,若0<a<6,则30a ,则当x =35+a 时,w 取得最大值,解方程得到a 1=2,a 2=58,于是得到a =2.【解答】解:(1)根据题意得,y =250﹣10(x ﹣25)=﹣10x +500(30≤x ≤38); (2)设每天扣除捐赠后可获得利润为w 元.w =(x ﹣20﹣a )(﹣10x +500)=﹣10x 2+(10a +700)x ﹣500a ﹣10000(30≤x ≤38)对称轴为x =35+a ,且0<a ≤6,则30a ≤38,则当x =35+a 时,w 取得最大值,∴(35+a ﹣20﹣a )[﹣10(35+a )+500]=1960∴a 1=2,a 2=58(不合题意舍去),∴a =2.【点评】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,正确的理解题意,确定变量,建立函数模型.22.(10分)【问题提出】在△ABC 中,AB =AC ≠BC ,点D 和点A 在直线BC 的同侧,BD =BC ,∠BAC =α,∠DBC =β,且α+β=120°,连接AD ,求∠ADB 的度数.(不必解答)【特例探究】小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB 为对称轴构造△ABD 的轴对称图形△ABD ′,连接CD ′(如图2),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D ′BC 的形状是 等边 三角形;∠ADB 的度数为 30° .【问题解决】在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;【拓展应用】在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=2.请直接写出线段BE的长为7+或7﹣.【分析】【特例探究】①如图2中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等边三角形;②借助①的结论,再判断出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解决问题.【问题解决】当60°<α≤120°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1).【拓展应用】第①种情况:当60°<α≤120°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论.【解答】解:【特例探究】①如图2中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等边三角形,②∵△D′BC是等边三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.故答案为:等边,30°;【问题解决】解:∵∠DBC<∠ABC,∴60°<α≤120°,如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=120°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.【拓展应用】第①情况:当60°<α<120°时,如图3﹣1,由(2)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=2,∴DE=,∵△BCD'是等边三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣;第②情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.同理可得:∠ABC =(180°﹣α)=90°﹣α,∴∠ABD =∠DBC ﹣∠ABC =β﹣(90°﹣α),同(1)①可证△ABD ≌△ABD ′,∴∠ABD =∠ABD ′=β﹣(90°﹣α),BD =BD ′,∠ADB =∠AD ′B ,∴∠D ′BC =∠ABC ﹣∠ABD ′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β), ∴D ′B =D ′C ,∠BD ′C =60°.同(1)②可证△AD ′B ≌△AD ′C ,∴∠AD ′B =∠AD ′C ,∵∠AD ′B +∠AD ′C +∠BD ′C =360°,∴∠ADB =∠AD ′B =150°,在Rt △ADE 中,∠ADE =30°,AD =2,∴DE =,∴BE =BD +DE =7+,故答案为:7+或7﹣. 【点评】此题是三角形综合题,主要考查全等三角形的判定和性质.等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.23.(11分)如图,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣1,0),点B (3,0),与y 轴交于点C ,且过点D (2,﹣3).点P 、Q 是抛物线y =ax 2+bx +c 上的动点. (1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求△POD 面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当△OBE 与△ABC 相似时,求点Q 的坐标.【分析】(1)函数的表达式为:y=a(x+1)(x﹣3),将点D坐标代入上式,即可求解;(2)S=×OG(x D﹣x P)=(3+2m)(2﹣m)=﹣m2+m+3,即可求解;△POD(3)分∠ACB=∠BOQ、∠BAC=∠BOQ,两种情况分别求解,通过角的关系,确定直线OQ倾斜角,进而求解.【解答】解:(1)函数的表达式为:y=a(x+1)(x﹣3),将点D坐标代入上式并解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)设直线PD与y轴交于点G,设点P(m,m2﹣2m﹣3),将点P、D的坐标代入一次函数表达式:y=sx+t并解得:直线PD的表达式为:y=mx﹣3﹣2m,则OG=3+2m,S=×OG(x D﹣x P)=(3+2m)(2﹣m)=﹣m2+m+3,△POD∵﹣1<0,故S△POD有最大值,当m=时,其最大值为;(3)∵OB=OC=3,∴∠OCB=∠OBC=45°,∵∠ABC=∠OBE,故△OBE与△ABC相似时,分为两种情况:①当∠ACB=∠BOQ时,AB=4,BC=3,AC=,过点A作AH⊥BC于点H,S△ABC=×AH×BC=AB×OC,解得:AH=2,则sin∠ACB==,则tan∠ACB=2,则直线OQ的表达式为:y=﹣2x…②,联立①②并解得:x=,故点Q1(,﹣2),Q2(﹣,2),②∠BAC=∠BOQ时,tan∠BAC==3=tan∠BOQ,则点Q(n,﹣3n),则直线OQ的表达式为:y=﹣3x…③,联立①③并解得:x=,故点Q3(,),Q4(,);综上,当△OBE与△ABC相似时,Q的坐标为:(,﹣2)或(,)或(﹣,2)或(,).【点评】本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.。

河南省郑州市中原名校2020届中考数学一模试卷 (含解析)

河南省郑州市中原名校2020届中考数学一模试卷 (含解析)

河南省郑州市中原名校2020届中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−35的绝对值是()A. −53B. 35C. −35D. 532.2017年我省粮食总产量为695.2亿斤,其中695.2亿用科学记数法表示为()A. 6.952×106B. 6.952×108C. 6.952×1010D. 695.2×1083.如图,在△ABC中,∠ABC=90°,∠C=20°,DE是边AC的垂直平分线,连结AE,则∠BAE等于()A. 20∘B. 40∘C. 50∘D. 70∘4.下列计算正确的是()A. (m−n)2=m2−n2B. (2ab3)2=2a2b6C. 2xy+3xy=5xyD. √a34=2a√a5.下面由7个完全相同的小正方体组成的几何体的左视图是()A. B. C. D.6.一元二次方程(x+1)(x−3)=2x−5根的情况是()A. 有一个正根,一个负根B. 有两个负根C. 无实数根D. 有两个正根7.一组数据1,5,4,3,5,2,5的中位数和众数分别是()A. 4,3B. 3,5C. 5,5D. 4,58.已知点(−2,y1)和(4,y2)都在直线y=(k−5)x+4上,若y1<y2,则k的取值范围是()A. k>0B. k<0C. k>5D. k<59.如图,在四边形ABCD中,∠DAB=90°,AD//BC,BC=12AD,AC与BD 交于点E,AC⊥BD,则tan∠BAC的值是()A. 14B. √24C. √22D. 1310.如图,在△OAB中,顶点O(0,0),A(−3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A. (10,3)B. (−3,10)C. (10,−3)D. (3,−10)二、填空题(本大题共5小题,共15.0分)11.计算:2−1−√9=______12.不等式组{2x+1>−12x−13≥x−1的整数解有______个.13.如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=kx(k> 0,x>0)的图象经过点A,B两点,若点A的坐标为(1,n),则k的值为____.14.如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,√3),则在旋转过程中线段OC扫过部分(阴影部分)的面积为_________.15.矩形ABCD中,AD=√2AB,AF平分∠BAD,DF⊥AF于点F,BF交CD于点H,若AB=4,则BC−CH=_____.三、解答题(本大题共8小题,共75.0分)16.先化简,再求值:(1−4x2)÷x2−2xx2,其中x=−tan45°.17.如图,AB是⊙O的直径,点C,D是⊙O半圆上三等分点,过点D作DE⊥AB,垂足为F,交⊙O于点E,连接BE.(1)求证:OC//AD;(2)试判断四边形AOCD的形状,并说明理由;(3)若CD=2,求BE的长.18.某市为了了解九年级男生的身体素质情况,从全市中随机抽取了部分男生的长跑测试成绩,按中考体育评分标准进行记录,抽取学生的测试成绩为最高分为20分,最低分为3分(取整数),按成绩由低到高分成六组,绘制了频数分布直方图,已知第4组11.5~14.5的频数占所抽取人数中的20%,根据图示及上述相关信息解答下列问题:(1)抽取的总人数为:______人;(2)补全第三组的直方图,并在直方图上标出频数;(3)测试成绩的中位数落在第______组;(4)如果全市共有6400名考生,估计成绩大于或等于15分的学生约有多少人?19.如图是某小区的一个健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)20.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(x> 21.如图1,在平面直角坐标系中,点A(0,4),B(1,m)都在直线y=−2x+b上,反比例函数y=kx0)的图象经过点B.(1)直接写出m和k的值;(2)如图2,将线段AB向右平移n个单位长度(n≥0),得到对应线段CD,连接AC,BD.①在平移过程中,若反比例函数图象与线段AB有交点,求n的取值范围;②在平移过程中,连接BC,若△BCD是直角三角形,请直接写出所有满足条件n的值.22.操作:如图,点O为线段MN的中点,直线PQ为MN相交于点D,利用此图(1)作一个平行四边形AMBN,使A、B两点都在直线PQ上(只保留作图痕迹,不写作法)(2)根据上述经验探究:在▱ABCD中,AE⊥CD交CD于E点,F为BC的中点,连接EF、AF.试猜想EF与AF的关系,并给予证明.(3)若∠D=60°,AD=4,CD=3,求EF的长.x+2经过点B,23.如图,抛物线y=−x2+bx+c交x轴于A,B两点,交y轴于点C直线y=−12 C.(1)求抛物线的解析式;(2)点P是直线BC上方抛物线上一动点,设点P的横坐标为m.①求△PBC面积最大值和此时m的值;②Q是直线BC上一动点,是否存在点P,使以A、B、P、Q为顶点的四边形是平行四边形,若存在,直接写出点P的坐标.-------- 答案与解析 --------1.答案:B解析:解:−35的绝对值是35,即|−35|=35.故选:B.根据负数的绝对值等于它的相反数解答.本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.答案:C解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:695.2亿=69520000000=6.952×1010,故选C.3.答案:C解析:本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键,根据三角形的内角和定理求出∠BAC,根据线段垂直平分线的性质得到EC=EA,求出∠EAC,计算即可.解:∵∠ABC=90°,∠C=20°,∴∠BAC=70°,∵DE是边AC的垂直平分线,∴EC=EA,∴∠EAC=∠C=20°,∴∠BAE=∠BAC−∠EAC=50°,故选:C.。

2020年河南省南阳市中考数学一模试卷及答案解析

2020年河南省南阳市中考数学一模试卷及答案解析

2020年河南省南阳市中考数学一模试卷
一、选择题:(每小题3分,共30分.)(下列各小题只有一个答案是正确的.)
1.(3分)在下列四个数中,最小的数是()
A.﹣2B.2﹣1C.√3D.0
2.(3分)5月5日,从省文化和旅游厅获悉,今年“五一”假期,全省累计接待国内游客1692.11万人次,实现旅游总收入79.26亿元.数据“79.26亿”用科学记数法表示为()A.79.26×108B.7.926×109C.79.26×109D.7.926×108 3.(3分)一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点F在CB的延长线上.若DE∥CF,则∠BDF等于()
A.35°B.30°C.25°D.15°
4.(3分)下列运算正确的是()
A.2√2+3√3=5√5B.(a2)3=a5C.a3•a2=a5D.√6+√3=√2 5.(3分)如图,甲、乙、丙三个图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是()
A.仅有甲和乙相同B.仅有甲和丙相同
C.仅有乙和丙相同D.甲、乙、丙都相同
6.(3分)如图,顽皮的小聪在小芳的作业本上用红笔画了个“×”(作业本中的横格线都平行,且相邻两条横格线间的距离都相等),A、B、C、D、O都在横格线上,且线段AD、BC交于点O.若线段AB=4cm,则线段CD长为()
第1 页共28 页。

2020年河南省许昌市中考数学一模试卷 (解析版)

2020年河南省许昌市中考数学一模试卷 (解析版)

