2020年湖南省中考数学模拟试卷(府答案)

合集下载

2020年中考数学模拟试卷04含解析

2020年中考数学模拟试卷04含解析

2020年中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点M(1﹣m,2﹣m)在第三象限,则m的取值范围是()A.m>3 B.2<m<3 C.m<2 D.m>2【答案】D【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.根据题意知,解得m>2,故选:D.2.已知x=2是方程2x﹣3a+2=0的根,那么a的值是()A.﹣2 B.C.2 D.【答案】C【解析】根据一元一次方程的解定义,将x=2代入已知方程列出关于a的新方程,通过解新方程即可求得a的值.∵x=2是方程2x﹣3a+2=0的根,∴x=2满足方程2x﹣3a+2=0,∴2×2﹣3a+2=0,即6﹣3a=0,解得,a=2;故选:C.3.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.【答案】B【解析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.已知给出的三角形的各边AB、CB、AC分别为、2、、只有选项B的各边为1、、与它的各边对应成比例.故选:B.4.某高速公路概算总投资为79.67亿元,请将79.67亿用科学记数法表示为()A.7.967×101B.7.967×1010C.7.967×109D.79.67×108【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于79.67亿有10位,所以可以确定n=10﹣1=9.79.67亿=7 967 000 000=7.967×109.故选:C.5.已知圆锥的底面半径为6cm,高为8cm,则圆锥的侧面积为()A.36πcm2B.48πcm2C.60πcm2D.80πcm2【答案】C【解析】根据圆锥的底面半径和高求出圆锥的母线长,再根据圆锥的底面周长等于圆锥的侧面展开扇形的弧长,最后利用扇形的面积计算方法求得侧面积.由勾股定理得:圆锥的母线长==10,∵圆锥的底面周长为2πr=2π×6=12π,∴圆锥的侧面展开扇形的弧长为12π,∴圆锥的侧面积为:×12π×10=60π.故选:C.6.已知,且﹣1<x﹣y<0,则k的取值范围为()A.﹣1<k<﹣B.0<k<C.0<k<1 D.<k<1【答案】D【解析】利用第二个方程减去第一个方程,得到一个不等式,根据﹣1<x﹣y<0得到一个不等式,组成不等式组解这个不等式即可.第二个方程减去第一个方程得到x﹣y=1﹣2k,根据﹣1<x﹣y<0得到:﹣1<1﹣2k<0即解得<k<1,k的取值范围为<k<1.故选:D.7.如图所示实数a,b在数轴上的位置,以下四个命题中是假命题的是()A.a3﹣ab2<0 B.C.D.a2<b2【答案】B【解析】由数轴可知a>0,b<0,且|a|<|b|,由此可判断a+b<0,a﹣b>0,再逐一检验.依题意,得a>0,b<0,且|a|<|b|,∴a+b<0,a﹣b>0,A、a3﹣ab2=a(a+b)(a﹣b)<0,正确;B、∵a+b<0,∴=﹣(a+b),错误;C、∵0<a<a﹣b,∴<,正确;D、∵(a+b)(a﹣b)<0,∴a2﹣b2<0,即a2<b2,正确.故选:B.8.如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且AB∥OP,若阴影部分的面积为9π,则弦AB的长为()A.3 B.4 C.6 D.9【答案】C【解析】本题可先由题意OD=PC=r,再根据阴影部分的面积为9π,得出R2﹣r2=9,即AD==3,进而可知AB=2×3=6.设PC=r,AO=R,连接PC,⊙O的弦AB切⊙P于点C,故AB⊥PC,作OD⊥AB,则OD∥PC.又∵AB∥OP,∴OD=PC=r,∵阴影部分的面积为9π,∴πR2﹣πr2=9π,即R2﹣r2=9,于是AD==3.∵OD⊥AB,∴AB=3×2=6.故选:C.9.因为sin30°=,sin210°=,所以sin210°=sin(180°+30°)=﹣sin30°;因为sin45°=,sin225°=,所以sin225°=sin(180°+45°)=﹣sin45°,由此猜想,推理知:一般地当α为锐角时有sin(180°+α)=﹣sinα,由此可知:sin240°=()A.B.C.D.【答案】C【解析】阅读理解:240°=180°+60°,因而sin240°就可以转化为60°的角的三角函数值.根据特殊角的三角函数值,就可以求解.∵当α为锐角时有sin(180°+α)=﹣sinα,∴sin240°=sin(180°+60°)=﹣sin60°=﹣.故选:C.10.如图,两个反比例函数和(其中k1>k2>0)在第一象限内的图象依次是C1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,下列说法正确的是()①△ODB与△OCA的面积相等;②四边形PAOB的面积等于k2﹣k1;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.A.①②B.①②④C.①④D.①③④【答案】C【解析】根据反比例函数系数k所表示的意义,对①②③④分别进行判断.①A、B为上的两点,则S△ODB=S△OCA=k2,正确;②由于k1>k2>0,则四边形PAOB的面积应等于k1﹣k2,错误;③只有当P的横纵坐标相等时,PA=PB,错误;④当点A是PC的中点时,点B一定是PD的中点,正确.故选:C.第二部分非选择题(共110分)二.填空题(本大题共6小题,每小题4分,共24分.)11.分解因式:ax2﹣2ax+a=.【答案】a(x﹣1)2【解析】本题考查了用提公因式法和公式法进行因式分解,先提公因式a,再利用完全平方公式继续分解因式.ax2﹣2ax+a=a(x2﹣2x+1)=a(x﹣1)2.12.暑假中,小明,小华将从甲、乙、丙三个社区中随机选取一个参加综合实践活动,若两人不在同一社区,则小明选择到甲社区、小华选择到乙社区的可能性为.【答案】【解析】画树状图得:,∵共有9种等可能的结果,小明选择到甲社区、小华选择到乙社区的有1种情况,∴小明选择到甲社区、小华选择到乙社区的可能性为:.故答案为:.13.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E =度.【答案】80【解析】设∠EPC=2x,∠EBA=2y,∵∠EBA、∠EPC的角平分线交于点F∴∠CPF=∠EPF=x,∠EBF=∠FBA=y,∵∠1=∠F+∠ABF=40°+y,∠2=∠EBA+∠E=2y+∠E,∵AB∥CD,∴∠1=∠CPF=x,∠2=∠EPC=2x,∴∠2=2∠1,∴2y+∠E=2(40°+y),∴∠E=80°.故答案为:80.14.一个多边形的每一个外角为30°,那么这个多边形的边数为.【答案】12【解析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.15.如图,点A,B,是⊙O上三点,经过点C的切线与AB的延长线交于D,OB与AC交于E.若∠A =45°,∠D=75°,OB=,则CE的长为.【答案】2【解析】连接OC,如图,∵∠A=45°,∠D=75°,∴∠ACD=60°,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠BOC=2∠A=90°,∴OB∥CD,∴∠CEO=∠ACD=60°,在Rt△COE中,sin∠CEO=,∴CE===2.故答案为2.16.如图,点A是反比例函数y=图象上的任意一点,过点A做AB∥x轴,AC∥y轴,分别交反比例函数y=的图象于点B,C,连接BC,E是BC上一点,连接并延长AE交y轴于点D,连接CD,则S△DEC﹣S△BEA=.【答案】【解析】点A是反比例函数y=图象上的任意一点,可设A(a,),∵AB∥x轴,AC∥y轴,点B,C,在反比例函数y=的图象上,∴B(,),C(a,),∴AB=a,AC=,∴S△DEC﹣S△BEA=S△DAC﹣S△BCA=××(a﹣a)=××a=.故答案为:.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)计算:﹣12019+|﹣2|+2cos30°+(2﹣tan60°)0.【解析】直接利用零指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.解:原式=﹣1+2﹣++1=2.18.(本小题满分8分)先化简,,然后从﹣1≤x≤2的范围内选取一个合适的整数作为x的值代入求值.【解析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.解:原式=[﹣]÷=•=﹣,∵x≠±1且x≠0,∴在﹣1≤x≤2中符合条件的x的值为x=2,则原式=﹣=﹣2.19.(本小题满分8分)如图,已知点E、C在线段BF上,且BE=CF,CM∥DF,(1)作图:在BC上方作射线BN,使∠CBN=∠1,交CM的延长线于点A(用尺规作图法,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:AC=DF.【解析】(1)①以E为圆心,以EM为半径画弧,交EF于H,②以B为圆心,以EM为半径画弧,交EF于P,③以P为圆心,以HM为半径画弧,交前弧于G,④作射线BG,则∠CBN就是所求作的角.(2)证明△ABC≌△DEF可得结论.解:(1)如图所示,即为所求;(2)∵CM∥DF,∴∠MCE=∠F,∵BE=CF,∴BE+CE=CF+CE,即BC=EF,在△ABC和△DEF中,∵,∴△ABC≌△DEF,∴AC=DF.20.(本小题满分8分)在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买课外读物5000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?【解析】解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200﹣70﹣30﹣60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:×360°=72°,故答案为:72;(4)由题意,得5000×=750(册).答:学校购买其他类读物750册比较合理.21.(本小题满分8分)某大型超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?销售价(元/箱)类别/单价成本价(元/箱A品牌20 32B品牌35 50【解析】解:(1)设该超市进A品牌矿泉水x箱,B品牌矿泉水y箱,依题意,得:,解得:.答:该超市进A品牌矿泉水400箱,B品牌矿泉水200箱.(2)400×(32﹣20)+200×(50﹣35)=7800(元).答:该超市共获利润7800元.22.(本小题满分10分)如图,在Rt△ABC中,∠BAC=90°,AD平分∠BAC,过AC的中点E作FG ∥AD,交BA的延长线于点F,交BC于点G,(1)求证:AE=AF;(2)若BC=AB,AF=3,求BC的长.【解析】解:(1)∵∠BAC=90°,AD平分∠BAC,∴∠DAB=∠CAB=×90°=45°,∵FG∥AD,∴∠F=∠DAB=45°,∠AEF=45°,∴∠F=∠AEF,∴AE=AF;(2)∵AF=3,∴AE=3,∵点E是AC的中点,∴AC=2AE=6,在Rt△ABC中,AB2+AC2=BC2,AB2+32=()2,AB=,BC=.23.(本小题满分10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=(1)求该反比例函数和一次函数的解析式;(2)连接OB,求S△AOC﹣S△BOC的值;(3)点E是x轴上一点,且△AOE是等腰三角形请直接写出满足条件的E点的个数(写出个数即可,不必求出E点坐标).【解析】解:(1)∵AD⊥x轴,∴∠ADO=90°,在Rt△ADO中,AD=3,tan∠AOD==,∴OD=2,∴A(﹣2,3),∵点A在反比例函数y=的图象上,∴n=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣,∵点B(m,﹣1)在反比例函数y=﹣的图象上,∴﹣m=﹣6,∴m=6,∴B(6,﹣1),将点A(﹣2,3),B(6,﹣1)代入直线y=kx+b中,得,∴,∴一次函数的解析式为y=﹣x+2;(2)由(1)知,A(﹣2,3),直线AB的解析式为y=﹣x+2,令y=0,∴﹣x+2=0,∴x=4,∴C(4,0),∴S△AOC﹣S△BOC=OC•|y A|﹣OC•|y B|=×4(3﹣1)=4;(3)设E(m,0),由(1)知,A(﹣2,3),∴OA2=13,OE2=m2,AE2=(m+2)2+9,∵△AOE是等腰三角形,∴①当OA=OE时,∴13=m2,∴m=±,∴E(﹣,0)或(,0),②当OA=AE时,13=(m+2)2+9,∴m=0(舍)或m=4,∴E(4,0),③当OE=AE时,m2=(m+2)2+9,∴m=﹣,∴E(﹣,0),即:满足条件的点P有四个.24.(本小题满分12分)如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O 于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF.(1)求证:∠ACD=∠F;(2)若tan∠F=①求证:四边形ABCD是平行四边形;②连接DE,当⊙O的半径为3时,求DE的长.【解析】(1)证明:∵CD与⊙O相切于点D,∴OD⊥CD,∵半径OD⊥直径AB,∴AB∥CD,∴∠ACD=∠CAB,∵∠EAB=∠F,∴∠ACD=∠F;(2)①证明:∵∠ACD=∠CAB=∠F,∴tan∠GCD=tan∠GAO=tan∠F=,设⊙O的半径为r,在Rt△AOG中,tan∠GAO==,∴OG=r,∴DG=r﹣r=r,在Rt△DGC中,tan∠DCG==,∴CD=3DG=2r,∴DC=AB,而DC∥AB,∴四边形ABCD是平行四边形;②作直径DH,连接HE,如图,OG=1,AG==,CD=6,DG=2,CG==2,∵DH为直径,∴∠HED=90°,∴∠H+∠HDE=90°,∵DH⊥DC,∴∠CDE+∠HDE=90°,∴∠H=∠CDE,∵∠H=∠DAE,∴∠CDE=∠DAC,而∠DCE=∠ACD,∴△CDE∽△CAD,∴=,即=,∴DE=.25.(本小题满分14分)如图,在平面直角坐标系xOy第一象限中有正方形OABC,A(4,0),点P(m,0)是x轴上一动点(0<m<4),将△ABP沿直线BP翻折后,点A落在点E处,在OC上有一点M(0,t),使得将△OMP沿直线MP翻折后,点O落在直线PE上的点F处,直线PE交OC 于点N,连接BN.(I)求证:BP⊥PM;(II)求t与m的函数关系式,并求出t的最大值;(III)当△ABP≌△CBN时,直接写出m的值.【解析】解:(Ⅰ)由折叠知,∠APB=∠NPB,∠OPM=∠NPM,∵∠APN+∠OPN=180°,∴2∠NPB+2∠NPM=180°,∴∠NPB+∠NPM=90°,∴∠BPM=90°,∴BP⊥PM;(Ⅱ)∵四边形OABC是正方形,∴∠OAB=90°,AB=OA,∵A(4,0),∴AB=OA=4,∵点P(m,0),∴OP=m,∵0<m<4,∴AP=OA﹣OP=4﹣m,∵M(0,t),∴OM=t,由(1)知,∠BPM=90°,∴∠APB+∠OPM=90°,∵∠OMP+∠OPM=90°,∴∠OMP=∠APB,∵∠MOP=∠PAB=90°,∴△MOP∽△PAB,∴,∴,∴t=﹣m(m﹣4)=﹣(m﹣2)2+1∵0<m<4,∴当m=2时,t的最大值为1;(Ⅲ)∵△ABP≌△CBN,∴∠CBN=∠ABP,BP=BN,由折叠知,∠ABP=∠EBP,∠BEP=∠BAP=90°,∴NE=PE,∠NBE=∠PBE,∴∠CBN=∠NBE=∠EBP=∠PBA,∴∠CBE=∠ABE=45°,连接OB,∵四边形OABC是正方形,∴∠OBC=∠OBA=45°,∴点E在OB上,∴OP=ON=m,∴PN=m,∵OM=t,∴MN=ON=OM=m﹣t,如图,过点N作OP的平行线交PM的延长线于G,∴∠OPM=∠G,由折叠知,∠OPM=∠NPM,∴∠NPM=∠G,∴NG=PN=m,∵GN∥OP,∴△OMP∽△NMG,∴,∴=①,由(2)知,t=﹣m(m﹣4)②,联立①②解得,m=0(舍)或m=8﹣.。