2020年中考数学一模试卷一、选择题(共10小题)1.﹣的相反数是()A.6B.﹣6C.D.﹣2.据新华社报道,我国粮食总产量连续5年稳定在6500亿公斤以上,粮食储备充足,口粮绝对安全.将数据“6500亿”用科学记数法表示为()A.65×1011B.6.5×1011C.65×1012D.6.5×10123.如图,将一块三角尺的直角顶点放在直尺的一边上,当∠1=35°时,∠2的度数为()A.35°B.45°C.55°D.65°4.下面计算正确的是()A.3a﹣2a=1B.2a2+4a2=6a4C.(x3)2=x5D.x8÷x2=x65.桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为该位置小正方体的个数,则这个组合体的左视图为()A.B.C.D.6.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.九年级一班同学根据兴趣分成A、B、C、D、E五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则D小组的人数是()A.10人B.11人C.12人D.15人8.在二次函数y=x2﹣2x﹣3中,当0≤x≤3时,y的最大值和最小值分别是()A.0,﹣4B.0,﹣3C.﹣3,﹣4D.0,09.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于点P;连接AP并延长交BC 于点E,连接EF.若四边形ABEF的周长为12,∠C=60°,则四边形ABEF的面积是()A.9B.12C.D.610.如图,在正方形ABCD中,顶点A(﹣1,0),C(1,2),点F是BC的中点,CD 与y轴交于点E,AF与BE交于点G.将正方形ABCD绕点O顺时针旋转,每次旋转90°,则第99次旋转结束时,点G的坐标为()A.(,)B.(﹣,)C.(﹣,)D.(,﹣)二、填空题(每小题3分,共15分)11.计算:(π+1)0+|﹣2|﹣()﹣2=.12.方程(x+2)(x﹣3)=x+2的解是.13.在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛,恰好选中甲、乙两位同学的概率为.14.如图,在扇形OAB中,∠AOB=90°,C是OA的中点,D是的中点,连接CD、CB.若OA=2,则阴影部分的面积为.(结果保留π)15.如图,在△ABC中,AB=AC=,∠B=30°,D是BC上一点,连接AD,把△ABD 沿直线AD折叠,点B落在B′处,连接B'C,若△AB'C是直角三角形,则BD的长为.三、解答题(本大题8个小题,共75分)16.先化简,再求值:•÷,其中x、y满足=2.17.为普及防治疫情科学知识和方法,不断增强同学们的自我保护意识,学校举办了疫情防控网络知识竞答活动,试卷题目共10题,每题10分.现分别从七年级的三个班中各随机取10名同学的成绩(单位:分),收集数据如表:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:分数60708090100人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让同学们重视疫情防控知识的学习,学校将给竞答成绩满分的同学颁发奖状,该校七年级新生共600人,试估计需要准备多少张奖状?18.如图,AB是半圆O的直径,C是半圆O上一点(不与点A、B重合),D 是的中点,DE⊥AB于点E,过点C作半圆O的切线,交ED的延长线于点F.(1)求证:∠FCD=∠ADE;(2)填空:①当∠FCD的度数为时,四边形OADC是菱形;②若AB=2,当CF∥AB时,DF的长为.19.数学兴趣小组想测量河对岸两颗大树C、D之间的距离.如图所示,在河岸A点测得大树C位于正北方向上,大树D位于北偏东42°方向上.再沿河岸向东前进100米到达B处,测得大树D位于北偏东31°方向上.求两颗大树C、D之间的距离.(结果精确到1米.参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,coo42°≈0.74,tan42°≈0.90).20.某商场销售A、B两种型号的电风扇,进价及售价如表:品牌A B进价(元/台)120180售价(元/台)150240(1)该商场4月份用21000元购进A、B两种型号的电风扇,全部售完后获利6000元,求商场4月份购进A、B两种型号电风扇的数量;(2)该商场5月份计划用不超过42000元购进A、B两种型号电风扇共300台,且B种型号的电风扇不少于50台;销售时准备A种型号的电风扇价格不变,B种型号的电风扇打9折销售.那么商场如何进货才能使利润最大?21.若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数,下面我们参照学习函数的过程与方法,探究分段函数y=的图象与性质,探究过程如下,请补充完整.(1)列表:x…﹣4﹣3﹣2﹣101234…y…3m10121n…其中,m=,n=.(2)描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示,请画出函数的图象.(3)研究函数并结合图象与表格,回答下列问题:①点A(,y1),B(5,y2),C(x1,),D(x2,6)在函数图象上,则y1y2,x1x2;(填“>”,“=”或“<”)②当函数值y=1时,求自变量x的值;(4)若直线y=﹣x+b与函数图象有且只有一个交点,请直接写出b的取值范围.22.(1)发现如图1,△ABC和△ADE均为等边三角形,点D在BC边上,连接CE.填空:①∠DCE的度数是;②线段CA、CE、CD之间的数量关系是.(2)探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在BC边上,连接CE.请判断∠DCE的度数及线段CA、CE、CD之间的数量关系,并说明理由.(3)应用如图3,在Rt△ABC中,∠A=90°,AC=4,AB=6.若点D满足DB=DC,且∠BDC =90°,请直接写出DA的长.23.如图,直线y=﹣2x+c交x轴于点A(3,0),交y轴于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求抛物线的解析式;(2)点M(m,0)是线段OA上一动点(点M不与点O,A重合),过点M作y轴的平行线,交直线AB于点P,交抛物线于点N,若NP=AP,求m的值;(3)若抛物线上存在点Q,使∠QBA=45°,请直接写出相应的点Q的坐标.参考答案一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的. 1.﹣的相反数是()A.6B.﹣6C.D.﹣【分析】根据相反数的定义即可得到结论.解:﹣的相反数是,故选:C.2.据新华社报道,我国粮食总产量连续5年稳定在6500亿公斤以上,粮食储备充足,口粮绝对安全.将数据“6500亿”用科学记数法表示为()A.65×1011B.6.5×1011C.65×1012D.6.5×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:6500亿=6500×108=6.5×1011.故选:B.3.如图,将一块三角尺的直角顶点放在直尺的一边上,当∠1=35°时,∠2的度数为()A.35°B.45°C.55°D.65°【分析】先根据平行线的性质求出∠3的度数,再由余角的定义即可得出结论.解:∵直尺的两边互相平行,∠1=35°,∴∠3=35°.∵∠2+∠3=90°,∴∠2=55°.故选:C.4.下面计算正确的是()A.3a﹣2a=1B.2a2+4a2=6a4C.(x3)2=x5D.x8÷x2=x6【分析】根据各个选项中的式子可以计算出正确的结果,本题得以解决.解:∵3a﹣2a=a,故选项A错误;∵2a2+4a2=6a2,故选项B错误;∵(x3)2=x6,故选项C错误;∵x8÷x2=x6,故选项D正确;故选:D.5.桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为该位置小正方体的个数,则这个组合体的左视图为()A.B.C.D.【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得左视图有3列,从左到右分别是2,3,2个正方形.解:由俯视图中的数字可得:左视图有3列,从左到右分别是2,3,2个正方形.故选:D.6.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式3x<2x+2,得:x<2,解不等式﹣x≤1,得:x≥﹣1,则不等式组的解集为﹣1≤x<2,故选:A.7.九年级一班同学根据兴趣分成A、B、C、D、E五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则D小组的人数是()A.10人B.11人C.12人D.15人【分析】从条形统计图可看出A的具体人数,从扇形图找到所占的百分比,可求出总人数.然后结合D所占的百分比求得D小组的人数.解:总人数==50(人)D小组的人数=50×=12(人).故选:C.8.在二次函数y=x2﹣2x﹣3中,当0≤x≤3时,y的最大值和最小值分别是()A.0,﹣4B.0,﹣3C.﹣3,﹣4D.0,0【分析】首先求得抛物线的对称轴,抛物线开口向上,在顶点处取得最小值,在距对称轴最远处取得最大值.解:抛物线的对称轴是x=1,则当x=1时,y=1﹣2﹣3=﹣4,是最小值;当x=3时,y=9﹣6﹣3=0是最大值.故选:A.9.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于点P;连接AP并延长交BC 于点E,连接EF.若四边形ABEF的周长为12,∠C=60°,则四边形ABEF的面积是()A.9B.12C.D.6【分析】由作法得AE平分∠BAD,AB=AF,所以∠1=∠2,再证明AF=BE,则可判断四边形AFEB为平行四边形,于是利用AB=AF可判断四边形ABEF是菱形;根据菱形的性质得AG=EG,BF⊥AE,求出BF和AG的长,即可得出结果.解:由作法得AE平分∠BAD,AB=AF,则∠1=∠2,∵四边形ABCD为平行四边形,∴BE∥AF,∠BAF=∠C=60°,∴∠2=∠BEA,∴∠1=∠BEA=30°,∴BA=BE,∴AF=BE,∴四边形AFEB为平行四边形,△ABF是等边三角形,而AB=AF,∴四边形ABEF是菱形;∴BF⊥AE,AG=EG,∵四边形ABEF的周长为12,∴AF=BF=AB=3,在Rt△ABG中,∠1=30°,∴BG=AB=1.5,AG=BG=,∴AE=2AG=3,∴菱形ABEF的面积=BF×AE=×3×3=;故选:C.10.如图,在正方形ABCD中,顶点A(﹣1,0),C(1,2),点F是BC的中点,CD 与y轴交于点E,AF与BE交于点G.将正方形ABCD绕点O顺时针旋转,每次旋转90°,则第99次旋转结束时,点G的坐标为()A.(,)B.(﹣,)C.(﹣,)D.(,﹣)【分析】根据正方形的性质得到AB=BC=CD=2,∠C=∠ABF=90°,根据全等三角形的性质得到∠BAF=∠CBE,根据余角的性质得到∠BGF=90°,过G作GH⊥AB 于H,根据相似三角形的性质得到BH==,求得OH=,根据勾股定理得到HG ==,求得G(,),找出规律即可得到结论.解:∵四边形ABCD是正方形,∴AB=BC=CD=2,∠C=∠ABF=90°,∵点F是BC的中点,CD与y轴交于点E,∴CE=BF=1,∴△ABF≌△BCE(SAS),∴∠BAF=∠CBE,∵∠BAF+∠BFA=90°,∴∠FBG+∠BFG=90°,∴∠BGF=90°,∴BE⊥AF,∵AF===,∴BG==,过G作GH⊥AB于H,∴∠BHG=∠AGB=90°,∵∠HBG=∠ABG,∴△ABG∽△GBH,∴,∴BG2=BH•AB,∴BH==,∴OH=,∵OG=AB=1,∴HG==,∴G(,),∵将正方形ABCD绕点O顺时针每次旋转90°,∴第一次旋转90°后对应的G点的坐标为(,﹣),第二次旋转90°后对应的G点的坐标为(﹣,﹣),第三次旋转90°后对应的G点的坐标为(﹣,),第四次旋转90°后对应的G点的坐标为(,),…,∵99=4×24+3,∴每4次一个循环,第99次旋转结束时,相当于正方形ABCD绕点O顺时针旋转3次,∴第99次旋转结束时,点G的坐标为(﹣,).故选:B.二、填空题(每小题3分,共15分)11.计算:(π+1)0+|﹣2|﹣()﹣2=﹣1﹣.【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.解:(π+1)0+|﹣2|﹣()﹣2=1+2﹣﹣4=﹣1﹣故答案为:﹣1﹣.12.方程(x+2)(x﹣3)=x+2的解是x1=﹣2,x2=4.【分析】先移项,再提取公因式,求出x的值即可.解:原式可化为(x+2)(x﹣3)﹣(x+2)=0,提取公因式得,(x+2)(x﹣4)=0,故x+2=0或x﹣4=0,解得x1=﹣2,x2=4.故答案为:x1=﹣2,x2=4.13.在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛,恰好选中甲、乙两位同学的概率为.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式即可求得答案.解:画树状图得:∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)==.故答案为:.14.如图,在扇形OAB中,∠AOB=90°,C是OA的中点,D是的中点,连接CD、CB.若OA=2,则阴影部分的面积为+﹣1.(结果保留π)【分析】连接OD,过D作DH⊥OA于H,求得DH=OC=,根据扇形和三角形的面积公式即可得到结论.解:连接OD,过D作DH⊥OA于H,∵∠AOB=90°,D是的中点,∴∠AOD=∠BOD=45°,∵OD=OA=2,∴DH=OC=,∵C是OA的中点,∴OC=1,∴阴影部分的面积=S扇形DOB+S△CDO﹣S△BCO=+×1﹣=+﹣1,故答案为:+﹣1.15.如图,在△ABC中,AB=AC=,∠B=30°,D是BC上一点,连接AD,把△ABD 沿直线AD折叠,点B落在B′处,连接B'C,若△AB'C是直角三角形,则BD的长为或.【分析】分两种情形:如图1中,当点B′在直线BC的下方∠CAB′=90°时,作AF ⊥BC于F.证明∠ADF=45°,求出DF,BF即可解决问题.如图2中,当点B′在直线BC的上方∠CAB′=90°时,同法可得∠ADB=45°,求出DF即可.解:如图1中,当点B′在直线BC的下方∠CAB′=90°时,作AF⊥BC于F.∵AB=AC=,∴∠B=∠ACB=30°,∴∠BAC=120°,∵∠CAB′=90°,∴∠BAB′=30°,∴∠DAB=∠DAB′=15°,∴∠ADC=∠B+∠DAB=45°,∵AF⊥DF,∴AD=DF=AB•sin30°=,BF=AF=,∴BD=BF﹣DF=.如图2中,当点B′在直线BC的上方∠CAB′=90°时,可得∠ADB=45°,AF=DF =,BD=BF+FD=,综上所述,满足条件的BD的值时.故答案为或.三、解答题(本大题8个小题,共75分)16.先化简,再求值:•÷,其中x、y满足=2.【分析】根据分式的乘除法可以化简题目中的式子,然后将=2代入化简后的式子即可解答本题.解:•÷==,=1+,当=2时,原式=1+2=3.17.为普及防治疫情的科学知识和有效方法,不断增强同学们的自我保护意识,学校举办了疫情防控网络知识竞答活动,试卷题目共10题,每题10分.现分别从七年级的三个班中各随机取10名同学的成绩(单位:分),收集数据如表:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:分数60708090100人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让同学们重视疫情防控知识的学习,学校将给竞答成绩满分的同学颁发奖状,该校七年级新生共600人,试估计需要准备多少张奖状?【分析】(1)根据众数和中位数的概念求解可得;(2)分别从平均数、众数和中位数三个方面比较大小即可得;(3)利用样本估计总体思想求解可得.解:(1)a=4,b=83,c=85,d=90;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班最高是85;从众数上看,1班和3班都是80,2班是90;综上所述,2班成绩比较好;(3)600×=80(张),答:估计需要准备80张奖状.18.如图,AB是半圆O的直径,C是半圆O上一点(不与点A、B重合),D是的中点,DE⊥AB于点E,过点C作半圆O的切线,交ED的延长线于点F.(1)求证:∠FCD=∠ADE;(2)填空:①当∠FCD的度数为30°时,四边形OADC是菱形;②若AB=2,当CF∥AB时,DF的长为﹣1.【分析】(1)连接OC、AC.由题意得出=,得出DA=DC,由等腰三角形的性质得出∠DAC=∠DCA.∠OAC=∠OCA.证出∠OAD=∠OCD.由切线的性质得出CF⊥OC,由直角三角形的性质即可得出结论;(2)①连接OD,证△OAD是等边三角形,△COD是等边三角形,得出OA=AD=CD =OC,即可得出结论;②连接OD,证△ADE≌△DCF(AAS),得出AE=DF,DE=CF,证明△ODE是等腰直角三角形,得出OE=OD=1,进而得出答案.【解答】(1)证明:连接OC、AC.如图1所示:∵D是的中点,∴=,∴DA=DC,∴∠DAC=∠DCA.∵OA=OC,∴∠OAC=∠OCA.∴∠DAC+∠OAC=∠DCA+∠OCA,即∠OAD=∠OCD.∵CF是半圆O的切线,∴CF⊥OC,∴∠FCD+∠OCD=90°,∵DE⊥AB,∴∠ADE+∠OAD=90°,∴∠FCD=∠ADE.(2)解:①当∠FCD的度数为30°时,四边形OADC是菱形;理由如下:连接OD,如图2所示:∵∠FCD=30°,∴∠ADE=30°,∵DE⊥AB,∴∠OAD=60°,∵OA=OD,∴△OAD是等边三角形,∴AD=OA,∠AOD=60°,∵D是的中点,∴=,∴∠AOD=∠COD=60°,∵OC=OD,∴△COD是等边三角形,∴CD=OD=OC,∴OA=AD=CD=OC,∴四边形OADC是菱形;故答案为:30°;②连接OD,如图3所示:∵AB=2,∴OA=OD=,∵CF∥AB,DE⊥AB,∴CF⊥EF,∴∠CFD=90°=∠DEA,在△ADE和△DCF中,,∴△ADE≌△DCF(AAS),∴AE=DF,DE=CF,∵CF半圆O的切线,∴CF⊥OC,∴四边形OCFE是矩形,∴CF=OE,∴DE=OE,∴△ODE是等腰直角三角形,∴OE=OD=1,∴DF=AE=OA﹣OE=﹣1;故答案为:﹣1.19.数学兴趣小组想测量河对岸两颗大树C、D之间的距离.如图所示,在河岸A点测得大树C位于正北方向上,大树D位于北偏东42°方向上.再沿河岸向东前进100米到达B处,测得大树D位于北偏东31°方向上.求两颗大树C、D之间的距离.(结果精确到1米.参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,sin42°≈0.67,coo42°≈0.74,tan42°≈0.90).【分析】过点D作DE⊥AB,设CD=x米,利用正切的定义用x表示出BE,根据题意列出方程,解方程得到答案.解:如图,过点D作DE⊥AB,垂足为点E,由题意知,∠ACD=∠CAE=∠AED=90°,∴四边形ACDE是矩形,∴AC=ED,CD=AE.设CD=x米,则BE=(x﹣100)米,在Rt△ACD中,tan∠ADE=,∴DE=≈x,在Rt△BED中,tan∠BDE=,则BE≈x×=x,由题意得,x﹣x=100,解得,x=300,答:两颗大树C、D之间的距离约为300米.20.某商场销售A、B两种型号的电风扇,进价及售价如表:品牌A B进价(元/台)120180售价(元/台)150240(1)该商场4月份用21000元购进A、B两种型号的电风扇,全部售完后获利6000元,求商场4月份购进A、B两种型号电风扇的数量;(2)该商场5月份计划用不超过42000元购进A、B两种型号电风扇共300台,且B种型号的电风扇不少于50台;销售时准备A种型号的电风扇价格不变,B种型号的电风扇打9折销售.那么商场如何进货才能使利润最大?【分析】(1)设A品牌的洗衣机购进x台,B品牌的洗衣机购进y台,根据购进两种洗衣机的总价及销售完后的利润,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总利润=单台利润×销售数量(购进数量),列出函数关系式即可求解.解:(1)设4月份购进A种型号的电风扇x台,B种型号的电风扇y台,依题意得:,解得:.答:商场4月份购进A种型号的电风扇100台,B种型号的电风扇50台.(2)设5月份购进A种型号的电风扇m台,则购进B种型号的电风扇(300﹣m)台,利润为w元.由题意得,120m+180(300﹣m)≤42000,解不等式得:m≥200,又∵300﹣m≥50,即m≤250,∴200≤m≤250,w=(150﹣120)m+(0.9×240﹣180)(300﹣m)=﹣6m+10800,∵﹣6<0,w随m的增大而减小,∴当m=200时,w有最大值,此时,300﹣m=100.答:A种型号的电风扇购进200台,B种型号的电风扇购进100台时,利润最大.21.若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数,下面我们参照学习函数的过程与方法,探究分段函数y=的图象与性质,探究过程如下,请补充完整.(1)列表:x…﹣4﹣3﹣2﹣101234…y…3m10121n…其中,m=2,n=3.(2)描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示,请画出函数的图象.(3)研究函数并结合图象与表格,回答下列问题:①点A(,y1),B(5,y2),C(x1,),D(x2,6)在函数图象上,则y1>y2,x1>x2;(填“>”,“=”或“<”)②当函数值y=1时,求自变量x的值;(4)若直线y=﹣x+b与函数图象有且只有一个交点,请直接写出b的取值范围.【分析】(1)把x=﹣3代入y=|x+1|中即可求得m的值;把x=3代入y=中,即可求得n的值;(2)描点连线即可;(2)①A与B在y=上,y随x的增大而减小,所以y1>y2;C与D在y=|x﹣1|上,观察图象可得x1>x2;②当y=1时,1=|x+1|,则有x=0或x=﹣2;1=,则有x=2;(4)由图象可知,﹣1<b<2或b>3.解:(1)x=﹣3代入y=|x+1|得,y=2,∴m=2,把x=3代入y=中得,y=,∴n=,故答案为2,;(2)如图所示:(3)由图象可知A与B在y=上,y随x的增大而减小,所以y1>y2;C与D在y=|x﹣1|上,所以x1>x2;故答案为>,>;②当y=1时,x≤1时,有1=|x+1|,∴x=0或x=﹣2,当y=1时,x>1时,有1=,∴x=2,故x=0或x=﹣2或x=2;(4)由图象可知,﹣1<b<2或b>3.22.(1)发现如图1,△ABC和△ADE均为等边三角形,点D在BC边上,连接CE.填空:①∠DCE的度数是120°;②线段CA、CE、CD之间的数量关系是CA=CE+CD.(2)探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在BC边上,连接CE.请判断∠DCE的度数及线段CA、CE、CD之间的数量关系,并说明理由.(3)应用如图3,在Rt△ABC中,∠A=90°,AC=4,AB=6.若点D满足DB=DC,且∠BDC =90°,请直接写出DA的长.【分析】(1)①由△BAD≌△CAE以及等边三角形的性质,得出∠ACE=∠B=60°,则∠DCE=∠ACE+∠ACB=120°;②由△BAD≌△CAE,得出BD=CE,则得出CA=CE+CD;(2)证明△BAD≌△CAE(SAS).可得出BD=CE,∠B=∠ACE=45°.则结论得出;(3)作DE⊥AB于E,连接AD,根据勾股定理得到BC=2,推出点B,C,A,D 四点共圆,根据圆周角定理得到∠DAE=45°,求得△ADE是等腰直角三角形,得到AE=DE,根据勾股定理即可得到结论.【解答】(1)发现解:①∵在△ABC中,AB=AC,∠BAC=60°,∴∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=60°,∴∠DCE=∠ACE+∠ACB=60°+60°=120°;故答案为:120°,②∵△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,∴CA=BC=CE+CD;故答案为:CA=CE+CD.(2)探究∠DCE=90°;CA=CD+CE.理由:∵△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴BD=CE,∠B=∠ACE=45°.∴∠DCE=∠ACB+∠ACE=90°.在等腰直角三角形ABC中,CB=CA,∵CB=CD+DB=CD+CE,∴CA=CD+CE.(3)应用DA=5或.作DE⊥AB于E,连接AD,∵在Rt△ABC中,AB=6,AC=4,∠BAC=90°,∴BC===2,∵∠BDC=90°,DB=DC,∴DB=DC=,∠BCD=∠CBD=45°,∵∠BDC=∠BAC=90°,∴点B,C,A,D四点共圆,∴∠DAE=45°,∴△ADE是等腰直角三角形,∴AE=DE,∴BE=6﹣DE,∵BE2+DE2=BD2,∴DE2+(6﹣DE)2=26,∴DE=1,DE=5,∴AD=或AD=5.23.如图,直线y=﹣2x+c交x轴于点A(3,0),交y轴于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求抛物线的解析式;(2)点M(m,0)是线段OA上一动点(点M不与点O,A重合),过点M作y轴的平行线,交直线AB于点P,交抛物线于点N,若NP=AP,求m的值;(3)若抛物线上存在点Q,使∠QBA=45°,请直接写出相应的点Q的坐标.【分析】(1)求出点B的坐标,将点A、B的坐标代入抛物线表达式即可求解;(2)利用△APM∽△ABO,求出AP=(3﹣m),利用NP=AP列出等式进而求解;(3)分点Q在AB上方、点Q在AB下方两种情况,利用三角形相似求解.解:(1)∵y=﹣2x+c与x轴交于点A(3,0),与y轴交于点B,∴﹣2×3+c=0,解得c=6,∴B(0,6),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+6.(2)由点M(m,0),得点P(m,﹣2m+6),点N(m,﹣m2+m+6),∴NP=﹣m2+3m.在Rt△OAB中,AB==3,∵MP∥y轴,∴△APM∽△ABO,∴,即,∴AP=(3﹣m),∵NP=AP,∴﹣m2+3m=×(3﹣m),解得:m=或3(舍去3),∴m=.(3)点Q的坐标为(,)或(﹣2,0).①当点Q在AB上方时,设点Q的横坐标为n,如图,分别作QC⊥AB,QD⊥x轴,交AB于点E.则点E(n,﹣2n+6),点Q(n,﹣n2+n+6),则QE=﹣n2+n+6﹣(﹣2n+6)=﹣n2+3n,∵∠CQE=90°﹣∠QEC=90°﹣∠AED=∠EAD,∴Rt△QEC∽Rt△ABO,,则QC=,CE=,∵∠QBA=45°,∴BC=QC=,∵ED∥OB,∴,即,解得:BE=n,而BE=BC+CE,∴+=n,解得n=,∴点Q的坐标为(,);②当点Q在AB下方时,同理可求,另一点Q的坐标为(﹣2,0),故点Q的坐标为(,)或(﹣2,0).。

河南省2020年中考数学一模试卷(解析版)

河南省2020年中考数学一模试卷(解析版)