2022——2023学年湖南省区域中考数学专项提升仿真模拟试题(一模二模)含答案

2022——2023学年湖南省区域中考数学专项提升仿真模拟试题(一模二模)含答案

2022-2023学年湖南省区域中考数学专项提升仿真模拟试题(一模)一.选一选(共8小题,满分32分,每小题4分)1.天安门广场是当今世界上的城市广场,面积达440000平方米,将440000用科学记数法表示应为()A.4.4×105 B.4.4×104 C.44×104 D.0.44×1062.如图2的三幅图分别是从没有同方向看图1所示的工件立体图得到的平面图形,(没有考虑尺寸)其中正确的是()A.①②B.①③C.②③D.③3.若将代数式中的任意两个字母交换,代数式没有变,则称这个代数式为完全对称式,如a b c ++就是完全对称式(代数式中a 换成b ,b 换成a ,代数式保持没有变).下列三个代数式:①2()a b -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是()A .①② B.①③ C.②③ D.①②③4.一个多边形的内角和是900°,则这个多边形的边数为()A.6B.7C.8D.95.计算tan 602sin 452cos30︒+︒-︒的结果是()A.2B.C. D.16.下列说确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D.某次抽奖中,中奖的概率为150表示每抽奖50次就有中奖7.现在把一张正方形纸片按如图方式剪去一个半径为厘米的圆面后得到如图纸片,且该纸片所能剪出的圆形纸片刚好能与前面所剪的扇形纸片围成一圆锥表面,则该正方形纸片的边长约为()厘米.(没有计损耗、重叠,结果到1A.64B.67C.70D.738.如图,B 、C 是⊙A 上的两点,AB 的垂直平分线与⊙A 交于E 、F 两点,与线段AC 交于D 点.若∠BFC =20°,则∠DBC =()A.30°B.29°C.28°D.20°二.填空题(共6小题,满分18分,每小题3分)9.()6--的相反数是__________.10.有一系列方程,第1个方程是x+2x =3,解为x=2;第2个方程是2x +3x =5,解为x=6;第3个方程是3x +4x =7,解为x=12;…根据规律第10个方程是10x +11x =21,解为_____.11.如图,在四边形ABCD 中,对角线AC 、BD 交于点F ,AC ⊥AB 于点A ,点E 在边CD 上,且满足DF•DB=DE•DC ,FE=FB ,BD 平分∠ABE ,若AB=6,CF=9,则OE 的长为_____.12.若x ,y 为实数,y =12x +-,则4y ﹣3x 的平方根是____.13.如图,边长为4的正方形ABCD外切于⊙O,切点分别为E、F、G、H.则图中阴影部分的面积为______.14.如图,在平面直角坐标系中,点A的双曲线y=kx(x>0)同时点B,且点A在点B的左侧,点A的横坐标为1,∠AOB=∠OBA=45°,则k的值为_______.三.解答题(共9小题,满分70分)15.情景观察:如图1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分别为D、E,CD与AE交于点F.①写出图1中所有的全等三角形;②线段AF与线段CE的数量关系是,并写出证明过程.问题探究:如图2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足为D,AD与BC 交于点E.求证:AE=2CD.16.已知下表内的各横行中,从第二个数起的数都比它左边相邻的数大a,各竖列中,从第二个数起的数都比它上边相邻的数大b.(1)求a,b以及表中x的值.(2)直接写出第m行n列所表示的数.(m≥1,n≥1,记表格中x为第3行第1列)1218x30…17.为了解本校九年级学生期末数学考试情况,在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A(90~100分);B(80~89分);C(60~79分);D(0~59分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题.(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为,请估计这次九年级学生期末数学考试成绩为的学生人数大约有多少?18.服装店10月份以每套500元的进价购进一批羽绒服,当月以标价,额14000元,进入11月份搞促销,每件降价50元,这样额比10月份增加了5500元,售出的件数是10月份的1.5倍.(1)求每件羽绒服的标价是多少元;(2)进入12月份,该服装店决定把剩余的羽绒服按10月份标价的八折,结果全部卖掉,而且这批羽绒服总获利没有少于12700元,问这批羽绒服至少购进多少件?19.正四面体各面分别标有数字1、2、3、4,正六面体各面分别标有数字1、2、3、4、5、6,同时掷这两个正多面体,并将它们朝下面上的数字相加.(1)请用树状图或列表的方法表示可能出现的所有结果;(2)求两个正多面体朝下面上的数字之和是3的倍数的概率.20.已知,如图,△ABC 中,AB=AC ,点D 、E 、F 分别为AB 、AC 、BC 边的中点.求证:DE 与AF 互相垂直平分.21.已知二次函数22y x bx c =-++图象的顶点坐标为(3,8),该二次函数图象的对称轴与x 轴的交点为A ,M 是这个二次函数图象上的点,O 是原点.(1)没有等式b +2c +8≥0是否成立?请说明理由;(2)设S 是△AMO 的面积,求满足S =9的所有点M 的坐标.22.下岗职工王阿姨利用自己的一技之长开办了“爱心服装厂”,计划生产甲、乙两种型号的服装共40套投放到市场.已知甲型服装每套成本34元,售价39元;乙型服装每套成本42元,售价50元.服装厂预计两种服装的成本没有低于1536元,没有高于1552元.(1)问服装厂有哪几种生产?(2)按照(1)中生产,服装全部售出至少可获得利润多少元?(3)在(1)的条件下,服装厂又拿出6套服装捐奉送某社区低保户,其余34套全部售出,这样服装厂可获得利润27元.请直接写出服装厂这40套服装是按哪种生产的.23.如图,在△ABC 中,AB =AC ,以AB 为直径作圆O ,分别交BC 于点D ,交CA 的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求EFFD的值;(3)若EA=EF=1,求圆O的半径.2022-2023学年湖南省区域中考数学专项提升仿真模拟试题(一模)一.选一选(共8小题,满分32分,每小题4分)1.天安门广场是当今世界上的城市广场,面积达440000平方米,将440000用科学记数法表示应为()A.4.4×105B.4.4×104C.44×104D.0.44×106【正确答案】A 【详解】对于值大于1的数,用科学记数法可表示为a×10n 的形式,故将440000用科学记数法表示应为4.4×105,故选A.2.如图2的三幅图分别是从没有同方向看图1所示的工件立体图得到的平面图形,(没有考虑尺寸)其中正确的是()A.①②B.①③C.②③D.③【正确答案】D 【详解】从正面看可得到两个左右相邻的中间没有界线的长方形,①错误;从左面看可得到两个上下相邻的中间有界线的长方形,②错误;从上面看可得到两个左右相邻的中间有界线的长方形,③正确.故选D .3.若将代数式中的任意两个字母交换,代数式没有变,则称这个代数式为完全对称式,如a b c ++就是完全对称式(代数式中a 换成b ,b 换成a ,代数式保持没有变).下列三个代数式:①2()a b -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是()A.①②B.①③C.②③D.①②③【正确答案】A【分析】在正确理解完全对称式的基础上,逐一进行判断,即可得出结论.【详解】解:根据信息中的内容知,只要任意两个字母交换,代数式没有变,就是完全对称式,则:①(a-b )2=(b-a )2;是完全对对称式.故此选项正确.②将代数式ab+bc+ca 中的任意两个字母交换,代数式没有变,故ab+bc+ca 是完全对称式,ab+bc+ca 中ab 对调后ba+ac+cb ,bc 对调后ac+cb+ba ,ac 对调后cb+ba+ac ,都与原式一样,故此选项正确;③a 2b+b 2c+c 2a 若只ab 对调后b 2a+a 2c+c 2b 与原式没有同,只在情况下(ab 相同时)才会与原式的值一样∴将a 与b 交换,a 2b+b 2c+c 2a 变为ab 2+a 2c+bc 2.故a 2b+b 2c+c 2a 没有是完全对称式.故此选项错误,所以①②是完全对称式,③没有是故选择:A .本题是信息题,考查了学生读题做题的能力.正确理解所给信息是解题的关键.4.一个多边形的内角和是900°,则这个多边形的边数为()A.6B.7C.8D.9【正确答案】B 【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【详解】解:设这个多边形的边数为n ,则有(n -2)180°=900°,解得:n =7,∴这个多边形的边数为7.故选B .本题考查了多边形内角和,熟练掌握内角和公式是解题的关键.5.计算tan 602sin 452cos30︒+︒-︒的结果是()A.2B.C. D.1【正确答案】C【详解】解:原式+-=故选C .6.下列说确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D.某次抽奖中,中奖的概率为150表示每抽奖50次就有中奖【正确答案】A【详解】解:A.∵要了解灯泡的使用寿命破坏性极大,∴只能采用抽样的方法,故本选项正确;B.∵4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为102.5,故本选项错误;C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差没有能确定,故本选项错误;D.某次抽奖中,中奖的概率为150表示每抽奖50次可能有中奖,故本选项错误.故选A.7.现在把一张正方形纸片按如图方式剪去一个半径为厘米的圆面后得到如图纸片,且该纸片所能剪出的圆形纸片刚好能与前面所剪的扇形纸片围成一圆锥表面,则该正方形纸片的边长约为()厘米.(没有计损耗、重叠,结果到1A.64B.67C.70D.73【正确答案】A【详解】分析:设出与小圆的半径,利用扇形的弧长等于圆的周长得到小圆的半径,扇形的半就是正方形的边长.详解:设小圆半径为r ,则:2πr=90180π⨯,解得:r=10,∴正方形的对角线长为:40=50+20,∴正方形的边长为:≈64,故选A .点睛:本题用到的知识点为:圆锥的侧面展开图的弧长等于圆锥的底面周长;注意扇形的半径即为正方形的边长.8.如图,B 、C 是⊙A 上的两点,AB 的垂直平分线与⊙A 交于E 、F 两点,与线段AC 交于D 点.若∠BFC =20°,则∠DBC =()A.30°B.29°C.28°D.20°【正确答案】A 【详解】解:∵∠BFC =20°,∴∠BAC =2∠BFC =40°,∵AB =AC ,∴∠ABC =∠ACB =(180°-40°)÷2=70°.又EF 是线段AB 的垂直平分线,∴AD =BD ,∴∠A =∠ABD =40°,∴∠DBC =∠ABC ﹣∠ABD =70°﹣40°=30°.故选:A .二.填空题(共6小题,满分18分,每小题3分)9.()6--的相反数是__________.【正确答案】-6【分析】根据正负数的意义先化简()6--,然后根据相反数的定义即可得出结论.【详解】解:()66--=,6的相反数为-6∴()6--的相反数是-6故-6.此题考查的是正负数的意义和求一个数的相反数,掌握正负数的意义和相反数的定义是解决此题的关键.10.有一系列方程,第1个方程是x+2x =3,解为x=2;第2个方程是2x +3x =5,解为x=6;第3个方程是3x +4x =7,解为x=12;…根据规律第10个方程是10x +11x =21,解为_____.【正确答案】x=110【详解】分析:观察这一系列方程可发现规律,第n 个方程为+1x x n n +=2n+1,其解为n(n+1),将n=10带入即可得到答案.详解:第1个方程是x+2x =3,解为x =2×1=2;第2个方程是+23x x =5,解为x =2×3=6;第3个方程是+34x x =,解为x =3×4=12;…可以发现,第n 个方程为+1x x n n +=2n+1,解为n (n +1).∴第10个方程+1011x x =21的解为:x =10×11=110.故答案为x =110.点睛:此题考查了一元方程的解,关键在于通过观察题干中给出的一系列方程,总结归纳出规律,然后用含n 的式子表示出来.此题难度适中,属于中档题.11.如图,在四边形ABCD中,对角线AC、BD交于点F,AC⊥AB于点A,点E在边CD上,且满足DF•DB=DE•DC,FE=FB,BD平分∠ABE,若AB=6,CF=9,则OE的长为_____.【正确答案】2【详解】分析:首先证明△BAF∽△CAB,推出AB2=AF•AC,设AF=x,则有36=x(x+9),解得x=3,推出AF=3,,△EOF∽△COB,推出EFBC=OFOB=OEOC=12,设OF=a,OB=2a,在Rt△ABO中,根据AB2+AO2=OB2,可得36+(3+a)2=4a2,求出a即可解决问题.详解:如图:∵DF•DB=DE•DC,∴DFDE=DCDB,∵∠EDF=∠BDC,∴△CDF∽△BDE,∴∠2=∠5,∵∠FOB=∠EOC,∴△BOF∽△COE,∴OFOE=OBOC,∴OFOB=OEOC,∴△EOF∽△COB,∴∠3=∠4,∵FB=FE,∴∠2=∠4,∵∠1=∠2,∴∠1=∠2=∠3,∵∠BAF=∠CAB,∴△BAF∽△CAB,∴AB2=AF•AC,设AF=x,则有36=x(x+9),解得x=3,∴AF=3,=3,∵△EOF∽△COB,∴EFBC=OFOB=OEOC=12,设OF=a,OB=2a,在Rt△ABO中,∵AB2+AO2=OB2,∴36+(3+a)2=4a2,解得a=5,∴OF=5,OC=4,∴OE=2.故答案为2.点睛:本题考查相似三角形的性质和判定,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考填空题的压轴题.12.若x,y为实数,y=12x+-,则4y﹣3x的平方根是____.【正确答案】同时成立,∴224040xx⎧-≥⎨-≥⎩故只有x2﹣4=0,即x=±2,又∵x﹣2≠0,∴x =﹣2,y =12x -=﹣14,4y ﹣3x =﹣1﹣(﹣6)=5,∴4y ﹣3x 的平方根是故答案:13.如图,边长为4的正方形ABCD 外切于⊙O ,切点分别为E 、F 、G 、H .则图中阴影部分的面积为______.【正确答案】2π+4.【详解】解:如图,连接HO ,延长HO 交CD 于点P ,∵正方形ABCD 外切于⊙O ,∴∠A =∠D =∠AHP =90°,∴四边形AHPD 为矩形,∴∠OPD =90°,又∠OFD =90°,∴点P 于点F 重合,则HF 为⊙O 的直径,同理EG 为⊙O 的直径,由∠B =∠OGB =∠OHB =90°且OH =OG 知,四边形BGOH 为正方形,同理四边形OGCF 、四边形OFDE 、四边形OEAH 均为正方形,∴BH =BG =GC =CF =2,∠HGO =∠FGO =45°,∴∠HGF =90°,GH =GF =,则阴影部分面积=12S ⊙O +S △HGF =12•π•22+12×.故答案为2π+4.点睛:本题主要考查切线的性质及扇形面积的计算,熟练掌握切线的性质、矩形的判定得出圆的半径是解题的关键.14.如图,在平面直角坐标系中,点A 的双曲线y=k x(x >0)同时点B ,且点A 在点B 的左侧,点A 的横坐标为1,∠AOB=∠OBA=45°,则k 的值为_______.【正确答案】12【分析】分析:过A 作AM ⊥y 轴于M ,过B 作BD 选择x 轴于D ,直线BD 与AM 交于点N ,则OD=MN ,DN=OM ,∠AMO=∠BNA=90°,由等腰三角形的判定与性质得出OA=BA ,∠OAB=90°,证出∠AOM=∠BAN ,由AAS 证明△AOM ≌△BAN ,得出AM=BN=1,OM=AN=k ,求出B (1+k ,k ﹣1),得出方程(1+k )•(k ﹣1)=k ,解方程即可.详解:如图所示,过A 作AM ⊥y 轴于M ,过B 作BD 选择x 轴于D ,直线BD 与AM 交于点N ,则OD=MN ,DN=OM ,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA ,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN ,∴△AOM ≌△BAN ,∴AM=BN=1,OM=AN=k ,∴OD=1+k ,BD=OM ﹣BN=k ﹣1∴B (1+k ,k ﹣1),∵双曲线y=kx(x>0)点B,∴(1+k)•(k﹣1)=k,整理得:k2﹣k﹣1=0,解得:k=152+(负值已舍去),故答案为15 2+.点睛:本题考查了反比例函数图象上点的坐标特征,坐标与图形的性质,全等三角形的判定与性质,等腰三角形的判定与性质等知识.解决问题的关键是作辅助线构造全等三角形.【详解】请在此输入详解!三.解答题(共9小题,满分70分)15.情景观察:如图1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分别为D、E,CD与AE交于点F.①写出图1中所有的全等三角形;②线段AF与线段CE的数量关系是,并写出证明过程.问题探究:如图2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足为D,AD与BC 交于点E.求证:AE=2CD.【正确答案】①△ABE≌△ACE,△ADF≌△CDB;②AF=2CE,详见解析.【分析】情景观察:①由AB=AC,AE⊥BC,AE是公共边,根据“HL”即可判断△ABE≌△ACE;根据等腰三角形“三线合一”和∠A=45°,可求得∠DAF=22.5°,利用等边对等角和三角形内角和定理求得∠B=67.5°,在Rt△BDC中即可求得∠DCB=22.5°,在Rt△ADC中由∠DAC=45°可得AD =CD ,由“ASA”即可得出△ADF ≌△CDB ;②由①中△ADF ≌△CDB 得出AF =BC ,再由“三线合一”得出BC =2CE ,等量代换即可得出结论;问题探究:延长AB 、CD 交于点G ,由ASA 证明△ADC ≌△ADG ,得出对应边相等CD =GD ,即CG =2CD ,证出∠BAE =∠BCG ,由ASA 证明△ABE ≌△CBG ,得出AE =CG =2CD 即可.【详解】解:①图1中所有的全等三角形为△ABE ≌△ACE ,△ADF ≌△CDB ;故答案为△ABE ≌△ACE ,△ADF ≌△CDB ;②线段AF 与线段CE 的数量关系是:AF =2CE ;故答案为AF =2CE .证明:∵△BCD ≌△FAD ,∴AF =BC ,∵AB =AC ,AE ⊥BC ,∴BC =2CE ,∴AF =2CE ;问题探究:证明:延长AB 、CD 交于点G ,如图2所示:∵AD 平分∠BAC ,∴∠CAD =∠GAD ,∵AD ⊥CD ,∴∠ADC =∠ADG =90°,在△ADC 和△ADG 中,ADC ADG AD AD CAD GAD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC ≌△ADG (ASA ),∴CD =GD ,即CG =2CD ,∵∠BAC =45°,AB =BC ,∴∠ABC =90°,∴∠CBG =90°,∴∠G +∠BCG =90°,∵∠G +∠BAE =90°,∴∠BAE =∠BCG ,在△ABE 和△CBG 中,90ABE CBG AB CB BAE BCG ⎧∠=∠=⎪=⎨⎪∠=∠⎩,∴△ABE ≌△CBG (ASA ),∴AE =CG =2CD.本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;熟练掌握等腰三角形的性质,证明三角形全等是解决问题的关键.16.已知下表内的各横行中,从第二个数起的数都比它左边相邻的数大a ,各竖列中,从第二个数起的数都比它上边相邻的数大b .(1)求a ,b 以及表中x 的值.(2)直接写出第m 行n 列所表示的数.(m ≥1,n ≥1,记表格中x 为第3行第1列)1218x 30…【正确答案】(1)11;(2)5m +3n ﹣7.【详解】分析:(1)根据表内的各横行中,从第二个数起的数都比它左边相邻的数大a 得出12+2a=18,解方程求出a 的值;再由各竖列中,从第二个数起的数都比它上边相邻的数大b ,得出(12+a)+2b=30,解方程求出b的值,进而求得x的值;(2)由题意个数是1,由(1)可知第m行n列所表示的数为1+3(m-1)+5(n-1),即为3m+5n-7.详解:(1)∵各横行中,从第二个数起的数都比它左边相邻的数大a,∴12+2a=18,解得:a=3.又∵各竖列中,从第二个数起的数都比它上边相邻的数大b,∴(12+a)+2b=30,将a=3代入上述方程得15+3b=30,解得:b=5.此时x=12﹣2a+b=12﹣6+5=11;(2)由题意个数是1,由(1)可知第m行n列所表示的数为1+5(m﹣1)+3(n﹣1),即为5m+3n﹣7.点睛:本题考查了一元方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.17.为了解本校九年级学生期末数学考试情况,在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A(90~100分);B(80~89分);C(60~79分);D(0~59分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题.(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为,请估计这次九年级学生期末数学考试成绩为的学生人数大约有多少?【正确答案】(1)40人;(2)补图见解析;(3)480人.【分析】(1)抽查人数可由C等所占的比例为50%,根据总数=某等人数÷比例来计算;(2)可由总数减去A、C、D的人数求得B等的人数,再补全条形统计图;(3)用样本估计总体.用总人数1200乘以样本中测试成绩等级在80分(含80分)以上的学生所占百分比即可.【详解】解:(1)20÷50%=40(人),答:这次随机抽取的学生共有40人;(2)B等级人数:40﹣5﹣20﹣4=11(人)条形统计图如下:(3)1200××=480(人),这次九年级学生期末数学考试成绩为的学生人数大约有480人.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从没有同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.服装店10月份以每套500元的进价购进一批羽绒服,当月以标价,额14000元,进入11月份搞促销,每件降价50元,这样额比10月份增加了5500元,售出的件数是10月份的1.5倍.(1)求每件羽绒服的标价是多少元;(2)进入12月份,该服装店决定把剩余的羽绒服按10月份标价的八折,结果全部卖掉,而且这批羽绒服总获利没有少于12700元,问这批羽绒服至少购进多少件?【正确答案】(1)每件羽绒服的标价为700元;(2)这批羽绒服至少购进120件.【分析】(1)设每件羽绒服的标价为x元,则10月份售出14000x件,等量关系:11月份的量是10月份的1.5倍;(2)设这批羽绒服购进a件,没有等量关系:羽绒服总获利没有少于12700元.【详解】(1)设每件羽绒服的标价为x元,则10月份售出14000x件,根据题意得:14000550014000 1.550x x+=⨯-,解得:x=700,经检验x=700是原方程的解.答:每件羽绒服的标价为700元.(2)设这批羽绒服购进a件,10月份售出14000÷700=20(件),11月份售出20×1.5=30(件),根据题意得:14000+(5500+14000)+700×0.8(a﹣20﹣30)﹣500a≥12700,解得:a≥120,所以a至少是120,答:这批羽绒服至少购进120件.本题考查了分式方程的应用和一元没有等式的应用.分析题意,找到合适的数量关系是解决问题的关键.19.正四面体各面分别标有数字1、2、3、4,正六面体各面分别标有数字1、2、3、4、5、6,同时掷这两个正多面体,并将它们朝下面上的数字相加.(1)请用树状图或列表的方法表示可能出现的所有结果;(2)求两个正多面体朝下面上的数字之和是3的倍数的概率.【正确答案】(1)见解析;(2)1 3.【详解】解:(1)解法一:用列表法123456 1234567 2345678 3456789 45678910解法二:树状图法(2)(3)81 ==. 243P和为的倍数20.已知,如图,△ABC中,AB=AC,点D、E、F分别为AB、AC、BC边的中点.求证:DE与AF互相垂直平分.【正确答案】见解析【详解】分析:首先连接DF,EF,由△ABC中,AB=AC,点D、E、F分别为AB、AC、BC 边的中点,根据三角形的中位线的性质,易证得AD=DF=EF=AE,继而证得四边形ADFE是菱形,则可证得结论.详解:连接DF,EF,∵点D、E、F分别为AB、AC、BC边的中点,∴DF=AE=12AC ,EF=AD=12AB ,∵AB=AC ,∴AD=DF=EF=AE ,∴四边形ADFE 是菱形,∴DE 与AF 互相垂直平分.点睛:此题考查了菱形的判定与性质以及三角形中位线的性质.注意准确作出辅助线是解此题的关键.21.已知二次函数22y x bx c =-++图象的顶点坐标为(3,8),该二次函数图象的对称轴与x 轴的交点为A ,M 是这个二次函数图象上的点,O 是原点.(1)没有等式b +2c +8≥0是否成立?请说明理由;(2)设S 是△AMO 的面积,求满足S =9的所有点M 的坐标.【正确答案】(1)成立;(2)M 的坐标为(2,6)或(4,6)或(3+,﹣6)或(3-,﹣6).【详解】试题分析:(1)由题意可知抛物线的解析式为y =﹣2(x ﹣3)2+8,由此求出b 、c 即可解决问题.(2)设M (m ,n ),由题意12•3|n |=9,可得n =±6,分两种情形列出方程求出m 的值即可;试题解析:解:(1)由题意抛物线的顶点坐标(3,8),∴抛物线的解析式为y =﹣2(x ﹣3)2+8=﹣2x 2+12x ﹣10,∴b =12,c =﹣10,∴b +2c +8=12﹣20+8=0,∴没有等式b +2c +8≥0成立.(2)设M (m ,n ),由题意12•3|n |=9,∴n =±6.①当n =6时,6=﹣2m 2+12m ﹣10,解得m =2或4;②当n =﹣6时,﹣6=﹣2m 2+12m ﹣10,解得m =3±;综上所述:满足条件的点M 的坐标为(2,6)或(4,6)或(3+,﹣6)或(3,﹣6).点睛:本题考查抛物线与x 轴的交点、二次函数图象与系数的关系等知识,解题的关键是熟练掌握二次函数的三种形式,学会利用参数构建方程解决问题.22.下岗职工王阿姨利用自己的一技之长开办了“爱心服装厂”,计划生产甲、乙两种型号的服装共40套投放到市场.已知甲型服装每套成本34元,售价39元;乙型服装每套成本42元,售价50元.服装厂预计两种服装的成本没有低于1536元,没有高于1552元.(1)问服装厂有哪几种生产?(2)按照(1)中生产,服装全部售出至少可获得利润多少元?(3)在(1)的条件下,服装厂又拿出6套服装捐奉送某社区低保户,其余34套全部售出,这样服装厂可获得利润27元.请直接写出服装厂这40套服装是按哪种生产的.【正确答案】(1)生产甲型服装16套,乙型24套或甲型服装17套,乙型23套或甲型服装18套,乙型服装22套;(2)至少可获得利润266元;(3)生产甲型服装16套,乙型服装24套【详解】试题分析:(1)根据题意设甲型服装x套,则乙型服装为(40-x)套,由已知条件列没有等式1536≤34x+42(40-x)≤1552进行解答即求出所求结论;(2)根据每种型号的利润和数量都已说明,需求出总利润,根据函数的性质即可得到利润最小值;(3)设捐出甲型号m套,则有39(甲-m)+50[乙-(6-m)]-34甲-42乙=27,整理得5甲+8乙+11m=327,又(1)得,甲可以=16、17、18,而只有当甲=16套时,m=5为整数,即可得到服装厂采用的.试题解析:(1)解:设甲型服装x套,则乙型服装为(40﹣x)套,由题意得1536≤34x+42(40﹣x)≤1552,解得16≤x≤18,∵x是正整数,∴x=16或17或18.有以下生产三种:生产甲型服装16套,乙型24套或甲型服装17套,乙型23套或甲型服装18套,乙型服装22套;(2)解:设所获利润为y元,由题意有:y=(39﹣34)x+(50﹣42)(40﹣x)=﹣3x+320,∵y随x的增大而减小,,∴x=18时,y最小值=266∴至少可获得利润266元(3)解:服装厂采用的是:生产甲型服装16套,乙型服装24套.23.如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求EFFD的值;(3)若EA=EF=1,求圆O的半径.【正确答案】(1)见解析;(2)23;(3)152+【分析】(1)根据同圆的半径相等和等边对等角证明:∠ODB=∠OBD=∠ACB,则DH⊥OD,DH是圆O的切线;(2)如图2,先证明∠E=∠B=∠C,则H是EC的中点,设AE=x,EC=4x,则AC=3x,由OD是△ABC的中位线,得:OD=12AC=32x,证明△AEF∽△ODF,列比例式可得结论;(3)如图2,设⊙O的半径为r,即OD=OB=r,证明DF=OD=r,则DE=DF+EF=r+1,BD=CD=DE=r+1,证明△BFD∽△EFA,列比例式为:EF BFFA DF=,则111rr r+=-,求出r的值即可.【详解】(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且点A是EH中点,设AE=x,EC=4x,则AC=3x,连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BC的中点,∴OD是△ABC的中位线,∴OD∥AC,OD=12AC=32x,∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴EF AEFD OD=,∴32AE xOD x==23,∴EFFD=23;(3)如图2,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD =CD =DE =r +1,在⊙O 中,∵∠BDE =∠EAB ,∴∠BFD =∠EFA =∠EAB =∠BDE ,∴BF =BD ,△BDF 是等腰三角形,∴BF =BD =r +1,∴AF =AB ﹣BF =2OB ﹣BF =2r ﹣(1+r )=r ﹣1,在△BFD 和△EFA 中,∵∠BDF =∠EFA ,∠B =∠E ,∴△BFD ∽△EFA ,∴EF BF FA DF =,∴111rr r+=-,解得:r 1=12+,r 2=12-(舍),综上所述,⊙O 的半径为12+.点睛:本题是圆的综合题,考查了等腰三角形的性质和判定、切线的性质和判定、三角形的中位线、三角形相似的性质和判定、圆周角定理,第三问设圆的半径为r ,根据等边对等角表示其它边长,利用比例列方程解决问题.试题解析:2022-2023学年湖南省区域中考数学专项提升仿真模拟试题(二模)一、选一选(共12题;共36分)1.已知等腰三角形的其中两边长分别为4,9,则这个等腰三角形的周长是()A.13B.17C.22D.17或222.若二次函数y=x2–mx+6配方后为y=(x–2)2+k,则m,k的值分别为A.0,6B.0,2C.4,6D.4,23.如图所示的几何体的主视图是()A. B. C. D.4.下列现象:其中能用“两点确定一条直线”来解释的现象是()①用两个钉子就可以把木条固定在墙上;②从A地到B地架设电线,总是尽可能沿着线段AB架设;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.A.①③B.①②C.②④D.③④5.某城市为了申办冬运会,决定改善城市容貌,绿化环境,计划用两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增长率是()A.19%B.20%C.21%D.22%6.如图,已知AB是⊙O的直径,C是⊙O上的点,sinA=14,BC=1,则⊙O的半径等于()A.4B.3C.2D.7.下列语句正确的是()A.平行四边形是轴对称图形B.矩形的对角线相等C.对角线互相垂直的四边形是菱形D.对角线相等的四边形是矩形8.如图,以P (-4.5,0)为圆心的⊙P (-2,0)以1个单位/秒的速度沿x 轴向右运动,则当⊙P 与y 轴相交的弦长为4时,则移动的时间为()A .2秒B.3秒C.2秒或4秒D.3秒或6秒9.由一些大小相同的小正方体搭成的几何体的主视图与左视图如图所示,搭成这个几何体的小正方体的个数没有可能为()A.10B.9C.8D.710.下列各题正确的是()A.由7x=4x ﹣3移项得7x ﹣4x=36B.由213132x x --=+去分母得2(2x ﹣1)=1+3(x ﹣3)C.由2(2x ﹣1)﹣3(x ﹣3)=1去括号得4x ﹣2﹣3x ﹣9=1D.由2(x+1)=x+7去括号、移项、合并同类项得x=511.如图所示的抛物线是二次函数2y ax bx c =++(a≠0)的图象,则下列结论:①abc >0;②b+2a=0;③抛物线与x 轴的另一个交点为(4,0);④a+c >b ;⑤3a+c <0.其中正确的结论有。

2020年中考数学模拟试卷03含解析 (2)

2020年中考数学模拟试卷03含解析 (2)

2020年中考数学模拟试卷第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在实数实数0,−√5,√6,﹣2中,最小的是( ) A .0 B .−√5C .√6D .﹣2【答案】B【解析】∵−√5<﹣2<0<√6, ∴所给的数中,最小的数是−√5. 故选B . 2.函数1x y x+=-的自变量取值范围是( ) A .0x > B .0x <C .0x ≠D .1x ≠-【答案】C【解析】当0x ≠时,分式有意义。

即1x y x+=-的自变量取值范围是0x ≠。

故答案为:C3.下列说法正确的是( )A .调查某班学生的身高情况,适采用抽样训查B .对端午节期间市场上粽子质量情况的调查适合采用全面调查C .小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的率是1D .“若,m n 互为相反数,则0m n +=”,这一事件是必然事件 【答案】D【解析】A 、调查你所在班级同学的身高,采用普查;B 、调查端午节期间市场上粽子质量情况,采用抽样调查;C 、小南抛掷两次硬币都是正面向上,不能说明抛掷硬币正面向上的率是1;D 、若,m n 互为相反数,则有0m n +=成立,故这一事件是必然事件;故选D . 4.点()2,3A -关于原点对称的点的坐标为( ) A .()2,3 B .()3,2-C .()2,3-D .()3,2-【答案】C【解析】点()2,3A -关于原点对称的点的坐标为()2,3- 故选C.5.如图是一个几何体的三视图,则此几何体是( )A .圆柱B .棱柱C .圆锥D .棱台【答案】A【解析】由于主视图和左视图为正方形可得此几何体为柱体,由俯视图为圆形可得为圆柱.故选A .6.九(1)班有2名升旗手,九(2)班、九(3)班各1名,若从4人中随机抽取2人担任下周的升旗手,则抽取的2人恰巧都来自九(1)班的概率是( )A .34B .23C .25D .16【答案】D【解析】画树状图如下:由树状图知,共有12种等可能结果,其中抽取的2人恰巧都来自九(1)班的有2种结果,所以抽取的2人恰巧都来自九(1)班的概率为21= 126,故选D.7.已知关于x,y的方程组24x y mx y m+=⎧⎨-=⎩的解为3x+2y=14的一个解,那么m的值为( )A.1 B.-1 C.2 D.-2 【答案】C【解析】解方程组24x y mx y m+=⎧⎨-=⎩,得3x my m=⎧⎨=-⎩,把3x m=,y m=-代入3214x y+=得:9214m m-=,2m∴=,故选C.8.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有()A.1个B.2个C.3个D.4个【答案】A【解析】①由抛物线可知:a >0,c <0,对称轴x =﹣2ba<0, ∴b >0,∴abc <0,故①正确;②由对称轴可知:﹣2ba=﹣1, ∴b =2a ,∵x =1时,y =a+b+c =0, ∴c+3a =0,∴c+2a =﹣3a+2a =﹣a <0,故②正确; ③(1,0)关于x =﹣1的对称点为(﹣3,0), ∴x =﹣3时,y =9a ﹣3b+c =0,故③正确; ④当x =﹣1时,y 的最小值为a ﹣b+c , ∴x =m 时,y =am 2+bm+c , ∴am 2+bm+c ≥a-b+c ,即a ﹣b ≤m (am+b ),故④错误; ⑤抛物线与x 轴有两个交点, ∴△>0, 即b 2﹣4ac >0,∴4ac ﹣b 2<0,故⑤正确;故选A .9.如图,正方形ABCD 的边长为8,M 在DC 上,且DM 2=,N 是AC 上一动点,则DN MN +的最小值为( )A.6 B.8 C.10 D.12 【答案】C【解析】连接BD交AC于O,∵四边形ABCD是正方形,∴AC⊥BD,OD=OB,即D、B关于AC对称,∴DN=BN,连接BM交AC于N,则此时DN+MN最小,∴DN=BN,∴DN+MN=BN+MN=BM,∵四边形ABCD是正方形,∴∠BCD=90°,BC=8,CM=8-2=6,由勾股定理得:=,∴DN+MN的最小值为10,故选C .10.如图,在半径为6的⊙O 中,正六边形ABCDEF 与正方形AGDH 都内接于⊙O ,则图中阴影部分的面积为( )A .27﹣B .C .54﹣D .54【答案】C【解析】设EF 交AH 于M 、交HD 于N ,连接OF 、OE 、MN ,如图所示: 根据题意得:△EFO 是等边三角形,△HMN 是等腰直角三角形, ∴EF =OF =6,∴△EFO 的高为:OF •sin60°=6×2=MN =2(6﹣12﹣∴FM =12(6﹣12+3,∴阴影部分的面积=4S △AFM =4×12(3)×54﹣ 故选C .二、填空题(本大题共6小题,每小题3分,共18分) 11.因式分解:3x 3﹣12x=_____. 【答案】3x (x+2)(x ﹣2) 【解析】3x 3﹣12x =3x (x 2﹣4) =3x (x+2)(x ﹣2), 故答案为3x (x+2)(x ﹣2).12.在学校举行“中国诗词大会”的比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,这组数据的众数是_____. 【答案】90【解析】这组数据中数据90出现了2次,出现次数最多,所以这组数据的众数为90, 故答案为:90.13.化简2221m m nm n ---的结果是____.【答案】1m n+. 【解析】原式=2()()()()m m n m n m n m n m n +-+-+-=()()m n m n m n -+-=1m n+.故答案为:1m n+14.如图,在▱ABCD中,AB AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为_____.【答案】3【解析】∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=4,∴BE=2,∴3AE===.故答案为3.15.如图,直线y=12x与双曲线y=kx(k>0,x>0)交于点A,将直线y=12x向上平移2个单位长度后,与y轴交于点C,与双曲线交于点B,若OA=3BC,则k的值为____.【答案】98.【解析】如图,∵将直线y=1x2向上平移2个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=12x+2,如图:分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,32 x),),∵OA=3BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=13 OD,∵点B在直线y=12x+2上,∴B(x,12x+2),∵点A、B在双曲线y=kx,∴313222x x x x⎛⎫⋅=⋅+⎪⎝⎭,解得x=12,∴111922228k⎛⎫=⨯⨯+=⎪⎝⎭.故答案为:9 816.如图,∠AOC=90°,P为射线OC上任意一点(点P不与点O重合),分别以AO,AP为边在∠AOC的内部作两个等边△AOE和△APQ,连接QE并延长交OP于点F,则∠OEF的度数是_____.【答案】30°【解析】∵△AOE,△APQ都是等边三角形,∴AE=AO,AQ=AP,∠EAO=∠QAP=60°,∴∠QAE=∠PAO,∴△QAE≌△PAO(SAS),∴∠AEQ=∠AOP,∵∠AOP=90°,∴∠AEQ=∠AEF=90°,∵∠AEO=60°,∴∠OEF=30°,故答案为30°.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)解不等式组:3(2)421152x x x x --⎧⎪-+⎨<⎪⎩…. 【解析】3(2)4(1)211(2)52x x x x --⎧⎪-+⎨<⎪⎩… 不等式()1可化为364x x -+≥,解得1x ≤,不等式()2可化为()()22151x x -<+,4255x x -<+,解得7x >-.把解集表示在数轴上为:∴原不等式组的解集为71x -<≤.18.(本小题满分8分)如图,点B 在DC 上,BE 平分∠ABD ,∠ABE =∠C ,求证:BE ∥AC .【解析】∵BE 平分∠ABD,∴∠DBE=∠ABE;∵∠ABE=∠C,∴∠DBE=∠C,∴BE∥AC.19.(本小题满分8分)某服饰公司为我学校七年级学生提供L码、M码、S码三种大小的校服,我校1000名学生购买校服,随机抽查部分订购三种型号校服的人数,得到如图统计图:(1)一共抽查了人;(2)购买L码人数对应的圆心角的度数是;(3)估计该服饰公司要为我校七年级学生准备多少件M码的校服?【解析】(1)本次调查的总人数为22÷22%=100人,故答案为100;(2)购买L码人数对应的扇形的圆心角的度数是360°×30100=108°,故答案为108°;(3)估计该服饰公司要为我校七年级学生准备M码的校服1000×1003022100--=480(件).20.(本小题满分8分)如图,在下列9×9的网格中,横纵坐标均为整数的点叫做格点,例如:A(1,1)、B(8,3)都是格点,E、F为小正方形边的中点,C为AE、BF的延长线的交点.(1)AE的长等于;(2)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图示所示的网格中,用无刻度的直尺,画出线段PQ,并直接写出P、Q两点的坐标.=;【解析】(1)AE2(2)如图,AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.故答案为:AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.∴P(3,4),Q(6,6).21.(本小题满分8分)如图1,△ABC是等腰三角形,O是底边BC中点,腰AB与⊙O相切于点D(1)求证:AC是⊙O的切线;(2)如图2,连接CD,若BC的长.【解析】(1)证明:连接OD ,OA ,作OF⊥AC 于F ,如图,∵△ABC 为等腰三角形,O 是底边BC 的中点,∴AO⊥BC,AO 平分∠BAC,∵AB 与⊙O 相切于点D ,∴OD⊥AB,而OF⊥AC,∴OF=OD ,∴AC 是⊙O 的切线;(2)过D 作DF⊥BC 于F ,连接OD ,∵tan∠BCD=4,∴4DF CF设DF a ,OF =x ,则CF =4a ,OC =4a ﹣x ,∵O 是底边BC 中点,∴OB=OC =4a ﹣x ,∴BF=OB﹣OF=4a﹣2x,∵OD⊥AB,∴∠BDO=90°,∴∠BDF+∠FDO=90°,∵DF⊥BC,∴∠DFB=∠OFD=90°,∠FDO+∠D OF=90°,∴∠BDF=∠DOF,∴△DFO∽△BFD,∴BF DFDF FO=,x=,解得:x1=x2=a,∵⊙O∵DF2+FO2=DO2,x)2+x2=)2,∴x1=x2=a=1,∴OC=4a﹣x=3,∴BC=2OC=6.22.(本小题满分10分)某校两次购买足球和篮球的支出情况如表:(2)学校准备给帮扶的贫困学校送足球、篮球共计60个,恰逢市场对两种球的价格进行了调整,足球售价提高了10%,篮球售价降低了10%,如果要求一次性购得这批球的总费用不超过4000元,那么最多可以购买多少个足球?【解析】(1)设购买一个足球需要x元,购买一个篮球的花费需要y元,根据题意,得23310 52500x yx y+=⎧⎨+=⎩,解得:8050 xy=⎧⎨=⎩.答:购买一个足球和一个篮球的花费各需要80和50元;(2)设购买a个足球,根据题意,得:(1+10%)×80a+(1﹣10%)×50(60﹣a)≤4000,解得:a≤1300 43,又∵a为正整数,∴a的最大值为30.答:最多可以购买30个足球.23.(本小题满分10分)如图,正方形ABCD的对角线交于点O,点E在边BC上,BE=1n BC,AE交OB于点F,过点B作AE的垂线BG交OC于点G,连接GE.(1)求证:OF=OG.(2)用含有n的代数式表示tan∠OBG的值.(3)若BF=2,OF=1,∠GEC=90°,直接写出n的值.【解析】(1)∵四边形ABCD是正方形,∴AO=BO,AC⊥BD,∴∠AFO+∠FAO=90°,∵AE⊥BG,∴∠BFE+∠FBG=90°,且∠BFE=∠AFO,∴∠FAO=∠FBG,且OA=OB,∠AOF=∠BOG,∴△AOF≌△BOG(ASA),∴OF=OG;(2)以B为原点,BC所在直线为x轴,AB所在直线为y轴建立平面直角坐标系,∵BE=1n BC,∴设BC=n,则BE=1,∴点A(0,n),点E(1,0),点C坐标(n,0),∴直线AC解析式为:y=﹣x+n,直线AE解析式为:y=﹣nx+n,∵BG⊥AE,∴直线BG的解析式为:y=1nx,∴1nx=﹣x+n,∴x=21nn +,∴点G坐标(21nn+,1nn+),∵点A(0,n),点E(1,0),点C坐标(n,0),∴BO=2n,点O坐标(2n,2n),∴OG=() ()1 21nn-+,∴tan∠OBG=11 OG nOB n-=+;(3)∵OB=OF+BF,BF=2,OF=1,∴OB=3,且OF=OG,OC=OB,BO⊥CO,∴OC=3,OG=1,BC=,∴CG=2,∵∠GEC=90°,∠ACB=45°,∴GE=EC∴BE=BC﹣EC=,∴23 BEBC=,∴BE=23BC=1nBC,∴n=32.24.(本小题满分12分)如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由;(3)经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标.【解析】(1)由题意得:()121931bb c⎧-=⎪⨯-⎨⎪-++=-⎩,解得:22bc=⎧⎨=⎩,∴抛物线的解析式为y=-x2+2x+2;(2)∵由y=-x2+2x+2得:当x=0时,y=2,∴B(0,2),由y=-(x-1)2+3得:C(1,3),∵A(3,-1),∴AB,BC,AC∴AB2+BC2=AC2,∴∠ABC=90°,∴△ABC是直角三角形;(3)①如图,当点Q在线段AP上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=1,∴PE=AD=1∵由-x2+2x+2=1得:x=1,∴P(,1)或(,1),②如图,当点Q在PA延长线上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=3AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=3,∴PE=3AD=3∵由-x2+2x+2=-3得:x,∴P(,-3),或(,-3),综上可知:点P的坐标为(,1)、(,1)、(,-3)或(,-3).。

2020年湖南省初中数学学业水平考试 数学模拟试卷(二)(解析版)

2020年湖南省初中数学学业水平考试 数学模拟试卷(二)(解析版)