2020年河南省中考数学一模试卷一、选择题(共10小题)1.﹣的相反数是()A.﹣B.C.﹣2 D.22.截止北京时间2020年4月11日21时许,全球累计新冠确诊病例数已超171万例.将1710000用科学记数法表示()A.1.71×105B.0.171×107C.1.71×106D.17100003.某个几何体的三视图如图所示,该几何体是()A.B.C.D.4.某校九年级8位同学一分钟跳绳的次数排序后如下:150,164,168,168,172,176,183,185.则由这组数据得到的结论中错误的是()A.中位数为170 B.众数为168C.极差为35 D.平均数为1705.下列运算正确的是()A.(﹣2a)2=﹣4a2B.(a+b)2=a2+b2C.(a5)2=a7D.(﹣a+2)(﹣a﹣2)=a2﹣46.若一次函数y=kx+b的图象不经过第二象限,则关于x的方程x2+kx+b=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.不等式组的所有非负整数解的和是()A.10 B.7 C.6 D.08.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.9.将一个含30°角的直角三角板ABC与一个直尺如图放置,∠ACB=90°,点A在直尺边MN上,点B在直尺边PQ上,BC交MN于点D,若∠ABP=15°,AC=8,则AD的长为()A.B.8 C.8D.810.如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x 轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n∁n D n的面积是()A.()n B.()n﹣1C.()n D.()n﹣1二、填空题(共5小题)11.计算:2cos45°﹣(+1)0=.12.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有两.(注:明代时1斤=16两,故有“半斤八两”这个成语)13.端午节是我国传统佳节,小峰同学带了4个粽子(除粽馅不同外,其他均相同),其中有两个肉馅粽子、一个红枣粽子和一个豆沙粽子,准备从中任意拿出两个送给他的好朋友小悦,小悦拿到的两个粽子都是肉馅的概率是.14.如图,在△ABC中,BC=4,以点A为圆心、2为半径的⊙A与BC相切于点D,交AB 于E,交AC于F,点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是(结果保留π).15.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P 为射线BD,CE的交点,若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,则PB的长为.三、解答题(共8小题)16.先化简,再求值:(﹣)÷(﹣)•(++2),其中+(n﹣3)2=0.17.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD 的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=2DE,求tan∠ABD的值.18.如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,与反比例函数y=的图象有唯一的公共点C.(1)求k的值及C点坐标;(2)直线l与直线y=﹣2x+4关于x轴对称,且与y轴交于点B',与双曲线y=交于D,E两点,求△CDE的面积.19.“武汉告急”,新型冠状病毒的肆虐,使武汉医疗设备严重缺乏,某校号召全校师生捐款购买医用口罩支援疫区,由于学生不能到校捐款,校方采用网上捐款的办法,设置了四个捐款按钮,A:5元;B:10元;C:20元;D:50元,最终全校2000名学生全部参与捐款,活动结束后校团委随机抽查了20名学生捐款数额,根据各捐款数额对应的人数绘制了扇形统计图(如图1)和尚未完成的条形统计图(如图2),请解答下列问题:(1)在图1中,捐款20元所对应的圆心角度数为,将条形统计图补充完整.(2)这20名学生捐款的众数为,中位数为.(3)在求这20名学生捐款的平均数时,小亮是这样分析的:第一步:求平均数的公式是=;第二步:此问题中n=4,x1=5,x2=10,x3=20,x4=50;第三步:==21.25(元).①小亮的分析是不正确的,他错在第几步?②请你帮他计算出正确的平均数,并估计这2000名学生共捐款多少元?20.在小水池旁有一盏路灯,已知支架AB的长是0.8 m,A端到地面的距离AC是4 m,支架AB与灯柱AC的夹角为65°.小明在水池的外沿D测得支架B端的仰角是45°,在水(结池的内沿E测得支架A端的仰角是50°(点C,E,D在同一直线上),求小水池的宽DE.果精确到0.1 m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)21.为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有A,B两种型号的挖掘机,已知3台A型和5台B型挖掘机同时施工一小时挖土165 m3;4台A型和7台B型挖掘机同时施工1 h挖土225 m3.每台A型挖掘机1 h的施工费用为300元,每台B型挖掘机1 h的施工费用为180元.(1)分别求每台A型,B型挖掘机1 h挖土多少m3?(2)若不同数量的A型和B型挖掘机共12台同时施工4 h,至少完成1080 m3的挖土量,且总费用不超过12960元,问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?22.我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究:如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展:如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD 绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC 为等邻角四边形时,求出它的面积.23.如图,二次函数y=ax2+x+c的图象交x轴于A,B(4,0)两点,交y轴于点C(0,2).(1)求二次函数的解析式;(2)点P为第一象限抛物线上一个动点,PM⊥x轴于点M.交直线BC于点Q,过点C 作CN⊥PM于点N.连接PC;①若△PCQ为以CQ为腰的等腰三角形,求点P的横坐标;②点G为点N关于PC的对称点,当点G落在坐标轴上时,直接写出点P的坐标.参考答案与试题解析一、选择题(共10小题)1.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣的相反数是,故选:B.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:将数据1710000用科学记数法表示为:1.71×106.故选:C.3.【分析】由三视图可知:该几何体为上下两部分组成,上面是一个圆柱,下面是一个长方体.【解答】解:由三视图可知:该几何体为上下两部分组成,上面是一个圆柱,下面是一个长方体且圆柱的高度和长方体的高度相当.故选:A.4.【分析】根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;极差就是这组数中最大值与最小值的差以及平均数的计算公式,对每一项进行分析即可.【解答】解:把数据按从小到大的顺序排列后150,164,168,168,172,176,183,185,所以这组数据的中位数是(168+172)÷2=170,168出现的次数最多,所以众数是168,极差为:185﹣150=35;平均数为:(150+164+168+168+172+176+183+185)÷7=170.8,故选:D.5.【分析】按照积的乘方运算、完全平方公式、幂的乘方、平方差公式分别计算,再选择.【解答】解:(﹣2a)2=4a2,故选项A不合题意;(a+b)2=a2+2ab+b2,故选项B不合题意;(a5)2=a10,故选项C不合题意;(﹣a+2)(﹣a﹣2)=a2﹣4,故选项D符合题意.故选:D.6.【分析】利用一次函数的性质得到k>0,b≤0,再判断△=k2﹣4b>0,从而得到方程根的情况.【解答】解:∵一次函数y=kx+b的图象不经过第二象限,∴k>0,b≤0,∴△=k2﹣4b>0,∴方程有两个不相等的实数根.故选:A.7.【分析】分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解.【解答】解:,解不等式①得:x>﹣2.5,解不等式②得:x≤4,∴不等式组的解集为:﹣2.5<x≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10,故选:A.8.【分析】根据正方形表面展开图的结构即可求出判断出构成这个正方体的表面展开图的概率.【解答】解:设没有涂上阴影的分别为:A,B,C,D,E,F,G,如图所示,从其余的小正方形中任取一个涂上阴影共有7种情况,而能够构成正方体的表面展开图的有以下情况,D,E,F,G,∴能构成这个正方体的表面展开图的概率是,故选:A.9.【分析】先由平行线的性质可得∠DAB=∠ABP=15°,根据三角形内角和定理得到∠CAB=60°,∠CAD=∠CAB﹣∠DAB=45°,那么△ACD是等腰直角三角形,从而求出AD=AC=8.【解答】解:由题意可得,MN∥PQ,∴∠DAB=∠ABP=15°,∵∠CAB=180°﹣∠C﹣∠ABC=180°﹣90°﹣30°=60°,∴∠CAD=∠CAB﹣∠DAB=60°﹣15°=45°,∵∠ACD=90°,∴∠ADC=45°,∴△ACD是等腰直角三角形,∴AD=AC=8.故选:C.10.【分析】根据正比例函数的性质得到∠D1OA1=45°,分别求出正方形A1B1C1D1的面积、正方形A2B2C2D2的面积,总结规律解答.【解答】解:∵直线l为正比例函数y=x的图象,∴∠D1OA1=45°,∴D1A1=OA1=1,∴正方形A1B1C1D1的面积=1=()1﹣1,由勾股定理得,OD1=,D1A2=,∴A2B2=A2O=,∴正方形A2B2C2D2的面积==()2﹣1,同理,A3D3=OA3=,∴正方形A3B3C3D3的面积==()3﹣1,…由规律可知,正方形A n B n∁n D n的面积=()n﹣1,故选:B.二、填空题(共5小题)11.【分析】直接利用特殊角的三角函数值、零指数幂的性质分别化简得出答案.【解答】解:原式=2×﹣1=﹣1.故答案为:﹣1.12.【分析】可设有x人,根据有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,根据所分的银子的总两数相等可列出方程,求解即可.【解答】解:设有x人,依题意有7x+4=9x﹣8,解得x=6,7x+4=42+4=46.答:所分的银子共有46两.故答案为:46.13.【分析】根据题意可以用树状图表示出所有的可能结果,再由树状图可以得到小悦拿到的两个粽子都是肉馅的概率.【解答】解:肉粽记为A、红枣粽子记为B、豆沙粽子记为C,由题意可得,由树状图可知共有12种可能的结果,其中小悦拿到的两个粽子都是肉馅的情况数为2,∴小悦拿到的两个粽子都是肉馅的概率==,故答案为:.14.【分析】由于BC切⊙A于D,那么连接AD,可得出AD⊥BC,即△ABC的高AD=2;已知了底边BC的长,可求出△ABC的面积.根据圆周角定理,易求得∠EAF=2∠P=80°,已知了圆的半径,可求出扇形AEF的面积.图中阴影部分的面积=△ABC的面积﹣扇形AEF的面积.由此可求阴影部分的面积.【解答】解:连接AD,则AD⊥BC;△ABC中,BC=4,AD=2;∴S△ABC=BC•AD=4.∵∠EAF=2∠EPF=80°,AE=AF=2;∴S扇形EAF==;∴S阴影=S△ABC﹣S扇形EAF=4﹣.15.【分析】分为点E在AB上和点E在AB的延长线上两种情况画出图形,然后再证明△PEB∽△AEC,最后依据相似三角形的性质进行证明即可.【解答】解:∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠DAB=∠CAE,∴△ADB≌△AEC(SAS),①当点E在AB上时,BE=AB﹣AE=1,∵∠EAC=90°,∴CE==,∵△ADB≌△AEC,∴∠DBA=∠ECA,∵∠PEB=∠AEC,∴△PEB∽△AEC,∴,∴=,∴PB=;②当点E在BA延长线上时,BE=3,∵∠EAC=90°,∴CE==,∵△ADB≌△AEC,∴∠DBA=∠ECA,∵∠BEP=∠CEA,∴△PEB∽△AEC,∴=,∴=,∴PB=,综上所述,PB的长为或.故答案为:或.三、解答题(共8小题)16.【分析】先通分,再利用因式分解,把可以分解的分解,然后统一化成乘法运算,约分化简,再将所给等式化简,得出m和n的值,最后代回化简后的分式即可.【解答】解:(﹣)÷(﹣)•(++2)=÷•=••=﹣.∵+(n﹣3)2=0.∴m+1=0,n﹣3=0,∴m=﹣1,n=3.∴﹣=﹣=.∴原式的值为.17.【分析】(1)直接利用圆周角定理得出∠CDE的度数;(2)直接利用直角三角形的性质结合等腰三角形的性质得出∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,进而得出答案;(3)利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tan∠ABD的值.【解答】(1)解:∵对角线AC为⊙O的直径,∴∠ADC=90°,∴∠EDC=90°;(2)证明:连接DO,∵∠EDC=90°,F是EC的中点,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,∴DF是⊙O的切线;(3)解:方法一:设DE=1,则AC=2,由AC2=AD×AE∴20=AD(AD+1)∴AD=4或﹣5(舍去)∵DC2=AC2﹣AD2∴DC=2,∴tan∠ABD=tan∠ACD==2;方法二:如图所示:可得∠ABD=∠ACD,∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,∴∠DCA=∠E,又∵∠ADC=∠CDE=90°,∴△CDE∽△ADC,∴=,∴DC2=AD•DE∵AC=2DE,∴设DE=x,则AC=2x,则AC2﹣AD2=AD•DE,即(2x)2﹣AD2=AD•x,整理得:AD2+AD•x﹣20x2=0,解得:AD=4x或﹣5x(负数舍去),则DC==2x,故tan∠ABD=tan∠ACD===2.18.【分析】(1)令﹣2x+4=,则2x2﹣4x+k=0,依据直线y=﹣2x+4与反比例函数y=的图象有唯一的公共点C,即可得到k的值,进而得出点C的坐标;(2)依据直线l与直线y=﹣2x+4关于x轴对称,即可得到直线l为y=2x﹣4,再根据=2x﹣4,即可得到E(﹣1,﹣6),D(3,2),可得CD=2,进而得出△CDE的面积=×2×(6+2)=8.【解答】解:(1)令﹣2x+4=,则2x2﹣4x+k=0,∵直线y=﹣2x+4与反比例函数y=的图象有唯一的公共点C,∴△=16﹣8k=0,解得k=2,∴2x2﹣4x+2=0,解得x=1,∴y=2,即C(1,2);(2)∵直线l与直线y=﹣2x+4关于x轴对称,∴A(2,0),B'(0,﹣4),∴直线l为y=2x﹣4,令=2x﹣4,则x2﹣2x﹣3=0,解得x1=3,x2=﹣1,∴E(﹣1,﹣6),D(3,2),又∵C(1,2),∴CD=3﹣1=2,∴△CDE的面积=×2×(6+2)=8.19.【分析】(1)捐款为20元的圆心角占360°的20%,D组占10%,可求出D组人数,补全统计图;(2)根据中位数、众数的意义进行计算即可;(3)根据平均数的意义和计算方法进行判断和修改即可.【解答】解:(1)360°×20%=72°,20×10%=2(人),故答案为:72°,补全条形统计图如图所示:(2)这20名学生捐款金额出现次数最多的是10元,因此众数是10元,将这20名学生捐款从小到大排列后,处在第10,11位的两个数都是10元,因此中位数是10元;故答案为:10元,10元;(3)①错在第二步,②==16(元),16×2000=32000(元),答:正确的平均数是16元,这2000名学生共捐款32000元.20.【分析】过点B作BF⊥AC于F,BG⊥CD于G,根据三角函数和直角三角形的性质解答即可.【解答】解:过点B作BF⊥AC于F,BG⊥CD于G,在Rt△BAF中,∠BAF=65°,BF=AB•sin∠BAF=0.8×0.9=0.72,AF=AB•cos∠BAF=0.8×0.4=0.32,∴FC=AF+AC=4.32,∵四边形FCGB是矩形,∴BG=FC=4.32,CG=BF=0.72,∵∠BDG=45°,∴∠BDG=∠GBD,∴GD=GB=4.32,∴CD=CG+GD=5.04,在Rt△ACE中,∠AEC=50°,CE=,∴DE=CD﹣CE=5.04﹣3.33=1.71≈1.7,答:小水池的宽DE为1.7 m.21.【分析】(1)根据题意列出方程组即可;(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用.【解答】解:(1)设每台A型,B型挖掘机一小时分别挖土x m3和y m3,根据题意得解得:∴每台A型挖掘机1 h挖土30 m3,每台B型挖掘机1 h挖土15 m3(2)设A型挖掘机有m台,总费用为W元,则B型挖掘机有(12﹣m)台.根据题意得W=4×300m+4×180(12﹣m)=480m+8640∵∴解得∵m≠12﹣m,解得m≠6∴7≤m≤9∴共有三种调配方案,方案一:当m=7时,12﹣m=5,即A型挖掘机7台,B型挖掘机5台;方案二:当m=8时,12﹣m=4,即A型挖掘机8台,B型挖掘机4台;方案三:当m=9时,12﹣m=3,即A型挖掘机9台,B型挖掘机3台.…∵480>0,由一次函数的性质可知,W随m的减小而减小,∴当m=7时,W小=480×7+8640=12000此时A型挖掘机7台,B型挖掘机5台的施工费用最低,最低费用为12000元.22.【分析】(1)矩形或正方形邻角相等,满足“等邻角四边形”条件;(2)AC=BD,理由为:连接PD,PC,如图1所示,根据PE,PF分别为AD,BC的垂直平分线,得到两对角相等,利用等角对等角得到两对角相等,进而确定出∠APC=∠DPB,利用SAS得到三角形ACB与三角形DPB全等,利用全等三角形对应边相等即可得证;(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,由S四边形ACBD′=S△ACE﹣S△BED′,求出四边形ACBD′面积;(ii)当∠D′BC=∠ACB =90°时,过点D′作D′E⊥AC于点E,如图3(ii)所示,由S四边形ACBD′=S△AED′+S矩形ECBD′,求出四边形ACBD′面积即可.【解答】解:(1)矩形或正方形;(2)AC=BD,理由为:连接PD,PC,如图1所示:∵PE是AD的垂直平分线,PF是BC的垂直平分线,∴P A=PD,PC=PB,∴∠P AD=∠PDA,∠PBC=∠PCB,∴∠DPB=2∠P AD,∠APC=2∠PBC,即∠P AD=∠PBC,∴∠APC=∠DPB,∴△APC≌△DPB(SAS),∴AC=BD;(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,∴∠ED′B=∠EBD′,∴EB=ED′,设EB=ED′=x,由勾股定理得:42+(3+x)2=(4+x)2,解得:x=4.5,过点D′作D′F⊥CE于F,∴D′F∥AC,∴△ED′F∽△EAC,∴=,即=,解得:D′F=,∴S△ACE=AC×EC=×4×(3+4.5)=15;S△BED′=BE×D′F=×4.5×=,则S四边形ACBD′=S△ACE﹣S△BED′=15﹣=10;(ii)当∠D′BC=∠ACB=90°时,过点D′作D′E⊥AC于点E,如图3(ii)所示,∴四边形ECBD′是矩形,∴ED′=BC=3,在Rt△AED′中,根据勾股定理得:AE==,∴S△AED′=AE×ED′=××3=,S矩形ECBD′=CE×CB=(4﹣)×3=12﹣3,则S四边形ACBD′=S△AED′+S矩形ECBD′=+12﹣3=12﹣.23.【分析】(1)先由直线y=﹣x+2求出B,C的坐标,再将其代入抛物线y=ax2+x+c 中,即可求出抛物线解析式;(2)①将等腰三角形分两种情况进行讨论,即可分别求出m的值;②当点N'落在坐标轴上时,存在两种情形,一种是点N'落在y轴上,一种是点N′落在x轴上,分情况即可求出点P的坐标.【解答】解:(1)∵直线y=﹣x+2经过B,C,∴B(4,0),C(0,2),∵抛物线y=ax2+x+c交x轴于点A,交y轴于点C,∴,解得,∴抛物线的解析式为y=﹣x2+x+2;(2)∵点P在抛物线在第一象限内的图象上,点P的横坐标为m,∴0<m<4,P(m,﹣m2+m+2),①∵PM⊥x轴,交直线y=﹣x+2于点Q,∴Q(m,﹣m+2),∴PQ=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m,∵PD∥CO,∴,∴CQ==m,当PQ=CQ时,﹣m2+2m=m,解得m1=4﹣,m2=0(舍去);当PC=CQ时,PM+QM=2CO,即(﹣m2+m+2)+(﹣m+2)=2×2,∴﹣m2+m=0,解得m1=2,m2=0(舍去);综上,当△PCQ是等腰三角形时,m的值为m=4﹣,2;②存在,理由如下:当点N'落在坐标轴上时,存在两种情形:如图1,当点N'落在y轴上时,点P(m,﹣m2+m+2)在直线y=x+2上,∴﹣m2+m+2=m+2,解得m1=1,m2=0(舍去),∴P(1,3);如图2,当点N'落在x轴上时,△CON'∽△N'DP,∴,∴,∵PN=2﹣(﹣m2+m+2)=m(m﹣3),∴N'M==m﹣3,∴ON'=OM﹣MN=m﹣(m﹣3)=3,在△CON'中,CN'==,∴m=,则P(,),综上所述,当点N′落在坐标轴上时,点P的坐标为(1,3)或(,).。

【附20套中考模拟试题】河南省2020年中招第一次模拟考试数学试卷含解析

【附20套中考模拟试题】河南省2020年中招第一次模拟考试数学试卷含解析

条边长,则三角形 ABC 的周长为( )
A.10
B.14
C.10 或 14
D.8 或 10
二、填空题:(本大题共 6 个小题,每小题 4 分,共 24 分.)
13.若关于 x 的一元二次方程(a﹣1)x2﹣x+1=0 有实数根,则 a 的取值范围为________.
14.计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,归纳各计算结果中的个位数字规律,
一半为半径作弧,相交于点 E,F,过点 E,F 作直线 EF,交 AB 于点 D,连接 CD,则△ ACD 的周长为
()
A.13
B.17
C.18
D.25
4.在一次酒会上,每两人都只碰一次杯,如果一共碰杯 55 次,则参加酒会的人数为( )
A.9 人
B.10 人
C.11 人
D.12 人
5.如图,二次函数 y=ax2+bx+c(a≠0)的图象经过点 A,B,C.现有CD BC EF BE
D. CD AD EF AF
2.如图,把一张矩形纸片 ABCD 沿 EF 折叠后,点 A 落在 CD 边上的点 A′处,点 B 落在点 B′处,若∠2=40°,
则图中∠1 的度数为( )
A.115°
B.120°
C.130°
D.140°
3.如图,在 Rt△ ABC 中,∠ACB=90°,BC=12,AC=5,分别以点 A,B 为圆心,大于线段 AB 长度的
20.(6 分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择
一项球类运动,对该校学生随机抽取 统计图: 运动项目
进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形 频数(人数)

2020年河南省中考数学一模试卷 (含解析)

2020年河南省中考数学一模试卷 (含解析)

2020年河南省中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−4的相反数是()A. −14B. 14C. −4D. 42. 4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()A. B. C. D.3.下列调查中,适合采用全面调查(普查)方式的是()A. 了解中央电视台“走遍中国栏目的收视率B. 了解某班同学“跳绳”的月考成绩C. 了解全国快递包裹产生包装垃圾的数量D. 了解青海湖斑头雁种群数量4.如图,已知∠1=60°,如果CD//BE,那么∠B的度数为()A. 60°B. 100°C. 110D. 120°5.计算(6×103)×(8×105)的结果是()A. 48×109B. 48×1015C. 4.8×108D. 4.8×1096.已知点A(a,2)与点B(b,3)都在反比例函数y=−6x的图象上,则a与b的大小关系是()A. a<bB. a>bC. a=bD. 不能确定7.关于x的方程x2+2kx−1=0的根的情况描述正确的是()A. k为任何实数,方程都没有实数根B. k为任何实数,方程都有两个不相等的实数根C. k为任何实数,方程都有两个相等的实数根D. k取不同实数,方程的实数根的情况共有三种可能8. 近年来,“快递业”成为我国经济的一匹“黑马”,2017年我国快递业务量为400亿件,2019年快递量将达到600亿件,设快递量平均每年增长率为x ,则下列方程中正确的是( )A. 400(1+x)=600B. 400(1+2x)=600C. 400(1+x)2=600D. 600(1−x)2=4009. 如图,E 是正方形ABCD 的边BC 的延长线上一点,若CE =CA ,AE交CD 于F ,则∠FAC 的度数是( )A. 22.5°B. 30°C. 45°D. 67.5°10. 如图所示,△ABC 中,AB =AC ,∠B =30°,AB ⊥AD ,AD =4cm ,则BC 的长为( )A. 8cmB. 4cmC. 12cmD. 6cm二、填空题(本大题共5小题,共15.0分)11. 请写出一个小于4的无理数:______.(写出一个正确答案即可) 12. 解不等式组:{4x +6>1−x3(x −1)≤x +5,并把解集在数轴上表示出来.13. 学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”、“2”、“3”、“4”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则都重转一次.在该游戏中乙获胜的概率是______ .14. 边长为1的正方形ABCD 中,E 为边AD 的中点,连接线段CE 交BD 于点F ,点M 为线段CE 延长线上一点,且∠MAF 为直角,则DM 的长为______ .15. 如图,△ABC 中,AB =16,BC =10,AM 平分∠BAC ,∠BAM =15°,点D 、E 分别为AM 、AB 上的动点,则BD +DE 的最小值是______.三、解答题(本大题共8小题,共75.0分) 16. 先化简,再求值:(1−1x+2)÷x 2+2x+1x+2,其中x =√3−1.17. 随着2019年全国两会的隆重召开,中学生对时事新闻的关注空前高涨,某校为了解中学生对时事新闻的关注情况,组织全校九年级学生开展“时事新闻大比拼”比赛,随机抽取九年级的25名学生的成绩(满分为100分)整理统计如下:收集数据25名学生的成绩(满分为100分)统计如下(单位:分):90,74,88,65,98,75,81,44,85,70,55,80,95,88,72,87,60,56,76,66,78,72,82,63,100整理数据按如下分组整理样本数据并补全表格: 成绩x(分) 90≤x ≤100 75≤x <9060≤x <75x <60 人数_____108_____分析数据补充完成下面的统计分析表: 平均数 中位数 方差76______190.88得出结论(1)若全校九年级有1000名学生,请估计全校九年级有多少学生成绩达到90分及以上;(2)若八年级的平均数为76分,中位数为80分,方差为102.5,请你分别从平均数、中位数和方差三个方面做出评价,你认为哪个年级的成绩较好?18.如图,为了测量建筑物AD的高度,小亮从建筑物正前方10米处的点B出发,沿坡度i=1:√3的斜坡BC前进6米到达点C,在点C处放置测角仪,测得建筑物顶部D的仰角为40°,测角仪CE的高为1.3米,A、B、C、D、E在同一平面内,且建筑物和测角仪都与地面垂直求建筑物AD 的高度.(结果精确到0.1米参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,√3≈1.73)19.如图,l1,l2分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间t(ℎ)的函数图象,假设两种灯泡的使用寿命都是2000ℎ,照明效果一样.(1)根据图象分别求出l1,l2的函数表达式;(2)当照明时间是多少小时时,两种灯的费用相等?(3)小亮房间计划照明2500ℎ,他买了一个白炽灯和一个节能灯,请你帮助他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).20.已知,AB为⊙O的直径,弦CD⊥AB于点E,在CD的延长线上取一点P,PG与⊙O相切于点G,连接AG交CD于点F.(Ⅰ)如图①,若∠A=20°,求∠GFP和∠AGP的大小;(Ⅱ)如图②,若E为半径OA的中点,DG//AB,且OA=2√3,求PF的长.21.已知抛物线y=ax2经过点A(−2,−8).(1)求此抛物线的函数解析式;(2)判断点B(−1,−4)是否在此抛物线上.(3)求出此抛物线上纵坐标为−6的点的坐标.22.如图1,⊙O的直径AB=4cm,点C为线段AB上一动点,过点C作AB的垂线交⊙O于点D,E,连结AD,AE.设AC的长为x cm,△ADE的面积为y cm2.图1 图2小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请帮助小东完成下面的问题.(1)通过对图1的研究、分析与计算,得到了y与x的几组对应值,如下表:x/cm00.51 1.52 2.53 3.54y/cm200.7 1.7 2.9a 4.8 5.2 4.60请求出表中小东漏填的数a;(2)如图2,建立平面直角坐标系xOy,描出表中各对应值为坐标的点,画出该函数的大致图象;(3)结合画出的函数图象,当△ADE的面积为4cm2时,求出AC的长.23.正方形ABCD中,将边AB所在直线绕点A逆时针旋转一个角度α得到直线AM,过点C作CE⊥AM,垂足为E,连接BE.(1)当0°<α<45°时,设AM交BC于点F,①如图1,若α=35°,则∠BCE=____°;②如图2,用等式表示线段AE,BE,CE之间的数量关系,并证明;(2)当45°<α<90°时(如图3),请直接用等式表示线段AE,BE,CE之间的数量关系.【答案与解析】1.答案:D解析:解:−4的相反数是:4.故选:D.直接利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.此题主要考查了相反数的定义,正确把握定义是解题关键.2.答案:D解析:试题分析:几何体的左视图和主视图是相同的,则不同的视图是俯视图,俯视图是D选项所给的图形。

2020年河南省中考数学一模试卷(含解析)

2020年河南省中考数学一模试卷(含解析)

2020年河南省中考数学一模试卷一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的)1.下列各数中,最大的数是( ) A.−12 B.14C.0D.−22.据统计,今年“五一”小长假期间,我市约有26.8万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是( ) A.268×103 B.26.8×104 C.2.68×105 D.0.268×1063.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为( )A.B.C.D.4.下列计算正确的是( ) A.a 3+a 3=a 6 B.(x −3)2=x 2−9 C.a 3⋅a 3=a 6 D.√2+√3=√55.下表是某校合唱团成员的年龄分布对于不同的x ,下列关于年龄的统计量不会发生改变的是( )C.平均数、方差D.中位数、方差6.若关于x的方程kx2+2x−1=0有两个不相等的实数根,则k的取值范围是()A.k>−1B.k<−1C.k≥−1且k≠0D.k>−1且k≠07.在菱形ABCD中,对角线AC与BD相交于点O,再添加一个条件,仍不能判定四边形ABCD是矩形的是( )A.AB=ADB.OA=OBC.AC=BDD.DC⊥BC8.阿信、小怡两人打算搭乘同一班次电车上学,若此班次电车共有5节车厢,且阿信从任意一节车厢上车的机会相等,小怡从任意一节车厢上车的机会相等,则两人从同一节车厢上车的概率为何()A.12B.15C.110D.1259.如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD=AD,∠B=20∘,则下列结论中错误的是()A.∠CAD=40∘B.∠ACD=70∘C.点D为△ABC的外心D.∠ACB=90∘10.在Rt△ABC中,D为斜边AB的中点,∠B=60∘,BC=2cm,动点E从点A 出发沿AB向点B运动,动点F从点D出发,沿折线D−C−B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,A.B.C.D.二、填空题(每小题3分,共15分) 11.若x =√2−1,则x 2+2x +1=________.12.已知反比例函数y =m−2x,当x >0时,y 随x 增大而减小,则m 的取值范围是________.13.不等式组{3x −5>15x −a ≤12 有2个整数解,则实数a 的取值范围是________.14.如图,在Rt △ABC 中,∠ACB =90∘,∠A =30∘,AC =√3,分别以点A ,B 为圆心,AC ,BC 的长为半径画弧,交AB 于点D ,E ,则图中阴影部分的面积是_______.15.如图,在菱形ABCD中,∠A=60∘,AB=3,点M为AB边上一点,AM=2,点N为AD边上的一动点,沿MN将△AMN翻折,点A落在点P处,当点P在菱形的对角线上时,AN的长度为________.三、解答题(本大题共8个小题,满分75分)16.先化简,再求值:x2+4x+4x+1÷(3x+1−x+1),其中x=sin30∘+2−1+√4.17.如图,△ABC内接于圆O,且AB=AC,延长BC到点D,使CD=CA,连接AD交圆O于点E.(1)求证:△ABE≅△CDE;(2)填空:①当∠ABC的度数为________时,四边形AOCE是菱形.②若AE=√3,AB=2√2,则DE的长为5√33.18.为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.(1)该班共有________名留守学生,B类型留守学生所在扇形的圆心角的度数为________;(2)将条形统计图补充完整;(3)已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?19.如图,某小区有甲、乙两座楼房,楼间距BC为50米,在乙楼顶部A点测得甲楼顶部D点的仰角为37∘,在乙楼底部B点测得甲楼顶部D点的仰角为60∘,则甲、乙两楼的高度为多少?(结果精确到1米,sin37∘≈0.60,cos37∘≈0.80,tan37∘≈0.75,√3≈1.73)20.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,(x<0)的图象经过AO的中点C,交AB于点垂足为点B,反比例函数y=kxD.若点D的坐标为(−4, n),且AD=3.(1)求反比例函数的表达式;(2)求经过C、D两点的直线的函数解析式;(3)设点E是线段CD上的动点(不与点C、D重合),过点E且平行于y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.21.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.22.【问题提出】在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=120∘,连接AD,求∠ADB的度数.(不必解答)【特例探究】小聪先从特殊问题开始研究,当α=90∘,β=30∘时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90∘,β=30∘以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是________三角形;∠ADB的度数为________.【问题解决】在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;【拓展应用】在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=2.请直接写出线段BE的长为________.23.如图,抛物线y=ax2+bx+c与x轴交于点A(−1, 0),点B(3, 0),与y轴交于点C,且过点D(2, −3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求△POD面积的最大值.(3)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.2020年河南省中考数学一模试卷一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的)1.下列各数中,最大的数是( ) A.−12 B.14C.0D.−2【解答】−2<−12<0<14, 则最大的数是14,2.据统计,今年“五一”小长假期间,我市约有26.8万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是( ) A.268×103 B.26.8×104 C.2.68×105 D.0.268×106【解答】将26.8万用科学记数法表示为:2.68×105.3.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为( )A.B.C.D.【解答】从左面看所得到的图形是正方形,切去部分的棱能看到,用实线表示, 4.下列计算正确的是( ) A.a 3+a 3=a 6 B.(x −3)2=x 2−9 C.a 3⋅a 3=a 6 D.√2+√3=√5解:A、a3+a3=2a3,故此选项错误;B、(x−3)2=x2−6x+9,故此选项错误;C、a3⋅a3=a6,正确;D、√2+√3无法计算,故此选项错误.故选C.5.下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差【解答】由表可知,年龄为15岁与年龄为16岁的频数和为x+10−x=10,则总人数为:5+15+10=30,=14岁,故该组数据的众数为14岁,中位数为:14+142即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,6.若关于x的方程kx2+2x−1=0有两个不相等的实数根,则k的取值范围是()A.k>−1B.k<−1C.k≥−1且k≠0D.k>−1且k≠0【解答】∵x的方程kx2+2x−1=0有两个不相等的实数根,∴k≠0且△=4−4k×(−1)>0,解得k>−1,∴k的取值范围为k>−1且k≠0.7.在菱形ABCD中,对角线AC与BD相交于点O,再添加一个条件,仍不能判定四边形ABCD是矩形的是( )A.AB=ADB.OA=OBC.AC=BDD.DC⊥BC【解答】解:A,AB=AD,则ABCD是菱形,不能判定是矩形,故本选项错误;的平行四边形是矩形可得ABCD是矩形,故本选项正确;C,AC=BD,根据对角线相等的平行四边形是矩形,故本选项正确;D,DC⊥BC,则∠BCD=90∘,根据有一个角是直角的平行四边形是矩形可得ABCD是矩形,故本选项正确.故选A.8.阿信、小怡两人打算搭乘同一班次电车上学,若此班次电车共有5节车厢,且阿信从任意一节车厢上车的机会相等,小怡从任意一节车厢上车的机会相等,则两人从同一节车厢上车的概率为何()A.12B.15C.110D.125【解答】二人上5节车厢的情况数是:5×5=25,两人在不同车厢的情况数是5×4=20,则两人从同一节车厢上车的概率是525=15;9.如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD=AD,∠B=20∘,则下列结论中错误的是()A.∠CAD=40∘B.∠ACD=70∘C.点D为△ABC的外心D.∠ACB=90∘【解答】∵由题意可知直线MN是线段BC的垂直平分线,∴BD=CD,∠B=∠BCD,∵∠B=20∘,∴∠B=∠BCD=20∘,∴∠CDA=20∘+20∘=40∘.∵CD=AD,=70∘,∴∠ACD=∠CAD=180−402∴A错误,B正确;∵CD=AD,BD=CD,∴CD=AD=BD,∴点D为△ABC的外心,故C正确;∵∠ACD=70∘,∠BCD=20∘,∴∠ACB=70∘+20∘=90∘,故D正确.10.在Rt△ABC中,D为斜边AB的中点,∠B=60∘,BC=2cm,动点E从点A 出发沿AB向点B运动,动点F从点D出发,沿折线D−C−B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x的图象大致为()A.B.C.D.【解答】在Rt△ABC中,D为斜边AB的中点,∠B=60∘,BC=2cm,∴AD=DC=DB=2,∠CDB=60∘∵EF 两点的速度均为1cm/s∴当0≤x ≤2时,y =12⋅DE ⋅DF ⋅sin∠CDB =√34x 2当2≤x ≤4时,y =12⋅AE ⋅BF ⋅sin∠B =−√34x 2+√3x由图象可知A 正确二、填空题(每小题3分,共15分) 若x =√2−1,则x 2+2x +1=________. 【解答】 原式=(x +1)2,当x =√2−1时,原式=(√2)2=2. 已知反比例函数y =m−2x,当x >0时,y 随x 增大而减小,则m 的取值范围是________. 【解答】 此题暂无解答不等式组{3x −5>15x −a ≤12 有2个整数解,则实数a 的取值范围是________.【解答】解不等式3x −5>1,得:x >2, 解不等式5x −a ≤12,得:x ≤a+125,∵不等式组有2个整数解, ∴其整数解为3和4, 则4≤a+125<5,解得:8≤a <13,如图,在Rt △ABC 中,∠ACB =90∘,∠A =30∘,AC =√3,分别以点A ,B 为圆心,AC ,BC 的长为半径画弧,交AB 于点D ,E ,则图中阴影部分的面积是________5π12−√32.【解答】∵在Rt△ABC,∠C=90∘,∠A=30∘,AC=√3,∴∠B=60∘,BC=tan30∘×AC=1,阴影部分的面积S=S扇形BCE +S扇形ACD−S△ACB=30π×(√3)2360+60π×12360−1 2×1×√3=5π12−√32,如图,在菱形ABCD中,∠A=60∘,AB=3,点M为AB边上一点,AM=2,点N为AD边上的一动点,沿MN将△AMN翻折,点A落在点P处,当点P在菱形的对角线上时,AN的长度为________.【解答】分两种情况:①当点P在菱形对角线AC上时,如图1所示::由折叠的性质得:AN=PN,AM=PM,∵四边形ABCD是菱形,∠BAD=60∘,∴∠PAM=∠PAN=30∘,∴∠AMN=∠ANM=90∘−30∘=60∘,∴AN=AM=2;②当点P在菱形对角线BD上时,如图2所示:设AN=x,由折叠的性质得:PM=AM=2,PN=AN=x,∠MPN=∠A=60∘,∵AB=3,∴BM=AB−AM=1,∵四边形ABCD是菱形,∴∠ADC=180∘−60∘=120∘,∠PDN=∠MBP=12∠ADC=60∘,∵∠BPN=∠BPM+60∘=∠DNP+60∘,∴∠BPM=∠DNP,∴△PDN∽△MBP,∴DNBP =PDBM=PNPM,即3−xBP=PD1=x2,∴PD=12x,∴3−x3−12x=12x解得:x=5−√13或x=5+√13(不合题意舍去),∴AN=5−√13,综上所述,AN的长为2或5−√13;三、解答题(本大题共8个小题,满分75分)先化简,再求值:x2+4x+4x+1÷(3x+1−x+1),其中x=sin30∘+2−1+√4.【解答】当x=sin30∘+2−1+√4时,∴x=12+12+2=3原式=(x+2)2x+1÷4−x2x+1=−x+2 x−2=−5如图,△ABC内接于圆O,且AB=AC,延长BC到点D,使CD=CA,连接AD交圆O于点E.(1)求证:△ABE≅△CDE;(2)填空:①当∠ABC的度数为________时,四边形AOCE是菱形.②若AE=√3,AB=2√2,则DE的长为5√33.【解答】∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD,∵四边形ABCE是圆内接四边形,∴∠ECD=∠BAE,∠CED=∠ABC,∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≅△CDE(AAS);①当∠ABC的度数为60∘时,四边形AOCE是菱形;理由是:连接AO、OC,∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180∘,∵∠ABC=60,∴∠AEC=120∘=∠AOC,∵OA=OC,∴∠OAC=∠OCA=30∘,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60∘,∵∠ACB=∠CAD+∠D,∵AC=CD,∴∠CAD=∠D=30∘,∴∠ACE=180∘−120∘−30∘=30∘,∴∠OAE=∠OCE=60∘,∴四边形AOCE是平行四边形,∵OA=OC,∴AOCE是菱形;②∵△ABE≅△CDE,∴AE=CE=√3,AB=CD=2√2,∵∠DCE=∠DAB,∠D=∠D,∴△DCE∽△DAB,∴DCDA =CEAB,即√2DE+√3=√32√2,解得DE=5√3,3.故答案为:5√33为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.(1)该班共有________名留守学生,B类型留守学生所在扇形的圆心角的度数为________;(2)将条形统计图补充完整;(3)已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?【解答】2÷20%=10(人),4×100%×360∘=144∘,10故答案为:10,144;10−2−4−2=2(人),如图所示:×20%=96(人),2400×210答:估计该校将有96名留守学生在此关爱活动中受益.如图,某小区有甲、乙两座楼房,楼间距BC为50米,在乙楼顶部A点测得甲楼顶部D点的仰角为37∘,在乙楼底部B点测得甲楼顶部D点的仰角为60∘,则甲、乙两楼的高度为多少?(结果精确到1米,sin37∘≈0.60,cos37∘≈0.80,tan37∘≈0.75,√3≈1.73)【解答】作AE⊥CD于E.则四边形ABCE是矩形.在Rt△BCD中,CD=BC⋅tan60∘=50×√3≈87(米),在Rt△ADE中,∵DE=AE⋅tan37∘=50×0.75≈38(米),∴AB=CE=CD−DE=87−38=49(米).如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂(x<0)的图象经过AO的中点C,交AB于点足为点B,反比例函数y=kxD.若点D的坐标为(−4, n),且AD=3.(1)求反比例函数的表达式;(2)求经过C、D两点的直线的函数解析式;(3)设点E是线段CD上的动点(不与点C、D重合),过点E且平行于y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.【解答】解:(1)∵AB⊥x轴,点D的坐标为(−4,n),且AD=3,∴A(−4,n+3).∵C为AO的中点,∴C(−2,n+32),由点C,D都在反比例函数的图象上,可得−4n=−2×n+32,解得n=1,∴k=−4n=−4,故反比例函数的解析式为y=−4x.(2)由(1)可得C(−2,2),D(−4,1),设直线CD的解析式为y=mx+b,将C(−2,2),D(−4,1)分别代入,得{−2m+b=2,−4m+b=1,解得{m=12, b=3,故经过C,D两点的直线的函数解析式为y=12x+3.(3)设E(a,12a+3),则F(a,−4a),∴EF=12a+3−(−4a)=12a+3+4a,∴S△OEF=12×(−a)×(12a+3+4a)=−14(a+3)2+14,∵点E在线段CD上,且不与点C,D重合,∴−4<a<−2,故当a=−3时,△OEF的面积最大,为14.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.【解答】解:(1)根据题意得,y=250−10(x−25)=−10x+500(30≤x≤38).(2)设每天扣除捐赠后可获得利润为w元,由题意得,w=(x−20−a)(−10x+500)=−10x2+(10a+700)x−500a−10000(30≤x≤38),对称轴为x=35+12a,且0<a≤6,则35<35+12a≤38,则当x=35+12a时,w取得最大值,∴(35+12a−20−a)[−10(35+12a)+500]=1960,∴a1=2,a2=58(不合题意舍去),∴a=2.【问题提出】在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=120∘,连接AD,求∠ADB的度数.(不必解答)【特例探究】小聪先从特殊问题开始研究,当α=90∘,β=30∘时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90∘,β=30∘以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是________三角形;∠ADB的度数为________.【问题解决】在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;【拓展应用】在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=2.请直接写出线段BE的长为________.【解答】第②情况:当0∘<α<60∘时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.同理可得:∠ABC=12(180∘−α)=90∘−12α,∴∠ABD=∠DBC−∠ABC=β−(90∘−12α),同(1)①可证△ABD≅△ABD′,∴∠ABD=∠ABD′=β−(90∘−12α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC−∠ABD′=90∘−12α−[β−(90∘−12α)]=180∘−(α+β),∴D′B=D′C,∠BD′C=60∘.同(1)②可证△AD′B≅△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360∘,∴∠ADB=∠AD′B=150∘,在Rt△ADE中,∠ADE=30∘,AD=2,∴DE=√3,∴BE=BD+DE=7+√3,故答案为:7+√3或7−√3.如图,抛物线y=ax2+bx+c与x轴交于点A(−1, 0),点B(3, 0),与y轴交于点C,且过点D(2, −3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求△POD面积的最大值.(3)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.【解答】函数的表达式为:y=a(x+1)(x−3),将点D坐标代入上式并解得:a=1,故抛物线的表达式为:y=x2−2x−3…①;设直线PD与y轴交于点G,设点P(m, m2−2m−3),将点P、D的坐标代入一次函数表达式:y=sx+t并解得:直线PD的表达式为:y=mx−3−2m,则OG=3+2m,S△POD=12×OG(x D−x P)=12(3+2m)(2−m)=−m2+12m+3,∵−1<0,故S△POD有最大值,当m=14时,其最大值为4916;∵OB=OC=3,∴∠OCB=∠OBC=45∘,∵∠ABC=∠OBE,故△OBE与△ABC相似时,分为两种情况:①当∠ACB=∠BOQ时,AB=4,BC=3√2,AC=√10,过点A作AH⊥BC于点H,S△ABC=12×AH×BC=12AB×OC,解得:AH=2√2,则sin∠ACB=AHAC =√5,则tan∠ACB=2,则直线OQ的表达式为:y=−2x…②,联立①②并解得:x=±√3,故点Q1(√3, −2√3),Q2(−√3, 2√3),②∠BAC=∠BOQ时,tan∠BAC=OCOA =31=3=tan∠BOQ,则点Q(n, −3n),则直线OQ的表达式为:y=−3x…③,联立①③并解得:x=−1±√132,故点Q3(−1+√132, 3−3√132),Q4(−1−√132, 3+3√132);综上,当△OBE与△ABC相似时,Q的坐标为:(√3, −2√3)或(−1+√132, 3−3√132)或(−√3, 2√3)或(−1−√132, 3+3√132).。