2020年湖南省初中数学学业水平考试数学模拟试卷(二)一、选择题(本大题共10个小题,每小题只有一个正确选项,请将正确选项填涂到答题卡上.每小题4分,共40分)1.﹣2020的相反数是( )A .2020B .﹣2020C .20201D .﹣20201 【分析】只有符号不同的两个数叫做互为相反数.【解答】解:﹣2020的相反数是2020.故选:A .【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.﹣22×3的结果是( )A .﹣5B .﹣12C .﹣6D .12【分析】根据有理数的混合运算法则解答即可.【解答】解:﹣22×3=﹣4×3=﹣12.故选:B .【点评】本题主要考查了有理数的混合运算,熟练掌握法则是解答本题的关键.有理数的混合运算,先乘方,再乘除,后加减,有括号的先算括号内的.3.下列运算正确的是( )A .a •a 2=a 2B .(ab )2=abC .3﹣1=D .【分析】根据同底数幂的乘法法则对A 进行判断;根据积的乘方对B 进行判断;根据负整数指数幂的意义对C 进行判断;根据二次根式的加减法对D 进行判断.【解答】解:A 、原式=a 3,所以A 选项错误;B 、原式=a 2b 2,所以B 选项错误;C 、原式=,所以C 选项正确;D、原式=2,所以D选项错误.故选:C.【点评】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.也考查了整式的运算.4.分式有意义,则x的取值范围是()A.x≠2 B.x=0 C.x≠﹣2 D.x=﹣7【分析】直接利用分式有意义则分母不为零进而得出答案.【解答】解:分式有意义,则x﹣2≠0,解得:x≠2.故选:A.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.5.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()A.35°B.45°C.55°D.65°【分析】利用“直角三角形的两个锐角互余”的性质求得∠A=35°,然后利用平行线的性质得到∠1=∠B=35°.【解答】解:如图,∵BC⊥AE,∴∠ACB=90°.∴∠A+∠B=90°.又∵∠B=55°,∴∠A=35°.又CD∥AB,∴∠1=∠A=35°.故选:A.【点评】本题考查了平行线的性质和直角三角形的性质.此题也可以利用垂直的定义、邻补角的性质以及平行线的性质来求∠1的度数.6.若一组数据1,2,3,4,x的平均数与中位数相同,则实数x的值不可能是()A.0 B.2.5 C.3 D.5【分析】因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.【解答】解:(1)将这组数据从小到大的顺序排列为1,2,3,4,x,处于中间位置的数是3,∴中位数是3,平均数为(1+2+3+4+x)÷5,∴3=(1+2+3+4+x)÷5,解得x=5;符合排列顺序;(2)将这组数据从小到大的顺序排列后1,2,3,x,4,中位数是3,此时平均数是(1+2+3+4+x)÷5=3,解得x=5,不符合排列顺序;(3)将这组数据从小到大的顺序排列后1,x,2,3,4,中位数是2,平均数(1+2+3+4+x)÷5=2,解得x=0,不符合排列顺序;(4)将这组数据从小到大的顺序排列后x,1,2,3,4,中位数是2,平均数(1+2+3+4+x)÷5=2,解得x=0,符合排列顺序;(5)将这组数据从小到大的顺序排列后1,2,x,3,4,中位数,x,平均数(1+2+3+4+x)÷5=x,解得x=2.5,符合排列顺序;∴x的值为0、2.5或5.故选:C.【点评】本题考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数7.如图的立体图形的左视图可能是()A.B.C.D.【分析】左视图是从物体左面看,所得到的图形.【解答】解:此立体图形的左视图是直角三角形,故选:A.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.8.在同一平面直角坐标系中,函数y=x+k与y=(k为常数,k≠0)的图象大致是()A.B.C.D.【分析】方法1、根据已知解析式和函数的图象和性质逐个判断即可.方法2、先根据一次函数的图象排除掉C,D,再判断出A错误,即可得出结论.【解答】解:方法1、A、从一次函数图象看出k<0,而从反比例函数图象看出k>0,故本选项不符合题意;B、从一次函数图象看出k>0,而从反比例函数图象看出k>0,故本选项符合题意;C、从一次函数图象看出k>0,而从反比例函数图象看出k<0,故本选项不符合题意;D、从一次函数图象看出k<0,而从反比例函数图象看出k<0,但解析式y=x+k的图象和图象不符,故本选项不符合题意;故选B.方法2、∵函数解析式为y=x+k,这里比例系数为1,∴图象经过一三象限.排除C,D选项.又∵A、一次函数k<0,反比例函数k>0,错误.故选:B.【点评】本题考查了反比例函数和一次函数的图象和性质,能灵活运用图象和性质进行判断是解此题的关键.9.等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为()A.9 B.10 C.9或10 D.8或10【分析】由三角形是等腰三角形,得到①a=2,或b=2,②a=b①当a=2,或b=2时,得到方程的根x=2,把x=2代入x2﹣6x+n﹣1=0即可得到结果;②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,由△=(﹣6)2﹣4(n﹣1)=0可的结果.【解答】解:∵三角形是等腰三角形,∴①a=2,或b=2,②a=b两种情况,①当a=2,或b=2时,∵a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,∴x=2,把x=2代入x2﹣6x+n﹣1=0得,22﹣6×2+n﹣1=0,解得:n=9,当n=9,方程的两根是2和4,而2,4,2不能组成三角形,故n=9不合题意,②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,∴△=(﹣6)2﹣4(n﹣1)=0解得:n=10,故选:B.【点评】本题考查了等腰三角形的性质,一元二次方程的根,一元二次方程根的判别式,注意分类讨论思想的应用.10.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S2020的值为()A.201721⎪⎭⎫⎝⎛B.201722⎪⎪⎭⎫⎝⎛C.201822⎪⎪⎭⎫⎝⎛D.201821⎪⎭⎫⎝⎛【分析】根据等腰直角三角形的性质可得出2S2=S1,根据数的变化找出变化规律“S n=()n﹣3”,依此规律即可得出结论.【解答】解:如图所示,∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴2S2=S1.观察,发现规律:S1=22=4,S2=S1=2,S3=S2=1,S4=S3=,…,∴S n=()n﹣3.当n=2020时,S2018=()2020﹣3=()2017.故选:A.【点评】本题考查了等腰直角三角形的性质、勾股定理,解题的关键是利用图形找出规律“S n=()n﹣3”.二、填空题(本大题共8个小题,请将答案填在答题卡的答案栏内,每小题4分,共32分)11.新田为实现全县“脱贫摘帽”,2019年2月已统筹整合涉农资金235000000元,撬动800000000元金融资本参与全县脱贫攻坚工作,请将235000000用科学记数法表示为 2.35×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将235000000用科学记数法表示为:2.35×108.故答案为:2.35×108.【点评】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.直线y=2x+1经过点(0,a),则a= 1 .【分析】根据一次函数图象上的点的坐标特征,将点(0,a)代入直线方程,然后解关于a的方程即可.【解答】解:∵直线y=2x+1经过点(0,a),∴a=2×0+1,∴a=1.故答案为:1.【点评】本题考查了一次函数图象上的点的坐标特征:经过函数的某点一定在函数的图象上,并且一定满足该函数的解析式方程.13.如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是 4 .【分析】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.【解答】方法1解:∵△ABC的三条中线AD、BE,CF交于点G,∴S△CGE=S△AGE=S△ACF,S△BGF=S△BGD=S△BCF,∵S△ACF=S△BCF=S△ABC=×12=6,∴S△CGE=S△ACF=×6=2,S△BGF=S△BCF=×6=2,∴S阴影=S△CGE+S△BGF=4.故答案为4.方法2设△AFG,△BFG,△BDG,△CDG,△CEG,△AEG的面积分别为S1,S2,S3,S4,S5,S6,根据中线平分三角形面积可得:S1=S2,S3=S4,S5=S6,S1+S2+S3=S4+S5+S6①,S2+S3+S4=S1+S5+S6②由①﹣②可得S1=S4,所以S1=S2=S3=S4=S5=S6=2,故阴影部分的面积为4.故答案为:4.【点评】根据三角形的中线把三角形的面积分成相等的两部分,该图中,△BGF的面积=△BGD的面积=△CGD 的面积,△AGF的面积=△AGE的面积=△CGE的面积.14.把多项式3x2﹣12因式分解的结果是3(x﹣2)(x+2).【分析】首先提取公因式,再利用平方差公式进行二次分解即可.【解答】解:3x2﹣12=3(x2﹣4)=3(x﹣2)(x+2).故答案为:3(x﹣2)(x+2).【点评】此题主要考查了提公因式法与公式法的综合运用,在分解因式时首先要考虑提取公因式,再考虑运用公式法,注意分解一定要彻底.15.不等式组的解集是2≤x<4 .【分析】分别解两个不等式得到x<4和x≥2,然后根据大小小大中间找确定不等数组的解集.【解答】解:,解①得x<4,解②得x≥2,所以不等式组的解集为2≤x<4.故答案为2≤x<4.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.16.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B.若△AOB 的面积为1,则k=﹣2 .【分析】根据反比例函数的性质可以得到△AOB的面积等于|k|的一半,由此可以得到它们的关系.【解答】解:依据比例系数k的几何意义可得两个三角形的面积都等于|k|=1,解得k=﹣2,故答案为:﹣2.【点评】本题考查反比例系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.该知识点是中考的重要考点,同学们应高度关注.17.在平面直角坐标系中,点A,B的坐标分别为(m,7),(3m﹣1,7),若线段AB与直线y=﹣2x﹣1相交,则m的取值范围为﹣4≤m≤﹣1 .【分析】先求出直线y=7与直线y=﹣2x﹣1的交点为(﹣4,7),再分类讨论:当点B在点A的右侧,则m ≤﹣4≤3m﹣1,当点B在点A的左侧,则3m﹣1≤﹣4≤m,然后分别解关于m的不等式组即可.【解答】解:当y=7时,﹣2x﹣1=7,解得x=﹣4,所以直线y=7与直线y=﹣2x﹣1的交点为(﹣4,7),当点B在点A的右侧,则m≤﹣4≤3m﹣1,无解;当点B在点A的左侧,则3m﹣1≤﹣4≤m,解得﹣4≤m≤﹣1,所以m的取值范围为﹣4≤m≤﹣1,故答案为﹣4≤m≤﹣1.【点评】本题考查了一次函数图象上点的坐标特征,根据直线y=﹣2x﹣1与线段AB有公共点找出关于m的一元一次不等式组是解题的关键..18.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P,O两点的二次函数y1和过P,A两点的二次函数y2的图象开口均向下,它们的顶点分别为B,C,射线OB与射线AC相交于点D.当△ODA是等边三角形时,这两个二次函数的最大值之和等于2.【分析】连接PB、PC,根据二次函数的对称性可知OB=PB,PC=AC,从而判断出△POB和△ACP是等边三角形,再根据等边三角形的性质求解即可.【解答】解:如图,连接PB、PC,由二次函数的性质,OB=PB,PC=AC,∵△ODA是等边三角形,∴∠AOD=∠OAD=60°,∴△POB和△ACP是等边三角形,∵A(4,0),∴OA=4,∴点B、C的纵坐标之和为4×=2,即两个二次函数的最大值之和等于2.故答案为2.【点评】本题考查了二次函数的最值问题,等边三角形的判定与性质,作辅助线构造出等边三角形并利用等边三角形的知识求解是解题的关键.三、解答题(本大题共8个小题,共78分,解答题要求写出证明步骤或解答过程)19.(8分)计算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)2020【分析】原式利用乘方的意义,特殊角的三角函数值,零指数幂法则计算即可求出值.【解答】解:原式=﹣4+1+1+1=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)先化简,再求值:﹣÷,其中a=1.【分析】原式第二项利用除法法则变形,约分后通分并利用同分母分式的减法法则计算,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=﹣•2(a﹣3)=﹣==,当a=1时,原式==﹣1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.(8分)在以“关爱学生、安全第一”为主题的安全教育宣传月活动中,某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A:结伴步行、B:自行乘车、C:家人接送、D:其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)本次抽查的学生人数是多少人?(2)请补全条形统计图;请补全扇形统计图;(3)“自行乘车”对应扇形的圆心角的度数是126 度;(4)如果该校学生有2000人,请你估计该校“家人接送”上学的学生约有多少人?【分析】(1)本次抽查的学生人数:18÷15%=120(人);(2)A:结伴步行人数120﹣42﹣30﹣18=30(人),据此补全条形统计图;(3)“自行乘车”对应扇形的圆心角的度数360°×=126°;(4)估计该校“家人接送”上学的学生约有:2000×25%=500(人).【解答】解:(1)本次抽查的学生人数:18÷15%=120(人),答:本次抽查的学生人数是120人;(2)A:结伴步行人数120﹣42﹣30﹣18=30(人),补全条形统计图如下:(3)“自行乘车”对应扇形的圆心角的度数360°×=126°,故答案为126;(4)估计该校“家人接送”上学的学生约有:2000×25%=500(人),答:该校“家人接送”上学的学生约有500人.【点评】本题主要考查条形统计图及扇形统计图及相关计算.解题的关键是读懂统计图,从条形统计图中得到必要的信息是解决问题的关键.22.(10分)如图,在一次测量活动中,小华站在离旗杆底部(B处)6米的D处,仰望旗杆顶端A,测得仰角为60°,眼睛离地面的距离ED为1.5米.试帮助小华求出旗杆AB的高度.(结果精确到0.1米,)【分析】先根据锐角三角函数的定义求出AC的长,再根据AB=AC+DE即可得出结论.【解答】解:∵BD=CE=6m,∠AEC=60°,∴AC=CE•tan60°=6×=6≈6×1.732≈10.4m,∴AB=AC+DE=10.4+1.5=11.9m.答:旗杆AB的高度是11.9米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,先根据锐角三角函数的定义得出AC的长是解答此题的关键.23.(10分)如图,正方形ABCD中,E,F分别为BC,CD上的点,且AE⊥BF,垂足为G.(1)求证:AE=BF.(2)若BE=,AG=2,求正方形的边长.【分析】(1)由正方形的性质得出AB=BC,∠ABC=∠C=90°,∠BAE+∠AEB=90°,由AE⊥BF,得出∠CBF+∠AEB=90°,推出∠BAE=∠CBF,由ASA证得△ABE≌△BCF即可得出结论;(2)证出∠BGE=∠ABE=90°,∠BEG=∠AEB,得出△BGE∽△ABE,得出BE2=EG•AE,设EG=x,则AE=AG+EG =2+x,代入求出x,求得AE=3,由勾股定理即可得出结果.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∴∠BAE+∠AEB=90°,∵AE⊥BF,垂足为G,∴∠CBF+∠AEB=90°,∴∠BAE=∠CBF,在△ABE与△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:∵四边形ABCD为正方形,∴∠ABC=90°,∵AE⊥BF,∴∠BGE=∠ABE=90°,∵∠BEG=∠AEB,∴△BGE∽△ABE,∴=,即:BE2=EG•AE,设EG=x,则AE=AG+EG=2+x,∴()2=x•(2+x),解得:x1=1,x2=﹣3(不合题意舍去),∴AE=3,∴AB===.【点评】本题考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识,熟练掌握正方形的性质,证明三角形全等与相似是解题的关键.24.(10分)如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连接DB,且AD=DB.(1)求证:DB为⊙O的切线.(2)若AD=1,PB=BO,求弦AC的长.【分析】(1)要证明DB为⊙O的切线,只要证明∠OBD=90即可.(2)根据已知及直角三角形的性质可以得到PD=2BD=2DA=2,再利用等角对等边可以得到AC=AP,这样求得AP的值就得出了AC的长.【解答】(1)证明:连接OD;∵PA为⊙O切线,∴∠OAD=90°;在△OAD和△OBD 中,,∴△OAD≌△OBD,∴∠OBD=∠OAD=90°,∴OB⊥BD∴DB为⊙O的切线(2)解:在Rt△OAP中;∵PB=OB=OA,∴OP=2OA,∴∠OPA=30°,∴∠POA=60°=2∠C,∴PD=2BD=2DA=2,∴∠OPA=∠C=30°,∴AC=AP=3.【点评】本题考查了切线的判定及性质,全等三全角形的判定等知识点的掌握情况.25.(12分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:车型目的地大货车A村(元/辆)B村(元/辆)800 900小货车400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.【分析】(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(8﹣x)辆,前往A村的小货车为(10﹣x)辆,前往B村的小货车为[7﹣(10﹣x)]辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【解答】解:(1)设大货车用x辆,小货车用y辆,根据题意得:,解得:.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400.(3≤x≤8,且x为整数).(3)由题意得:12x+8(10﹣x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+9400,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+9400=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往A村.最少运费为9900元.【点评】本题考查了一次函数的应用,二元一次方程组的应用.关键是根据题意,得出安排各地的大、小货车数与前往B村的大货车数x的关系.26.(12分)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)求抛物线的解析式.(2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC 于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?【分析】(1)根据抛物线的对称轴与矩形的性质可得点A的坐标,根据待定系数法可得抛物线的解析式;(2)先根据勾股定理可得CE,再分两种情况:当∠QPC=90°时;当∠PQC=90°时;讨论可得△PCQ为直角三角形时t的值;(3)根据待定系数法可得直线AC的解析式,根据S△ACQ=S△AFQ+S△CPQ可得S△ACQ==﹣(t﹣2)2+1,依此即可求解.【解答】解:(1)∵抛物线的对称轴为x=1,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4),点A在DE上,∴点A坐标为(1,4),设抛物线的解析式为y=a(x﹣1)2+4,把C(3,0)代入抛物线的解析式,可得a(3﹣1)2+4=0,解得a =﹣1.故抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)依题意有:OC=3,OE=4,∴CE===5,当∠QPC=90°时,∵cos∠QPC=,∴,解得t=;当∠PQC=90°时,∵cos∠QCP=,∴,解得t=.∴当t=或t=时,△PCQ为直角三角形;(3)∵A(1,4),C(3,0),设直线AC的解析式为y=kx+b,则有:,解得.故直线AC的解析式为y=﹣2x+6.∵P(1,4﹣t),将y=4﹣t代入y=﹣2x+6中,得x=1+,∴Q点的横坐标为1+,将x=1+代入y=﹣(x﹣1)2+4 中,得y=4﹣.∴Q点的纵坐标为4﹣,∴QF=(4﹣)﹣(4﹣t)=t﹣,∴S△ACQ=S△AFQ+S△CPQ=FQ•AG+FQ•DG,=FQ(AG+DG),=FQ•AD,=×2(t﹣),=﹣(t﹣2)2+1,∴当t=2时,△ACQ的面积最大,最大值是1.【点评】考查了二次函数综合题,涉及的知识点有:抛物线的对称轴,矩形的性质,待定系数法求抛物线的解析式,待定系数法求直线的解析式,勾股定理,锐角三角函数,三角形面积,二次函数的最值,方程思想以及分类思想的运用.。

2020年中考数学全真模拟试卷6套附答案(适用于湖南省长沙市)

2020年中考数学全真模拟试卷6套附答案(适用于湖南省长沙市)
7.【答案】C
【解析】解:A、正六边形的外角和等于 360°,正确,是真命题; B、位似图形必定相似,正确,是真命题; C、对角线相等的平行四边形是矩形,故错误,是假命题; D、两组对角相等的四边形是平行四边形,正确,是真命题, 故选:C. 利用正多边形的外角和、位似图形的定义、矩形的性质及平行四边形的判定分别判断后 即可确定正确的选项. 本题考查了命题与定理的知识,解题的关键是了解正多边形的外角和、位似图形的定义 、矩形的性质及平行四边形的判定等知识,难度不大.
10.【答案】C
【解析】解:根据题意,得
黄球的概率 P=

故选:C. 随机事件 A 的概率 P(A)=事件 A 可能出现的结果数所有可能出现的结果数,P(必然 事件)=1,P(不可能事件)=0. 本题考查了概率,熟练运用概率公式进行计算是解题的关键.
11.【答案】B
【解析】解:∵点 A(x1,-3)、B(x2,-2)、C(x3,1)在反比例函数
第 3 页,共 15 页
23. 如图,AB 为半⊙O 的直径,弦 AC 的延长线与过点 B 的切线交于点 D,E 为 BD 的中点,连接 CE. (1)求证:CE 是⊙O 的切线; (2)过点 C 作 CF⊥AB,垂足为点 F,AC=5,CF=3, 求⊙O 的半径.
24. 为了美化环境,建设宜居衡阳,我市准备在一个广场上种植甲、乙两种花卉.经市 场调查,甲种花卉的种植费用 y(元)与种植面积 x(m2)之间的函数关系如图所 示,乙种花卉的种植费用为每平方米 100 元. (1)求 y 与 x 的函数关系式; (2)广场上甲、乙两种花卉的种植面积共 1000m2,若甲种花卉的种植面积不少于 200m2,且不超过乙种花卉种植面积的 3 倍,那么应该怎忙分配甲、乙两种花卉的 种植面积才能使种植费用最少?最少总费用为多少元?

湖南省湘潭市2020年中考数学模拟试题(二)有答案精析

湖南省湘潭市2020年中考数学模拟试题(二)有答案精析

湖南省湘潭市2020年中考数学模拟试卷(二)(解析版)一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.|﹣2|=()A.2 B.﹣2 C. D.2.(﹣4x)2=()A.﹣8x2B.8x2C.﹣16x2D.16x23.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.下列命题中,正确的是()A.平行四边形的对角线相等B.矩形的对角线互相垂直C.菱形的对角线互相垂直且平分D.对角线相等的四边形是矩形5.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于()A. B. C. D.16.如图,下列水平放置的几何体中,主视图是三角形的是()A. B. C. D.7.若关于x的方程x2+x﹣a+=0没有实数根,则实数a的取值范围是()A.a≥2 B.a≤2 C.a<2 D.a>28.如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是﹣1,则顶点A的坐标是()A.(2,﹣1)B.(1,﹣2)C.(1,2) D.(2,1)二、填空题(本题共8个小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.化简:﹣=____________.10.如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是____________.11.已知反比例函数y=的图象经过点(2,3),则此函数的关系式是____________.12.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为____________.13.某商店一套西服的进价为300元,按标价的80%销售可获利100元,则该服装的标价为____________元.14.如图,直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,则不等式﹣3≤﹣2x﹣5<kx+b的解集是____________.15.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=____________.16.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为____________.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应位置上,满分72分)17.计算:|﹣|+(﹣)﹣1sin45°+()0.18.解不等式.19.先化简,再求值:÷(1+),其中x=﹣1.20.某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,如图是根据这组数据绘制的统计图,图1中从左到右各长方形A、B、C、D、E高度之比为3:4:5:6:2,已知此次调查中捐10元和15元的人数共27人.(1)他们一共抽查了多少人?这组数据的众数、中位数各是多少?(2)图2中,捐款数为20元的D部分所在的扇形的圆心角的度数是多少?(3)若该校共有1000名学生,请求出D部分学生的人数及D部分学生的捐款总额.21.如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(1)求AC的长度;(2)求每级台阶的高度h.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)22.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.23.红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.24.已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.25.(10分)(2020•湘潭模拟)如图,以矩形ABCD的对角线AC的中点O为圆心,OA 长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K.过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.(1)求证:AE=CK;(2)如果AB=a,AD=a(a为大于零的常数),求BK的长.26.(10分)(2020•长沙)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额﹣生产成本﹣员工工资﹣其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?2020年湖南省湘潭市中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.|﹣2|=()A.2 B.﹣2 C. D.【考点】绝对值.【分析】根据绝对值的性质可直接求出答案.【解答】解:根据绝对值的性质可知:|﹣2|=2.故选:A.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(﹣4x)2=()A.﹣8x2B.8x2C.﹣16x2D.16x2【考点】幂的乘方与积的乘方.【分析】原式利用积的乘方运算法则计算即可得到结果.【解答】解:原式=16x2,故选D.【点评】此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.下列命题中,正确的是()A.平行四边形的对角线相等B.矩形的对角线互相垂直C.菱形的对角线互相垂直且平分D.对角线相等的四边形是矩形【考点】命题与定理.【分析】根据平行四边形的性质对A进行判断;根据矩形的性质对B进行判断;根据菱形的性质对C进行判断;根据矩形的判定方法对D进行判断.【解答】解:A、平行四边形的对角线互相平分,所以A选项错误;B、矩形的对角线互相平分且相等,所以B选项错误;C、菱形的对角线互相垂直且平分,所以C选项正确;D、对角线相等的平行四边形是矩形,所以D选项错误.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部组成.熟练平行四边形和特殊平行四边形的判定与性质是解决此题的关键.5.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于()A. B. C. D.1【考点】列表法与树状图法.【分析】首先分别用A与B表示三角形与矩形,然后根据题意画树状图,由树状图求得所有等可能的结果与能拼成“小房子”(如图2)的情况,再利用概率公式求解即可求得答案,【解答】解:分别用A与B表示三角形与矩形,画树状图得:∵共有12种等可能的结果,能拼成“小房子”的有8种情况,∴任取两张纸片,能拼成“小房子”(如图2)的概率等于:=.故选A.【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.6.如图,下列水平放置的几何体中,主视图是三角形的是()A. B. C. D.【考点】简单几何体的三视图.【分析】找到从正面看所得到的图形是三角形即可.【解答】解:A、主视图为长方形,故本选项错误;B、主视图为三角形,故本选项错误;C、主视图为长方形,故本选项错误;D、主视图为长方形,故本选项错误.故选B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.7.若关于x的方程x2+x﹣a+=0没有实数根,则实数a的取值范围是()A.a≥2 B.a≤2 C.a<2 D.a>2【考点】根的判别式.【分析】根据判别式的意义得到△=12﹣4(﹣a+)<0,然后解不等式即可.【解答】解:∵关于x的方程x2+x﹣a+=0没有实数根,∴△=12﹣4(﹣a+)<0,解得:a<2,故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是﹣1,则顶点A的坐标是()A.(2,﹣1)B.(1,﹣2)C.(1,2) D.(2,1)【考点】菱形的性质;坐标与图形性质.【分析】点A的横坐等于OC的长的一半,点A的纵坐标与点B的纵坐标互为相反数.【解答】解:∵点C的坐标为(4,0),∴OC=4,∴点B的纵坐标是﹣1,∴A(2,1).故选D.【点评】本题综合考查了菱形的性质和坐标的确定,综合性较强.二、填空题(本题共8个小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.化简:﹣=.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.10.如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是4.【考点】三角形的面积.【分析】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.【解答】解:∵△ABC的三条中线AD、BE,CF交于点G,∴S△CGE=S△AGE=S△ACF,S△BGF=S△BGD=S△BCF,∵S△ACF=S△BCF=S△ABC=×12=6,∴S△CGE=S△ACF=×6=2,S△BGF=S△BCF=×6=2,=S△CGE+S△BGF=4.∴S阴影故答案为4.【点评】根据三角形的中线把三角形的面积分成相等的两部分,该图中,△BGF的面积=△BGD的面积=△CGD的面积,△AGF的面积=△AGE的面积=△CGE的面积.11.已知反比例函数y=的图象经过点(2,3),则此函数的关系式是y=.【考点】待定系数法求反比例函数解析式.【分析】已知反比例函数y=的图象经过点(2,3),则把(2,3)代入解析式就可以得到k的值.【解答】解:根据题意得:3=解得k=6,则此函数的关系式是y=.故答案为:y=.【点评】本题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点内容.12.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为.【考点】几何概率.【分析】根据题意,求得正方形与圆的面积,相比计算可得答案.【解答】解:根据题意,针头扎在阴影区域内的概率就是圆与正方形的面积的比值;由题意可得:正方形纸边长为4cm,其面积为16cm2,圆的半径为1cm,其面积为πcm2,故其概率为.【点评】本题考查几何概率的求法:注意圆、正方形的面积计算.用到的知识点为:概率=相应的面积与总面积之比.13.某商店一套西服的进价为300元,按标价的80%销售可获利100元,则该服装的标价为500元.【考点】一元一次方程的应用.【分析】首先理解题意找出题中存在的等量关系:利润=售价﹣进价,根据此等量关系列方程即可.【解答】解:设该服装的标价为x元,则实际售价为80%x,根据等量关系列方程得:80%x﹣300=100,解得:x=500.故答案为:500.【点评】此题主要考查了一元一次方程的应用,理解利润、售价、进价三者之间的关系是解题关键.14.如图,直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,则不等式﹣3≤﹣2x﹣5<kx+b的解集是﹣2<x≤﹣1.【考点】一次函数与一元一次不等式.【分析】把所给两点代入一次函数解析式可得k,b的值,进而求不等式组的解集即可.【解答】解:∵直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,∴,解得,∴不等式变为﹣3≤﹣2x﹣5<﹣x﹣3,解得﹣2<x≤﹣1,故答案为﹣2<x≤﹣1.【点评】考查一次函数和一元一次不等式的相关问题;用待定系数法求得未知函数解析式是解决本题的突破点.15.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=80°.【考点】圆周角定理;垂径定理.【分析】根据垂径定理可得点B是中点,由圆周角定理可得∠BOD=2∠BAC,继而得出答案.【解答】解:∵,⊙O的直径AB与弦CD垂直,∴=,∴∠BOD=2∠BAC=80°.故答案为:80°.【点评】此题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.16.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为.【考点】翻折变换(折叠问题).【分析】首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可.【解答】解:∵AB=3,AD=4,∴DC=3,BC=4∴AC==5,根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,22+x2=(4﹣x)2,解得:x=,故答案为:.【点评】此题主要考查了图形的翻着变换,以及勾股定理的应用,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应位置上,满分72分)17.计算:|﹣|+(﹣)﹣1sin45°+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣2×+1=﹣+1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解不等式.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x≤2,由②得,x>﹣.故不等式组的解集为:﹣<x≤2.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.先化简,再求值:÷(1+),其中x=﹣1.【考点】分式的化简求值.【分析】分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.【解答】解:=÷(+)=÷=×=,把,代入原式====.【点评】此题主要考查了分式混合运算,要注意分子、分母能因式分解的先因式分解;除法要统一为乘法运算是解题关键.20.某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,如图是根据这组数据绘制的统计图,图1中从左到右各长方形A、B、C、D、E高度之比为3:4:5:6:2,已知此次调查中捐10元和15元的人数共27人.(1)他们一共抽查了多少人?这组数据的众数、中位数各是多少?(2)图2中,捐款数为20元的D部分所在的扇形的圆心角的度数是多少?(3)若该校共有1000名学生,请求出D部分学生的人数及D部分学生的捐款总额.【考点】扇形统计图;用样本估计总体;条形统计图;中位数;众数.【分析】(1)根据A、B、C、D、E高度之比为3:4:5:6:2,求得B等和C等所占的百分比,再根据捐10元和15元的人数共27人求得总人数;根据中位数和众数的概念求解;(2)各部分所占的圆心角即为百分比×360°;(3)根据样本估计总体.【解答】解:(1)总人数=27÷=60(人);众数:20(元);中位数15(元).(2)捐款数为20元的D部分所在的扇形的圆心角的度数=×360°=108°;(3)D部分的学生人数=1000×=300(人);D部分学生的捐款总额=300×20=6000(元).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时也考查了中位数、众数、平均数的概念及根据样本估计总体.21.如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(1)求AC的长度;(2)求每级台阶的高度h.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)过点B作BE⊥AC于点E,在Rt△ABE中利用三角函数求出AE,由AC=AE ﹣CE,可得出答案;(2)在Rt△ABE中,求出BE,即可计算每级台阶的高度h.【解答】解:如右图,过点B作BE⊥AC于点E,(1)在Rt△ABE中,AB=3m,cos12°≈0.9781,AE=ABcos12°≈2.934m=293.4cm,∴AC=AE﹣CE=293.4﹣60=233.4cm.答:AC的长度约为233.4cm.(2)h=BE=ABsin12°=×300×0.2079=20.79≈20.8cm.答:每级台阶的高度h约为20.8cm.【点评】本题考查了解直角三角形的应用,难度一般,解答本题的关键是根据坡度和坡角构造直角三角形,并解直角三角形.22.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【考点】全等三角形的判定与性质.【分析】首先得出BC=EF,利用平行线的性质∠B=∠DEF,再利用AAS得出△ABC≌△DEF,即可得出答案.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.【点评】此题主要考查了平行线的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.23.红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.【考点】根的判别式;一元二次方程的解;根与系数的关系.【分析】(1)要证明方程有两个不相等的实数根,即证明△>0即可;(2)将x=1代入方程(x﹣3)(x﹣2)=|m|,求出m的值,进而得出方程的解.【解答】(1)证明:∵(x﹣3)(x﹣2)=|m|,∴x2﹣5x+6﹣|m|=0,∵△=(﹣5)2﹣4(6﹣|m|)=1+4|m|,而|m|≥0,∴△>0,∴方程总有两个不相等的实数根;(2)解:∵方程的一个根是1,∴|m|=2,解得:m=±2,∴原方程为:x2﹣5x+4=0,解得:x1=1,x2=4.即m的值为±2,方程的另一个根是4.【点评】此题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.同时考查了一元二次方程的解的定义.25.(10分)(2020•湘潭模拟)如图,以矩形ABCD的对角线AC的中点O为圆心,OA 长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K.过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.(1)求证:AE=CK;(2)如果AB=a,AD=a(a为大于零的常数),求BK的长.【考点】圆的综合题.【分析】(1)先根据平行线的性质和垂直的定义得出∠AED=90°,再根据矩形的性质判断出Rt△ADE≌Rt△CBK即可;(2)先利用勾股定理求出AC,再用三角形的面积公式求出BK即可.【解答】(1)∵DH∥KB,BK⊥AC,∴DE⊥AC,∴∠AED=90°,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠EAD=∠KCB,在△ADE和△CBK中∴Rt△ADE≌Rt△CBK,∴AE=CK.(2)在Rt△ABC中,AB=a,AD=BC=a,∴AC===,∵S△ABC=AB×BC=AC×BK,∴BK===a.【点评】此题是圆的综合题,主要考查了矩形的性质,平行线的性质,垂直的定义,勾股定理,解本题的关键是判断出Rt△ADE≌Rt△CBK.26.(10分)(2020•长沙)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额﹣生产成本﹣员工工资﹣其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?【考点】一次函数的应用;分段函数.【分析】(1)从图中看,这是一个分段一次函数,40≤x≤60和60<x<100时,函数的表达式不同,每段函数都经过两点,使用待定系数法即可求出函数关系式;(2)利用(1)中的函数关系,当销售单价定为50元时,可计算出月销售量,设可安排员工m人,利润=销售额一生产成本﹣员工工资﹣其它费用,列出方程即可解;(3)先分情况讨论出利润的最大值,即可求解.【解答】解:(1)当40≤x≤60时,令y=kx+b,则,解得,故,同理,当60<x<100时,.故y=;(2)设公司可安排员工a人,定价50元时,由5=(﹣×50+8)(50﹣40)﹣15﹣0.25a,得30﹣15﹣0.25a=5,解得a=40,所以公司可安排员工40人;(3)当40≤x≤60时,利润w1=(﹣x+8)(x﹣40)﹣15﹣20=﹣(x﹣60)2+5,则当x=60时,w max=5万元;当60<x<100时,w2=(﹣x+5)(x﹣40)﹣15﹣0.25×80=﹣(x﹣70)2+10,∴x=70时,w max=10万元,∴要尽早还清贷款,只有当单价x=70元时,获得最大月利润10万元,设该公司n个月后还清贷款,则10n≥80,∴n≥8,即n=8为所求.【点评】本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,是一道综合性较强的代数应用题,能力要求比较高.。