2020学年河南郑州初三数学一模试卷及答案解析

2020学年河南郑州初三数学一模试卷及答案解析

2020学年河南郑州初三数学一模试卷及答案解析一、选择题1.3-的相反数是()A.3- B.3C.3± D.33-2.华为Mate 305G 系列是近期相当火爆的5G 国产手机,它采用的麒麟9905G 芯片在指甲盖大小的尺寸上集成了103亿个晶体管,将103亿用科学记数法表示为()A.91003.1⨯ B.9103.10⨯ C.101003.1⨯ D.111003.1⨯3.下列运算正确的是()A.xx x =-23 B.2523x x x =+ C.xx x 623=⋅ D.3223=÷x x 4.如图是由5个完全相同的小正方形搭成的几何体,如果将小正方体A 放到小正方体B 的正上方,则它的()A.左视图会发生改变B.俯视图会发生改变C.主视图会发生改变D.三种视图都会发生改变5.如图,在平行四边形ABCD 中,3AB =,5BC =,以点C 为圆心,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点P ,Q 为圆心,大于12PQ 的长为半径画弧,两弧相交于点N ,射线CN 交BA 的延长线于点E ,则AE 的长是().A.25 B.35 C.1 D.26.郑州市某中学获评“2019年河南省中小学书香校园”,学校为创建过程中购买了一批图书.已知购买科普类图书花费12000元,购买文学类图书花费10500元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x 元,则可列方程为()A.12000105001005x x -=-B.10500120001005x x -=-C.12000105001005x x -=-D.10500120001005x x-=-7.2019年9月8日第十一届全国少数民族传统体育运动会在郑州奥体中心隆重开幕,某单位得到了两张开幕式的门票,为了弘扬劳动精神,决定从本单位的劳动模范小李、小张、小杨、小王四人中选取两人去参加开幕式,那么同时选中小李和小张的概率为()A.161 B.121 C.81 D.618.已知有理数1a ≠,我们把11a -称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数⋯⋯依此类推,那么2020a 的值是()A.2-B.13C.23D.329.用三个不等式a b >,0ab >,11a b>中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.310.使用家用燃气灶烧开同一壶水所需的燃气量y (单位:3)m 与旋钮的旋转角度x (单位:度)(090)x ︒<︒ 近似满足函数关系2(0)y ax bx c a =++≠.如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.33︒B.36︒C.42︒D.49︒二、填空题11.计算:)21312-⎛⎫+= ⎪⎝⎭___________12.如图,五边形ABCDE 是正五边形.若12//l l ,则12∠-∠=︒.13.如果一元二次方程2960x x m -+=有两个不相等的实数根,那么m 的值可以为_______(写出一个值即可)14.如图,四边形ABCD 和四边形ACED 都是平行四边形,点R 为DE 的中点,BR 分别交AC 和CD 于点P ,Q ,平行四边形ABCD 的面积为6,则图中阴影部分的面积为_____.15.如图,在矩形ABMN 中,AN=1,点C 是MN 的中点,分别连接AC,BC,且BC=2,点D 为AC 的中点,点E 为边AB 上一个动点,连接DE,点A 关于直线DE 的对称点称为点F,分别连接DF,EF,当EF⊥AC 时,AE 的长为_________三、解答题16.已知分式211111m m m ⎛⎫-÷+ ⎪--⎝⎭(1)请对分式进行化简;(2)如图,若m 为正整数,则该分式的值对应的点落在数轴上的第_____段上。

2020年河南省开封市中考模拟考试(一模)数学试题及参考答案与解析

2020年河南省开封市中考模拟考试(一模)数学试题及参考答案与解析

2020年河南省开封市中考第一次模拟考试数学试卷(满分120分,考试时间100分钟)一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.下列四个实数中,最大的是()A.-2 B.0 C.13D.32.某种冠状病毒的直径为125纳米,已知1米=109纳米,则用科学记数法表示这种冠状病毒的直径为()A.1.25×10-6米B.1.25×10-7米C.1.25×10-8米D.1.25×10-9米3.如图,∠ABC=45°,∠EDF=60°,若要使直线BC∥EG,则可使直线EG绕点D逆时针旋转()A.15°B.25°C.30°D.105°4.某电子科技公司招聘本科毕业生,小林同学的心理测试、笔试、面试得分分别为80分、90分、70分.若依次按照2:3:5的比例确定成绩,则小林同学的最终成绩为()A.80分B.85分C.78分D.82分5.新年伊始,疫情肆虐.面对疫情,万千医者逆行而上,保家卫国,再次铸就新时代的钢铁长!某校数学兴趣小组制做了一个小立方体,小立方体的每一个面上各有一个字,组成“防控就是责任”.如图所示是这个小立方体的展开图,则“控”字的对面是()A.防B.是C.责D.任6.下列运算正确的是()A.5a-2a=3 B.a3·a4=a12C.(-a2b3)2=a4b6D.(-a2)3=a67.如图是一次数学活动课上制作的两个转盘,甲转盘被均分为三部分,上面分别写着9,8,5三个数字,乙转盘被均分为四部分,上面分别写着1,6,9,8四个数字.同时转动两个转盘,停止转动后两个转盘上指针所指的数字恰好都能被3整除的概率是()A .12 B .13 C .14 D .168. 如图,Rt △ABC 中,∠C=90°,AC=6,BC=8.以点A 为圆心,BC 的长为半径作弧交AB 于点D ,再分别以点A ,D 为圆心,以AB ,AC 的长为半径作弧交于点E ,连接AE , DE ,若点F 为AE 的中点,则DF 的长为( )A .4B .5C .6D .89.已知抛物线y=ax 2-2ax+b (a >0)的图象上三个点的坐标分别为A (-1,y 1),B (2,y 2),C (4,y 3),则y 1,y 2,的大小关系为( )A .y 3>y 1>y 2B .y 3>y 2>y 1C .y 2>y 1>y 3D .y 2>y 3>y 110.如图,指针OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45°,OB 的转动速度是OA 的13,则第2020秒时,OA 与OB 之间夹角的度数为( )A .130°B .145°C .150°D .165° 二、填空题(每小题3分,共15分)11.计算:()2122-⎛⎫--= ⎪⎝⎭.12.若关于x 的一元二次方程2x 2-4x = k 没有实数根,则k 的取值范围是 . 13.不等式组10,290x x +⎧⎨-⎩≥<的所有整数解的中位数是 .14.如图,矩形ABCD 中,AB=2AD=AE=2,点O 为AB 的中点,以点O 为圆心,OE 的长为半径画弧交BC 于点F ,则图中阴影部分的面积为 .15.如图,Rt △ ABC 中,∠C=90°,∠A=30°,AB=8,点D ,E 分别为AC ,BC 的中点,点F 为AB 边上一动点,将∠A 沿着DF 折叠,点A 的对应点为点G ,且点G 始终在直线DE 的下方,连接GE ,当△GDE 为直角三角形时,线段AF 的长为 .三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:2311244a a a a -⎛⎫⎛⎫-÷ ⎪ ⎪+++⎝⎭⎝⎭,其中2a =.17.(9分)“停课不停学,学习不延期!”某市教育局为了解初中学生疫情期间在家学习时对一些学习方式的喜好情况,通过微信采用电子问卷的方式随机调查了部分学生(电子调查表如图所示),并根据调查结果绘制了如下尚不完整的统计图,其中选择选项A 与选项C 的人数之和等于选择选项B 的人数.根据以上统计图,解答下列问题:(1)本次接受调查的学生共有人;(2)求选择选项B与选项C的人数并补全条形统计图;(3)扇形统计图中,扇形B的圆心角的度数是;(4)若该市约有16万初中生,请估计喜欢自学(选择选项C或D)的学生人数.18.(9分)如图,以AB为直径的半圆O分别交△ABC的边AC ,BC于点D,E,过点D作⊙O 的切线交BC于点F,连接DE.已知点D为AE的中点.(1)求证:CF=EF;(2)填空:①若AB=16,BE=6,则AD=;②当四边形OADE为菱形时,∠C的度数为.19.(9分)某数学学习兴趣小组要测量校园广场内旗杆的高度,其示意图如图所示.小聪同学在旗杆AB 的正南方向用高1米的测倾器(CD =1米)测得旗杆顶端A 的仰角是37 °,在旗杆AB 的正北方向(点F ,B ,D 在同一直线上)2米高的图书馆的台阶上,小颖同学用1米高的测倾器(EF=3米)测得旗杆顶端A 的仰角为18°,又测得FD=58.5米,求旗杆的高度.(结果精确到0.1米)(sin1810︒=cos1810︒=,1tan183︒=,3sin 375︒=,4cos375︒=,3tan 374︒=)20.(9分)由于新能源汽车越来越受到消费者的青睐,某经销商决定分两次购进甲、乙两种型号的新能源汽车(两次购进同一种型号汽车每辆的进价相同).第一次用275万元购进甲型号汽车30辆和乙型号汽车20辆;第二次用191万元购进甲型号汽车14辆和乙型号汽车25辆. (1)求甲、乙两种型号汽车每辆的进价;(2)经销商分别以每辆甲型号汽车8.8万元,每辆乙型号汽车5. 8万元的价格销售后,根据销售情况,决定再次购进甲、乙两种型号的汽车共100辆,且乙型号汽车的辆数不少于甲型号汽车辆数的2倍,若两种型号汽车每辆的进价与售价均不变,请你求出获利最大的购买方案,并求出最大利润.21.(10分)如图,矩形ABCD的两个顶点A,B分别在y轴和x轴上,对角线AC,BD交于点E,过点C作CF⊥x轴于点F.已知反比例函数kyx=的图象经过点E交CF于点G,点A,B,F的坐标分别为A(0,3),B(2,0),F(8,0).(1)求反比例函数kyx=的解析式;(2)在x轴上是否存在点P,使得DP+GP的值最小,若存在,请求出P点的坐标;若不存在,请说明理由.22.(10分)如图1,在正方形ABCD中,AB=4,点E在AC上,且E点作EF⊥AC 于点E,交AB于点F,连接CF,DE.【问题发现】(1)线段DE与CF的数量关系是,直线DE与CF所夹锐角的度数是;【拓展探究】(2)当△AEF绕点A顺时针旋转时,上述结论是否成立?若成立,请写出结论,并结合图2给出证明;若不成立,请说明理由;【解决问题】(3)在(2)的条件下,当点E到直线AD的距离为1时,请直接写出CF的长.23.(11分)如图,已知二次函数,21 3y ax x b=++的图象经过点A(-3,0)和点B(0,4),∠BAO的平分线分别交抛物线和y轴于点C,D点.P为抛物线上一动点,过点P作x轴的垂线交直线AC于点E,连接PC.(1)求二次函数的解析式;(2)当以点P,C,E为顶点的三角形与△ADO相似时,求点P的坐标;(3)设点F为直线AC上一点,若∠BFD=12∠ABO,请直接写出点F的坐标.。

2020届初三中考数学一诊联考试卷含答案解析 (河南)

2020届初三中考数学一诊联考试卷含答案解析 (河南)

2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。

2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。

如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,将本试卷和答题卡一并收回。

4.考试时间:120分钟。

一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()A.B.C.D.2.如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()A B R C.R D23.如图所示的正六棱柱的主视图是()A.B.C.D.4.甲、乙两地去年 12 月前 5 天的日平均气温如图所示,下列描述错误的是()A.甲地气温的中位数是 6℃B.两地气温的平均数相同C.乙地气温的众数是 8℃D.乙地气温相对比较稳定5.观察下列表格,求一元二次方程x2﹣x=1.1的一个近似解是()A .0.11B .1.6C .1.7D .1.196.数学与我们的日常生活息息相关.汽车雨刮器摆动的轨迹是以点O 为圆心的扇形.如图所示,已知雨刮器摆动的角度为120°,雨刮器的总长为1,雨刮器上有橡胶的部分(即线段AC 的长)为35,则单个雨刮器在车窗上从AC 转动到BD ,扫过的面积为( )A .725π B .1675π C .325π D .475π 7.下列计算正确的是( ) A .5a 4•2a =7a 5 B .(﹣2a 2b )2=4a 2b 2 C .2x (x ﹣3)=2x 2﹣6x D .(a ﹣2)(a +3)=a 2﹣68.关于反比例函数y=2x的图象,下列说法正确的是( ) A .图象经过点(1,1) B .两个分支分布在第二、四象限 C .两个分支关于x 轴成轴对称D .当x <0时,y 随x 的增大而减小9.若二次函数y =|a |x 2+bx+c 的图象经过A(m ,n )、B(0,y 1)、C(3-m ,n )、, y 2)、E(2,y 3),则y 1、y 2、y 3的大小关系是( ).A .y 1< y 2< y 3B .y 1 < y 3< y 2C .y 3< y 2< y 1D .y 2< y 3< y 110.下列四个数中,是正整数的是( ) A .﹣2B .﹣1C .1D .12二、填空题(共4题,每题4分,共16分)11.计算(的结果等于__________.12.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.13.反比例函数ky x=与一次函数y kx =的图象有一个交点是()2,1-,则它们的另一个交点的坐标是______.14.如图,把一张长方形纸片沿AB 折叠后,若148∠=︒,则2∠的大小为_____度.三、解答题(共6题,总分54分)15.如图,在△ABC 中,AB =AC ,以AB 为直径作圆O ,分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH ⊥AC 于点H ,连接DE 交线段OA 于点F .(1)求证:DH 是圆O 的切线;(2)若A 为EH 的中点,求EFFD的值;(3)若EA =EF =1,求圆O 的半径.16.(1)计算:114sin 602-⎛⎫+︒ ⎪⎝⎭(2)如图所示的是某二次函数的图象,求这个二次函数的表达式.17.经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.18.为了美化城市环境,某街道重修了路面,准备将老旧的路灯换成LED 太阳能路灯,计划购买海螺臂和A 字臂两种型号的太阳能路灯共100只,经过市场调查:购买海螺臂太阳能路灯1只,A 字臂太阳能路灯2只共需2300元;购买海螺臂太阳能路灯3只,A 字臂太阳能路灯4只共需5400元.(1)求海螺臂太阳能路灯和A 字臂太阳能路灯的单价:(2)在实际购买时,恰逢商家活动,购买海螺臂太阳能路灯超过20只时,超过的部分打九折优惠,A 字臂太阳能路灯全部打八折优惠;若规定购买的海螺臂太阳能路灯的数量不少于A 字臂太阳能路灯的数量的一半,请你设计一种购买方案,使得总费用最少,并求出最小总费用.19.如图,在ABCD 中,AC 与BD 相交于点O ,AC BC ⊥,垂足为C .将ABC ∆沿AC 翻折得到AEC ∆,连接DE .(1)求证:四边形ACED 是矩形;(2)若4AC =,3BC =,求sin ABD ∠的值.20.如图1,抛物线C 1:y=ax 2﹣2ax+c (a <0)与x 轴交于A 、B 两点,与y 轴交于点C .已知点A 的坐标为(﹣1,0),点O 为坐标原点,OC=3OA ,抛物线C 1的顶点为G .。

河南2020中考数学综合模拟测试卷1(含答案及解析)

河南2020中考数学综合模拟测试卷1(含答案及解析)

2020河南省普通高中招生模拟考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共24分)一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.下列各数中最大的数是( )A.5B.C.πD.-82.如图所示的几何体的俯视图是( )3.据统计,2014年我国高新技术产品出口总额达40570亿元.将数据40570亿用科学记数法表示为( )A.4.0570×109B.0.40570×1010C.40.570×1011D.4.0570×10124.如图,直线a,b被直线c,d所截,若∠1=∠2,∠3=125°,则∠4的度数为( )A.55°B.60°C.70°D.75°的解集在数轴上表示为( )5.不等式组-6.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分,80分,90分,若依次按照2∶3∶5的比例确定成绩,则小王的成绩是( )A.255分B.84分C.84.5分D.86分7.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为( )A.4B.6C.8D.108.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线.点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是( )A.(2014,0)B.(2015,-1)C.(2015,1)D.(2016,0)第Ⅱ卷(非选择题,共96分)二、填空题(每小题3分,共21分)9.计算:(-3)0+3-1= .10.如图,△ABC中,点D,E分别在边AB,BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC= .11.如图,直线y=kx与双曲线y=(x>0)交于点A(1,a),则k= .12.已知点A(4,y1),B(,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是.13.现有四张分别标有数字1,2,2,3的卡片,它们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽出一张后放回,再背面朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率是.14.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E.以点O为圆心,OC 的长为半径作交OB于点D.若OA=2,则阴影部分的面积为.15.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B'处.若△CDB'恰为等腰三角形,则DB'的长为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:-÷-,其中a=+1,b=-1.-17.(9分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连结PD,PO.(1)求证:△CDP≌△POB;(2)填空:①若AB=4,则四边形AOPD的最大面积为;②连结OD,当∠PBA的度数为时,四边形BPDO是菱形.18.(9分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)这次接受调查的市民总人数是;(2)扇形统计图中,“电视”所对应的圆心角的度数是;(3)请补全条形统计图;(4)若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.19.(9分)已知关于x的一元二次方程(x-3)(x-2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.20.(9分)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B 的仰角是48°.若坡角∠FAE=30°,求大树的高度.(结果保留整数.参考数据:sin 48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)21.(10分)某游泳馆普通票价20元/张,暑期为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元.暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数.设游泳x次时,所需总费用为y 元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一个坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A,B,C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.22.(10分)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连结DE.将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,= ;②当α=180°时,= .(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.23.(11分)如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC于点F.点D,E的坐标分别为(0,6),(-4,0),连结PD,PE,DE.(1)请直接写出抛物线的解析式;(2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的差为定值.进而猜想:对于任意一点P,PD与PF的差为定值.请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点”的坐标.备用图答案全解全析:一、选择题1.A根据“正数都大于负数”,知-8最小.π在正整数3和4之间,利用平方法可以知道在1和2之间,由此可得最大的数是5.故选A.2.B根据俯视图的定义,可知选B.3.D40570亿=4057000000000=4.0570×1000000000000=4.0570×1012.故选D.4.A如图,∵∠1=∠2,∴a∥b.∴∠5=∠3=125°,∴∠4=180°-∠5=180°-125°=55°.故选A.评析本题考查了平行线的性质与判定,以及邻补角的关系,属容易题.5.C解不等式x+5≥0得x≥-5;解不等式3-x>1得x<2.∴-5≤x<2.在数轴上表示这一解集时,在-5的位置为实心点并向右画线,在2的位置为空心圆圈并向左画线.故选C.6.D∵=86,∴小王的成绩为86分.故选D.7.C设AE与BF交于点O.由题可知AF=AB,∠BAE=∠FAE,∴AE⊥BF,OB=BF=3,在Rt△AOB 中,AO=-=4.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE,∴AE=2AO=8.故选C.8.B∵半圆的半径r=1,∴一个半圆的弧长=π,又∵每两个半圆为一个循环,∴一个循环内点P运动的路程为2π.÷2π=503……3,∴点P位于第504个循环的第二个半圆弧的中点位置(即第1008个半圆弧的中点),∴此时点P的横坐标为503×4+3=2015,纵坐标为-1,∴第2015秒时,点P(2015,-1).故选B.二、填空题9.答案解析(-3)0+3-1=1+=.10.答案解析∵DE∥AC,∴=,∴EC===.11.答案2解析把点A(1,a)代入y=,得a==2,∴点A的坐标为(1,2).把点A(1,2)代入y=kx,得2=1×k,∴k=2.12.答案y2<y1<y3解析解法一:∵A(4,y1),B(,y2),C(-2,y3)都在抛物线y=(x-2)2-1上,∴y1=3,y2=5-4,y3=15.∵5-4<3<15,∴y2<y1<y3.解法二:设点A、B、C三点到抛物线对称轴的距离分别为d1、d2、d3.∵y=(x-2)2-1,∴对称轴为直线x=2,∴d1=2,d2=2-,d3=4,∵2-<2<4,且a=1>0,∴y2<y1<y3.13.答案解析列表如下:所有等可能的情况有16种,其中两次抽出卡片所标数字不同的情况有10种,则所求概率P==.14.答案+解析连结OE.∵点C是OA的中点,∴OC=OA=1,∵OE=OA=2,∴OC=OE,∵CE⊥OA,∴∠OEC=30°,∴∠COE=60°.在Rt△OCE中,CE=OC·tan60°=,∴S△OCE=OC·CE=.∵∠AOB=90°,∴∠BOE=∠AOB-∠COE=30°,∴S扇形OBE==,又S扇形COD==.因此S阴影=S扇形OBE+S△OCE-S扇形COD=+-=+.评析求不规则图形的面积可采用割补法,利用规则图形的面积的和差求解.15.答案16或4解析分三种情况讨论:(1)若DB'=DC,则DB'=16(易知此时点F在BC上且不与点C、B重合).(2)当CB'=CD时,连结BB',∵EB=EB',CB=CB',∴点E、C在BB'的垂直平分线上,∴EC垂直平分BB',由折叠可知点F与点C重合,不符合题意,舍去.(3)如图,当CB'=DB'时,作B'G⊥AB于点G,延长GB'交CD于点H.∵AB∥CD,∴B'H⊥CD.则四边形AGHD为矩形,∴AG=DH.∵CB'=DB',∴DH=CD=8,∴AG=DH=8,∴GE=AG-AE=5.又易知EB'=13,∴在Rt△B'EG中,由勾股定理得B'G=12,∴B'H=GH-B'G=4.在Rt△B'DH中,由勾股定理得DB'=4(易知此时点F在BC上且不与点C、B重合).综上所述,DB'=16或4.三、解答题÷-(4分)16.解析原式=--=-·-=.(6分)当a=+1,b=-1时,原式=-=-=2.(8分)17.解析(1)证明:∵D是AC的中点,且PC=PB,∴DP∥AB,DP=AB.∴∠CPD=∠PBO.(3分)∵OB=AB,∴DP=OB.∴△CDP≌△POB.(5分)(2)①4.(7分)②60°.(注:若填为60,不扣分)(9分)18.解析(1)1000.(2分)(2)54°.(注:若填为54,不扣分)(4分)(3)图略.(按人数为100正确补全条形图)(6分)(4)80×(26%+40%)=80×66%=52.8(万人).所以估计该市将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数约为52.8万人.(9分)19.解析(1)证明:原方程可化为x2-5x+6-|m|=0.(1分)∴Δ=(-5)2-4×1×(6-|m|)=25-24+4|m|=1+4|m|.(3分)∵|m|≥0,∴1+4|m|>0.∴对于任意实数m,方程总有两个不相等的实数根.(4分)(2)把x=1代入原方程,得|m|=2,∴m=±2.(6分)把|m|=2代入原方程,得x2-5x+4=0,∴x1=1,x2=4.∴m的值为±2,方程的另一个根是4.(9分)20.解析延长BD交AE于点G,过点D作DH⊥AE于点H.由题意知,∠DAE=∠BGA=30°,DA=6,∴GD=D A=6.∴GH=AH=DA·cos30°=6×=3.∴GA=6.(2分)设BC=x米.在Rt△GBC中,GC=∠=°=x.(4分)在Rt△ABC中,AC=∠=°.(6分)∵GC-AC=GA,∴x-=6.(8分)∴x≈13.即大树的高度约为13米.(9分)21.解析(1)银卡:y=10x+150;(1分)普通票:y=20x.(2分)(2)把x=0代入y=10x+150,得y=150.∴A(0,150).(3分)联立得∴∴B(15,300).(4分)把y=600代入y=10x+150,得x=45.∴C(45,600).(5分)(3)当0<x<15时,选择购买普通票更合算;(注:若写为0≤x<15,不扣分)当x=15时,选择购买银卡、普通票的总费用相同,均比金卡合算;当15<x<45时,选择购买银卡更合算;当x=45时,选择购买金卡、银卡的总费用相同,均比普通票合算;当x>45时,选择购买金卡更合算.(10分)22.解析(1)①.(1分)②.(2分)(2)无变化.(注:若无判断,但后续证明正确,不扣分)(3分)在题图1中,∵DE是△ABC的中位线,∴DE∥AB.∴=,∠EDC=∠B=90°.如题图2,∵△EDC在旋转过程中形状大小不变,∴=仍然成立.(4分)又∵∠ACE=∠BCD=α,∴△ACE∽△BCD.∴=.(6分)在Rt△ABC中,AC===4.∴==,∴=.∴的大小不变.(8分)(3)4或.(10分)【提示】当△EDC在BC上方,且A,D,E三点共线时,四边形ABCD为矩形,∴BD=AC=4;当△EDC在BC下方,且A,E,D三点共线时,△ADC为直角三角形,由勾股定理可求得AD=8,∴AE=6,根据=可求得BD=.23.解析(1)抛物线的解析式为y=-x2+8.(3分)(2)正确.理由:设P-,则PF=8--=x2.(4分)过点P作PM⊥y轴于点M,则PD2=PM2+DM2=(-x)2+--=x4+x2+4=.∴PD=x2+2.(6分)∴PD-PF=x2+2-x2=2.∴猜想正确.(7分)(3)“好点”共有11个.(9分)在点P运动时,DE大小不变,∴当PE与PD的和最小时,△PDE的周长最小.∵PD-PF=2,∴PD=PF+2,∴PE+PD=PE+PF+2.当P,E,F三点共线时,PE+PF最小.此时点P,E的横坐标都为-4.将x=-4代入y=-x2+8,得y=6.∴P(-4,6),此时△PDE的周长最小,且△PDE的面积为12,点P恰为“好点”.∴△PDE的周长最小时“好点”的坐标为(-4,6).(11分)【提示】△PDE的面积S=-x2-3x+4=-(x+6)2+13.由-8≤x≤0,知4≤S≤13,所以S的整数值有10个.由函数图象知,当S=12时,对应的“好点”有2个.所以“好点”共有11个.。