2024年湖南省长沙市中考数学模拟试卷及答案解析

2024年湖南省长沙市中考数学模拟试卷及答案解析

2024年湖南省长沙市中考数学模拟试卷一、选择题(在下列各题的四个选项中,只有一项符合题意的。

请在答题卡中填涂符合题意的选项。

本大题共10小题,每小题3分,共30分)1.(3分)下列实数中,为有理数的是()A.B.πC.D.12.(3分)若分式在实数范围内有意义,则x的取值范围是()A.x≠0B.x≠1C.x>1D.x<13.(3分)下列立体图形中,俯视图与主视图不同的是()A.B.C.D.4.(3分)下列说法正确的是()A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为75.(3分)2023年前三季度全国GDP30强城市排名已经揭晓,长沙GDP约为10800亿名列第十五,同比增速为6.32%,数据10800用科学记数法表示为()A.0.108×105B.10.8×103C.1.08×104D.1.08×103 6.(3分)下列运算正确的是()A.a2•a3=a6B.a2+a3=a5C.(a+b)2=a2+b2D.(a3)2=a6 7.(3分)在直角坐标系中,点A(2,﹣3)关于原点对称的点位于()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)如图,E、F、G、H分别是四边形ABCD四条边的中点,则四边形EFGH一定是()A.平行四边形B.矩形C.菱形D.正方形9.(3分)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°10.(3分)我国古代数学典籍《九章算术》第七章“盈不足”中有一道两鼠穿墙问题:“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何”,翻译过来就是:有五尺厚的墙,两只老鼠从墙的两边相对分别打洞穿墙,大、小鼠第一天都进一尺,以后每天,大鼠加倍,小鼠减半,则几天后两鼠相遇,这个问题体现了古代对数列问题的研究,现将墙的厚度改为20尺,则需要几天时间才能打穿(结果取整数)()A.4B.5C.6D.7二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)分解因式:1﹣x2=.12.(3分)如图,在⊙O中,圆心角∠AOB=70°,那么圆周角∠C=.13.(3分)睡眠管理作为“五项管理”中重要的内容之一,也是学校教育重点关注的内容.某老师了解到某班40位同学每天睡眠时间(单位:小时)如下表所示,则该班级学生每天的平均睡眠时间是小时.睡眠时间8小时9小时10小时人数6241014.(3分)已知关于x的方程x2+3x﹣m=0的只有一个解,则m的值是.15.(3分)如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是.16.(3分)若一次函数y=x+1与y=﹣x﹣1交于A点,则A点的坐标为.三、解答题(本大题共9小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分。

湖南省2020年中考数学模拟试卷解析版

湖南省2020年中考数学模拟试卷解析版

湖南省2020年中考数学模拟试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)下列实数中,无理数为( )A .0.3B .C .D .22.(3分)下列运算正确的是( )A .3a 2﹣2a 2=1B .(a 2)3=a 5C .a 2•a 4=a 6D .(3a )2=6a 2 3.(3分)中国企业2018年已经在“一带一路”沿线国家建立了56个经贸合作区,直接为东道国增加了20万个就业岗位.将20万用科学记数法表示应为( )A .2×105B .20×104C .0.2×106D .20×1054.(3分)下列四个立体图形中,主视图为圆的是( )A .B .C .D . 5.(3分)如图,AB ∥CD ,∠B =68°,∠E =20°,则∠D 的度数为( )A .28°B .38°C .48°D .88°6.(3分)若将点A (1,3)向左平移2个单位,再向下平移4个单位得到点B ,则点B 的坐标为( )A .(﹣2,﹣1)B .(﹣1,0)C .(﹣1,﹣1)D .(﹣2,0) 7.(3分)某校为了解全校同学五一假期参加社团活动的情况,抽查了100名同学,统计它们假期参加社团活动的时间,绘成频数分布直方图(如图),则参加社团活动时间的中位数所在的范围是( )A.4﹣6小时B.6﹣8小时C.8﹣10小时D.不能确定8.(3分)若m,n是一元二次方程x2+x﹣2=0的两个根,则m+n﹣mn的值是()A.﹣3B.3C.﹣1D.19.(3分)函数y=的自变量x的取值范围是()A.x≠2B.x<2C.x≥2D.x>210.(3分)下列命题是真命题的是()A.内错角相等B.两边和一角对应相等的两个三角形全等C.矩形的对角线互相垂直D.圆内接四边形的对角互补11.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y钱,根据题意,可列方程组为()A.B.C.D.12.(3分)如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.(3分)分解因式:x3﹣4x=.14.(3分)计算:=.15.(3分)若正多边形的一个内角等于140°,则这个正多边形的边数是.16.(3分)如图,在正方形ABCD中,等边△AEF的顶点E、F分别在边BC和CD上,则∠AEB=°.17.(3分)已知圆锥的底面积为16πcm2,母线长为6cm,则圆锥的侧面积是cm2.18.(3分)如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60°方向上,继续向东航行20海里到达点B处,测得小岛C在轮船的北偏东15°方向上,此时轮船与小岛C的距离为海里.三、解答题(共8小题,满分66分)19.(6分)计算:﹣(2019﹣π)0﹣4cos45°+(﹣)﹣220.(6分)解不等式组,并把解集在数轴上表示出来.21.(8分)西宁市教育局在局属各初中学校设立“自主学习日”.规定每周三学校不得以任何形式布置家庭作业,为了解各学校的落实情况,从七、八年级学生中随机抽取了部分学生的反馈表,针对以下六个项目(每人只能选一项):A.课外阅读;B.家务劳动;C.体育锻炼;D.学科学习;E.社会实践;F.其他项目进行调查,根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:(1)此次抽查的样本容量为,请补全条形统计图;(2)全市约有4万名在校初中学生,试估计全市学生中选择体育锻炼的人数约有多少人?(3)七年级(1)班从选择社会实践的2名女生和1名男生中选派2名参加校级社会实践活动,请你用树状图或列表法求出恰好选到1男1女的概率是多少?并列举出所有等可能的结果.22.(8分)已知E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)求证:△ABE≌△CDF;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.23.(9分)长沙市计划聘请甲、乙两个工程队对桂花公园进行绿化.已知甲队每天能完成绿化的面积是乙队的2倍;若两队分别各完成300m2的绿化时,甲队比乙队少用3天.(1)求甲、乙两工程队每天能完成的绿化的面积;(2)该项绿化工程中有一块长为20m,宽为8m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?24.(9分)如图,在⊙O中,直径CD垂直于不过圆心O的弦AB,垂足为点N,连接AC,BC,点E在AB上,且AE=CE.(1)求证:∠ABC=∠ACE;(2)过点B作⊙O的切线交EC的延长线于点P,证明PB=PE;(3)在第(2)问的基础上,设⊙O半径为2,若点N为OC中点,点Q在⊙O上,求线段PQ的最大值.25.(10分)如图,已知二次函数y=x2+bx+c的顶点P的横坐标为﹣,且与y轴交于点C(0,﹣4).(1)求b,c的值;(2)直线y=m(m>0)与该抛物线的交点为M,N(点M在点N的左侧)点M关于y轴的对称点为点M′,点H的坐标为(3,0).若四边形ONM′H的面积为18.求点H到OM'的距离;(3)是否在对称轴的同侧存在实数m、n(m<n),当m≤x≤n时,y的取值范围为≤y≤?若存在,求出m,n的值;若不存在,说明理由.26.(10分)我们不妨约定:在直角△ABC中,如果较长的直角边的长度为较短直角边长度的两倍,则称直角△ABC为黄金三角形(1)已知:点O(0,0),点A(2,0),下列y轴正半轴上的点能与点O,点A构成黄金三角形的有;填序号①(0,1);②(0,2);③(0,3),④(0,4);(2)已知点P(5,0),判断直线y=2x﹣6在第一象限是否存在点Q,使得△OPQ是黄金三角形,若存在求出点Q的坐标,若不存在,说明理由;(3)已知:反比例函数y=与直线y=﹣x+m+1交于M,N两点,若在x轴上有且只有一个点C,使得∠MCN=90°,求m的值,并判断此时△MNC是否为黄金三角形.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.解:0.3,,2是有理数,是无理数.故选:C.2.解:A、3a2﹣2a2=a2,错误;B、(a2)3=a6,错误;C、a2•a4=a6,正确;D、(3a)2=9a2,错误;故选:C.3.解:20万=200000=2×105.故选:A.4.解:A、主视图是正方形,故此选项错误;B、主视图是圆,故此选项正确;C、主视图是三角形,故此选项错误;D、主视图是长方形,故此选项错误;故选:B.5.解:如图,∵AB∥CD,∴∠1=∠B=68°,∵∠E=20°,∴∠D=∠1﹣∠E=48°,故选:C.6.解:∵点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,∴点B的横坐标为1﹣2=﹣1,纵坐标为3﹣4=﹣1,∴B的坐标为(﹣1,﹣1).故选:C.7.解:100个数据,中间的两个数为第50个数和第51个数,而第50个数和第51个数都落在第三组,所以参加社团活动时间的中位数所在的范围为6﹣8(小时).故选:B.8.解:∵m,n是一元二次方程x2+x﹣2=0的两个根,∴m+n=﹣1,mn=﹣2,则m+n﹣mn=﹣1﹣(﹣2)=1,故选:D.9.解:根据二次根式的意义,被开方数x﹣2≥0,解得x≥2;根据分式有意义的条件,x﹣2≠0,解得x≠2.所以,x>2.故选D.10.解:两直线平行,内错角相等,A是假命题;两边和一角对应相等的两个三角形不一定全等,B是假命题;矩形的对角线相等,不一定互相垂直,C是假命题;圆内接四边形的对角互补,D是真命题;故选:D.11.解:设合伙人数为x人,羊价为y钱,根据题意,可列方程组为:.故选:A.12.解:∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,设CD=1,CF=x,则CA=CB=2,∴DF=FA=2﹣x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2﹣x)2,解得:x=,∴sin∠BED=sin∠CDF==.故选:B.二、填空题(共6小题,每小题3分,满分18分)13.解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).14.解:原式=﹣==1.故答案为1.15.解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,360°÷40°=9.故答案为:9.16.解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠BAD=90°,在Rt△ABE和Rt△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠DAF=(90°﹣60°)÷2=15°,∴∠AEB=75°,故答案为75.17.解:设底面圆的半径为rcm.由题意:π•r2=16π,∴r=4(负根已经舍弃),∴圆锥的侧面积=•2π•4•6=24π(cm2),故答案为24π.18.解:如图,作BH⊥AC于H.在Rt△ABH中,∵AB=20海里,∠BAH=30°,∴∠ABH=60°,BH=AB=10(海里),在Rt△BCH中,∵∠CBH=∠C=45°,BH=10(海里),∴BH=CH=10海里,∴CB=10(海里).故答案为:10.三、解答题(共8小题,满分66分)19.解:原式=2﹣1﹣2+9=8.20.解:解不等式①,得x<﹣1;解不等式②,得x≤﹣8;所以原不等式组的解集为x≤﹣8,在数轴上表示为:.21.解:(1)总人数=200÷20%=1000,故答案为1000,B组人数=1000﹣200﹣400﹣200﹣50﹣50=100人,条形图如图所示:(2)参加体育锻炼的人数的百分比为40%,用样本估计总体:40%×40000=16000人,答:全市学生中选择体育锻炼的人数约有16000人.(3)设两名女生分别用A1,A2,一名男生用B表示,树状图如下:共有6种情形,恰好一男一女的有4种可能,所以恰好选到1男1女的概率是=.22.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∵BE=DF,∴△ABE≌△CDF(SAS).(2)∵四边形AECF是菱形,∴EA=EC,∴∠EAC=∠ECA,∵∠BAC=90°,∴∠BAE+∠EAC=90°,∠B+∠ECA=90°,∴∠B=∠EAB,∴EA=EB,∴BE=CE=5.23.解:(1)设乙队每天绿化xm2,则甲每天绿化2xm2,根据题意得:=3,解得:x=50,经检验x=50是原方程的根,所以2x=100,答:甲队每天绿化100平方米,乙队每天绿化50平方米;(2)设人行道的宽度为a米,根据题意得,(20﹣3a)(8﹣2a)=56,解得:a=2或a=(不合题意,舍去).答:人行道的宽为2米.24.解:(1)证明:∵直径CD垂直于不过圆心O的弦AB,垂足为点N,∴,∴∠CAE=∠ABC,∵AE=CE,∴∠CAE=∠ACE,∴∠ABC=∠ACE;(2)如图,连接OB,∵过点B作⊙O的切线交EC的延长线于点P,∴∠OBP=90°,设∠CAE=∠ACE=∠ABC=x,则∠PEB=2x,∵OB=OC,AB⊥CD,∴∠OBC=∠OCB=90°﹣x,∴∠BOC=180°﹣2(90°﹣x)=2x,∴∠OBE=90°﹣2x,∴∠PBE=90°﹣(90°﹣2x)=2x,∴∠PEB=∠PBE,∴PB=PE;(3)如图,连接OP,∵点N为OC中点,AB⊥CD,∴AB是CD的垂直平分线,∴BC=OB=OC,∴△OBC为等边三角形,∵⊙O半径为2,∴CN=,∵∠CAE=∠ACE=∠BOC=30°,∴∠CEN=60°,∠PBE=2∠CAB=60°,∴△PBE为等边三角形,BN=3,NE=1,∴PB=BE=BN+NE=3+1=4,∴PO=,∴PQ的最大值为PO+=.25.解:(1)由题意可得,解得b=3,c=﹣4;(2)连接OM.设M(﹣t,m),则N(﹣3+t,m),M′(t,m),其中t>0,∴NM′=t﹣(﹣3+t)=3,∵H的坐标为(3,0),∴OH=3,∴NM′=OH,∴四边形ONM′H为平行四边形,S▱ONM=OH•m=3m=18,′H∴m=6,∴M(﹣t,6),代入y=x2+3x﹣4,得t2﹣3t﹣4=0,解得t1=5,t2=﹣2(不符合题意,舍去),∴M(﹣5,6),M′(5,6),N(2,6)∴OM′=又S△OHM′=,∴点H到OM'的距离=∴;(3)分两种情况讨论:①当m<n<﹣,即m、n在对称轴的左侧时,二次函数y的值随x增大而减小,∵≤y≤,∴(1)×n得,n3+3n2﹣4n=12∴(n+2)(n﹣2)(n+3)=0解得n=﹣2或2或﹣3,同理由(2)得m=﹣2或2或3,∵m<n<﹣,∴m=﹣3,n=﹣2;②当<m<n,即m、n在对称轴的右侧时,二次函数y的值随x增大而增大,∵≤y≤,(1)×n﹣2×m,得m2n﹣n2m+4(m﹣n)=0,∴(mn+4)(m﹣n)=0,∵m﹣n≠0,∴mn+4=0,,将代入(2)n2+3n﹣4=﹣3n,∴n=﹣3±∵n>n=﹣3+∴m=﹣3﹣,与上述<m<n矛盾,∴没有满足的m、n.综上,在对称轴的左侧存在实数m、n,当m≤x≤n时,y的取值范围为≤y≤,此时m=﹣3,n=﹣2.26.解:(1)根据黄金三角形的定义可知能与点O,点A构成黄金三角形的有(0,1)或(0,4),故答案为①④.(2)假设存在.设Q(m,2m﹣6),∵△OPQ是直角三角形,当∠OQP是直角三角形时,OQ2+PQ2=OP2,∴m2+(2m﹣6)2+(m﹣5)2+(2m﹣6)2=52,解得:m=和4,∵点Q在第一象限,∴m=4,∴Q(4,2),∵OQ=2,PQ=,∴OQ=2PQ,∴△OPQ是黄金三角形,当∠OPQ=90°时,Q(5,4),此时△OPQ不满足黄金三角形的定义.∴满足条件点点Q坐标为(4,2).(3)设M(x1,y1),N(x2,y2),MN的中点为k,当点K到x轴的距离等于=MN时,满足条件.由,消去y得到:x2﹣(m+1)x+m=0,∴x1+x2=m+1,x1•x2=m,y1+y2=m+1.y1•y2=m,∴MN===∵K(,),∴=,整理得:m2﹣6m+1=0,∴m=3±2,如图,作MH⊥x轴于H.∵直线MN的解析式为y=﹣x+m+1,∴∠HMN=45°,∵OK∥MH,∴∠CMH=∠MCK,∵KM=KC,∴∠MCK=∠CMK,∴∠CMH=∠CMN=22.5°,∴tan22.5°=≠,∴△MCN不是黄金三角形.。

2020年湖南省长沙市教科院中考数学第五次模拟试卷 (Word 含解析)

2020年湖南省长沙市教科院中考数学第五次模拟试卷 (Word 含解析)