2020年河南省郑州市巩义市中考数学一模试卷及解析

2020年河南省郑州市巩义市中考数学一模试卷及解析

2020年河南省郑州市巩义市中考数学一模试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)如图是几种汽车轮毂的图案,图案绕中心旋转90°后能与原来的图案重合的是()A.B.C.D.2.(3分)我国福利彩票大乐透玩法,中一等奖的概率大约为,把用科学记数法表示为()A.2×10﹣7B.5×10﹣7C.2×10﹣8D.5×10﹣83.(3分)用配方法将方程x2﹣4x﹣4=0化成(x+m)2=n的形式,则m,n的值是()A.﹣2,0B.2,0C.﹣2,8D.2,84.(3分)下列图形一定是相似图形的是()A.两个矩形B.两个周长相等的直角三角形C.两个正方形D.两个等腰三角形5.(3分)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB =50°,则∠BOD等于()A.40°B.50°C.60°D.80°6.(3分)下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.(3分)如图,反比例函数和正比例函数y2=k2x的图象交于A(﹣1,﹣3)、B (1,3)两点,若,则x的取值范围是()A.﹣1<x<0B.﹣1<x<1C.x<﹣1或0<x<1D.﹣1<x<0或x>18.(3分)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.9.(3分)如图,⊙O被抛物线y=x2所截的弦长AB=4,则⊙O的半径为()A.2B.2C.D.410.(3分)如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE =BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是()A.B.C.D.二、填空题(每题3分,满分15分,将答案填在答题纸上)11.(3分)在Rt△ABC中,已知∠ACB=90°,BC=1,AB=2,则cos A=.12.(3分)如图,某小区规划在长20米,宽10米的矩形场地ABCD上修建三条同样宽的小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为162米2,设道路宽为x米,则根据题意,可列方程为.13.(3分)如图,在扇形OAB中,∠AOB=60°.D、E分别是半径OA、OB上的点,以OD、OE为邻边的菱形ODCE的顶点C在弧AB上.若OA=1,则阴影部分图形的面积为.14.(3分)如图,在平行四边形ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,若DE:EC=2:3,则S△DEF:S△ABF=.15.(3分)如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P是线段AD上的动点,过P作PF⊥AE于F,当以点P、F、E为顶点的三角形与△ABE相似时,AP 的长为.三、解答题:本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(9分)先化简,再求值:,其中a的值从不等式组的解集中选取一个合适的整数.17.(9分)已知关于x的一元二次方程x2+(2m﹣1)x+m2﹣3=0有实数根.(1)求实数m的取值范围;(2)当m取满足条件的最大整数时,求方程的解.18.(9分)如图,已知AB是圆O的直径,AC、BC是圆O的弦,OM∥AC交圆O于M,交BC于E,过点B作圆O的切线交OE的延长线于点D,连接DC并延长交BA的延长线于点F.(1)求证:DC是圆O的切线;时,四边形OBMC为菱形.(2)当∠BAC=47.848.649.149.249.449.649.7a50.150.350.450.650.750.8b/mm按照生产标准,产品等次规定如下:尺寸/mm产品等次49.7≤x≤50.3特等品49.5≤x≤50.5优等品49.0≤x≤51.0合格品x<49.0或x>51.0残次品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为50.0mm.①求a的值;②将这些优等品分成两组,一组尺寸大于50.0mm,另一组尺寸不大于50.0mm,从这两组中各随机抽取1件进行复检,请用列表或树状图的方法求出抽取到的2件产品都是特等品的概率.20.(10分)巩义某景点试开放期间,门票价格暂定60元,为吸引游客,对团队门票优惠如下:不超过20人时,按正常门票价格收费;超过20人且不超过60人时,每增加1人,门票价格降低1元;超过60人时,门票价格不再降低,按60人的优惠门票价格收费.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式.(2)景点售票员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,请求出团队门票最多优惠只能按多少人的优惠门票价格收费,此时门票价格是多少?21.(9分)在初中阶段的函数学习中,我们经历了“确定函数的解析式﹣﹣利用函数图象研究其性质﹣﹣运用函数解决问题”的学习过程.在画函数图象时,我们可以通过描点或平移或翻折等方法画出函数图象.下面我们对函数展开探索,请补充以下探索过程:(1)列表:x…﹣2﹣﹣﹣﹣1﹣﹣﹣…12…y…a235…310b…直接写出函数自变量x的取值范围,及a=,b=;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象,并写出这个函数的一条性质;(3)若方程有且只有一个解,直接写出m的值:.22.(9分)如图1,在Rt△ABC中,∠B=90°,AB=2,BC=1,点D,E分别是边BC,AC的中点,连接DE.将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.(3)问题解决当△EDC旋转至A、B、E三点共线时,直接写出线段BD的长.23.(10分)已知一次函数y=kx+3与二次函数y=﹣x2+bx+c的图象的一个交点坐标为A(3,0),另一个交点B在y轴上,点P为y轴右侧抛物线上的一动点.(1)求此二次函数的解析式;(2)当点P位于直线AB上方的抛物线上时,求△ABP面积的最大值;(3)当此抛物线在点B与点P之间的部分(含点B和点P)的最高点与最低点的纵坐标之差为9时,请直接写出点P的坐标和△ABP的面积.2020年河南省郑州市巩义市中考数学一模试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)如图是几种汽车轮毂的图案,图案绕中心旋转90°后能与原来的图案重合的是()A.B.C.D.【分析】根据旋转对称图形的概念解答.【解答】解:A.此图案绕中心旋转36°或36°的整数倍能与原来的图案重合,此选项不符合题意;B.此图案绕中心旋转45°或45°的整数倍能与原来的图案重合,此选项符合题意;C.此图案绕中心旋转60°或60°的整数倍能与原来的图案重合,此选项不符合题意;D.此图案绕中心旋转72°或72°的整数倍能与原来的图案重合,此选项不符合题意;故选:B.【点评】本题主要考查旋转对称图形,解题的关键是掌握如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.2.(3分)我国福利彩票大乐透玩法,中一等奖的概率大约为,把用科学记数法表示为()A.2×10﹣7B.5×10﹣7C.2×10﹣8D.5×10﹣8【分析】首先用小数表示,再用科学记数法表示即可.【解答】解:=0.000000005=5×10﹣8,故选:D.【点评】此题主要考查了科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)用配方法将方程x2﹣4x﹣4=0化成(x+m)2=n的形式,则m,n的值是()A.﹣2,0B.2,0C.﹣2,8D.2,8【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后可得答案.【解答】解:∵x2﹣4x﹣4=0,∴x2﹣4x=4,则x2﹣4x+4=4+4,即(x﹣2)2=8,∴m=﹣2,n=8,故选:C.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.4.(3分)下列图形一定是相似图形的是()A.两个矩形B.两个周长相等的直角三角形C.两个正方形D.两个等腰三角形【分析】根据相似图形的定义,结合选项,用排除法求解.【解答】解:A、两个矩形,对应角相等,对应边不一定成比例,故不符合题意;B、两个周长相等的直角三角形的对应角不一定相等,不符合题意;C、两个正方形,形状相同,大小不一定相同,符合相似性定义,故符合题意;D、两个等腰三角形顶角不一定相等,故不符合题意.故选:C.【点评】本题考查相似形的定义,熟悉各种图形的性质和相似形的定义是解题的关键.5.(3分)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40°B.50°C.60°D.80°【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.【点评】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.6.(3分)下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P (A)=0对A、B、C进行判定;根据频率与概率的区别对D进行判定.【解答】解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选:A.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.7.(3分)如图,反比例函数和正比例函数y2=k2x的图象交于A(﹣1,﹣3)、B (1,3)两点,若,则x的取值范围是()A.﹣1<x<0B.﹣1<x<1C.x<﹣1或0<x<1D.﹣1<x<0或x>1【分析】根据题意知反比例函数和正比例函数相交于A、B两点,若要,只须y1>y2,在图象上找到反比例函数图象在正比例函数图象上方x的取值范围.【解答】解:根据题意知:若,则只须y1>y2,又知反比例函数和正比例函数相交于A、B两点,从图象上可以看出当x<﹣1或0<x<1时y1>y2,故选:C.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.8.(3分)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.【分析】根据正方形的性质求出∠ACB,根据相似三角形的判定定理判断即可.【解答】解:由正方形的性质可知,∠ACB=180°﹣45°=135°,A、C、D图形中的钝角都不等于135°,由勾股定理得,BC=,AC=2,对应的图形B中的边长分别为1和,∵=,∴图B中的三角形(阴影部分)与△ABC相似,故选:B.【点评】本题考查的是相似三角形的判定,掌握两组对应边的比相等且夹角对应相等的两个三角形相似是解题的关键.9.(3分)如图,⊙O被抛物线y=x2所截的弦长AB=4,则⊙O的半径为()A.2B.2C.D.4【分析】根据AB=4,求出BC的长,得到点B的横坐标,代入抛物线的解析式求出点B 的纵坐标,得到OC的长,根据勾股定理求出OB的长,得到答案.【解答】解:如图,连接OB,∵AB=4,∴BC=2,则点B的横坐标为2,y=x2=2,∴点B的坐标为(2,2),∴OC=2,在Rt△OCB中,BC=2,OC=2,由勾股定理得,OB=2,故选:B.【点评】本题考查的是二次函数图象上点的坐标特征和勾股定理的应用,理解坐标与图形的关系、灵活运用数形结合思想是解题的关键.10.(3分)如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE =BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是()A.B.C.D.【分析】根据条件可知△AEH≌△BFE≌△CGF≌△DHG,设AE为x,则AH=1﹣x,根据勾股定理EH2=AE2+AH2=x2+(1﹣x)2,进而可求出函数解析式,求出答案.【解答】解:∵根据正方形的四边相等,四个角都是直角,且AE=BF=CG=DH,∴△AEH≌△BFE≌△CGF≌△DHG.设AE为x,则AH=1﹣x,根据勾股定理,得EH2=AE2+AH2=x2+(1﹣x)2即s=x2+(1﹣x)2.s=2x2﹣2x+1,∴所求函数是一个开口向上,抛物线对称轴是直线x=.∴自变量的取值范围是大于0小于1.故选:B.【点评】本题需根据自变量的取值范围,并且可以考虑求出函数的解析式来解决.二、填空题(每题3分,满分15分,将答案填在答题纸上)11.(3分)在Rt△ABC中,已知∠ACB=90°,BC=1,AB=2,则cos A=.【分析】首先画出图形,利用勾股定理计算出AC的长,再根据余弦定义可得答案.【解答】解:∵∠ACB=90°,BC=1,AB=2,∴AC==,∴cos A==,故答案为:.【点评】此题主要考查了锐角三角函数定义,关键是掌握余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cos A.12.(3分)如图,某小区规划在长20米,宽10米的矩形场地ABCD上修建三条同样宽的小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为162米2,设道路宽为x米,则根据题意,可列方程为(20﹣2x)(10﹣x)=162.【分析】设小路宽x米,则其余部分可合成长(20﹣2x)米、宽(10﹣x)米的矩形,根据矩形的面积公式结合草坪的面积为162米2,即可得出关于x的一元二次方程.【解答】解:设小路宽x米,则其余部分可合成长(20﹣2x)米、宽(10﹣x)米的矩形,根据题意得:(20﹣2x)(10﹣x)=162,故答案是:(20﹣2x)(10﹣x)=162.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.13.(3分)如图,在扇形OAB中,∠AOB=60°.D、E分别是半径OA、OB上的点,以OD、OE为邻边的菱形ODCE的顶点C在弧AB上.若OA=1,则阴影部分图形的面积为.【分析】连接OC、DE,它们交于点P,如图,利用菱形的性质得到PD=PE,OP=PC,DE⊥OC,∠POD=30°,再计算出PD=,然后根据扇形的面积公式和菱形的面积公式,利用阴影部分图形的面积=S扇形AOB﹣S菱形ODCE进行计算.【解答】解:连接OC、DE,它们交于点P,如图,∵四边形ODCE为菱形,∴PD=PE,OP=PC,DE⊥OC,∠POD=30°,∴OP=,∴PD=OP=,∴DE=2PD=,∴阴影部分图形的面积=S扇形AOB﹣S菱形ODCE=﹣×1×=.故答案为.【点评】本题考查了扇形的面积计算:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=πR2或S扇形=lR(其中l为扇形的弧长);求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.也考查了菱形的性质.14.(3分)如图,在平行四边形ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,若DE:EC=2:3,则S△DEF:S△ABF=4:25.【分析】由四边形ABCD是平行四边形,可得AB∥CD,AB=CD,即可证得△DEF∽△BAF,然后由相似三角形面积比等于相似比的平方,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴△DEF∽△BAF,∴=()2,∵DE:EC=2:3,∴DE:CD=DE:AB=2:5,∴S△DEF:S△ABF=4:25.故答案为:4:25.【点评】此题考查了相似三角形的判定与性质以及平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.15.(3分)如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P是线段AD上的动点,过P作PF⊥AE于F,当以点P、F、E为顶点的三角形与△ABE相似时,AP的长为3或.【分析】由于对应关系不确定,所以应针对不同的对应关系分情况考虑:①当∠PEF=∠EAB时,则得到四边形ABEP为矩形,从而求得x的值;②当∠PEF=∠AEB时,再结合(1)中的结论,得到等腰△APE.再根据等腰三角形的三线合一得到F是AE的中点,运用勾股定理和相似三角形的性质进行求解.【解答】解:分两种情况:①若△EFP∽△ABE,如图1,则∠PEF=∠EAB,∴PE∥AB,∴四边形ABEP为矩形,∴P A=EB=3,即x=3.②若△PFE∽△ABE,如图2中,则∠PEF=∠AEB,∵AD∥BC∴∠P AF=∠AEB,∴∠PEF=∠P AF∴PE=P A.∵PF⊥AE,∴点F为AE的中点,Rt△ABE中,AB=4,BE=3,∴AE=5,∴EF=AE=,∵△PFE∽△ABE,∴=,∴=,∴PE=,即x=.∴满足条件的x的值为3或.故答案为3或.【点评】考查了矩形的性质、相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.三、解答题:本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(9分)先化简,再求值:,其中a的值从不等式组的解集中选取一个合适的整数.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出不等式组的解集确定出a的范围,取a的值代入计算即可求出值.【解答】解:原式=÷[﹣]=÷=•=﹣,∵不等式组的解集为﹣1≤a≤,且由分式的意义可知a≠﹣1且a≠0且a≠1,∴a=2,则原式=﹣.【点评】此题考查了分式的化简求值,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.17.(9分)已知关于x的一元二次方程x2+(2m﹣1)x+m2﹣3=0有实数根.(1)求实数m的取值范围;(2)当m取满足条件的最大整数时,求方程的解.【分析】(1)利用根的判别式的意义得到△=(2m﹣1)2﹣4×(m2﹣3)≥0,然后解不等式即可;(2)先确定m的最大整数为3,则方程化为x2+5x+6=0,然后解方程即可求解.【解答】解:(1)∵方程有实数根,∴△=(2m﹣1)2﹣4(m2﹣3)=13﹣4m≥0∴;(2)∵m取最大的整数,∴m=3,∴一元二次方程为x2+5x+6=0,∴方程的解为:x1=﹣2,x2=﹣3.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.18.(9分)如图,已知AB是圆O的直径,AC、BC是圆O的弦,OM∥AC交圆O于M,交BC于E,过点B作圆O的切线交OE的延长线于点D,连接DC并延长交BA的延长线于点F.(1)求证:DC是圆O的切线;(2)当∠BAC=60°时,四边形OBMC为菱形.【分析】(1)根据平行线的性质得到∠OEB=∠ACB,根据圆周角定理得到∠OEB=∠ACB=90°,根据等腰三角形的性质得到∠OBE=∠OCE,即∠DBO=∠OCD,根据切线的判定和性质定理即可得到结论;(2)根据线段垂直平分线的性质和等边三角形的判定和性质即可得到结论.【解答】(1)证明:OM∥AC,∴∠OEB=∠ACB,∵AB是圆O的直径,∴∠OEB=∠ACB=90°,∴OD⊥BC,由垂径定理得OD垂直平分BC,∴DB=DC,∴∠DBE=∠DCE,又∵OC=OB,∴∠OBE=∠OCE,即∠DBO=∠OCD,∵DB为圆O的切线,OB是半径,∴∠DBO=90°,∴∠OCD=∠DBO=90°,即OC⊥DC,∵OC是圆O的半径,∴DC是圆O的切线;(2)当∠BAC=60°时,四边形OBMC为菱形;理由:∵∠BAC=60°,∴∠BOC=120°,∵OD垂直平分BC,OC=OB,∴∠COM=∠BOM=60°,∴△COM和△BOM是等边三角形,∴OC=OB=CM=BM,∴四边形OBMC为菱形.故答案为:60°.【点评】本题考查了切线的判定和性质,垂径定理,圆周角定理,等腰三角形的性质,正确的识别图形是解题的关键.19.(10分)在某数控车床加工中心,质检员每天要对加工的每一个零件尺寸进行检测,质检员对某天生产的15个零件进行了测量,测量数据按照由小到大的顺序进行整理如下表:编号①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮尺寸47.848.649.149.249.449.649.7a50.150.350.450.650.750.8b/mm按照生产标准,产品等次规定如下:尺寸/mm产品等次49.7≤x≤50.3特等品49.5≤x≤50.5优等品49.0≤x≤51.0合格品x<49.0或x>51.0残次品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为50.0mm.①求a的值;②将这些优等品分成两组,一组尺寸大于50.0mm,另一组尺寸不大于50.0mm,从这两组中各随机抽取1件进行复检,请用列表或树状图的方法求出抽取到的2件产品都是特等品的概率.【分析】(1)根据题意先求出合格品的个数和次品的个数,再从编号①至编号⑭对应的产品中,找出次品的个数,从而得出编号为⑮的产品是否为合格品;(2)①根据中位数的定义直接求出a的值即可;②根据题意列出图表,得出所有等情况数和抽取到的2件产品都是特等品的情况数,再根据概率公式即可得出答案.【解答】解:(1)因为抽检的合格率为80%,所以合格品有15×80%=12(个),即残次品有3个.而从编号①至编号⑭对应的产品中,只有编号①与编号②对应的产品为残次品,故编号为⑮的产品不是合格品.(2)①按照优等品的标准,从编号⑥到编号⑪对应的6个产品为优等品,中间两个产品的尺寸数据分别为50.1和a,所以=50.0,解得a=49.9.②在优等品当中,编号⑥,⑦,⑧对应的产品尺寸不大于50.0mm,分别记为A1,A2,A3;编号⑨,⑩,⑪对应的产品尺寸大于50.0mm,分别记为B1,B2,B3,其中的特等品为A2,A3,B1,B2.根据题意列表:B1B2B3 A1(A1,B1)(A1,B2)(A1,B3)A2(A2,B1)(A2,B2)(A2,B3)A3(A3,B1)(A3,B2)(A3,B3)由上表可知共有9种等可能的结果,其中2件产品都是特等品的结果有4种,所以抽取到的2件产品都是特等品的概率为.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.(10分)巩义某景点试开放期间,门票价格暂定60元,为吸引游客,对团队门票优惠如下:不超过20人时,按正常门票价格收费;超过20人且不超过60人时,每增加1人,门票价格降低1元;超过60人时,门票价格不再降低,按60人的优惠门票价格收费.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式.(2)景点售票员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,请求出团队门票最多优惠只能按多少人的优惠门票价格收费,此时门票价格是多少?【分析】(1)根据“不超过20人时,按正常门票价格收费;超过20人且不超过60人时,每增加1人,门票价格降低1元;超过60人时,门票价格不再降低,按60人的优惠门票价格收费”列出分段函数即可;(2)表示出有关y和x的二次函数,求得最大值即可.【解答】解:(1)由题意得:,即;(2)由(1)可知,当0<x≤20时,y都随着x的增大而增大.当20<x≤60时,y=﹣x2+80x=﹣(x﹣40)2+1600,∴由二次函数的性质可知当x≤40时,y随着x的增大而增大,x≥40时,y随着x的增大而减小.∴为了让收取的总费用随着团队中人数的增加而增加,团队门票最多优惠只能按40人的优惠门票价格收费,此时门票价格是40元.【点评】本题考查二次函数的应用、分段函数等知识,解题的关键是利用函数的性质解决实际问题,学会利用二次函数的性质解决增减性问题,属于中考常考题型.21.(9分)在初中阶段的函数学习中,我们经历了“确定函数的解析式﹣﹣利用函数图象研究其性质﹣﹣运用函数解决问题”的学习过程.在画函数图象时,我们可以通过描点或平移或翻折等方法画出函数图象.下面我们对函数展开探索,请补充以下探索过程:(1)列表:x…﹣2﹣﹣﹣﹣1﹣﹣﹣…12…y…a235…310b…直接写出函数自变量x的取值范围x≠0,及a=,b=;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象,并写出这个函数的一条性质0<x<1时,y随x值的增大而减小;(3)若方程有且只有一个解,直接写出m的值:0或1.【分析】(1)根据分母不能为0即可写出自变量的取值范围;利用函数解析式分别求出对应的函数值即可;利用描点法画出图象即可;(2)利用描点法画出图象,观察图象可知:①0<x<1时,y随x值的增大而减小;(3)利用图象即可解决问题.【解答】解:(1)函数自变量x的取值范围是x≠0,把x=﹣和分别代入函数关系式求得a=,b=,故答案为x≠0,,.(2)函数的图象如图所示,由图可知,0<x<1时,y随x值的增大而减小;故答案为0<x<1时,y随x值的增大而减小;(3)由图象可知,m=0或1时,方程有且只有一个解,故答案为0或1.【点评】本题考查函数图象的变换;能够从表格中获取信息,利用描点法画出函数图象,并结合函数图象解题是关键.22.(9分)如图1,在Rt△ABC中,∠B=90°,AB=2,BC=1,点D,E分别是边BC,AC的中点,连接DE.将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.(3)问题解决当△EDC旋转至A、B、E三点共线时,直接写出线段BD的长.【分析】(1)①先根据勾股定理求出AC,再利用中点求出BD,AE,即可得出结论;②先判断出点E在AC的延长线上,点D在BC的延长线上,由题意知,CD=BC,CE=AC,即可得出结论;(2)先判断出,进而判断出△ACE∽△BCD,即可得出结论;(3)先由(2)得出BD=AE,再分点E在线段AB和AB的延长线上求出AE即可得出结论.【解答】解:(1)①当α=0°时,在Rt△ABC中,AB=2,BC=1,根据勾股定理得,AC==,∵点D,E是BC,AC的中点,∴BD=BC=,AE=AC=,∴=,故答案为:;②当α=180°时,如图2,∴点E在AC的延长线上,点D在BC的延长线上,由题意知,CD=BC,CE=AC,∴BD=BC+CD=BC=,AE=AC+CE=AC=,∴,故答案为:;(2)无变化;在图1中,点D,E是BC,AC的中点,∴DE∥BA,∴,如图2,∵△EDC在旋转过程中形状大小不变,∴仍然成立,由旋转知,∠ACE=∠BCD=α,∴△ACE∽△BCD,∴==,∴的大小不变;(3)由(1)知,CE=AC=,在Rt△CBE中,BC=1,根据勾股定理得,BE===,由(2)知,=,∴BD=AE,如图3,当点落在线段AB上时,AE=AB﹣BE=2﹣=,∴BD=AE=×=;如图4,当点落在线段AB的延长线上时,AE=AB+BE=2+=∴BD=AE=×=,即:当△EDC旋转至A、B、E三点共线时,线段BD的长或.。