2020年中考数学模拟试卷(五)一、选择题1.2-的绝对值是( ) A .12-B .2-C .12D .22.函数123y x =-中,自变量x 的取值范围为( ) A .32x >B .32x ≠C .32x ≠且0x ≠ D .32x <3.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( ) A .83.38610⨯B .90.338610⨯C .733.8610⨯D .93.38610⨯4.窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.下列表示我国古代窗棂样式结构图案中,不是轴对称图形的是( )A .B .C .D .5.一个正多边形的内角和为540︒,则这个正多边形的每一个外角等于( ) A .108︒B .90︒C .72︒D .60︒6.下列运算正确的是( ) A .88a a -=B .44()a a -=C .326a a a =gD .222()a b a b -=-7.在平面直角坐标系中, 若点(,)A a b -在第一象限内, 则点(,)B a b 所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限8.若方程23440x x --=的两个实数根分别为1x ,2x ,则12(x x += )A .4-B . 3C .43-D .439.下列命题中,其中正确命题的个数为( )个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件. A .1B .2C .3D .410.如图,AB 为O e 的直径,点C ,D 在O e 上,¶·AD DC=,若20CAB ∠=︒,则CAD ∠的大小为( )A .20︒B .25︒C .30︒D .35︒11.如图,在ABC ∆中,延长BC 至D ,使得12CD BC =,过AC 中点E 作//EF CD (点F 位于点E 右侧),且2EF CD =,连接DF .若8AB =,则DF 的长为( )A .3B .4C .3D .3212.已知点1(3,)A y -,2(2,)B y 均在抛物线2y ax bx c =++上,点(,)P m n 是该抛物线的顶点,若12y y n >…,则m 的取值范围是( ) A .32m -<<B .3122m -<<-C .12m >-D .2m >二、填空题(本大题共6个小题,每小题3分,共18分) 13.已知2210x x +-=,则2362x x +-= .14.在一个不透明的口袋中,装有A ,B ,C ,4D 个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是 . 15.如图,边长为2的正方形ABCD 的顶点A ,B 在x 轴正半轴上,反比例函数ky x=在第一象限的图象经过点D ,交BC 于E ,若点E 是BC 的中点,则OD 的长为 .16.用一个圆心角为180︒,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为 .17.如图,一张三角形纸片ABC ,90C ∠=︒,8AC cm =,6BC cm =.现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .18.如图,在Rt ABC ∆中,90B ∠=︒,2AB BC ==,将ABC ∆绕点C 顺时针旋转60︒,得到DEC ∆,则AE 的长是 .三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分第23、24题每小题6分,第25、26题每小题6分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.计算:201911(1)|13()tan 603----+-+︒20.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt ABC ∆三个顶点都在格点上,请解答下列问题:(1)写出A ,C 两点的坐标;(2)画出ABC ∆关于原点O 的中心对称图形△111A B C ;(3)画出ABC ∆绕原点O 顺时针旋转90︒后得到的△222A B C ,并直接写出点C 旋转至2C 经过的路径长.21.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表组别 海选成绩xA 组 5060x <„B 组 6070x <„C 组7080x <„D 组 8090x <„E 组90100x <„请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(2)在图2的扇形统计图中,记表示B组人数所占的百分比为%a,则a的值为,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?22.我们把有两边对应相等,且夹角互补(不相等)的两个三角形叫做“互补三角形”,如图1,ABCDY中,AOB∆和BOC∆是“互补三角形”.(1)写出图1中另外一组“互补三角形”;(2)在图2中,用尺规作出一个EFH∆,使得EFH∆和EFG∆为“互补三角形”,且EFH∆和EFG∆在EF同侧,并证明这一组“互补三角形”的面积相等.23.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?24.如图,在Rt ABC∆中,90C∠=︒,AD平分BAC∠交BC于点D,O为AB上一点,经过点A,D的Oe分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是Oe的切线;(2)设AB x=,AF y=,试用含x,y的代数式表示线段AD的长;(3)若8BE=,5sin13B=,求DG的长,25.已知二次函数21(0)y ax bx c a =++>的图象与x 轴交于(1,0)A -,(,0)B n 两点,一次函数22y x b =+的图象过点A . (1)若12a =. ①若二次函数21(0)y ax bx c a =++>与y 轴交于点C ,求ABC ∆的面积;②设312y y my =-,是否存在正整数m ,当0x …时,3y 随x 的增大而增大?若存在,求出正整数m 的值;若不存在,请说明理由. (2)若1235a <<,求证:54n -<<-.26.已知抛物线213y ax x c =-+经过(2,0)A -,(0,2)B 两点,动点P ,Q 同时从原点出发均以1个单位/秒的速度运动,动点P 沿x 轴正方向运动,动点Q 沿y 轴正方向运动,连接PQ ,设运动时间为t 秒 (1)求抛物线的解析式; (2)当13BQ AP =时,求t 的值; (3)随着点P ,Q 的运动,抛物线上是否存在点M ,使MPQ ∆为等边三角形?若存在,请求出t 的值及相应点M 的坐标;若不存在,请说明理由.参考答案一.选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共12个小题,每小题3分,共36分) 1.2-的绝对值是( ) A .12-B .2-C .12D .2【分析】根据绝对值的定义:数轴上某个数与原点的距离叫做这个数的绝对值.则2-的绝对值就是表示2-的点与原点的距离. 解:|2|2-=, 故选:D . 2.函数123y x =-中,自变量x 的取值范围为( ) A .32x >B .32x ≠C .32x ≠且0x ≠ D .32x <【分析】该函数是分式,分式有意义的条件是分母不等于0,故分母230x -≠,解得x 的范围.解:根据题意得:230x -≠, 解得:32x ≠. 故选:B .3.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( ) A .83.38610⨯B .90.338610⨯C .733.8610⨯D .93.38610⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 解:数字338 600 000用科学记数法可简洁表示为83.38610⨯. 故选:A .4.窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.下列表示我国古代窗棂样式结构图案中,不是轴对称图形的是( )A .B .C .D .【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.解:A 、是中心对称图形,不是轴对称图形,故此选项符合题意; B 、是轴对称图形,故此选项不合题意; C 、是轴对称图形,故此选项不合题意;D 、是轴对称图形,故此选项不合题意;故选:A .5.一个正多边形的内角和为540︒,则这个正多边形的每一个外角等于( ) A .108︒B .90︒C .72︒D .60︒【分析】首先设此多边形为n 边形,根据题意得:180(2)540n -=,即可求得5n =,再由多边形的外角和等于360︒,即可求得答案. 解:设此多边形为n 边形, 根据题意得:180(2)540n -=, 解得:5n =,∴这个正多边形的每一个外角等于:360725︒=︒. 故选:C .6.下列运算正确的是( ) A .88a a -=B .44()a a -=C .326a a a =gD .222()a b a b -=-【分析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则分别化简求出答案. 解:A 、87a a a -=,故此选项错误;B 、44()a a -=,正确;C 、325a a a =g ,故此选项错误;D 、222()2a b a ab b -=-+,故此选项错误;故选:B .7.在平面直角坐标系中, 若点(,)A a b -在第一象限内, 则点(,)B a b 所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限【分析】根据各象限内点的坐标特征解答即可 . 解:Q 点(,)A a b -在第一象限内,0a ∴>,0b ->, 0b ∴<,∴点(,)B a b 所在的象限是第四象限 .故选:D .8.若方程23440x x --=的两个实数根分别为1x ,2x ,则12(x x += ) A .4-B . 3C .43-D .43【分析】由方程的各系数结合根与系数的关系可得出“1243x x +=”, 由此即可得出结论 . 解:Q 方程23440x x --=的两个实数根分别为1x ,2x ,1243b x x a ∴+=-= 故选:D .9.下列命题中,其中正确命题的个数为( )个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件. A .1B .2C .3D .4【分析】利用方差的意义,众数的定义、折线图及随机事件分别判断后即可确定正确的选项.解:①方差是衡量一组数据波动大小的统计量,正确,是真命题;②影响超市进货决策的主要统计量是众数,正确,是真命题; ③折线统计图反映一组数据的变化趋势,正确,是真命题; ④水中捞月是必然事件,故正确,是真命题, 真命题有4个, 故选:D .10.如图,AB 为O e 的直径,点C ,D 在O e 上,¶·AD DC=,若20CAB ∠=︒,则CAD ∠的大小为( )A .20︒B .25︒C .30︒D .35︒【分析】先求出70ABC ∠=︒,进而判断出35ABD CBD ∠=∠=︒,最后用同弧所对的圆周角相等即可得出结论. 解:如图,连接BD ,AB Q 为O e 的直径, 90ACB ∴∠=︒, 20CAB ∠=︒Q , 70ABC ∴∠=︒,Q ¶¶AD CD=, 1352ABD CBD ABC ∴∠=∠=∠=︒, 35CAD CBD ∴∠=∠=︒.故选:D .11.如图,在ABC ∆中,延长BC 至D ,使得12CD BC =,过AC 中点E 作//EF CD (点F位于点E 右侧),且2EF CD =,连接DF .若8AB =,则DF 的长为( )A .3B .4C .23D .32【分析】取BC 的中点G ,连接EG ,根据三角形的中位线定理得:4EG =,设CD x =,则2EF BC x ==,证明四边形EGDF 是平行四边形,可得4DF EG ==. 解:取BC 的中点G ,连接EG , E Q 是AC 的中点, EG ∴是ABC ∆的中位线,118422EG AB ∴==⨯=, 设CD x =,则2EF BC x ==, BG CG x ∴==, 2EF x DG ∴==, //EF CD Q ,∴四边形EGDF 是平行四边形,4DF EG ∴==,故选:B .12.已知点1(3,)A y -,2(2,)B y 均在抛物线2y ax bx c =++上,点(,)P m n 是该抛物线的顶点,若12y y n >…,则m 的取值范围是( ) A .32m -<<B .3122m -<<-C .12m >-D .2m >【分析】根据点1(3,)A y -,2(2,)B y 均在抛物线2y ax bx c =++上,点(,)P m n 是该抛物线的顶点,12y y n >…,可知该抛物线开口向上,对称轴是直线x m =,则322m -+<,从而可以求得m 的取值范围,本题得以解决.解:Q 点1(3,)A y -,2(2,)B y 均在抛物线2y ax bx c =++上,点(,)P m n 是该抛物线的顶点,12y y n >…, ∴322m -+<, 解得12m >-,故选:C .二、填空题(本大题共6个小题,每小题3分,共18分) 13.已知2210x x +-=,则2362x x +-= 1 .【分析】直接利用已知得出221x x +=,再代入原式求出答案. 解:2210x x +-=Q , 221x x ∴+=,223623(2)23121x x x x ∴+-=+-=⨯-=.故答案为:1.14.在一个不透明的口袋中,装有A ,B ,C ,4D 个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是14. 【分析】可以根据画树状图的方法,先画树状图,再求得两次摸到同一个小球的概率. 解:画树状图如下:P ∴(两次摸到同一个小球)41164== 故答案为:1415.如图,边长为2的正方形ABCD 的顶点A ,B 在x 轴正半轴上,反比例函数ky x=在第一象限的图象经过点D,交BC于E,若点E是BC的中点,则OD的长为22.【分析】设(,2)D x则(2,1)E x+,由反比例函数经过点D、E列出关于x的方程,求得x的值即可得出答案.解:设(,2)D x则(2,1)E x+,Q反比例函数kyx=在第一象限的图象经过点D、点E,22x x∴=+,解得2x=,(2,2)D∴,2OA AD∴==,2222OD OA OD∴=+=.故答案为216.用一个圆心角为180︒,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为2.【分析】设这个圆锥的底面圆的半径为R,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题解:设这个圆锥的底面圆的半径为R,由题意:18042180Rππ=g,解得2R=.故答案为2.17.如图,一张三角形纸片ABC,90C∠=︒,8AC cm=,6BC cm=.现将纸片折叠:使点A与点B重合,那么折痕长等于4.【分析】根据折叠得:GH 是线段AB 的垂直平分线,得出AG 的长,再利用两角对应相等证ACB AGH ∆∆∽,利用比例式可求GH 的长,即折痕的长. 解:如图,折痕为GH ,由勾股定理得:226810AB cm =+=, 由折叠得:1110522AG BG AB cm ===⨯=,GH AB ⊥, 90AGH ∴∠=︒,A A ∠=∠Q ,90AGH C ∠=∠=︒, ACB AGH ∴∆∆∽, ∴AC BCAG GH =, ∴865GH=, 154GH cm ∴=. 故答案为:154.18.如图,在Rt ABC ∆中,90B ∠=︒,2AB BC ==,将ABC ∆绕点C 顺时针旋转60︒,得到DEC ∆,则AE 的长是26+ .【分析】如图,连接AD ,由题意得:CA CD =,60ACD ∠=︒,得到ACD ∆为等边三角形根据AC AD =,CE ED =,得出AE 垂直平分DC ,于是求出122EO DC ==,sin 606OA AC =︒=g ,最终得到答案26AE EO OA =+=+.解:如图,连接AD ,由题意得:CA CD =,60ACD ∠=︒, ACD ∴∆为等边三角形,AD CA ∴=,60DAC DCA ADC ∠=∠=∠=︒; 90ABC ∠=︒Q ,2AB BC ==,22AC AD ∴==, AC AD =Q ,CE ED =,AE ∴垂直平分DC , 122EO DC ∴==,sin 606OA CA =︒=g, 26AE EO OA ∴=+=+,故答案为26+.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分第23、24题每小题6分,第25、26题每小题6分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.计算:201911(1)|13()tan 603----+-+︒【分析】直接利用绝对值的性质以及负指数幂的性质、特殊角的三角函数值分别化简得出答案.解:原式1(31)33=----+ 3=-.20.如图,在平面直角坐标系中,小正方形格子的边长为1,Rt ABC ∆三个顶点都在格点上,请解答下列问题:(1)写出A ,C 两点的坐标;(2)画出ABC ∆关于原点O 的中心对称图形△111A B C ;(3)画出ABC ∆绕原点O 顺时针旋转90︒后得到的△222A B C ,并直接写出点C 旋转至2C 经过的路径长.【分析】(1)利用第二象限点的坐标特征写出A ,C 两点的坐标;(2)利用关于原点对称的点的坐标特征写出1A 、1B 、1C 的坐标,然后描点即可; (3)利用网格特点和旋转的性质画出点A 、B 、C 的对应点2A 、2B 、2C ,然后描点得到△222A B C ,再利用弧长公式计算点C 旋转至2C 经过的路径长. 解:(1)A 点坐标为(4,1)-,C 点坐标为(1,3)-; (2)如图,△111A B C 为所作;(3)如图,△222A B C 为所作,221310OC =+=点C 旋转至2C 经过的路径长9010101802ππ==g g .21.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x 取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表组别 海选成绩xA 组 5060x <„B 组 6070x <„C 组7080x <„D 组 8090x <„E 组90100x <„请根据所给信息,解答下列问题: (1)请把图1中的条形统计图补充完整;(2)在图2的扇形统计图中,记表示B 组人数所占的百分比为%a ,则a 的值为 15 ,表示C 组扇形的圆心角θ的度数为 度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?【分析】(1)用随机抽取的总人数减去A 、B 、C 、E 组的人数,求出D 组的人数,从而补全统计图;(2)用B组抽查的人数除以总人数,即可求出a;用360乘以C组所占的百分比,求出C 组扇形的圆心角θ的度数;(3)用该校参加这次海选比赛的总人数乘以成绩在90分以上(包括90分)所占的百分比,即可得出答案.解:(1)D的人数是:2001030407050----=(人),补图如下:(2)B组人数所占的百分比是30100%15% 200⨯=,则a的值是15;C组扇形的圆心角θ的度数为4036072200⨯=︒;故答案为:15,72;(3)根据题意得:702000700200⨯=(人),答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.22.我们把有两边对应相等,且夹角互补(不相等)的两个三角形叫做“互补三角形”,如图1,ABCDY中,AOB∆和BOC∆是“互补三角形”.(1)写出图1中另外一组“互补三角形”AOD∆和DOC∆;(2)在图2中,用尺规作出一个EFH∆,使得EFH∆和EFG∆为“互补三角形”,且EFH∆和EFG∆在EF同侧,并证明这一组“互补三角形”的面积相等.【分析】(1)根据“互补三角形”可得结论;(2)作//EH FG ,且EH FG =,可得符合条件的EFH ∆,根据四边形EFGH 是平行四边形可知:这一组“互补三角形”的面积相等. 解:(1)ABCD Y 中,OA OC =, OD OD =Q ,180AOD COD ∠+∠=︒,AOD ∴∆和DOC ∆是“互补三角形”, 故答案为:AOD ∆和DOC ∆;(2)如图所示,//EH FG ,且EH FG =,则EFH ∆即为所求,证明:连接GH ,//EH FG Q ,且EH FG =, ∴四边形EFGH 是平行四边形,//GH EF ∴,EFG EFH S S ∆∆∴=.23.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元 (1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?【分析】(1)根据生产每提高一个档次的蛋糕产品,该产品每件利润增加2元,即可求出第五档的蛋糕的利润;(2)设烘焙店生产的是第x 档次的产品,根据单件利润⨯销售数量=总利润,即可得出关于x 的一元二次方程,解之即可得出结论. 解:(1)102(51)18+⨯-=(元). 答:该档次蛋糕每件利润为 18 元;(2)设烘焙店生产的是第x档次的产品,根据题意得:[102(1)][764(1)]1024x x+-⨯--=,整理得:216480x x-+=,解得:14x=,212x=(不合题意,舍去).答:该烘焙店生产的是四档次的产品.24.如图,在Rt ABC∆中,90C∠=︒,AD平分BAC∠交BC于点D,O为AB上一点,经过点A,D的Oe分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是Oe的切线;(2)设AB x=,AF y=,试用含x,y的代数式表示线段AD的长;(3)若8BE=,5sin13B=,求DG的长,【分析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;(3)连接EF,设圆的半径为r,由sin B的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin sinAEF B∠=,进而求出DG的长即可.【解答】(1)证明:如图,连接OD,ADQ为BAC∠的角平分线,BAD CAD∴∠=∠,OA OD=Q,ODA OAD∴∠=∠,ODA CAD∴∠=∠,//OD AC∴,90C∠=︒Q,90ODC ∴∠=︒,OD BC ∴⊥,BC ∴为圆O 的切线;(2)解:连接DF ,由(1)知BC 为圆O 的切线,FDC DAF ∴∠=∠,CDA CFD ∴∠=∠,AFD ADB ∴∠=∠,BAD DAF ∠=∠Q ,ABD ADF ∴∆∆∽, ∴AB AD AD AF=,即2AD AB AF xy ==g ,则AD =;(3)解:连接EF ,在Rt BOD ∆中,5sin 13OD B OB ==, 设圆的半径为r ,可得5813r r =+, 解得:5r =,10AE ∴=,18AB =, AE Q 是直径,90AFE C ∴∠=∠=︒,//EF BC ∴,AEF B ∴∠=∠,5sin 13AF AEF AE ∴∠==, 550sin 101313AF AE AEF ∴=∠=⨯=g , //AF OD Q , ∴501013513AG AF DG OD ===,即1323DG AD =,AD ∴===,则1323DG ==25.已知二次函数21(0)y ax bx c a =++>的图象与x 轴交于(1,0)A -,(,0)B n 两点,一次函数22y x b =+的图象过点A .(1)若12a =. ①若二次函数21(0)y ax bx c a =++>与y 轴交于点C ,求ABC ∆的面积;②设312y y my =-,是否存在正整数m ,当0x …时,3y 随x 的增大而增大?若存在,求出正整数m 的值;若不存在,请说明理由.(2)若1235a <<,求证:54n -<<-. 【分析】(1)①将点A 坐标代入解析式可求2b =,2c a =-,即可求抛物线解析式,可求点C ,点B 坐标,由三角形的面积公式可求解;②由22313132(22)(22)(2)2222y x x m x x m x m =++-+=+-+-,由二次函数的性质可求1m „,即可求解;(3)212(2)y ax x a =++-的对称轴为212x a a =-=-,由1235a <<,可得1532a -<-<-,又(1,0)A -、(,0)B n 两点关于对称轴对称,则11|1()|||n a a---=--,即可求解. 解:(1)①21(0)y ax bx c a =++>Q 过点A ,0a b c ∴-+=,22y x b =+Q 的图象过点A ,2b ∴=,2c a ∴=-;12a =Q , 13222c ∴=-=, 2113222y x x ∴=++,Q 二次函数2113222y x x =++与y 轴交于点C ,与x 轴交于(1,0)A -,(,0)B n 两点, ∴点3(0,)2C ,点(3,0)B -, 2AB ∴=,ABC ∴∆的面积1332222=⨯⨯=; ②23132(22)22y x x m x =++-+ 213(22)(2)22x m x m =+-+-, Q 在0x …时,3y 随x 的增大而增大, ∴对称轴22220122m x m -=-=-⨯„, 1m ∴„,m Q 是正整数,1m ∴=;(2)212(2)y ax x a =++-Q 的对称轴为212x a a =-=-, 又Q 1235a <<, 1532a ∴-<-<-, 又(1,0)A -Q 、(,0)B n 两点关于对称轴对称,11|1()|||n a a∴---=--, 21n a∴=-+或1n =-(舍去), 54n ∴-<<-.26.已知抛物线213y ax x c =-+经过(2,0)A -,(0,2)B 两点,动点P ,Q 同时从原点出发均以1个单位/秒的速度运动,动点P 沿x 轴正方向运动,动点Q 沿y 轴正方向运动,连接PQ ,设运动时间为t 秒(1)求抛物线的解析式;(2)当13BQ AP =时,求t 的值; (3)随着点P ,Q 的运动,抛物线上是否存在点M ,使MPQ ∆为等边三角形?若存在,请求出t 的值及相应点M 的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法确定函数关系式.(2)13BQ AP =,要考虑P 在OC 上及P 在OC 的延长线上两种情况,有此易得BQ ,AP 关于t 的表示,代入13BQ AP =可求t 值. (3)考虑等边三角形,我们通常只需明确一边的情况,进而即可描述出整个三角形.考虑MPQ ∆,发现PQ 为一有规律的线段,易得OPQ 为等腰直角三角形,但仅因此无法确定PQ 运动至何种情形时MPQ ∆为等边三角形.若退一步考虑等腰,发现,MO 应为PQ 的垂直平分线,即使MPQ ∆为等边三角形的M 点必属于PQ 的垂直平分线与抛物线的交点,但要明确这些交点仅仅满足MPQ ∆为等腰三角形,不一定为等边三角形.确定是否为等边,我们可以直接由等边性质列出关于t 的方程,考虑t 的存在性.解:(1)Q 抛物线经过(2,0)A -,(0,2)B 两点, ∴24032a c c ⎧++=⎪⎨⎪=⎩. 解得:23a =-,2c =. ∴抛物线的解析式为221233y x x =--+;(2)由题意可知,OQ OP t ==,2AP t =+.①如图1,当2t … 时,点Q 在点B 下方,此时2BQ t =-.13BQ AP =Q , 12(2)3t t ∴-=+, 1t ∴=.②如图2,当2t > 时,点Q 在点B 上方,此时2BQ t =-.13BQ AP =Q , 12(2)3t t ∴-=+, 4t ∴=.∴当13BQ AP = 时,1t = 或4t =.(3)存在.作MC x ⊥ 轴于点C ,连接OM .设点M 的横坐标为m ,则点M 的纵坐标为221233m m --+. 当MPQ ∆ 为等边三角形时,MQ MP =, 又OP OQ =Q ,∴点M 点必在PQ 的垂直平分线上, 1452POM POQ ∴∠=∠=︒, MCO ∴∆ 为等腰直角三角形,CM CO =,221233m m m ∴=--+, 解得11m =,23m =-.M ∴ 点可能为(1,1)或(3,3)--. ①如图3,当M 的坐标为(1,1)时,则有1PC t =-,221(1)MP t t =+-= 222t -+, 222PQ t =,MPQ ∆Q 为等边三角形,MP PQ ∴=,t ∴ 22222t t -+=,解得113t =-+213t =--(负值舍去).②如图4,当点M 的坐标为(3,3)--时,则有3PC t =+,3MC =, 22223(3)618MP t t t ∴=++=++,222PQ t =, MPQ ∆Q 为等边三角形, MP PQ ∴=, 解得1333t =+2333t =-(负值舍去).∴当13t =-抛物线上存在点(1,1)M ,或当333t =+时,抛物线上存在点(3,3)M --,使得MPQ ∆ 为等边三角形.。

2024年湖南省长沙市教科院中考数学模拟试卷及参考答案

2024年湖南省长沙市教科院中考数学模拟试卷及参考答案

2024年湖南省长沙市教科院中考数学模拟试卷一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)2023年10月23日,湖南某中学举办了“观书画之美,品文化之姿”书法优秀作品展览,下面是学生湘湘临摹的著名书法家邓石如的《弟子职》的部分图片,据此,回答问题.下面哪个函数与该图片最相似?()A.x2+y2=2024B.y=﹣x2025C.y=x2023D.y=﹣x2024 2.(3分)如图,已知,在△ABC中,∠B=60°,延长BC至点M,过点C作CN平分∠ACM,且AB∥CN.在BC上取点D,CN上取点E,使BD=CE,连接AD,DE,AE,过B点作BH∥DE,分别交AD,AC,AE于点G,F,H,连接HC交DE于点K.若BG2﹣2•BG•DG﹣3DG2=0,GF=5,DE=8,则KE的长为()A.1B.C.3D.集合论是现代数学的重要分支.萧文灿在《集合论初步》一书中写道:“吾人直观或思维之对象,如为相异而确定之物,其总括之全体即谓之集合,其组成此集合之物谓之集合之元素.”阅读下列材料,回答第3,4题.一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合.我们通常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b,c表示集合中的元素.只要构成两个集合的元素是一样的,我们就称这两个集合是相等的,记作A=B.1.如果a是集合A中的元素,我们则读作a属于A,记作a∈A,反之,读作a不属于A,记作a∉A.2.集合的表示方法:①列举法:把集合的所有元素一一列举出来,并用花括号“{}”括起来表示集合;②描述法:一般地,设A是一个集合,我们把集合A中所有具有共同特征的P(x)的元素x所组成的集合表示为{x∈A|P(x)}.(注:R为实数集);3.子集:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,就称集合A为集合B的子集.4.交集:一般地,由所有属于集合A且属于集合B的元素组成的集合,称为集合A与集合B的交集,记作A∩B.3.(3分)对于集合{x∈R|a≤x≤b},我们把b﹣a称为它的长度.设集合A={x∈R|a+43≤x+43≤a+2024},B={x∈R|b+1010≤x+2024≤b+2024},且A,B都是U={x∈R|12≤x+12≤2024}的子集,则A∩B的长度的最小值是()A.2024B.983C.981D.20234.(3分)对于集合{+b|1≤a≤b≤2}中的最大元素和最小元素分别为m,n,则4mn4﹣856的值为()A.2024B.2023C.2022D.20215.(3分)如图,OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线和的一个分支上,分别过点A、C作x轴的垂线段,垂足分别为点M和点N,先给出如下四个结论:①;②阴影部分的面积是;③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则k1+k2=0,以上结论正确的是()A.①③B.①②③C.②③④D.①④6.(3分)已知正方形ABCD的边长为4,点E是线段CD上一点,作点C关于BE的垂线交BE于点F,以F为圆心,CF为半径的圆交BE于点P,M在AB上,N在AC上,则C△PMN的最小值为()A.B.C.D.7.(3分)已知二次函数y=ax2+bx+c(a≠0)满足:(1)当x=﹣1时,y=0,(2)对一切x的值有成立.则该二次函数的解析式为()A.B.C.D.8.(3分)“田忌赛马”的故事闪烁着我国古代先贤的智慧光芒.该故事的大意是:齐王有上、中、下三匹马A1,B1,C1,田忌也有上、中、下三匹马A2,B2,C2,且这6匹马在比赛中的胜负可以用不等式表示如下A1>A2>B1>B2>C1>C2(注:A>B表示A马与B 马比赛,A马获胜).一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利.面对劣势,田忌事先了解到齐王三局比赛的“出马”顺序为上马、中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上马、中马、下马比赛,并借助对阵(C2A1,A2B1,B2C1)取得了整场比赛的胜利,创造了以弱胜强的经典案例.假设齐王事先不打探田忌的“出马”情况,回答问题.如果田忌事先只打探到齐王首局将出“上马”,他首局应出哪种马才可能获得整场比赛的胜利?获胜的概率是多少?()A.上:B.中:C.下:D.下:9.(3分)如图,已知抛物线与x轴交于点A与点B(4,0),与y轴交于C (0,2).点P为第一象限抛物线上的点(图中未标出),点D在y轴负半轴上,且满足OD=OB,点Q为抛物线上一点,使得∠QBD=90°,点E,F分别为△BDQ的边DQ、DB上的动点,满足QE=DF,记BE+QF的最小值为m,△PCB的面积为S,若,则k的取值范围是()A.13≤k<17B.13≤k≤17C.13<k<17D.不确定10.(3分)设S是xOy平面上的一个正n边形,中心在原点O处,顶点依次为P1,P2,…,P n,有一个顶点在正y轴上.又设变换σ是将S绕原点O旋转一个角度使得旋转后的图形与原图形重合,σ﹣1表示σ的反变换(即旋转角度大小和σ相同但方向相反),变换φ是将S作关于y轴的对称变换(即将(x,y)变为(﹣x,y)),σφ表示先作变换σ再作变换φ,以此类推,则有()A.φσφ=σB.φσφ=σ﹣1C.φσ=σφD.φσφσ=σσ二、填空题:本题共5小题,每题3分,共18分.11.(3分)分解因式:(x2+4xy+3y2)(4x2+20xy+21y2)﹣15y4=.12.(3分)设x>0,y<1,则如下式子中u的最小值为.13.(3分)如图,∠ACB=45°,半径为2的⊙O与角的两边相切,点P是⊙O上任意一点,过点P向角的两边作垂线,垂足分别为E,F,设t=PE+PF,则t的取值范围是.14.(3分)在△ABC中AB=7,BC=3,∠C=90°,点D在边AC上,点E在CA延长线上,且CD=DE,如果⊙B过点A,⊙E过点D,若⊙B与⊙E有公共点,那么⊙E半径r的取值范围是.15.(6分)在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+b经过点,点,与y轴交于点C.(1)如图1,点D在该抛物线上,点D的横坐标为﹣2,过点D向y轴作垂线,垂足为点E.点P是y轴负半轴上的一个动点,连接DP,设点P的纵坐标为t,△DEP的面积为S,则S关于t的函数解析式为.(不要求写出自变量t的取值范围)(2)如图2,在(1)的条件下,连接OA,点F在OA上,过点F向y轴作垂线,垂足为点H,连接DF交y轴于点G,点G为DF的中点,过点A作y轴的平行线与过P点所作的x轴的平行线相交于点N,连接CN,PB,延长PB交AN于点M,点R在PM上,连接RN,若3CP=5GE,∠PMN+∠PDE=2∠CNR,则直线RN的解析式为.三、解答题:本题共9小题,共72分,解答时应写出文字说明、证明过程或演算步骤.16.先化简,再求值:,其中.17.在“双减”政策实施两个月后,某市“双减办”面向本市城区学生,就“‘双减’前后参加校外学科补习班的情况”进行了一次随机问卷调查(以下将“参加校外学科补习班”简称“报班”),根据问卷提交时间的不同,把收集到的数据分两组进行整理,分别得到统计表1和统计图1:整理描述表1:“双减”前后报班情况统计表(第一组)报班数01234及以上合计人数类别“双减”前10248755124m“双减”后2551524n0m(1)根据表1,m的值为,的值为;分析处理(2)请你汇总表1和图1中的数据,求出“双减”后报班数为3的学生人数所占的百分比;(3)“双减办”汇总数据后,制作了“双减”前后报班情况的折线统计图(如图2).请依据图表中的信息回答以下问题:①本次调查中,“双减”前学生报班个数的中位数为,“双减”后学生报班个数的众数为;②请对该市城区学生“双减”前后报班个数变化情况作出对比分析(用一句话来概括).18.图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图,已知AB∥CD∥FG,A,D,H,G四点在同一直线上,测得∠FEC=∠A=72.9°,AD=1.6m,EF=6.2m.(结果保留小数点后一位)(1)求证:四边形DEFG为平行四边形;(2)求雕塑的高(即点G到AB的距离).(参考数据:sin72.9°≈0.96,cos72.9°≈0.29,tan72.9°≈3.25)19.正弦定理在高中数学中有很广泛的运用,据此,回答问题.(1)在△ABC中,顶点A,B,C所对的边分别为a,b,c,记△ABC的外接圆半径为R,求证:.(本题图未给出)(2)在等边三角形ABC中,D,E分别为边AC,BC上的点,且满足AE=CD,过B作AD的垂线交AD于点F,设AD与BE交于点G,若GF=x,GE=y,求△ACD的外接圆半径.(用x,y表示)20.有一个工程,甲完成需规定时间多5天,乙完成需规定时间的一半多两天,丙完成需规定时间的多1天,丁完成需规定时间的多天,戊完成需规定时间的一半多半天,己恰好在规定时间完成,且甲,乙,戊,己的工作效率之和恰等于丙,丁的工作效率之和.问:是否存在满足题意的规定时间(量纲:天)?如果有,求出具体数值,如果没有,说明理由.21.跳台滑雪运动可分为助滑、起跳、飞行和落地四个阶段,运动员起跳后飞行的路线是抛物线的一部分(如图中实线部分所示),落地点在着陆坡(如图中虚线部分所示)上,着陆坡上的基准点K为飞行距离计分的参照点,落地点超过K点越远,飞行距离分越高.2022年北京冬奥会跳台滑雪标准台的起跳台的高度OA为66m,基准点K到起跳台的水平距离为75m,高度为h m(h为定值).设运动员从起跳点A起跳后的高度y(m)与水平距离x(m)之间的函数关系为y=ax2+bx+c(a≠0).(1)c的值为;(2)①若运动员落地点恰好到达K点,且此时a=﹣,b=,求基准点K的高度h;②若a=﹣时,运动员落地点要超过K点,则b的取值范围为;(3)若运动员飞行的水平距离为25m时,恰好达到最大高度76m,试判断他的落地点能否超过K点,并说明理由.22.设点H是△ABC的垂心,以AC为直径的圆与△ABH的外接圆交于点K,求证:CK平分BH.23.在平面直角坐标系中,点O为坐标系的原点,抛物线y=ax2+bx经过A(10,0),B(,6)两点,直线y=2x﹣4与x轴交于点C,与y轴交于点D,点P为直线y=2x﹣4上的一个动点,连接PA.(1)求抛物线的解析式;(2)如图1,当点P在第一象限时,设点P的横坐标为t,△APC的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);(3)如图2,在(2)的条件下,点E在y轴的正半轴上,且OE=OD,连接CE,当直线BP交x轴正半轴于点L,交y轴于点V时,过点P作PG∥CE交x轴于点G,过点G 作y轴的平行线交线段VL于点F,连接CF,过点G作GQ∥CF交线段VL于点Q,∠CFG的平分线交x轴于点M,过点M作MH∥CF交FG于点H,过点H作HR⊥CF于点R,若FR+MH=GQ,求点P的坐标.24.阅读材料,回答下列小题.阅读材料1:调和是射影几何重要不变量交比的一种特殊形式,早在古希腊,数学家们便发现了一组具有特殊比例关系的点列:调和点列.我们定义:若一直线上依次存在四点A,B,C,D,满足AB•CD=BC•AD,则称A,B,C,D为调和点列.从直线外一点P引射线PA,PB,PC,PD,则称PA,PB,PC,PD 为调和线束.(1)如图1,过圆Q外一点P作圆Q的切线PA,PB,并引圆Ω的割线PCD,设PD与A交于点E.①求证:P,C,E,D是调和点列.②求证:AC•BD=BC•AD.阅读材料2:阿波罗尼斯圆:对于平面上的两定点A,B和平面上一动点P,若P到A和B的距离之比为定值,则点P的轨迹是一个圆,我们称该圆是点P关于AB的“阿氏圆”.(2)根据阅读材料1,2,回答①②小题.(本题图未给出)①证明阿波罗尼斯圆,并确定该圆圆心的位置.②若点P关于AB的“阿氏圆”交AB于C,D,求证:A,C,B,D为调和点列.(3)如图2,ABCD是平行四边形,G是三角形ABD的重心,点P,Q在直线BD上,满足GP与PC垂直,GQ与QC垂直.求证:AG平分∠PAQ.2024年湖南省长沙市教科院中考数学模拟试卷(3月份)参考答案一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.D;2.B;3.B;4.A;5.D;6.A;7.B;8.C;9.A;10.B二、填空题:本题共5小题,每题3分,共18分.11.(2x+y)(x+4y)(2x2+9xy+12y2);12.;13.2≤t≤4+2;14.;15.S=﹣t+;y=﹣三、解答题:本题共9小题,共72分,解答时应写出文字说明、证明过程或演算步骤.16.﹣.;17.300;0.02;1;0;18.(1)证明见解答;(2)7.5m.;19.(1)证明见解答;(2)△ACD 的外接圆半径为.;20.不存在满足题意的规定时间,理由见解答过程.;21.66;b >;22.答案见解答过程.;23.(1)y=﹣x2+x.(2)S=8t﹣16.(3)P(,5).;24.(1)①见解答;②见解答;(2)①见解答;②见解答;(3)见解答.第1页(共1页)。

2020年湖南省长沙市教科院中考数学模拟试卷(四) (解析版)

2020年湖南省长沙市教科院中考数学模拟试卷(四) (解析版)

2020年长沙市教科院中考数学模拟试卷(四)一、选择题1.下列实数中,最小的是()A.3B.C.D.02.据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8000000000000美元基建投资.将8000000000000用科学记数法表示应为()A.0.8×1013B.8×1012C.8×1013D.80×10113.下列各式运算正确的是()A.3y3•5y4=15y12B.(a3)2=(a2)3C.(ab5)2=ab10D.(﹣x)4•(﹣x)6=﹣x104.在一个不透明的袋子中装有3个白球和4个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是()A.B.C.D.5.如图,AB∥CD,AF交CD于点E,∠A=45°,则∠CEF等于()A.135°B.120°C.45°D.35°6.如图是一个几何体的主视图和俯视图,则这个几何体是()A.正方体B.三棱柱C.三棱锥D.长方体7.某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5B.5、5、6C.6、5、6D.5、6、68.《九章算术》是中国古代数学名著,其对扇形面积给出“以径乘周四而一”的算法与现代数学的算法一致,如某一问题:有一扇形田地,下周长(弧长)为30米,径长(两段半径的和)为16米,则该扇形田地的面积为()A.120平方米B.240平方米C.360 平方米D.480平方米9.如图,在Rt△ABC中∠C=90°,AB>BC,分别以顶点A、B为圆心,大于AB长为半径作圆弧,两条圆弧交于点M、N,作直线MN交边CB于点D.若AD=5,CD=3,则BC长是()A.7B.8C.12D.1310.“五一”期间,小华和妈妈到某景区游玩,小明想利用所学的数学知识,估测景区里的观景塔DE的高度.他从点D处的观景塔出来走到点A处.沿着斜坡AB从A点走了8米到达B点,此时回望观景塔,更显气势宏伟.在B点观察到观景塔顶端的仰角为45°且AB⊥BE,再往前走到C处,观察到观景塔顶端的仰角30°,测得BC之间的水平距离BC=10米,则观景塔的高度DE约为()米.(=1.41,=1.73)A.14B.15C.19D.2011.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤1612.如图,在平面直角坐标系中,已知A(﹣3,﹣2),B(0,﹣2),C(﹣3,0),M 是线段AB上的一个动点,连接CM,过点M作MN⊥MC交y轴于点N,若点M、N 在直线y=kx+b上,则b的最大值是()A.﹣B.﹣C.﹣1D.0二、填空题(本大捱共6个小®,每小S3分,共|K分)13.在函数y=中,自变量x的取值范围是.14.分解因式:x2y+2xy+y=.15.不等式组的解集是.16.两组数据m,6,n与1,m,2n,7的平均数都是8,若将这两组数据合并成一组数据,则这组新数据的极差为.17.如图,▱ABCD的对角线AC、BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD 的周长为.18.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①abc<0;②5a﹣b+c<0;③方程ax2+bx+c=0的两根分别为x1=﹣5,x2=1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23,24题毎小题9分,第25、26题每小題10分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.计算:﹣|2﹣|+()﹣2﹣2sin60°20.先化简(﹣1)÷,然后从﹣2≤a<2中选出一个合适的整数作为a的值代入求值.21.某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:70 72 74 75 76 76 77 77 77 78 79c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有人;(2)表中m的值为;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.22.如图,在四边形ABCD中,∠BAC=90°,点E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=3,BC=5,求EF的长.23.上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=)24.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件,使得四边形ABCD是“等邻边四边形”,请写出你添加的一个条件;(2)概念延伸:下列说法正确的是(填入相应的序号)①对角线互相平分的“等邻边四边形”是菱形;②一组对边平行,另一组对边相等的“等邻边四边形”是菱形;③有两个内角为直角的“等邻边四边形”是正方形;④一组对边平行,另一组对边相等且有一个内角是直角的“等邻边四边形”是正方形;(3)问题探究:如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=4,BC=3,并将Rt△ABC 沿∠B的平分线BB'方向平移得到△A'B'C′,连结AA′,BC′,小红要使平移后的四边形ABC′A′是“等邻边四边形”应平移多少距离(即线段BB'的长)?25.已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围;(3)将(2)中的抛物线向右平移m(3≤m≤6)个单位,与x轴的两个交点分别为A (x1,0),B(x2,0),若=+,求M的取值范围.26.如图,已知抛物线y=mx2﹣8mx﹣9m与x轴交于A,B两点,且与y轴交于点C(0,﹣3),过A,B,C三点作⊙O′,连接AC,BC.(1)求⊙O′的圆心O′的坐标;(2)点E是AC延长线上的一点,∠BEC的平分线CD交⊙O′于点D,求点D的坐标,并直接写出直线BC和直线BD的解析式;(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD,若存在,请求出点P的坐标,若不存在,请说明理由.参考答案一、选择题(在下列各題的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共12个小题,每小题3分,共36分)1.下列实数中,最小的是()A.3B.C.D.0【分析】先比较各个数的大小,再得出选项即可.解:∵3>,∴最小的数是0,故选:D.2.据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8000000000000美元基建投资.将8000000000000用科学记数法表示应为()A.0.8×1013B.8×1012C.8×1013D.80×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:8000000000000=8×1012,故选:B.3.下列各式运算正确的是()A.3y3•5y4=15y12B.(a3)2=(a2)3C.(ab5)2=ab10D.(﹣x)4•(﹣x)6=﹣x10【分析】直接利用幂的乘方运算法则以及积的乘方运算法则、单项式乘以单项式运算法则分别判断得出答案.解:A、3y3•5y4=15y7,故此选项不合题意;B、(a3)2=(a2)3,正确;C、(ab5)2=a2b10,故此选项不合题意;D、(﹣x)4•(﹣x)6=x10,故此选项不合题意;故选:B.4.在一个不透明的袋子中装有3个白球和4个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是()A.B.C.D.【分析】直接利用概率公式计算可得.解:∵袋子中球的总个数为3+4=7(个),其中黑球有4个,∴摸出黑球的概率是,故选:C.5.如图,AB∥CD,AF交CD于点E,∠A=45°,则∠CEF等于()A.135°B.120°C.45°D.35°【分析】根据平行线的性质可得∠AED,结合对顶角可求得∠CEF,可得出答案.解:∵AB∥CD,∴∠AED=180°﹣∠A=135°,又∵∠CEF和∠AED为对顶角,∴∠CEF=135°.故选:A.6.如图是一个几何体的主视图和俯视图,则这个几何体是()A.正方体B.三棱柱C.三棱锥D.长方体【分析】根据三视图得出几何体为三棱柱即可.解:由主视图和俯视图可得几何体为三棱柱,故选:B.7.某车间20名工人日加工零件数如表所示:日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5B.5、5、6C.6、5、6D.5、6、6【分析】根据众数、平均数和中位数的定义分别进行解答即可.解:5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数第10、11个数的平均数,则中位数是=6;平均数是:=6;故选:D.8.《九章算术》是中国古代数学名著,其对扇形面积给出“以径乘周四而一”的算法与现代数学的算法一致,如某一问题:有一扇形田地,下周长(弧长)为30米,径长(两段半径的和)为16米,则该扇形田地的面积为()A.120平方米B.240平方米C.360 平方米D.480平方米【分析】首先求得半径的长,然后利用扇形面积公式S=lr求解即可.解:∵径长(两段半径的和)为16米,∴半径长为8米,∵下周长(弧长)为30米,∴S═lr=×30×8=120平方米,故选:A.9.如图,在Rt△ABC中∠C=90°,AB>BC,分别以顶点A、B为圆心,大于AB长为半径作圆弧,两条圆弧交于点M、N,作直线MN交边CB于点D.若AD=5,CD=3,则BC长是()A.7B.8C.12D.13【分析】由尺规作图可知,MN是线段AB的垂直平分线,即可得出DA=DB=5,依据CD的长即可得到BC=CD+BD=8.解:由尺规作图可知,MN是线段AB的垂直平分线,∴DA=DB=5,又∵CD=3,∴BC=CD+BD=3+5=8,故选:B.10.“五一”期间,小华和妈妈到某景区游玩,小明想利用所学的数学知识,估测景区里的观景塔DE的高度.他从点D处的观景塔出来走到点A处.沿着斜坡AB从A点走了8米到达B点,此时回望观景塔,更显气势宏伟.在B点观察到观景塔顶端的仰角为45°且AB⊥BE,再往前走到C处,观察到观景塔顶端的仰角30°,测得BC之间的水平距离BC=10米,则观景塔的高度DE约为()米.(=1.41,=1.73)A.14B.15C.19D.20【分析】作BF⊥DE于F,AH⊥BF于H,根据等腰直角三角形的性质求出AH,根据正切的定义用EF表示出CF、BF,根据题意列式求出EF,结合图形计算,得到答案.解:作BF⊥DE于F,AH⊥BF于H,∵∠EBF=45°,∴∠ABH=45°,∴AH=BH=8×=4,在Rt△ECF中,tan∠ECF=,则CF=EF,在Rt△EBF中,∠EBF=45°,∴BF=EF,由题意得,EF﹣EF=10,解得,EF=5+5,则DE=EF+DF=5+5+4≈19,故选:C.11.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤16【分析】由于△ABC是直角三角形,所以当反比例函数y=经过点A时k最小,经过点C时k最大,据此可得出结论.解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选:C.12.如图,在平面直角坐标系中,已知A(﹣3,﹣2),B(0,﹣2),C(﹣3,0),M 是线段AB上的一个动点,连接CM,过点M作MN⊥MC交y轴于点N,若点M、N 在直线y=kx+b上,则b的最大值是()A.﹣B.﹣C.﹣1D.0【分析】当点M在AB上运动时,MN⊥MC交y轴于点N,此时点N在y轴的负半轴移动,定有△AMC∽△NBM;只要求出ON的最小值,也就是BN最大值时,就能确定点N的坐标,而直线y=kx+b与y轴交于点N(0,b),此时b的值最大,因此根据相似三角形的对应边成比例,设未知数构造二次函数,通过求二次函数的最值得以解决.解:连接AC,则四边形ABOC是矩形,∴∠A=∠ABO=90°,又∵MN⊥MC,∴∠CMN=90°,∴∠AMC=∠MNB,∴△AMC∽△NBM,∴,设BN=y,AM=x.则MB=3﹣x,ON=2﹣y,∴,即:y=x2+x∴当x=﹣=﹣时,y最大=×()2+=,∵直线y=kx+b与y轴交于N(0,b)当BN最大,此时ON最小,点N(0,b)越往上,b的值最大,∴ON=OB﹣BN=2﹣=,此时,N(0,)b的最大值为.故选:A.二、填空题(本大捱共6个小&#174;,每小S3分,共|K分)13.在函数y=中,自变量x的取值范围是x≥﹣2且x≠0.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.解:由题意得,x+2≥0且x≠0,解得x≥﹣2且x≠0.故答案为:x≥﹣2且x≠0.14.分解因式:x2y+2xy+y=y(x+1)2.【分析】首先提取公因式y,再利用完全平方进行二次分解即可.解:原式=y(x2+2x+1)=y(x+1)2,故答案为:y(x+1)2.15.不等式组的解集是x≤﹣2.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式≤﹣1,得:x≤﹣2,解不等式﹣x+7>4,得:x<3,则不等式组的解集为x≤﹣2,故答案为:x≤﹣2.16.两组数据m,6,n与1,m,2n,7的平均数都是8,若将这两组数据合并成一组数据,则这组新数据的极差为11.【分析】根据平均数的计算公式先求出m、n的值,再根据极差的定义即可得出答案.解:∵两组数据m,6,n与1,m,2n,7的平均数都是8,∴,解得:,故将这两组数据合并成一组数据为:12,6,6,1,12,12,7,则极差为:12﹣1=11.故答案为:11.17.如图,▱ABCD的对角线AC、BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD 的周长为16.【分析】首先证明OE=BC,再由AE+EO=4,推出AB+BC=8即可解决问题.解:∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故答案为:16.18.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①abc<0;②5a﹣b+c<0;③方程ax2+bx+c=0的两根分别为x1=﹣5,x2=1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有①②③.【分析】①由抛物线的开口方向确定a的正负号,再由对称轴的位置,确定b的正负号,由抛物线与y轴的交点位置,确定c的正负号;②根据抛物线的顶点坐标公式用a表示b和c,再代入5a﹣b+c中,便可得由a的取值范围确定代数5a﹣b+c的正负;③把y=ax2+bx+c=0中,b、c换成a,再解方程便可得判断正误;④分别求出方程ax2+bx+c=1和ax2+bx+c=﹣1的两根和,便可求得原方程四根之和.解:∵抛物线的开口向上,则a>0,对称轴在y轴的左侧,则b>0,交y轴的负半轴,则c<0,∴abc<0,所以①结论正确;∵抛物线的顶点坐标(﹣2,﹣9a),∴﹣=﹣2,=﹣9a,∴b=4a,c=﹣5a,∴5a﹣b+c=5a﹣4a﹣5a=﹣4a<0,故②结论正确;∵抛物线y=ax2+bx+c=ax2+4ax﹣5a,当y=0时,ax2+4ax﹣5a=0,即a(x+5)(x﹣1)=0,∴x=﹣5或1,∴方程ax2+bx+c=0的两个根x1=﹣5,x2=1,故结论③正确;若方程|ax2+bx+c|=1有四个根,设方程ax2+bx+c=1的两根分别为x1,x2,则=﹣2,可得x1+x2=﹣4,设方程ax2+bx+c=﹣1的两根分别为x3,x4,则=﹣2,可得x3+x4=﹣4,所以这四个根的和为﹣8,故结论④错误,故答案为①②③.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23,24题毎小题9分,第25、26题每小題10分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.计算:﹣|2﹣|+()﹣2﹣2sin60°【分析】首先计算乘方,然后计算加减,即可.解:原式=3﹣(2﹣)+4﹣2×=3﹣2++4﹣=5.20.先化简(﹣1)÷,然后从﹣2≤a<2中选出一个合适的整数作为a的值代入求值.【分析】直接利用分式的加减运算法则将括号里面通分运算,进而利用分式的混合运算法则计算得出答案.解:原式=,=,=∵从﹣2≤a<2的范围内选取一个合适的整数,∴当a=﹣2时,原式=.21.某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:70 72 74 75 76 76 77 77 77 78 79c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有23人;(2)表中m的值为77.5;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.【分析】(1)根据条形图及成绩在70≤x<80这一组的数据可得;(2)根据中位数的定义求解可得;(3)将各自成绩与该年级的中位数比较可得答案;(4)用总人数乘以样本中七年级成绩超过平均数76.9分的人数所占比例可得.解:(1)在这次测试中,七年级在80分以上(含80分)的有15+8=23人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为78、79,∴m==77.5,故答案为:77.5;(3)甲学生在该年级的排名更靠前,∵七年级学生甲的成绩大于中位数78分,其名次在该年级抽查的学生数的25名之前,八年级学生乙的成绩小于中位数79.5分,其名次在该年级抽查的学生数的25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为400×=224(人).22.如图,在四边形ABCD中,∠BAC=90°,点E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=3,BC=5,求EF的长.【分析】(1)根据平行四边形和菱形的判定证明即可;(2)根据菱形的性质和三角形的面积公式解答即可.【解答】(1)证明:∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC,∴四边形AECD是菱形;(2)解:过A作AH⊥BC于点H,如图所示:∵∠BAC=90°,AB=3,BC=5,∴AC===4,∵S△ABC=BC•AH=AB•AC,∴AH===,∵点E是BC的中点,BC=5,四边形AECD是菱形,∴CD=CE=,∵S▱AECD=CE•AH=CD•EF,∴EF=AH=.23.上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=)【分析】(1)设第一批购进水果x千克,则第二批购进水果2.5x千克,依据题意列式计算而得到结果,并检验是原方程的解,而求得.(2)设售价为每千克a元,求得关系式,又由630a ≥7500×1.26,而解得.解:(1)设第一批购进水果x千克,则第二批购进水果2.5x千克,依据题意得:,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700,答:这两批水果共购进700千克;(2)设售价为每千克a元,则:,630a≥7500×1.26,∴,∴a≥15,答:售价至少为每千克15元.24.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件,使得四边形ABCD是“等邻边四边形”,请写出你添加的一个条件;(2)概念延伸:下列说法正确的是①②④(填入相应的序号)①对角线互相平分的“等邻边四边形”是菱形;②一组对边平行,另一组对边相等的“等邻边四边形”是菱形;③有两个内角为直角的“等邻边四边形”是正方形;④一组对边平行,另一组对边相等且有一个内角是直角的“等邻边四边形”是正方形;(3)问题探究:如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=4,BC=3,并将Rt△ABC 沿∠B的平分线BB'方向平移得到△A'B'C′,连结AA′,BC′,小红要使平移后的四边形ABC′A′是“等邻边四边形”应平移多少距离(即线段BB'的长)?【分析】(1)根据定义添加一组邻边相等即可;(2)先利用平行四边形的判定定理得平行四边形,再利用“等邻边四边形”定义得邻边相等,得出结论;(3)由平移的性质易得BB′=AA′,A′B′∥AB,A′B′=AB=4,B′C′=BC =3,A′C′=AC=5,再利用“等邻边四边形”定义分类讨论,由勾股定理得出结论.解:(1)AB=BC或BC=CD或AD=CD或AB=AD.答案:AB=AD.(2)①正确,理由为:∵四边形的对角线互相平分,∴这个四边形是平行四边形,∵四边形是“等邻边四边形”,∴这个四边形有一组邻边相等,∴这个“等邻边四边形”是菱形;②正确,理由为:一组对边平行,另一组对边相等可得到:两组对边相等,则该四边形是平行四边形,所以根据“邻边相等的平行四边形为菱形”推知:一组对边平行,另一组对边相等的“等邻边四边形”是菱形;③不正确,理由为:有两个内角为直角的“等邻边四边形”不是平行边形时,该结论不成立;④正确,理由为:一组对边平行,另一组对边相等可得到:两组对边相等,则该四边形是平行四边形,所以根据“邻边相等的平行四边形为菱形”推知:一组对边平行,另一组对边相等的“等邻边四边形”是菱形;再由由一内角是直角的菱形为正方形推知,④的说法正确.故答案是:①②④;(3)∵∠ABC=90°,AB=4,BC=3,∴AC=5,∵将Rt△ABC平移得到△A′B′C′,∴BB′=AA′,A′B′∥AB,A′B′=AB=4,B′C′=BC=3,A′C′=AC=5,(I)如图1,当AA′=AB时,BB′=AA′=AB=4;(II)如图2,当AA′=A′C′时,BB′=AA′=A′C′=5;(III)当A′C′=BC′=5时,如图3,延长C′B′交AB于点D,则C′B′⊥AB,∵BB′平分∠ABC,∴∠ABB′=∠ABC=45°,∴∠BB′D=′∠ABB′=45°∴B′D=BD,设B′D=BD=x,则C′D=x+1,BB′=x,∵在Rt△BC′D中,BD2+C′D2=BC′2∴x2+(x+1)2=52,解得:x1=3,x2=﹣4(不合题意,舍去),∴BB′=x=3(Ⅳ)当BC′=AB=4时,如图4,与(Ⅲ)方法一同理可得:BD2+C′D2=BC′2,设B′D=BD=x,则x2+(x+1)2=32,解得:x1=,x2=(不合题意,舍去),∴BB′=x=;综上所述,要使平移后的四边形ABC′A′是“等邻边四边形”应平移3或.25.已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围;(3)将(2)中的抛物线向右平移m(3≤m≤6)个单位,与x轴的两个交点分别为A (x1,0),B(x2,0),若=+,求M的取值范围.【分析】(1)分类讨论:该方程是一元一次方程和一元二次方程两种情况.当该方程为一元二次方程时,根的判别式△≥0,方程总有实数根;(2)通过解kx2+(2k+1)x+2=0得到k=1,由此得到该抛物线解析式为y=x2+3x+2,结合图象回答问题.(3)抛物线向右平移m(3≤m≤6)个单位后的解析式为y=(x+﹣m)2﹣,令y =0,解方程求得x1=m﹣1,x2=m﹣2,代入=+,求得M==,根据3≤m≤6即可求得M的取值.【解答】(1)证明:①当k=0时,方程为x+2=0,所以x=﹣2,方程有实数根,②当k≠0时,∵△=(2k+1)2﹣4k×2=(2k﹣1)2≥0,即△≥0,∴无论k取任何实数时,方程总有实数根;(2)解:令y=0,则kx2+(2k+1)x+2=0,解关于x的一元二次方程,得x1=﹣2,x2=﹣,∵二次函数的图象与x轴两个交点的横坐标均为整数,且k为正整数,∴k=1.∴该抛物线解析式为y=x2+3x+2,由图象得到:当y1>y2时,a>1或a<﹣4.(3)解:∵抛物线解析式为y=x2+3x+2=(x+)2﹣∴抛物线向右平移m(3≤m≤6)个单位后的解析式为y=(x+﹣m)2﹣,令y=0,则(x+﹣m)2﹣=0,解得x1=m﹣1,x2=m﹣2,∵=+,∴M==,∵3≤m≤6,∴≤M≤.26.如图,已知抛物线y=mx2﹣8mx﹣9m与x轴交于A,B两点,且与y轴交于点C(0,﹣3),过A,B,C三点作⊙O′,连接AC,BC.(1)求⊙O′的圆心O′的坐标;(2)点E是AC延长线上的一点,∠BEC的平分线CD交⊙O′于点D,求点D的坐标,并直接写出直线BC和直线BD的解析式;(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD,若存在,请求出点P的坐标,若不存在,请说明理由.【分析】(1)求出点A、B的坐标,利用O′为AB的中点,即可求解;(2)证明∠O′DB=90°,即O′D⊥AB,即可求解;(3)分点P在直线BD下方、P在BD的上方两种情况,分别求解即可.解:(1)y=mx2﹣8mx﹣9m,令y=0,解得:x=﹣1或9,故点A、B的坐标分别为:(﹣1,0)、(9,0),∵过A,B,C三点作⊙O′,故O′为AB的中点,∴点O′的坐标为(4,0);(2)∵AB是圆的直径,∴∠ACB=90°,∴∠BCE=90°,∵∠BEC的平分线为CD,∴∠BCD=45°,∴∠O′DB=90°,即O′D⊥AB,圆的半径为AB=5,故点D的坐标为(4,﹣5),设直线BC的表达式为:y=kx+b,则,解得:,故直线BC的表达式为:y=x﹣3,同理可得直线BD的表达式为:y=x﹣9;(3)由点A、B、C的坐标得,抛物线的表达式为:y=x2﹣x﹣3①,①当点P(P′)在直线BD下方时,∵∠PDB=∠CBD,∴DP′∥BC,则设直线DP′的表达式为:y=x+t,将点D的坐标代入上式并解得:t=﹣,故直线DP′的表达式为:y=x﹣②,联立①②并解得:x=(舍去负值),故点P的坐标为(,);②当点P在BD的上方时,由BD的表达式知,直线BD的倾斜角为45°,以BD为对角线作正方形DMBN,边MB交直线DP′于点H′,直线DP交NB边于点H,对于直线DP′:y=x﹣,当x=9时,y=﹣,即BH′=,根据点的对称性知:BH=BH′=,故点H(,0),由点D、H的坐标得,直线DH的表达式为:y=3x﹣17③,联立①③并解得:x=3或14(舍去3),故点P的坐标为(14,25);故点P的坐标为:(,)或(14,25).。