河南省安阳市2020年中考数学一模试卷解析版

河南省安阳市2020年中考数学一模试卷解析版

河南省安阳市2020年中考数学⼀模试卷解析版中考数学⼀模试卷题号⼀⼆三总分得分⼀、选择题(本⼤题共10⼩题,共30.0分)1.2sin60°的值等于()A.1 B. C. D. 22.2019年“五⼀”假⽇期间,我省银联⽹络交易总⾦额接近161亿元,其中161亿⽤科学记数法表⽰为()A. 1.61×109 B. 1.61×1010 C. 1.61×1011 D. 1.61×10123.下列运算正确的是()A. 2a +3a =5a 2B. (a +2b )2=a 2+4b 2C. a 2×a 3=a 6D. (-ab 2)3=-a 3b 64.如图是⼿提⽔果篮抽象的⼏何体,以箭头所指的⽅向为主视图⽅向,则它的俯视图为()A.B.C.D.5.如图,菱形ABCD 中,∠D =150°,则∠1=()A. 30°B. 25°C. 20°D. 15°6.《增删算法统宗》记载:“有个学⽣资性好,⼀部孟⼦三⽇了,每⽇增添⼀倍多,问若每⽇读多少?”其⼤意是:有个学⽣天资聪慧,三天读完⼀部《孟⼦》,每天阅读的字数是前⼀天的两倍,问他每天各读多少个字?已知《孟⼦》⼀书共有34685个字,设他第⼀天读x 个字,则下⾯所列⽅程正确的是()A. x +2x +4x =34685 B. x +2x +3x =34685C. x +2x +2x =34685D. x +x +x =346857.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于()A. 55°B. 70°C. 110°D. 125°8.某路⼝的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当⼩明到达该路⼝时,遇到绿灯的概率是()A. B. C. D.9.如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆⼼,⼤于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,若BD=6,则CD的长为()A. 2B. 4C. 6D. 310.如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的⾯积为y,那么y与x之间的函数关系的图象⼤致是()A. B.C. D.⼆、填空题(本⼤题共5⼩题,共15.0分)11.因式分解:x3-4x=______.12.甲,⼄两⼈进⾏飞镖⽐赛,每⼈各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,⼄两⼈平均成绩相等,⼄成绩的⽅差为4,那么成绩较为稳定的是______.(填“甲”或“⼄”)13.如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的⼀个动点,则CD+BD的最⼩值是______.14.如图,将四边形ABCD绕顶点A顺时针旋转45°⾄四边形AB′C′D′的位置,若AB=16cm,则图中阴影部分的⾯积为______cm2.15.如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A′,折痕为DE.若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则AB=_________三、解答题(本⼤题共8⼩题,共64.0分)16.已知:x≠y,y=-x+8,求代数式+的值.17.体育组为了了解九年级450名学⽣排球垫球的情况,随机抽查了九年级部分学⽣进⾏排球垫球测试(单位:个),根据测试结果,制成了下⾯不完整的统计图表:组别个数段频数频率10≤x<1050.1210≤x<20210.42320≤x<30a430≤x<40b(1)表中的数a=______,b=______;(2)估算该九年级排球垫球测试结果⼩于10的⼈数;(3)排球垫球测试结果⼩于10的为不达标,若不达标的5⼈中有3个男⽣,2个⼥⽣,现从这5⼈中随机选出2⼈调查,试通过画树状图或列表的⽅法求选出的2⼈为⼀个男⽣⼀个⼥⽣的概率.18.如图,AB是⊙O的直径,C是⊙O上⼀点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.19.慈⽒塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之⼀.如图,⼩亮的⽬⾼CD为1.7⽶,他站在D处测得塔顶的仰⾓∠ACG为45°,⼩琴的⽬⾼EF 为1.5⽶,她站在距离塔底中⼼B点a⽶远的F 处,测得塔顶的仰⾓∠AEH为62.3°.(点D、B、F在同⼀⽔平线上,参考数据:sin62.3°≈0.89,cos62.3°≈0.46,tan62.3°≈1.9)(1)求⼩亮与塔底中⼼的距离BD;(⽤含a的式⼦表⽰)(2)若⼩亮与⼩琴相距52⽶,求慈⽒塔的⾼度AB.20.某班“数学兴趣⼩组”对函数y=,的图象和性质进⾏了探究探究过程如下,请补充完成:(1)函数y=的⾃变量x的取值范围是______;(2)下表是y与x的⼏组对应值.请直接写出m,n的值:m=______;n=______.x…-2-10n234…y…m0-1-3532…(3)如图,在平⾯直⾓坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)通过观察函数的图象,⼩明发现该函数图象与反⽐例函数y=(k>0)的图象形状相同,是中⼼对称图形,且点(-1,m)和(3,)是⼀组对称点,则其对称中⼼的坐标为______.(5)当2≤x≤4时,关于x的⽅程kx+=有实数解,求k的取值范围.21.甲、⼄两个批发店销售同⼀种苹果,在甲批发店,不论⼀次购买数量是多少,价格均为5元/kg.在⼄批发店,⼀次购买数量不超过50kg时,价格为7元/kg;⼀次购买数量超过50kg时,其中有50kg的价格仍为6元/kg,超过50kg部分的价格为4元/kg.设⼩张在同⼀个批发店⼀次购买苹果的数量为xkg(x>0).(1)根据题意填表:⼀次购买数量/kg20 50 150 …甲批发店花费/元______ 250 ______ …⼄批发店花费/元______ 350 ______ …(2)设在甲批发店花费y1元,在⼄批发店花费y2元,分别求y1,y2关于x的函数解析式;(3)根据题意填空:①若⼩张在甲批发店和在⼄批发店⼀次购买苹果的数量相同,且花费相同,则他在同⼀个批发店⼀次购买苹果的数量为______kg;②若⼩张在同⼀个批发店⼀次购买苹果的数量为120kg,则他在甲、⼄两个批发店中的______批发店购买花费少;③若⼩张在同⼀个批发店⼀次购买苹果花费了460元,则他在甲、⼄两个批发店中的______批发店购买数量多.22.如图1,在△ABC中,AB=AC=10,,点D为BC边上的动点(点D不与点B,C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.(1)求证:△ABD∽△DCE;(2)当DE∥AB时(如图2),求AE的长;(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.23.如图,抛物线y=ax2+bx+3经过点A(-1,0),B(2,0)两点,与y轴交于点C,点D是抛物线上⼀个动点,设点D的横坐标为m(0<m<2).连接AC,BC,DB,DC.(1)求抛物线的函数表达式;(2)△BCD的⾯积何时最⼤?求出此时D点的坐标和最⼤⾯积;(3)在(2)的条件下,若点M是x轴上⼀动点,点N是抛物线上⼀动点,试判断是否存在这样的点M,使得以点B,D,M,N 为顶点的四边形是平⾏四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.答案和解析1.【答案】C【解析】【分析】本题考查了特殊⾓三⾓函数值,解决此类题⽬的关键是熟记特殊⾓的三⾓函数值.根据特殊⾓三⾓函数值,可得答案.【解答】解:2sin60°=2×=,故选:C.2.【答案】B【解析】【分析】此题考查科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要正确确定a的值以及n的值.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值⼤于10时,n是正数;当原数的绝对值⼩于1时,n是负数.【解答】解:根据题意161亿⽤科学记数法表⽰为1.61×1010 .故选:B.3.【答案】D【解析】【分析】此题主要考查了合并同类项以及完全平⽅公式、积的乘⽅运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.直接利⽤合并同类项法则以及完全平⽅公式、积的乘⽅运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、2a+3a=5a,故此选项错误;B、(a+2b)2=a2+4ab+4b2,故此选项错误;C、=a5,故此选项错误;D、(-ab2)3=-a3b6,正确.故选:D.4.【答案】A【解析】解:它的俯视图为故选:A.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单⼏何体的三视图,熟记常见⼏何体的三视图是解题关键.5.【答案】D【解析】解:∵四边形ABCD是菱形,∠D=150°,∴AB∥CD,∠BAD=2∠1,∴∠BAD+∠D=180°,∴∠BAD=180°-150°=30°,∴∠1=15°;故选:D.由菱形的性质得出AB∥CD,∠BAD=2∠1,求出∠BAD=30°,即可得出∠1=15°.此题考查了菱形的性质,以及平⾏线的性质,熟练掌握菱形的性质是解本题的关键.6.【答案】A【解析】【分析】本题考查由实际问题抽象出⼀元⼀次⽅程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列⽅程.设他第⼀天读x个字,根据题意列出⽅程解答即可.【解答】解:设他第⼀天读x个字,根据题意可得:x+2x+4x=34685,故选:A.7.【答案】B【解析】【分析】本题考查了多边形的内⾓和定理,切线的性质,圆周⾓定理的应⽤,关键是求出∠AOB 的度数.根据圆周⾓定理构造它所对的弧所对的圆⼼⾓,即连接OA,OB,求得∠AOB=110°,再根据切线的性质以及四边形的内⾓和定理即可求解.【解答】解:连接OA,OB,∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°-90°-90°-110°=70°.故选:B.8.【答案】D【解析】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当⼩明到达该路⼝时,遇到绿灯的概率P==,故选:D.随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.本题考查了概率,熟练掌握概率公式是解题的关键.9.【答案】D【解析】解:由作图过程可知:DN是AB的垂直平分线,∴AD=BD=6∵∠B=30°∴∠DAB=30°∴∠C=90°,∴∠CAB=60°∴∠CAD=30°∴CD=AD=3.故选:D.由作图过程可得DN是AB的垂直平分线,AD=BD=6,再根据直⾓三⾓形30度⾓所对直⾓边等于斜边⼀半即可求解.本题考查了作图-基本作图、线段垂直平分线的性质、含30度⾓的直⾓三⾓形,解决本题的关键是掌握线段垂直平分线的性质.10.【答案】D【解析】【分析】本题考查动点问题的函数图象,解题的关键是理解题意,学会⽤分类讨论的思想思考问题,属于中考常考题型.由题意当0≤x≤3时,y=3,当3<x<5时,y=×3×(5-x)=-x+.由此即可判断.【解得】解:由题意当0≤x≤3时,y=3,当3<x<5时,y=×3×(5-x)=-x+.故选:D.11.【答案】x(x+2)(x-2)【解析】解:x3-4x=x(x2-4)=x(x+2)(x-2).故答案为:x(x+2)(x-2).⾸先提取公因式x,进⽽利⽤平⽅差公式分解因式得出即可.此题主要考查了提取公因式法以及公式法分解因式,熟练应⽤平⽅差公式是解题关键.12.【答案】甲【解析】解:甲的平均数=(9+8+9+6+10+6)=8,所以甲的⽅差=[(9-8)2+(8-8)2+(9-8)2+(6-8)2+(10-8)2+(6-8)2]=,因为甲的⽅差⽐⼄的⽅差⼩,所以甲的成绩⽐较稳定.故答案为甲.先计算出甲的平均数,再计算甲的⽅差,然后⽐较甲⼄⽅差的⼤⼩可判定谁的成绩稳定.本题考查⽅差的定义:⼀般地设n个数据,x1,x2,…x n的平均数为,则⽅差S2=[(x1-)2+(x2-)2+…+(x n-)2],它反映了⼀组数据的波动⼤⼩,⽅差越⼤,波动性越⼤,反之也成⽴.13.【答案】4【解析】解:如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,∵tan A==2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2或-2(舍弃),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AB,∴CM=BE=4(等腰三⾓形两腰上的⾼相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴sin∠DBH===,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最⼩值为4.故答案为4.如图,作DH⊥AB于H,CM⊥AB于M.由tan A==2,设AE=a,BE=2a,利⽤勾股定理构建⽅程求出a,再证明DH=BD,推出CD+BD=CD+DH,由垂线段最短即可解决问题.本题考查解直⾓三⾓形,等腰三⾓形的性质,垂线段最短等知识,解题的关键是学会添加常⽤辅助线,⽤转化的思想思考问题,属于中考常考题型.14.【答案】32π【解析】解:由旋转的性质得:∠BAB'=45°,四边形AB'C'D'≌四边形ABCD,则图中阴影部分的⾯积=四边形ABCD的⾯积+扇形ABB'的⾯积-四边形AB'C'D'的⾯积=扇形ABB'的⾯积==32π.故答案为:32π.由旋转的性质得:∠BAB'=45°,四边形AB'C'D'≌四边形ABCD,图中阴影部分的⾯积=四边形ABCD的⾯积+扇形ABB'的⾯积-四边形AB'C'D'的⾯积=扇形ABB'的⾯积,代⼊扇形⾯积公式计算即可.本题考查了旋转的性质、扇形⾯积公式;熟练掌握旋转的性质,得出阴影部分的⾯积=扇形ABB'的⾯积是解题的关键.15.【答案】【解析】【分析】本题考查了矩形的性质、全等三⾓形的判定与性质、勾股定理、轴对称的性质等,解题关键是通过轴对称的性质证明∠AED=∠A'ED=∠A'EB=60°,利⽤矩形的性质,证明∠ADE=∠A'DE=∠A'DC=30°,∠C=∠A'B'D=90°,推出△DB'A'≌△DCA',CD=B'D,设AB=DC=x,在Rt△ADE中,通过勾股定理可求出AB的长度.【解答】解:∵四边形ABCD为矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,∴∠AED=∠A'ED=∠A'EB=×180°=60°,∴∠ADE=90°-∠AED=30°,∠A'DE=90°-∠A'EB=30°,∴∠ADE=∠A'DE=∠A'DC=30°,⼜∵∠C=∠A'B'D=90°,DA'=DA',∴△DB'A'≌△DCA'(AAS),∴DC=DB',在Rt△AED中,∠ADE=30°,AD=2,∴AE==,设AB=DC=x,则BE=B'E=x-∵AE2+AD2=DE2,∴()2+22=(x+x-)2,解得,x1=(负值舍去),x2=,故答案为.16.【答案】解:原式=+==,当x≠y,y=-x+8时,原式=x+(-x+8)=8.【解析】先根据分式加减运算法则化简原式,再将y=-x+8代⼊计算可得.本题主要考查分式的化简求值,分式中的⼀些特殊求值题并⾮是⼀味的化简,代⼊,求值.许多问题还需运⽤到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提⾼有⼀定帮助.就本节内容⽽⾔,分式求值题中⽐较多的题型主要有三种:转化已知条件后整体代⼊求值;转化所求问题后将条件整体代⼊求值;既要转化条件,也要转化问题,然后再代⼊求值.17.【答案】解:(1)20;0.08.(2)估计该九年级排球垫球测试结果⼩于10的⼈数为450×0.1=45(⼈),答:估计该九年级排球垫球测试结果⼩于10的⼈数为45⼈;(3)列表如下⼀共的情况数为20,其中选出的2⼈为⼀个男⽣⼀个⼥⽣的情况数为12,∴选出的2⼈为⼀个男⽣⼀个⼥⽣的概率为=.【解析】【解答】解:(1)抽查了九年级学⽣数:5÷0.1=50(⼈),20≤x<30的⼈数为:50×=20(⼈),即a=20,30≤x<40的⼈数为:50-5-21-20=4(⼈),b==0.08,故答案为20,0.08;(2)见答案;(3)见答案.【分析】本题考查了扇形统计图、频率分布表与⽤样本估计总体、⽤列表法或树状图法求概率,熟练掌握列表法与树状图求概率是解题的关键.(1)根据扇形统计图结合频率分布表分析可得答案;(2)⽤样本估计总体,⽤总⼈数乘以测试结果⼩于10的频率即可得解;(3)利⽤列表法列出所有情况,⽤选出的2⼈为⼀个男⽣⼀个⼥⽣的情况个数所有等可能的结果个数,即为满⾜条件的概率.18.【答案】(1)证明:∵AB是⊙O的直径,∴∠ACB=∠ACD=90°,∵点F是ED的中点,∴CF=EF=DF,∴∠AEO=∠FEC=∠FCE,∵OA=OC,∴∠OCA=∠OAC,∵OD⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠FCE=90°,即OC⊥FC,∴CF与⊙O相切;(2)解:∵OD⊥AB,AC⊥BD,∴∠AOE=∠ACD=90°,∵∠AEO=∠DEC,∴∠OAE=∠CDE=22.5°,∵AO=BO,∴AD=BD,∴∠ADO=∠BDO=22.5°,∴∠ADB=45°,∴∠CAD=∠ADC=45°,∴AC=CD.【解析】(1)根据圆周⾓定理得到∠ACB=∠ACD=90°,根据直⾓三⾓形的性质得到CF=EF=DF,求得∠AEO=∠FEC=∠FCE,根据等腰三⾓形的性质得到∠OCA=∠OAC,于是得到结论;(2)根据三⾓形的内⾓和得到∠OAE=∠CDE=22.5°,根据等腰三⾓形的性质得到∠CAD=∠ADC=45°,于是得到结论.本题考查了切线的判定,等腰三⾓形的判定和性质,等腰直⾓三⾓形的判定和性质,直⾓三⾓形的性质,正确的识别图形是解题的关键.19.【答案】解:(1)由题意得,四边形CDBG、HBFE为矩形,∴GB=CD=1.7,HB=EF=1.5,∴GH=0.2,在Rt△AHE中,tan∠AEH=,则AH=HE?tan∠AEH≈1.9a,∴AG=AH-GH=1.9a-0.2,在Rt△ACG中,∠ACG=45°,∴CG=AG=1.9a-0.2,∴BD=1.9a-0.2,答:⼩亮与塔底中⼼的距离BD(1.9a-0.2)⽶;(2)由题意得,1.9a-0.2+a=52,解得,a=18,则AG=1.9a-0.2=34,∴AB=AG+GB=35.7,答:慈⽒塔的⾼度AB为35.7⽶.【解析】本题考查的是解直⾓三⾓形的应⽤-仰⾓俯⾓问题问题,掌握仰⾓俯⾓的概念、熟记锐⾓三⾓函数的定义是解题的关键.(1)根据正切的定义⽤a表⽰出AH,根据等腰直⾓三⾓形的性质计算;(2)根据题意列⽅程求出a,结合图形计算,得到答案.20.【答案】x≠1(1,1)【解析】解:(1)函数y=的⾃变量x的取值范围是x≠1.故答案为x≠1.(2)x=-1时,y=,∴m=.当y=3时,则3=,解得x=,∴n=,故答案为,;(3)函数图象如图所⽰:(4)该函数的图象关于点(1,1)成中⼼对称,故答案为(1,1);(5)当2≤x≤4时,函数y=中,≤y≤2,把x=4,y=代⼊函数y=kx+得,=4k+,解得k=,把x=2,y=2代⼊函数y=kx+得2=2k+,解得k=,∴关于x的⽅程kx+=有实数解,k的取值范围是≤k≤.(1)根据分母不能为0,即可解决问题;(2)求出x=-1的函数值,求得y=3时的x的值即可;(3)利⽤描点法画出函数图象即可;(4)根据函数的图象,可得结论;(5)利⽤图象的交点解决问题即可.本题考查函数的图象与性质,解题的关键是理解题意,灵活运⽤所学知识解决问题,属于中考常考题型.21.【答案】100 750 140 700 100 ⼄甲【解析】解:(1)甲批发店:5×20=100元,5×150=750元;⼄批发店:7×20=140元,6×50+4(150-50)=700元.故依次填写:100、750、140、700.(2)y1=5x(x>0),当0<x≤50时,y2=7x(0<x≤50),当x>50时,y2=6×50+4(x-50)=4x+100(x>50),因此y1,y2与x的函数解析式为:y1=5x(x>0);y2=7x(0<x≤50),y2=4x+100(x>50).(3)①当y1=y2时,有:5x=7x,解得x=0,不合题意,舍去;当y1=y2时,也有:5x=4x+100,解得x=100,故他在同⼀个批发店⼀次购买苹果的数量为100千克.②当x=120时,y1=5×120=600元,y2=4×120+100=580元,∵600>580,∴⼄批发店花费少.故⼄批发店花费少.③当y=360时,即:5x=460和4x+100=460;解得x=92和x=90,∵92>90,∴甲批发店购买数量多.故甲批发店购买的数量多.故答案为:①100;②⼄;③甲.(1)根据题意列式计算即可;(2)根据题意,可以分别写出y1,y2关于x的函数解析式,y2关于x的函数解析式分0<x≤50和x>50两种情况,是分段函数;(3)根据(2)的结论解答即可.本题考查⼀次函数的应⽤,解答本题的关键是明确题意,列出相应的函数关系式,利⽤⼀次函数的性质解答.22.【答案】证明:(1)∵AB=AC,∴∠B=∠ACB,∵∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B,∴∠BAD=∠CDE,∴△BAD∽△DCE;(2)如图2中,作AM⊥BC于M.在Rt△ABM中,设BM=4k,∵=,∴,由勾股定理,得到AB2=AM2+BM2,∴102=(3k)2+(4k)2,∴k=2或-2(舍弃),∴AM=6,BM=8,∵AB=AC,AM⊥BC,∴BC=2BM=2×2k=16,∵DE∥AB,∴∠BAD=∠ADE,∵∠ADE=∠B,∠B=∠ACB,∴∠BAD=∠ACB,∵∠ABD=∠CBA,∴△ABD∽△CBA,∴,∴=,∵DE∥AB,∴,∴=.(3)点D在BC边上运动的过程中,存在某个位置,使得DF=CF.理由:作FH⊥BC于H,AM⊥BC于M,AN⊥FH于N.则∠NHM=∠AMH=∠ANH=90°,∴四边形AMHN为矩形,∴∠MAN=90°,MH=AN,∵AB=AC,AM⊥BC,∵AB=10,∴BM=CM=8,∴BC=16,在Rt△ABM中,由勾股定理,得AM=6,∵AN⊥FH,AM⊥BC,∴∠ANF=90°=∠AMD,∵∠DAF=90°=∠MAN,∴∠NAF=∠MAD,∴△AFN∽△ADM,∴,∴,∴CH=CM-MH=CM-AN=8-=,当DF=CF时,由点D不与点C重合,可知△DFC为等腰三⾓形,∵FH⊥DC,∴CD=2CH=7,∴BD=BC-CD=16-7=9,∴点D在BC边上运动的过程中,存在某个位置,使得DF=CF,此时BD=9.【解析】(1)由等腰三⾓形的性质可得∠B=∠ACB,由外⾓的性质可得∠BAD=∠CDE,可证△ABD∽△DCE;(2)作AM⊥BC于M.由锐⾓三⾓函数可求AM=6,BM=8,通过证明△ABD∽△CBA,可求BD的长,再由平⾏线分线段成⽐例可求AE的长;(3)作FH⊥BC于H,AM⊥BC于M,AN⊥FH于N.可证四边形AMHN为矩形,可得∠MAN=90°,MH=AN,通过证明△AFN∽△ADM,可求AN的长,由等腰三⾓形的性质可求BD的长,即可求解.本题是相似形综合题,考查了相似三⾓形的判定和性质,锐⾓三⾓函数,矩形的判定和性质,等腰三⾓形的性质,添加恰当辅助线构造相似三⾓形是本题的关键.23.【答案】解:(1)由抛物线交点式表达式得:y=a(x+1)(x-2),将(0,3)代⼊上式得:-2a=3,解得:a=,故抛物线的表达式为:;(2)点C(0,3),B(2,0),设直线BC的表达式为:y=mx+n,则,解得:,故直线BC的表达式为:,如图所⽰,过点D作y轴的平⾏线交直线BC与点H,设点D(m,),则点H(m,m+3),S△BDC=S△DHC+S△HDB=HD×OB===,∵-<0,故△BCD的⾯积有最⼤值,当m=1,△BCD⾯积最⼤为,此时D点为(1,3);(3)m=1时,D点为(1,3),①当BD是平⾏四边形的⼀条边时,设点N(n,),则点N的纵坐标为绝对值为3,即,解得:n=0或1(舍去)或,故点N的坐标为(0,3)或(,-3)或(,-3),②当BD是平⾏四边形的对⾓线时,N的坐标为(0,3);综上,点N的坐标为:(0,3)或(,-3)或(,-3).【解析】(1)由抛物线交点式表达式得:y=a(x+1)(x-2),将(0,3)代⼊上式,即可求解;(2)S△BDC=S△DHC+S△HDB=HD×OB,即可求解;(3)分BD是平⾏四边形的⼀条边、BD是平⾏四边形的对⾓线两种情况,分别求解即可.主要考查了⼆次函数的解析式的求法和与⼏何图形结合的综合能⼒的培养.要会利⽤数形结合的思想把代数和⼏何图形结合起来,利⽤点的坐标的意义表⽰线段的长度,从⽽求出线段之间的关系.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档