湖南省湘潭市2019-2020学年中考数学三月模拟试卷含解析

湖南省湘潭市2019-2020学年中考数学三月模拟试卷含解析

湖南省湘潭市2019-2020学年中考数学三月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列实数0,23,3,π,其中,无理数共有( ) A .1个B .2个C .3个D .4个2.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是( )A .6B .5C .4D .33.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n 个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n 的值约为( ) A .20B .30C .40D .504.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t 的取值范围是( )A .t <B .t >C .t≤D .t≥5.在,90ABC C ∆∠=o 中,2AC BC =,则tan A 的值为( ) A .12B .2C .5 D .256.如图数轴的A 、B 、C 三点所表示的数分别为a 、b 、c .若|a ﹣b|=3,|b ﹣c|=5,且原点O 与A 、B 的距离分别为4、1,则关于O 的位置,下列叙述何者正确?( )A .在A 的左边B .介于A 、B 之间C .介于B 、C 之间D .在C 的右边7.若△ABC 与△DEF 相似,相似比为2:3,则这两个三角形的面积比为( ) A .2:3B .3:2C .4:9D .9:48.根据《九章算术》的记载中国人最早使用负数,下列负数中最大的是( ) A .-1B .-C .D .–π9.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为 2s 0.51=甲,2s 0.62=乙,2s 0.48=丙,2s 0.45=丁,则四人中成绩最稳定的是( )A .甲B .乙C .丙D .丁10.点A 、C 为半径是4的圆周上两点,点B 为»AC 的中点,以线段BA 、BC 为邻边作菱形ABCD ,顶点D 恰在该圆半径的中点上,则该菱形的边长为( ) A .7或22B .7或23C .26或22D .26或2311.如图所示,在方格纸上建立的平面直角坐标系中,将△ABC 绕点O 按顺时针方向旋转90°,得到△A′B′O ,则点A′的坐标为( )A .(3 ,1)B .(3 ,2)C .(2 ,3)D .(1 ,3)12.如图,两个一次函数图象的交点坐标为(2,4),则关于x ,y 的方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为()A .2,4x y =⎧⎨=⎩B .4,2x y =⎧⎨=⎩C .4,0x y =-⎧⎨=⎩D .3,0x y =⎧⎨=⎩二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_____个. 14.图中是两个全等的正五边形,则∠α=______.15.已知方程组2425x yx y+=⎧⎨+=⎩,则x+y的值为_______.16.2018年1月4日在萍乡市第十五届人民代表大会第三次会议报告指出,去年我市城镇居民人均可支配收入33080元,33080用科学记数法可表示为__.17.如图,点A 是反比例函数y=﹣4x(x<0)图象上的点,分别过点A 向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为______.18.如图,某海监船以20km/h的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为_____km.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.20.(6分)如图,轮船从点A处出发,先航行至位于点A的南偏西15°且点A相距100km的点B处,再航行至位于点A的南偏东75°且与点B相距200km的点C处.(1)求点C与点A的距离(精确到1km);(2)确定点C相对于点A的方向.(参考数据:)21.(6分)先化简,后求值:(1﹣11a+)÷(2221a aa a-++),其中a=1.22.(8分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和.记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表:摸球总次数10 20 30 60 90 120 180 240 330 450“和为8”出现的频数2 10 13 24 30 37 58 82 110 150“和为8”出现的频率0.20 0.50 0.43 0.40 0.33 0.31 0.32 0.34 0.33 0.33解答下列问题:如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是________;如果摸出的2个小球上数字之和为9的概率是13,那么x的值可以为7吗?为什么?23.(8分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.24.(10分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:命中环数 6 7 8 9 10甲命中相应环数的次数0 1 3 1 0乙命中相应环数的次数 2 0 0 2 1(1)根据上述信息可知:甲命中环数的中位数是_____环,乙命中环数的众数是______环;(2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小.(填“变大”、“变小”或“不变”)25.(10分)如图,AB是⊙O直径,BC⊥AB于点B,点C是射线BC上任意一点,过点C作CD切⊙O 于点D,连接AD.求证:BC=CD;若∠C=60°,BC=3,求AD的长.26.(12分)甲、乙、丙、丁四位同学进行乒乓球单打比赛,要从中选出两位同学打第一场比赛.若确定甲打第一场,再从其余三位同学中随机选取一位,恰好选中乙同学的概率是.若随机抽取两位同学,请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率.27.(12分)如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.(1)求证:AE•FD=AF•EC;(2)求证:FC=FB;(3)若FB=FE=2,求⊙O的半径r的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据无理数的概念可判断出无理数的个数. 【详解】解:无理数有:3,π. 故选B. 【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数. 2.B 【解析】 【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形. 【详解】综合主视图和俯视图,底层最少有4个小立方体,第二层最少有1个小立方体,因此搭成这个几何体的小正方体的个数最少是5个. 故选:B . 【点睛】此题考查由三视图判断几何体,解题关键在于识别图形 3.A 【解析】分析:根据白球的频率稳定在0.4附近得到白球的概率约为0.4,根据白球个数确定出总个数,进而确定出黑球个数n.详解:根据题意得:.n0430n=+ ,计算得出:n=20, 故选A.点睛:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 4.B 【解析】 【分析】将一次函数解析式代入到反比例函数解析式中,整理得出x 2﹣2x+1﹣6t=0,又因两函数图象有两个交点,且两交点横坐标的积为负数,根据根的判别式以及根与系数的关系可求解. 【详解】由题意可得:﹣x+2=,所以x2﹣2x+1﹣6t=0,∵两函数图象有两个交点,且两交点横坐标的积为负数,∴解不等式组,得t>.故选:B.点睛:此题主要考查了反比例函数与一次函数的交点问题,关键是利用两个函数的解析式构成方程,再利用一元二次方程的根与系数的关系求解.5.A【解析】【分析】本题可以利用锐角三角函数的定义求解即可.【详解】解:tanA=BC AC,∵AC=2BC,∴tanA=12.故选:A.【点睛】本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键.6.C【解析】分析:由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为1、1,即可得出a=±1、b=±1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论.解析:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原点O与A、B的距离分别为1、1,∴a=±1,b=±1,∵b=a+3,∴a=﹣1,b=﹣1,∵c=b+5,∴c=1.∴点O介于B、C点之间.故选C.点睛:本题考查了数值以及绝对值,解题的关键是确定a、b、c的值.本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键.7.C【解析】【分析】由△ABC与△DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案.【详解】∵△ABC与△DEF相似,相似比为2:3,∴这两个三角形的面积比为4:1.故选C.【点睛】此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方.8.B【解析】【分析】根据两个负数,绝对值大的反而小比较.【详解】解:∵−>−1>−>−π,∴负数中最大的是−.故选:B.【点睛】本题考查了实数大小的比较,解题的关键是知道正数大于0,0大于负数,两个负数,绝对值大的反而小.9.D【解析】【分析】根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.【详解】∵0.45<0.51<0.62,∴丁成绩最稳定,故选D.【点睛】此题主要考查了方差,关键是掌握方差越小,稳定性越大.10.C【解析】【分析】过B作直径,连接AC交AO于E,如图①,根据已知条件得到BD=12OB=2,如图②,BD=6,求得OD、OE、DE的长,连接OD,根据勾股定理得到结论.【详解】过B作直径,连接AC交AO于E,∵点B为»AC的中点,∴BD⊥AC,如图①,∵点D恰在该圆直径上,D为OB的中点,∴BD=12×4=2,∴OD=OB-BD=2,∵四边形ABCD是菱形,∴DE=12BD=1,∴OE=1+2=3,连接OC,∵2222=43=7OC OE--在Rt△DEC中,由勾股定理得:2222=(7)1=22CE DE++如图②,OD=2,BD=4+2=6,DE=12BD=3,OE=3-2=1,由勾股定理得:CE=2222=41=15OC OE--,DC=2222=3(15)=26DE CE++.故选C.【点睛】本题考查了圆心角,弧,弦的关系,勾股定理,菱形的性质,正确的作出图形是解题的关键.11.D【解析】【分析】解决本题抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.【详解】由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(1,3).故选D.12.A【解析】【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.【详解】解:∵直线y 1=k 1x+b 1与y 2=k 2x+b 2的交点坐标为(2,4),∴二元一次方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,4.x y =⎧⎨=⎩ 故选A.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案.【详解】因为共摸了200次球,发现有60次摸到黑球,所以估计摸到黑球的概率为0.3,所以估计这个口袋中黑球的数量为20×0.3=6(个),则红球大约有20-6=1个,故答案为:1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.14.108°【解析】【分析】先求出正五边形各个内角的度数,再求出∠BCD 和∠BDC 的度数,求出∠CBD ,即可求出答案.【详解】如图:∵图中是两个全等的正五边形,∴BC=BD ,∴∠BCD=∠BDC ,∵图中是两个全等的正五边形, ∴正五边形每个内角的度数是0(52)1805-⨯=108°, ∴∠BCD=∠BDC=180°-108°=72°,∴∠CBD=180°-72°-72°=36°,∴∠α=360°-36°-108°-108°=108°,故答案为108°.【点睛】本题考查了正多边形和多边形的内角和外角,能求出各个角的度数是解此题的关键.15.1【解析】【分析】方程组两方程相加即可求出x+y 的值.【详解】2425x y x y =①=②+⎧⎨+⎩, ①+②得:1(x+y )=9,则x+y=1.故答案为:1.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 16.3.308×1.【解析】【分析】正确用科学计数法表示即可.【详解】解:33080=3.308×1【点睛】科学记数法的表示形式为10na 的形式, 其中1<|a|<10,n为整数.确定n的值时, 要看把原数变成a时, 小数点移动了多少位, n的绝对值与小数点移动的位数相同. 当原数绝对值大于10时, n是正数; 当原数的绝对值小于1时,n是负数.17.4﹣π【解析】【分析】由题意可以假设A(-m,m),则-m2=-4,求出点A坐标即可解决问题.【详解】由题意可以假设A(-m,m),则-m2=-4,∴m=≠±2,∴m=2,∴S阴=S正方形-S圆=4-π,故答案为4-π.【点睛】本题考查反比例函数图象上的点的特征、正方形的性质、圆的面积公式等知识,解题的关键是灵活运用所学知识解决问题18.【解析】【分析】首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题.【详解】解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由题意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB•tan60°,∴PC=2×=km),故答案为【点睛】本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB=BC,推出∠C=30°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形,理由详见解析;(3)492.【解析】【分析】(1)利用三角形的中位线得出PM=12CE,PN=12BD,进而判断出BD=CE,即可得出结论,再利用三角形的中位线得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=12BD,PN=12BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)方法1、先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.方法2、先判断出BD最大时,△PMN的面积最大,而BD最大是AB+AD=14,即可.【详解】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=12 BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=12 CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM =PN ,PM ⊥PN ,(2)由旋转知,∠BAD =∠CAE ,∵AB =AC ,AD =AE ,∴△ABD ≌△ACE (SAS ),∴∠ABD =∠ACE ,BD =CE ,同(1)的方法,利用三角形的中位线得,PN =12BD ,PM =12CE , ∴PM =PN ,∴△PMN 是等腰三角形,同(1)的方法得,PM ∥CE ,∴∠DPM =∠DCE ,同(1)的方法得,PN ∥BD ,∴∠PNC =∠DBC ,∵∠DPN =∠DCB+∠PNC =∠DCB+∠DBC ,∴∠MPN =∠DPM+∠DPN =∠DCE+∠DCB+∠DBC=∠BCE+∠DBC =∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC =∠ACB+∠ABC ,∵∠BAC =90°,∴∠ACB+∠ABC =90°,∴∠MPN =90°,∴△PMN 是等腰直角三角形,(3)方法1、如图2,同(2)的方法得,△PMN 是等腰直角三角形,∴MN 最大时,△PMN 的面积最大,∴DE ∥BC 且DE 在顶点A 上面,∴MN 最大=AM+AN ,连接AM ,AN ,在△ADE 中,AD =AE =4,∠DAE =90°,∴AM =,在Rt △ABC 中,AB =AC =10,AN =,∴MN 最大==,∴S △PMN 最大=12PM 2=12×12MN 2=14×()2=492. 方法2、由(2)知,△PMN 是等腰直角三角形,PM =PN =12BD ,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=12PM2=12×72=492【点睛】本题考查旋转中的三角形,关键在于对三角形的所有知识点熟练掌握.20.(1)173;(2)点C位于点A的南偏东75°方向.【解析】试题分析:(1)作辅助线,过点A作AD⊥BC于点D,构造直角三角形,解直角三角形即可.(2)利用勾股定理的逆定理,判定△ABC为直角三角形;然后根据方向角的定义,即可确定点C相对于点A的方向.试题解析:解:(1)如答图,过点A作AD⊥BC于点D.由图得,∠ABC=75°﹣10°=60°.在Rt△ABD中,∵∠ABC=60°,AB=100,∴BD=50,AD=50.∴CD=BC﹣BD=200﹣50=1.在Rt△ACD中,由勾股定理得:AC=(km).答:点C与点A的距离约为173km.(2)在△ABC中,∵AB2+AC2=1002+(100)2=40000,BC2=2002=40000,∴AB2+AC2=BC2. ∴∠BAC=90°.∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.答:点C位于点A的南偏东75°方向.考点:1.解直角三角形的应用(方向角问题);2. 锐角三角函数定义;3.特殊角的三角函数值;4. 勾股定理和逆定理.21.11a a +-,2. 【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得.【详解】 解:原式=()()2111111a a a a a a -+⎛⎫-÷ ⎪++⎝⎭+ ()()2111a a a a a +=+-n 11a a +=-, 当a =1时, 原式=3131+-=2. 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.22.(1)出现“和为8”的概率是0.33;(2)x 的值不能为7.【解析】【分析】(1)利用频率估计概率结合表格中数据得出答案即可;(2)假设x=7,根据题意先列出树状图,得出和为9的概率,再与13进行比较,即可得出答案. 【详解】解:(1)随着试验次数不断增加,出现“和为8”的频率逐渐稳定在0.33,故出现“和为8”的概率是0.33.(2)x 的值不能为7.理由:假设x =7,则P(和为9)=16≠13,所以x的值不能为7.【点睛】此题主要考查了利用频率估计概率以及树状图法求概率,正确画出树状图是解题关键.23.4小时.【解析】【分析】本题依据题意先得出等量关系即客车由高速公路从A地道B的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.【详解】解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:60048045, 2x x+=解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.【点睛】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.24.(1)8,6和9;(2)甲的成绩比较稳定;(3)变小【解析】【分析】(1)根据众数、中位数的定义求解即可;(2)根据平均数的定义先求出甲和乙的平均数,再根据方差公式求出甲和乙的方差,然后进行比较,即可得出答案;(3)根据方差公式进行求解即可.【详解】解:(1)把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8;在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9;故答案为8,6和9;(2)甲的平均数是:(7+8+8+8+9)÷5=8,则甲的方差是:15[(7-8)2+3(8-8)2+(9-8)2]=0.4,乙的平均数是:(6+6+9+9+10)÷5=8,则甲的方差是:15[2(6-8)2+2(9-8)2+(10-8)2]=2.8,所以甲的成绩比较稳定;(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.故答案为变小.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数、中位数和众数.25.(1)证明见解析;【解析】【分析】(1)根据切线的判定定理得到BC是⊙O的切线,再利用切线长定理证明即可;(2)根据含30°的直角三角形的性质、正切的定义计算即可.【详解】(1)∵AB是⊙O直径,BC⊥AB,∴BC是⊙O的切线,∵CD切⊙O于点D,∴BC=CD;(2)连接BD,∵BC=CD,∠C=60°,∴△BCD是等边三角形,∴BD=BC=3,∠CBD=60°,∴∠ABD=30°,∵AB是⊙O直径,∴∠ADB=90°,∴AD=BD•tan∠ABD【点睛】本题考查了切线的性质、直角三角形的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.26.(1);(2)【解析】【分析】1)由题意可得共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,则可利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式求解即可求得答案.【详解】解:(1)∵甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,确定甲打第一场,再从其余的三位同学中随机选取一位,∴恰好选到丙的概率是: ;(2)画树状图得:∵共有12种等可能的结果,恰好选中甲、乙两人的有2种情况,∴恰好选中甲、乙两人的概率为:【点睛】此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.27.(1)详见解析;(2)详见解析;(3)2.【解析】(1)由BD是⊙O的切线得出∠DBA=90°,推出CH∥BD,证△AEC∽△AFD,得出比例式即可.(2)证△AEC∽△AFD,△AHE∽△ABF,推出BF=DF,根据直角三角形斜边上中线性质得出CF=DF=BF 即可.(3)求出EF=FC,求出∠G=∠FAG,推出AF=FG,求出AB=BG,连接OC,BC,求出∠FCB=∠CAB 推出CG是⊙O切线,由切割线定理(或△AGC∽△CGB)得出(2+FG)2=BG×AG=2BG2,在Rt△BFG 中,由勾股定理得出BG2=FG2﹣BF2,推出FG2﹣4FG﹣12=0,求出FG即可,从而由勾股定理求得AB=BG 的长,从而得到⊙O的半径r.。

湖南省2024届九年级下学期中考模拟数学(三)试卷(含答案)

湖南省2024届九年级下学期中考模拟数学(三)试卷(含答案)

湖南省2024年初中学业水平考试模拟试卷数学温馨提示:1.答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2.必须在答题卡上答题,在草稿纸、试题卷上答题无效;3.答题时,请考生注意各大题题号后面的答题提示;4.请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5.答题卡上不得使用涂改液、涂改胶和贴纸;6.本试卷共26个小题,考试时量120分钟,满分120分.一、选择题(在下列各题的四个选项中,只有一项是符合题意的. 请在答题卡中填涂符合题意的选项. 本大题共10个小题,每小题3分,共30分)A.祝5.如图,在△ABC径作圆弧,两弧相交于点A .23°B .25°C .27°D .29°6.下列命题中,是真命题的是( ) A .同旁内角互补B .两直线被第三条直线所截,截得的内错角相等C .三角形的外角大于三角形的内角D .对顶角相等7.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,AB =10 cm ,CD =8 cm ,则BE 的长为( )A .5cmB .3cmC .2cmD .1.5cm8.为更好地学习贯彻“第十四届全国人大会议”精神,牢记使命担当,奋进新时代,筑梦新征程.某校举办了“第十四届全国人大会议”知识竞赛,某班参赛的6名同学的成绩(单位:分)分别为:82,84,85,87,88,90.则这组数据的中位数是( ) A .84B .85.5C .86D .86.59.如图,将矩形ABCD 直线AC 折叠,使得点B 落在点E 处,AE 交CD 于点F ,若AB =5,AD =3,则tan ∠ECF 的值为( )A .53B .54C .158 D .43 10.已知抛物线2y ax bx c =++(a 、b 、c 为常数,a >0)的对称轴为直线x =1,与x 轴交于(x 1,0),(x 2,0)两点,2<x 2<3,下列结论正确的是( )A .x 1x 2>0B .x 1+x 2=1C .b 2<4acD .a -b+c >0二、填空题(本大题共8小题,每小题3分,共24分)13.因式分解:am214.某超市开展“有奖促销图,转盘被平均分为时,该顾客获一等奖;15.《九章算术》是我国古代重要的数学专著之一,其中记录的一道题译为白话文是:把一份文件送到900里(多1天;如果用快马送,需要的时间比规定的时间少倍,求规定的时间.设规定的时间为17.在平面直角坐标系中,直线18.图1是某收纳盒实物图,图与收纳盒相连.当支撑杆绕点始终保持与MN平行.点距离为 .三、解答题(本大题共8小题,第19-20题每小题6分,第21-22题每小题8分,第23-24题每小题9分,第25-26题每小题10分,共66分) 19.(本题满分6分)计算:|−2|+(π−3)0−(13)−2+(−1)202420.(本题满分6分)先化简,再求值:(1−4a+3)÷(a 2−2a+12a+6),其中a =2.21.(本题满分8分)为弘扬向善、为善优秀品质,助力爱心公益事业,我校组织“人间自有真情在,爱心助力暖人心”慈善捐款活动,八年级全体同学参加了此次活动.随机抽查了部分同学捐款的情况,统计结果如图①和图②所示.(1)本次共抽查了________人;并补全上面条形统计图; (2)本次抽查学生捐款的中位数为________;众数为________;(3)全校有八年级学生1100人,估计捐款金额超过15元(不含15元)的有多少人?26.(本题满分10分)0,c,那么我们把经过点交点坐标为()线.22y x=+湖南省2024年初中学业水平考试模拟试卷数学·参考答案一、选择题(在下列各题的四个选项中,只有一项是符合题意的. 请在答题卡中填涂符合题意的选项. 本大题共10个小题,每小题3分,共30分)1.B【详解】解:2024的相反数是−2024,故选:B.2.C【详解】解:0.00519=5.19×10−3.故选:C.3.D【详解】解:∵a2,a4不是同类项,不能作加法运算,故A选项错误;∵a3⋅a2=a3+2=a5,故B选项错误;∵b3÷b3=1,故C选项错误;∵(−ab)4=a4b4,故D选项正确,故选:D.4.D【详解】解:原正方体中与“祝”字一面相对面上的字是“利”.故选:D.5.C【详解】解:∵AB=AC,∠A=42°,∴∠B=∠C=12(180°−∠A)=12(180°−42°)=69°,由作法得MN垂直平分AB,∴DB=AD,∴∠ABD=∠A=42°,∴∠DBC=∠ABC−∠ABD=69°−42°=27°.故选:C.6.D【详解】解:A、两直线平行,同旁内角互补,原命题是假命题,不符合题意;B、两平行直线被第三条直线所截,截得的内错角相等,原命题是假命题,不符合题意;C、三角形的外角大于与其不相邻的三角形的内角,原命题是假命题,不符合题意;D、对顶角相等,原命题是真命题,符合题意;又∵抛物线y=ax2+bx+c与x轴交于(x1,0),(x2,0)两点,∴Δ=b2﹣4ac>0,x1+x2=−ba=2,∴b2>4ac,B、C错误,故不符合要求;∵x1与x2关于直线x=1对称,2<x2<3,∴2<2﹣x1<3,∴﹣1<x1<0,∴x1x2<0,A错误,故不符合要求;∵a>0,图象开口向上,当x<1时,y随着x的增大而减小,﹣1<x1,∴当x=﹣1时,y=a﹣b+c>0,D正确,故符合要求;故选:D.二、填空题(本大题共8小题,每小题3分,共24分)∵∠AOB 的度数为100°, ∴∠ADB =12∠AOB =50°.∴∠ACB =180°−50°=130°. 故答案为:130°. 17.2020【详解】解:将点P (a ,b )代入直线表达式得: 3a +4=b ,即3a -b =-4; ∴3a -b +2024=-4+2024=2020. 故答案为:2020. 18.25;25√2+212. 【详解】解:如图2:设BE 与MN 相交于点O ,AC 与MN 相交于点K ,连接BN , 由题意得:MN ∥PQ ,MN =PQ =31cm ,BE ⊥MN ,AC ⊥MN ,OE =18cm ,AB =KO =CG =8.5cm ,设BO =x cm ,∴BM =BE =BO +OE =(x +18)cm , ∵点A 位于PQ 的垂直平分线上, ∴AC 平分MN ,∴MK =KN =12MN =15.5(cm ), ∴MN =MK +KO =24(cm ),在Rt △MOB 中,MO 2+OB 2=MB 2,即:242+x 2=(x +18)2, 解得:x =7,∴BO =7cm ,BM =BE =x +18=25(cm ), ∴ON =MN ﹣MO =31﹣24=7(cm ), ∴OB =ON ,∴∠OBN =∠ONB =45°, ∴BN =√2ON =7√2(cm );如图3:过点EJ ⊥QP ,交QP 的延长线于点J ,延长AB 交EJ 于点I ,交NP 于点H , 由题意得:AH ⊥NP ,AI ⊥EJ ,PH =IJ , ∴∠BHN =∠BIE =90°, ∵∠MNB =45°,AB ∥MN , ∴∠NBH =∠MNB =45°,∵BN =7√2cm ,∴NH =BN √2=7(cm ), ∵BE =25cm ,∴EI =2=25√22(cm ), 由题意得:PHNH =1.5,∴PH =1.5NH =10.5(cm ),∴IJ =PH =10.5(cm ),∴EJ =EI +IJ =25√22+10.5=25√2+212(cm ), ∴EF 与PQ 的距离为25√2+212cm , 故答案为:25;25√2+212. 三、解答题(本大题共8小题,第19-20题每小题6分,第21-22题每小题8分,第23-24题每小题9分,第25-26题每小题10分,共66分) (2)学生捐款金额出现次数最多的是将这50名学生捐款金额从小到大排列处在中间位置的两个数都是25.(1)证明:∵∠BDE =∠EAB ,∠BDE =∠CBE ∴∠EAB =∠CBE∵AB 是⊙O 的直径∴∠AEB =90°∴∠EAB +∠EBA =90°∴∠CBE +∠EBA =90°,即∠ABC =90° ----------------------------------2分 又∵AB 是⊙O 的直径∴BC 是⊙O 的切线 ----------------------------------3分(2)证明:∵∠DEA 和∠ABD 都是AD ⌢所对的圆周角,∴∠DEA =∠ABD∵BD 平分∠ABE∴∠ABD =∠DBE∴∠DEA =∠DBE ----------------------------------4分∵∠EDB =∠BDE ,∠DEA =∠DBE ,∴△DEF ∽△DBE , ----------------------------------5分∴DEDB =DFDE∴DE 2=DF ⋅DB ---------------------------------6分(3)解:根据题意画出图形,连接DA 、DO∵OD =OB ,∴∠ODB =∠OBD∵∠EBD =∠OBD∴∠EBD =∠ODB∴OD ∥BE∴PDPE =POPB∵P A =AO∴P A =AO =OB ,∴POPB =23∴PD PE =23∴PD PD+DE =23 ----------------------------------7分∵DE =2,∴PD =4∵∠PDA +∠ADE =180°,∠ABE +∠ADE =180°,∵点C 的坐标为()0,1m +,点D 的坐标为∴1,2OC m CD m =+=,∴11,22DG CD GF OC ==, ∴112m m =+, 由()2知,1n m =+,抛物线14y =−∴抛物线21142y x mx n =−++的极限分割线∵直线EF 垂直平分OC ,。

2020届湖南省中考数学一模试卷试题(解析版)

2020届湖南省中考数学一模试卷试题(解析版)

2020届湖南省中考数学一模试卷全卷满分150分,考试时间120分钟。

★祝考试顺利★注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本题共10个小题,每小题有且只有一个正确答案,每小题3分,满分30分)1.下列各数中比﹣1小的数是()A. ﹣2B. ﹣1C. 0D. 1【答案】A【解析】【分析】根据两个负数比较大小,绝对值大的负数反而小,可得答案.【详解】解:A、﹣2<﹣1,故A正确;B、﹣1=﹣1,故B错误;C、0>﹣1,故C错误;D、1>﹣1,故D错误;故选:A.【点睛】本题考查了有理数大小比较,利用了正数大于0,0大于负数,注意两个负数比较大小,绝对值大的负数反而小.2.下面四个几何体:其中,俯视图是四边形的几何体个数是()A. 1B. 2C. 3D. 4【答案】B 【解析】试题分析:根据俯视图是分别从物体上面看,所得到的俯视图是四边形的几何体有正方体和三棱柱, 故选:B .考点:简单几何体的三视图3.计算6m 6÷(-2m 2)3的结果为( )A. m -B. 1-C.34D. 34-【答案】D 【解析】分析:根据幂的乘方计算法则求出除数,然后根据同底数幂的除法法则得出答案. 详解:原式=()663684m m÷-=-, 故选D . 点睛:本题主要考查的是幂的计算法则,属于基础题型.明白幂的计算法则是解决这个问题的关键.4. 一组数据:6,3,4,5,7的平均数和中位数分别是 ( ) A. 5,5 B. 5,6C. 6,5D. 6,6【答案】A 【解析】试题分析:根据平均数的定义列式计算,再根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数解答. 平均数为:×(6+3+4+5+7)=5,按照从小到大的顺序排列为:3,4,5,6,7,所以,中位数为:5. 故选A .考点:中位数;算术平均数.5. 下列命题中假命题是( ) A. 正六边形外角和等于B. 位似图形必定相似C. 样本方差越大,数据波动越小D. 方程无实数根【答案】C 【解析】试题解析:A 、正六边形的外角和等于360°,是真命题; B 、位似图形必定相似,是真命题;C 、样本方差越大,数据波动越小,是假命题;D 、方程x 2+x+1=0无实数根,是真命题; 故选:C .考点:命题与定理.6.若一次函数=y ax b +的图象经过第一、二、四象限,则下列不等式一定成立的是( ) A. 0a b +< B. 0a b ->C. 0ab >D.0ba< 【答案】D 【解析】∵一次函数y=ax+b 的图象经过第一、二、四象限, ∴a<0,b>0,∴a+b 不一定大于0,故A 错误, a−b<0,故B 错误, ab<0,故C 错误,ba<0,故D 正确。

2020年湖南省九年级数学中考模拟试题含答案

2020年湖南省九年级数学中考模拟试题含答案

2020湖南省九年级数学中考模拟试题含答案温馨提示:1.本试卷包括试题卷和答题卡.考生作答时,选择题和非选择题均须作答在答题卡上,在本试题卷上作答无效.考生在答题卡上按答题卡中注意事项的要求答题. 2.考试结束后,将本试题卷和答题卡一并交回.3.本试卷满分150分,考试时间120分钟.本试卷共三道大题,26个小题.如有缺页,考生须声明.一、选择题(本大题共10个小题,每小题只有一个正确选项,请将正确选项填涂到答题卡上.每小题4分,共40分)1.如果a 与2017互为倒数,那么a 是( ) A . -2017 B . 2017 C . 20171- D . 201712.下列图形中,是中心对称图形的是( )A. B. C. D.3.下列计算正确的是( )A . 633a a a =+B . 33=-a aC . 523)(a a =D . 32a a a =⋅4.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体与长达30000000个核苷酸,30000000用科学记数法表示为( )A.3×107B.30×104C.0.3×107D.0.3×1085.如图,过反比例函数)0(>=x xky 的图像上一点A 作 AB ⊥x 轴于点B ,连接AO ,若S △AOB =2,则k 的值为( )A .2B .3C .4D .56.下列命题:①若a<1,则(a﹣1)a a--=-111;②平行四边形既是中心对称图形又是轴对称图形;③9的算术平方根是3;④如果方程ax 2+2x+1=0有两个不相等的实数根,则实数a<1.其中正确的命题个数是( )A.1个B.2个 C.3个D.4个7.如图,AB ∥ CD,DE⊥ CE,∠ 1=34°,则 ∠ DCE的度数为( ) A.34°B.54° C.66°D.56°(第7题图) (第9题图)8.一种饮料有两种包装,5大盒、4小盒共装148瓶,2大盒、5小盒共装100瓶,大盒与小盒每盒各装多少瓶?设大盒装x瓶,小盒装y瓶,则可列方程组( ) A.B.C. D.9.如图,PA 、PB 是⊙O 的切线,切点分别为A 、B .若OA =2,∠P =60°,则AB 的长为( )A.23π.B.πC.43πD.53π10、对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b 时,max{a,b]=b;如:max{4,﹣2}=4,ma x{3,3}=3,若关于x的函数为y=max{x+3,﹣x +1},则该函数的最小值是()A.0B.2C.3D.4二、填空题(共8小题,每小题4分,满分32分)11.分解因式:x2y﹣4y=12.已知x﹣2y=3,那么代数式3﹣2x+4y的值是_________13.已知反比例函数kyx=(0k≠),如果在这个函数图像所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是14.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是____ 度15.三角形的两边长分别是3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长为.16.如图,在⊙O中,弦AC=2,点B是圆上一点,且∠ABC=45°,则⊙O的半径R=.(第16题图) (第17题图)17.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为米.18.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2,…第n个三角形数记为x n ,则x n +x n+1= .三、解答题(本大题共8个小题,共78分,解答题要求写出证明步骤或解答过程) 19.(本小题8分) 计算:()02017)10(360sin 21-+--︒+-π.20.(本小题8分) 先化简,再求值:121)1(222++-÷-+x x x x x x ,其中x 的值从不等式组⎩⎨⎧<-≤-4121x x 的整数解中选取。

2020年中考模拟检测《数学试题》附答案解析

2020年中考模拟检测《数学试题》附答案解析

中考考前综合模拟测试数 学 试 卷(时间:xx 分钟 总分:xx 分)学校________ 班级________ 姓名________ 座号________一、单选题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2019·长沙)下列个数中,比-3小的数是( )A .﹣5B .﹣1C .0D .12.(2019·株洲)下列各式中,与233x y 是同类项的是( )A .52xB .323x yC .2312x y -D .513y - 3.(2019·淄博)下列几何体中,其主视图、左视图和俯视图完全相同的是( )A.B. C. D.4.(2019·山西)五台山景区空气清爽,景色宜人."五一"小长假期间购票进山游客12万人次,再创历史新高.五台山景区门票价格旺季168元/人.以此计算,"五一"小长假期间五台山景区进山门票总收入用科学记数法表示为( ) A.2.016×108元B.0.2016×107元C.2.016×107元D.2016×104元5.(2019·株洲)下列各选项中因式分解正确的是( )A .221(1)x x -=-B .3222(2)a a a a a -+=-C .2242(2)y y y y -+=-+D .222(1)m n mn n n m -+=- 6.(2019·天津) 若点A(-3,y 1),B(-2,y 2),C(1,y 3)都在反比例函数xy 12-=的图像上,则y 1,y 2,y 3的大小关系是A. y 2<y 1<y 3B. y 3 <y 1 <y 2C. y 1 <y 2<y 3D. y 3 <y 2<y 17. (2019·泰安)一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为A.15B.25C.35D.458.(2019·衡阳)国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路,某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( ) A. 9(1-2x )=1 B. 9(1-x )2=1 C. 9(1+2x )=1 D. 9(1+x )2=19.(2019•济宁)将抛物线265y x x =-+向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是 A .2(4)6y x =-- B .2(1)3y x =-- C .2(2)2y x =--D .2(4)2y x =--10.(2019·广元)如图,在正方形ABCD 的对角线AC 上取一点E.使得∠CDE =15°,连接BE 并延长 BE 到F,使CF =CB,BF 与CD 相交于点H,若AB =1,有下列结论:①BE =DE;②CE+DE =EF;③S △DEC =14-④1DH HC =.则其中正确的结论有( ) A.①②③B.①②③ ④C.①②④D.①③④二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 11.(2019·德州)|x ﹣3|=3﹣x ,则x 的取值范围是 . 12.(2019 · 柳州)如图,在△ABC 中,sin B =,tan C =,AB =3,则AC 的长为 .13.(2019•广安)在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为__________米.14.(2019·宁波)如图,Rt △ABC 中,∠C =90°,AC =12 ,点D 在边BC 上,CD =5,BD =13.点P 是线段AD 上一动点,当半径为6的e P 与△ABC 的一边相切时,AP 的长为________.三、简答题 (本题共2小题,每题8分,共16分) 15.(2019·凉山)计算:tan45° + (3-2)0-(-21)-2+ ︱3-2︱. 16.(2019·无锡)解方程:0522=--x x 四(本题共2小题,每题8分,共16分) 17.(2019·安徽)观察以下等式:第1个等式:211=111+, 第2个等式:311=226+,第3个等式:211=5315+,第4个等式:211 =7428+,第5个等式:211=9545+,……按照以上规律,解决下列问题:(1)写出第6个等式:__________;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.18.(2019•武汉)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.五、(本题共2小题,每题10分,共20分)19.(2019·衡阳)如图,在一次综合实践活动中,小亮要测量一楼房的高度,先在坡面D处测得楼房顶部A 的仰角为30°,沿坡面向下走到坡脚C处,然后向楼房方向继续行走10米到达E处,测得楼房顶部A的仰角为60°,已知坡面CD=10米,山坡的坡度i=13(坡度i是指坡面的铅直高度与水平宽度的比),求楼房AB高度.(结果精确到0.1米)32≈1041)30°60°楼房i=1:3ADE20.(2019·南充)如图,在ABC∆中,以AC为直径的Oe交AB于点D,连接CD,BCD A∠=∠.(1)求证:BC是Oe的切线;(2)若5BC=,3BD=,求点O到CD的距离.六.(本题满分12分)21.(2019 ·荆州)体育组为了了解九年级450名学生排球垫球的情况,随机抽查了九年级部分学生进行排球垫球测试(单位:个),根据测试结果,制成了下面不完整的统计图表:组别个数段频数频率1 0≤x<10 5 0.12 10≤x<20 21 0.423 20≤x<30 a4 30≤x<40 b(1)表中的数a=,b=;(2)估算该九年级排球垫球测试结果小于10的人数;(3)排球垫球测试结果小于10的为不达标,若不达标的5人中有3个男生,2个女生,现从这5人中随机选出2人调查,试通过画树状图或列表的方法求选出的2人为一个男生一个女生的概率.七、(本题满分12分)22.(2019浙江省杭州市)设二次函数y=(x-x1)(x-x2)( x1,x2是实数)(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x=12时,y=-12.若甲求得的结果都正确·你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值.(用含x1,x2的代数式表示).(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时.求证: 0<mn<1 16.八、(本题满分14分)23、(2019·海南)如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A,D不重合),射线PE 与BC 的延长线交于点Q. (1)求证:△PDE ≌△QCE;(2)过点E 作EF ∥BC 交PB 于点F,连接AF,当PB =PQ 时,①求证:四边形AFEP 是平行四边形;②请判断四边形AFEP 是否为菱形,并说明理由.答案与解析一、单选题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2019·长沙)下列个数中,比-3小的数是( )A .﹣5B .﹣1C .0D .1 【答案】A【解析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.-5<-3<-1<0<1,所以比-3小的数是-5,故本题选:A .2.(2019·株洲)下列各式中,与233x y 是同类项的是( )A .52xB .323x yC .2312x y -D .513y - 【答案】C【解析】根据同类项的定义可知,含有相同的字母,并且相同字母的指数也分别相同,故选C 。

2024年中考数学模拟考试试卷(有参考答案)

2024年中考数学模拟考试试卷(有参考答案)
2024年中考数学模拟考试试卷(有参考答案)
(满分150分;考试时间:120分钟)
学校:___________班级:___________姓名:___________考号:___________
(全卷共三个大题,满分150分,考试时间120分钟)
注意事项:
1.试题的答案书写在答题卡上,不得在试题卷上直接作答
故答案为: .
【点睛】本题考查了一元二次方程的应用增长率问题根据题意列出方程是解题的关键.
15.如图在 中 点D为 上一点连接 .过点B作 于点E过点C作 交 的延长线于点F.若 则 的长度为___________.
【答案】3
【解析】
【分析】证明 得到 即可得解.
【详解】解:∵





在 和 中:
19.计算:
(1) ;
(2)
【答案】(1)
(2)
【解析】
【分析】(1)先计算单项式乘多项式平方差公式再合并同类项即可;
(2)先通分计算括号内再利用分式的除法法则进行计算.
【小问1详解】
解:原式

【小问2详解】
原式

【点睛】本题考查整式的混合运算分式的混合运算.熟练掌握相关运算法则正确的计算是解题的关键.
∴ 最大取 此时
∴这个最大的递减数为8165.
故答案为:8165.
【点睛】本题考查一元一次方程和二元一次方程的应用.理解并掌握递减数的定义是解题的关键.
三、解答题:(本大题8个小题第19题8分其余每题各10分共78分)解答时每小题必须给出必要的演算过程或推理步骤画出必要的图形(包括辅助线)请将解答过程书写在答题卡中对应的位置上.
A.39B.44C.49D.54

2020年中考数学模拟试题(八)有答案

2020年中考数学模拟试题(八)有答案

2020年中考模拟试题(八)数学注意事项:1. 本试卷共8页,26个小题,满分为120分,考试时间为120分钟。

2. 根据阅卷需要,本试卷中的所有试题均按要求在答题卡上作答,答在本试卷上的答案无效。

3. 考试结束后,将本试卷保管好并将答题卡上交。

一、选择题(本大题包括10个小题,每小题3分,共30分,每小题只有一个正确选项,请在答题卡上将代表正确答案的字母用2B铅笔涂黑)1.下列各数,最小的数是()A.﹣2020B.0C.D.﹣12.下面运算中,结果正确的是()A.5ab﹣3b=2a B.(﹣3a2b)2=6a4b2C.a3•b÷a=a2b D.(2a+b)2=4a2+b23.新冠病毒疫情发生以来,我国邮政快递企业调配全网资源,迅速开通了国际和国内的航线,畅通陆路运输,全力保障武汉等重点地区的应急救援物资和人民群众日常基本生活物资运递,截止至2020年4月14日,累计为援鄂医疗队免费寄递物品19.71万件.其中数值19.71万可用科学记数法表示为()A.1.971×109B.19.71×104C.0.1971×106D.1.971×105 4.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.5.如图所示的主视图和俯视图,其对应的几何体(阴影所示如图)可以是下列()A.B.C.D.6.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A.B.C.D.7.如图,矩形ABCD的顶点A和对称中心均在反比例函数y=(k≠0,x>0)上,若矩形ABCD的面积为12,则k的值为()A.12 B.6C.4D.38.如图,直线PQ是矩形ABCD的一条对称轴,点E在AB边上,将△ADE沿DE折叠,点A恰好落在CE与PQ的交点F处,若S△DEC=4,则AD的长为()A.4B.2C.4D.29.函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,且x1>1,x2﹣x1=4,当1≤x≤3时,该函数的最小值m与b的关系式是()A.m=2b+5B.m=4b+8C.m=6b+15D.m=﹣b2+4 10.如图,棱长均为1的直三棱柱ABC﹣A1B1C1中,F是棱AC的中点.动点P从点A出发,沿着A→B→C的路线在该棱柱的棱上运动,运动到点C就停止.设点P运动的路程为x,y=FP+PB1,则y关于x的函数图象大致为()A.B.C.D.二、填空题(本题包括7个小题,每小题3分,共21分,将答案直接填在答题卡对应题的横线上)11.在函数y=中,自变量x的取值范围是.12.分解因式:a2b+4ab+4b=.13.如图,菱形OABC的边长为2,且点A、B、C在⊙O上,则劣弧的长度为.14.关于x的方程x2﹣(3k+1)x+2k2+2k=0,若等腰三角形△ABC一边长为a=6,另两边长b,c为方程两个根,则△ABC的周长为.15.如图,已知AB是⊙O的直径,弦CD交AB于点E,∠CEA=30°,OF⊥CD,垂足为点F,DE=5,OF=1,那么CD=.16.如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB=S△PCD,则PC+PD的最小值为.17.如图,菱形OAA1B1的边长为1,∠AOB=60°,以对角线OA1为一边,在如图所示的一侧作相同形状的菱形OA1A2B2,再依次作菱形OA2A3B3,菱形OA3A4B4,……,则菱形OA2019A2020B2020的边长为.三、解答题(本题包括9个小题,共69分,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.计算:(π﹣3.14)0+﹣2sin45°+﹣(﹣1)2020;19.先化简,再求值:÷(﹣x+1),请从不等式组的整数解中选择一个合适的值代入求值.20.小锤和豆花要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边BC上有水池及建筑遮挡,没有办法直接测量其长度.小锤经测量得知AB=AD=5m,∠A=60°,DC=13m,∠ABC=150°.豆花说根据小锤所得的数据可以求出CB的长度.你同意豆花的说法吗?若同意,请求出CB的长度;若不同意,请说明理由.21.在新中国成立70周年之际,某校开展了“校园文化艺术”活动,活动项目有:书法、绘画、声乐和器乐,要求全校学生人人参加,并且每人只能参加其中一项活动.政教处在该校学生中随机抽取了100名学生进行调查和统计,并绘制了如图两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请补全条形统计图和扇形统计图;(2)该校初中学生中,参加“书法”项目的学生所占的百分比是多少?(3)若该校共有1500人,请估计其中参加“器乐”项目的高中学生有多少人?(4)经政教处对所有参加“绘画”项目的作品进行评比,共选出2名初中学生和2名高中学生的最佳作品,学校决定从这4名学生中随机抽取2人作为学生会“绘画社团”的团长,那么正好抽到一名初中学生和一名高中学生的概率是多少?22.如图,放置在水平桌面上的台灯灯臂AB长为42cm,灯罩BC长为32cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?23.预防新型冠状病毒期间,某种消毒液A地需要6吨,B地需要10吨,正好M地储备有7吨,N地储备有9吨.市预防新型冠状病毒领导小组决定将这16吨消毒液调往A地和B地.消毒液的运费价格如表(单位:元/吨).设从M地调运x(0<x≤6)吨到A地.(1)求调运16吨消毒液的总运费y关于x的函数关系式;(2)求出总运费最低的调运方案,最低运费为多少?A地B地终点起点M地70120N地458024.(1)【证法回顾】证明:三角形中位线定理.已知:如图1,DE是△ABC的中位线.求证:.(填写要求证的结论)证明:添加辅助线:如图1,在△ABC中,延长DE(D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF,请继续完成证明过程;(2)【问题解决】如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD 边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.25.如图F为⊙O上的一点,过点F作⊙O的切线与直径AC的延长线交于点D,过圆上的另一点B作AO的垂线,交DF的延长线于点M,交⊙O于点E,垂足为H,连接AF,交BM于点G.(1)求证:△MFG为等腰三角形.(2)若AB∥MD,求证:FG2=EG•MF.(3)在(2)的条件下,若DF=6,tan∠M=,求AG的长.26.如图,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y轴的负半轴交于点C.(1)求点B的坐标.(2)若△ABC的面积为6.①求这条抛物线相应的函数解析式;②在拋物线上是否存在一点P,使得∠POB=∠CBO?若存在,请求出点P的坐标;若不存在,请说明理由.2020年中考数学模拟试题(八)参考答案一.选择题(共10小题)1.下列各数,最小的数是()A.﹣2020B.0C.D.﹣1【分析】由于正数大于0,0大于负数,要求最小实数,只需比较﹣2020与﹣1即可.【解答】解:∵﹣2020<﹣1<0<,∴最小的数是﹣2020.故选:A.2.下面运算中,结果正确的是()A.5ab﹣3b=2a B.(﹣3a2b)2=6a4b2C.a3•b÷a=a2b D.(2a+b)2=4a2+b2【分析】根据合并同类项、积的乘方、单项式的除法和完全平方公式判断即可.【解答】解:A、5ab与﹣3b不是同类项,不能合并,选项错误,不符合题意;B、(﹣3a2b)2=9a4b2,选项错误,不符合题意;C、a3•b÷a=a2b,选项正确,符合题意;D、(2a+b)2=4a2+4ab+b2,选项错误,不符合题意;故选:C.3.新冠病毒疫情发生以来,我国邮政快递企业调配全网资源,迅速开通了国际和国内的航线,畅通陆路运输,全力保障武汉等重点地区的应急救援物资和人民群众日常基本生活物资运递,截止至2020年4月14日,累计为援鄂医疗队免费寄递物品19.71万件.其中数值19.71万可用科学记数法表示为()A.1.971×109B.19.71×104C.0.1971×106D.1.971×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:19.71万=19710000=1.971×105,故选:D.4.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、既是轴对称图形,又是中心对称图形,故此选项符合题意.故选:D.5.如图所示的主视图和俯视图,其对应的几何体(阴影所示如图)可以是下列()A.B.C.D.【分析】根据几何体的主视图确定A、B、C选项,然后根据俯视图确定D选项即.【解答】解:A、B、D选项的主视图符合题意;C选项的主视图和俯视图都不符合题意,D选项的俯视图符合题意,综上:对应的几何体为D选项中的几何体.故选:D.6.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A.B.C.D.【分析】关键描述语:单独使用B型包装箱比单独使用A型包装箱可少用6个;可列等量关系为:所用B型包装箱的数量=所用A型包装箱的数量﹣6,由此可得到所求的方程.【解答】解:根据题意,得:.故选:C.7.如图,矩形ABCD的顶点A和对称中心均在反比例函数y=(k≠0,x>0)上,若矩形ABCD的面积为12,则k的值为()A.12B.6C.4D.3【分析】设点A的坐标,利用矩形的面积,表示矩形的边长,再根据对称中心表示E的坐标,由点A、E都在反比例函数的图象上,由反比例函数k的几何意义求解即可.【解答】解:设矩形的对称中心为E,连接OA、OE,过E作EF⊥OC垂足为F,∵点E是矩形ABCD的对称中心,∴BF=FC=BC,EF=AB,设OB=a,AB=b,∵ABCD的面积为12,∴BC=,BF=FC=,∴点E(a+,b),∵S△AOB=S△EOF=k,∴ab=(a+)×b=k,即:ab=6=k,故选:B.8.如图,直线PQ是矩形ABCD的一条对称轴,点E在AB边上,将△ADE沿DE折叠,点A恰好落在CE与PQ的交点F处,若S△DEC=4,则AD的长为()A.4B.2C.4D.2【分析】根据矩形的性质和折叠的性质可得∠ADE=∠EDF=∠CDF=30°,再根据三角形面积公式可求AD的长.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,∵直线PQ是矩形ABCD的一条对称轴,∴∠DGF=90°,CD∥PQ,DG=AD,由折叠得∠EFD=∠A=90°,DF=AD,∠EDF=∠ADE,∴∠CFD=90°,∵EF=CF,∴∠EDF=∠CDF,∴∠ADE=∠EDF=∠CDF=30°,∴EF=DF,∴EC=AD,∵S△DEC=4,∴AD×AD÷2=4,解得AD=2.故选:D.9.函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,且x1>1,x2﹣x1=4,当1≤x≤3时,该函数的最小值m与b的关系式是()A.m=2b+5B.m=4b+8C.m=6b+15D.m=﹣b2+4【分析】由韦达定理得:x1•x2=6,而x2﹣x1=4,求出x1、x2的值,函数的对称轴为直线x=(x1+x2)=<3,故当1≤x≤3时,函数在x=3时,取得最小值,即可求解.【解答】解:函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,∴x1•x2=6,而x2﹣x1=4,解得:x1=﹣2±(舍去负数),则x2=2+,∵x1+x2=﹣2b,∴b=﹣;函数的对称轴为直线x=(x1+x2)=<3,故当1≤x≤3时,函数在x=3时,取得最小值,即m=y=x2+2bx+6=15+6b,故选:C.10.如图,棱长均为1的直三棱柱ABC﹣A1B1C1中,F是棱AC的中点.动点P从点A出发,沿着A→B→C的路线在该棱柱的棱上运动,运动到点C就停止.设点P运动的路程为x,y=FP+PB1,则y关于x的函数图象大致为()A.B.C.D.【分析】根据图象的对称性,确定图象的对称性即可求解.【解答】解:由题意知,FP+PB1关于BB1对称,故可知y关于x的函数图象关于直线x=1对称,故选:B.二.填空题(共7小题)11.在函数y=中,自变量x的取值范围是x≥0且x≠3.【分析】根据被开方数是非负数且分母不等于零,可得答案.【解答】解:由题意,得x≥0且x﹣3≠0,解得x≥0且x≠3,故答案为:x≥0且x≠3.12.分解因式:a2b+4ab+4b=b(a+2)2.【分析】原式提取b,再利用完全平方公式分解即可.【解答】解:原式=b(a2+4a+4)=b(a+2)2,故答案为:b(a+2)213.如图,菱形OABC的边长为2,且点A、B、C在⊙O上,则劣弧的长度为π.【分析】连接OB,根据菱形性质求出OB=OC=BC,求出△BOC是等边三角形,求出∠COB=60°,根据弧长公式求出即可.【解答】解:连接OB,∵四边形OABC是菱形,∴OC=BC=AB=OA=2,∴OC=OB=BC,∴△OBC是等边三角形,∴∠COB=60°,∴劣弧的长为=π,故答案为:π.14.关于x的方程x2﹣(3k+1)x+2k2+2k=0,若等腰三角形△ABC一边长为a=6,另两边长b,c为方程两个根,则△ABC的周长为16或22.【分析】先计算判别式的值得到△=(k﹣1)2≥0,利用求根公式得到x1=k+1,x2=2k,根据等腰三角形的性质讨论:当k+1=2k或k+1=6或2k=6时,分别计算出对应的k的值得到b、c的值,然后根据三角形三边的关系和三角形周长的定义求解.【解答】解:根据题意得△=(3k+1)2﹣4(2k2+2k)=(k﹣1)2≥0,所以x=,则x1=k+1,x2=2k,当k+1=2k时,解得k=1,则b、c的长为2,而2+2<6,不合题意舍去;当k+1=6时,解得k=5,则2k=10,此时三角形的周长为6+6+10=22;当2k=6时,解得k=3,则k+1=4,此时三角形的周长为6+6+4=16.综上所述,△ABC的周长为16或22.故答案为16或22.15.如图,已知AB是⊙O的直径,弦CD交AB于点E,∠CEA=30°,OF⊥CD,垂足为点F,DE=5,OF=1,那么CD=.【分析】根据AB是⊙O的直径,OF⊥CD,和垂径定理可得CF=DF,再根据30度角所对直角边等于斜边一半,和勾股定理即可求出EF的长,进而可得CD的长.【解答】解:∵AB是⊙O的直径,OF⊥CD,根据垂径定理可知:CF=DF,∵∠CEA=30°,∴∠OEF=30°,∴OE=2,EF=,∴DF=DE﹣EF=5﹣,∴CD=2DF=10﹣2.故答案为:10﹣2.16.如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB=S△PCD,则PC+PD的最小值为2.【分析】依据S△P AB=S△PCD,即可得出点P在BC的垂直平分线上,进而得到PB=PC,当点B,P,D在同一直线上时,BP+PD的最小值等于对角线BD的长,依据勾股定理求得BD的长,即可得到PC+PD的最小值为2.【解答】解:∵点P是矩形ABCD内一动点,且S△P AB=S△PCD,AB=CD,∴点P到AB的距离等于点P到CD的距离,∴点P在BC的垂直平分线上,∴PB=PC,∴PC+PD=BP+PD,当点B,P,D在同一直线上时,BP+PD的最小值等于对角线BD的长,又∵AB=CD=4,BC=6,∴对角线BD===2,∴PC+PD的最小值为2,故答案为:2.17.如图,菱形OAA1B1的边长为1,∠AOB=60°,以对角线OA1为一边,在如图所示的一侧作相同形状的菱形OA1A2B2,再依次作菱形OA2A3B3,菱形OA3A4B4,……,则菱形OA2019A2020B2020的边长为()2019.【分析】根据图形的变化发现规律即可求解.【解答】解:∵菱形OAA1B的边长为1,∠AOB=60°,对角线OA1为:2cos30°•OA=;∴菱形OA1A2B2的边长为:菱形OA2A3B3的边长为()2菱形OA3A4B4的边长为()3……,发现规律:则菱形OA2019A2020B2020的边长为()2019.故答案为:()2019.三.解答题(共23小题)18.(1)计算:(﹣)﹣1+﹣|π﹣3|﹣;(2)因式分解:a3﹣2a2b+ab2.【分析】(1)原式利用负整数指数幂法则,绝对值的代数意义,二次根式性质,以及特殊角的三角函数值计算即可求出值;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=﹣3+﹣(π﹣3)﹣=﹣3+﹣π+3﹣=﹣π;(2)原式=a(a2﹣2ab+b2)=a(a﹣b)2.19.(1)计算:(π﹣3.14)0+﹣2sin45°+﹣(﹣1)2020;(2)先化简,再求值:÷(﹣x+1),请从不等式组的整数解中选择一个合适的值代入求值.【分析】(1)直接利用零指数幂的性质以及二次根式的性质、负整数指数幂的性质分别化简得出答案;(2)直接利用将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【解答】解:(1)原式=1+﹣1﹣2×+﹣1=﹣1;(2)原式====,由不等式组,解得:﹣2≤x≤2,∵x+1≠0,(2+x)(2﹣x)≠0,∴x≠﹣1,x≠±2,∴当x=0时,原式==1.(或当x=1时,原式==).20.小锤和豆花要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边BC上有水池及建筑遮挡,没有办法直接测量其长度.小锤经测量得知AB=AD=5m,∠A=60°,DC=13m,∠ABC=150°.豆花说根据小锤所得的数据可以求出CB的长度.你同意豆花的说法吗?若同意,请求出CB的长度;若不同意,请说明理由.【分析】直接利用等边三角形的判定方法得出△ABD是等边三角形,再利用勾股定理得出答案.【解答】解:同意豆花的说法.理由:连接BD,∵AB=AD=5m,∠A=60°,∴△ABD是等边三角形,∴BD=5m,∠ABD=60°,∵∠ABC=150°,∴∠DBC=90°,∵DC=13m,BD=5m,∴CB==12(m).答:CB的长度为12m.21.在新中国成立70周年之际,某校开展了“校园文化艺术”活动,活动项目有:书法、绘画、声乐和器乐,要求全校学生人人参加,并且每人只能参加其中一项活动.政教处在该校学生中随机抽取了100名学生进行调查和统计,并绘制了如图两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请补全条形统计图和扇形统计图;(2)该校初中学生中,参加“书法”项目的学生所占的百分比是多少?(3)若该校共有1500人,请估计其中参加“器乐”项目的高中学生有多少人?(4)经政教处对所有参加“绘画”项目的作品进行评比,共选出2名初中学生和2名高中学生的最佳作品,学校决定从这4名学生中随机抽取2人作为学生会“绘画社团”的团长,那么正好抽到一名初中学生和一名高中学生的概率是多少?【分析】(1)求出参加高中声乐的人数即可补充条形统计图;由参加器乐和声乐的总人数看分别求出其所占的百分比则扇形统计图可补充完整;(2)首先求出参加各个项目的初中总人数即可得到参加“书法”项目的学生所占的百分比;(3)求出参加“器乐”项目的高中学生所占百分比,即可估计1500名学生中参加“器乐”项目的高中学生的人数;(4)记两名高中学生为A,B,两名初中学生为a,b.列表得到所有可能结果,进而可求出正好抽到一名初中学生和一名高中学生的概率.【解答】解:(1)补全条形统计图和扇形统计图如下:(2).答:该校初中学生中,参加“书法”项目的学生占45%.(3)(人).答:该校参加“器乐”项目的高中学生约有375人.(4)记两名高中学生为A,B,两名初中学生为a,b.列表如下:A B a bA(A,B)(A,a)(A,b)B(B,A)(B,a)(B,b)a(a,A)(a,B)(a,b)b(b,A)(b,B)(b,a)由上表可知,共有12种等可能结果,其中能抽到一名初中学生和一名高中学生的结果有8种,∴P(抽到一名初中学生和一名高中学生)=.答:正好抽到一名初中学生和一名高中学生的概率是.22.如图,放置在水平桌面上的台灯灯臂AB长为42cm,灯罩BC长为32cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?【分析】过点B作BM⊥CE于点M,BF⊥DA于点F,在Rt△BCM和Rt△ABF中,通过解直角三角形可求出CM、BF的长,再由CE=CM+BF+ED即可求出CE的长.【解答】解:过点B作BM⊥CE于点M,BF⊥DA于点F,如图所示.在Rt△BCM中,BC=32cm,∠CBM=30°,∴CM=BC•sin∠CBM=16cm.在Rt△ABF中,AB=42cm,∠BAD=60°,∴BF=AB•sin∠BAD=21cm.∵∠ADC=∠BMD=∠BFD=90°,∴四边形BFDM为矩形,∴MD=BF,∴CE=CM+MD+DE=CM+BF+ED=16+21+2=21+18(cm).答:此时灯罩顶端C到桌面的高度CE是(21+18)cm.23.预防新型冠状病毒期间,某种消毒液A地需要6吨,B地需要10吨,正好M地储备有7吨,N地储备有9吨.市预防新型冠状病毒领导小组决定将这16吨消毒液调往A地和B地.消毒液的运费价格如表(单位:元/吨).设从M地调运x(0<x≤6)吨到A地.(1)求调运16吨消毒液的总运费y关于x的函数关系式;(2)求出总运费最低的调运方案,最低运费为多少?A地B地终点起点M地70120N地4580【分析】(1)根据题意即可得调运16吨消毒液的总运费y关于x的函数关系式;(2)根据一次函数的性质即可求出总运费最低的调运方案和最低运费.【解答】解:(1)由题意可知:y=70x+120(7﹣x)+45(6﹣x)+80[(9﹣(6﹣x)]=﹣15x+1350(0<x≤6).(2)由(1)的函数可知:k=﹣15<0,所以函数的值随x的增大而减小,当x=6时,有最小值y=﹣15×6+1350=1260(元).答:总运费最低的调运方案是从M地调运6吨到A地,1吨到B地,最低运费为1260元.24.(1)【证法回顾】证明:三角形中位线定理.已知:如图1,DE是△ABC的中位线.求证:DE∥BC,DE=BC.(填写要求证的结论)证明:添加辅助线:如图1,在△ABC中,延长DE(D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF,请继续完成证明过程;(2)【问题解决】如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD 边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.【分析】(1)利用“边角边”证明△ADE和△CEF全等,根据全等三角形对应边相等可得AD=CF,然后判断出四边形BCFD是平行四边形,根据平行四边形的性质可得;(2)先判断出△AEG≌△DEH(ASA)进而判断出EF垂直平分GH,即可得出结论.【解答】解:DE∥BC,DE=BC,证明:如图,延长DE到点F,使得EF=DE,连接CF在△ADE和△CFE中,,∴△ADE≌△CFE(SAS),∴∠A=∠ECF,AD=CF,∴CF∥AB,又∵AD=BD,∴CF=BD,∴四边形BCFD是平行四边形,∴DE∥BC,DE=BC.故答案为:DE∥BC,DE=BC.(2)如图2,延长GE、FD交于点H,∵E为AD中点,∴EA=ED,且∠A=∠EDH=90°,在△AEG和△DEH中,,∴△AEG≌△DEH(ASA),∴AG=HD=2,EG=EH,∵∠GEF=90°,∴EF垂直平分GH,∴GF=HF=DH+DF=2+3=5.25.如图F为⊙O上的一点,过点F作⊙O的切线与直径AC的延长线交于点D,过圆上的另一点B作AO的垂线,交DF的延长线于点M,交⊙O于点E,垂足为H,连接AF,交BM于点G.(1)求证:△MFG为等腰三角形.(2)若AB∥MD,求证:FG2=EG•MF.(3)在(2)的条件下,若DF=6,tan∠M=,求AG的长.【分析】(1)连接OF,利用等角的余角相等证明∠MFG=∠MGF即可解决问题.(2)连接EF.证明△EGF∽△FGM,可得结论,(3)连接OB.证明∠M=∠FOD,推出tan∠M=tan∠FOD==,由DF=6,推出OF=8,再由tan∠M=tan∠ABH==,假设AH=3k,BH=4k,则AB=BG=5k,GH=k,AG=k,在Rt△OHB中,根据OH2+BH2=OB2,构建方程即可解决问题.【解答】(1)证明:连接OF.∵DM是⊙O的切线,∴DM⊥OF,∴∠MFG+∠OF A=90°,∵BM⊥AD,∴∠AHG=90°,∴∠OAF+∠AGH=90°,∵OF=OA,∴∠OF A=∠OAF,∵∠MGF=∠AGH,∴∠MFG=∠AGF,∴MF=MG,∴△MFG是等腰三角形.(2)证明:连接EF.∵AB∥DM,∴∠MF A=∠F AB,∵∠F AB=∠FEG,∠MFG=∠MGF,∴∠FEG=∠MFG,∵∠EGF=∠MGF,∴△EGF∽△FGM,∴=,∴FG2=EG•GM,∵MF=MG,∴FG2=EG•MF.(3)解:连接OB.∵∠M+∠D=90°,∠FOD+∠D=90°,∴∠M=∠FOD,∴tan M=tan∠FOD==,∵DF=6,∴OF=8,∵DM∥AB,∴∠M=∠ABH,∴tan M=tan∠ABH==,∴可以假设AH=3k,BH=4k,则AB=BG=5k,GH=k,AG=k,在Rt△OHB中,∵OH2+BH2=OB2,∴(8﹣3k)2+(4k)2=82,解得k=,∴AG=.26.如图,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y 轴的负半轴交于点C.(1)求点B的坐标.(2)若△ABC的面积为6.①求这条抛物线相应的函数解析式;②在拋物线上是否存在一点P,使得∠POB=∠CBO?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)令y=0,解方程可求出点A坐标为(a,0),点B坐标为(1,0);(2)①由(1)可得,点A的坐标为(a,0),点C的坐标为(0,a),a<0,再由△ABC 的面积得到a的值即可;②本题分两种情况讨论:当点P在x轴上方时,直线OP的函数表达式为y=3x,则直线与抛物线的交点P可求出;当点P在x轴下方时,直线OP的函数表达式为y=﹣3x,则直线与抛物线的交点P即可求出.【解答】解:(1)当y=0时,x2﹣(a+1)x+a=0,解得x1=1,x2=a.∵点A位于点B的左侧,与y轴的负半轴交于点C,∴a<0,∴点B坐标为(1,0).(2)①由(1)可得,点A的坐标为(a,0),点C的坐标为(0,a),a<0,∴AB=1﹣a,OC=﹣a,∵△ABC的面积为6,∴,∴a1=﹣3,a2=4.∵a<0,∴a=﹣3,∴y=x2+2x﹣3.②存在,理由如下:∵点B的坐标为(1,0),点C的坐标为(0,﹣3),∴设直线BC的解析式为y=kx﹣3,则0=k﹣3,∴k=3.∵∠POB=∠CBO,∴当点P在x轴上方时,直线OP∥直线BC,∴直线OP的函数解析式y=3x,则∴(舍去),,∴点的P坐标为当点P在x轴下方时,直线OP'与直线OP关于x轴对称,则直线OP'的函数解析式为y=﹣3x,则∴(舍去),,∴点P'的坐标为综上可得,点P的坐标为或.。

2020年湖南省中考数学模拟试题(含答案)

2020年湖南省中考数学模拟试题(含答案)

2020年湖南省中考数学模拟试题含答案温馨提示:1.本试卷包括试题卷和答题卡.考生作答时,选择题和非选择题均须作答在答题卡上,在本试题卷上作答无效.考生在答题卡上按答题卡中注意事项的要求答题. 2.考试结束后,将本试题卷和答题卡一并交回.3.本试卷满分150分,考试时间120分钟.本试卷共三道大题,26个小题.如有缺页,考生须声明.一、选择题(本大题共10个小题,每小题只有一个正确选项,请将正确选项填涂到答题卡上.每小题4分,共40分) 1. 2017-的相反数的倒数为( )A.20171-B.20171C .2017D .-20172.左下图是由4个完全相同的小正方体组成的立体图形,则它的俯视图是( )3.下列运算正确的是( )A.222()x y x y -=- B.246x x x •= C.2(3)3-=-D.236(2)6x x =4.如图,将一块直角三角板的直角顶点放在直尺的一边上,如果∠1=50°,那么∠2的度数是( )A.30°B. 40° C. 50°D. 60°正面 A B C D5.长株潭城际铁路线全长95500米,则数据95500用科学记数法表示为( ) A .0.955×105B .9.55×105C .9.55×104D .9.5×1046.不等式组⎩⎨⎧<-≥-048512x x 的解集在数轴上表示为( )7.在同一平面直角坐标系中,函数y =ax +b 与y =ax 2—bx 的图象可能是( )8.如图,AB是⊙O的直径,BC是⊙O的弦,若∠OBC=60°,则∠BAC 的度数是( ) A .75° B.60° C . 45° D.30°(第8题) (第9题) (第10题)9.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为( ) (A )(1,-1) (B )(-1,-1) (C )(2,0) (D )(0,-2)10.反比例函数 (a>0,a为常数)和 在第一象限内的图象如图所示,点M在 的图象上,MC⊥x轴于点C,交 的图象于点A;MD⊥y轴于点D,交 O yxA . OyxC .OyxD .OyxB.OA B Cx ay =x y 2=xa y =xy 2=xy 2=xa y =的图象于点B,当点M在的图象上运动时,以下结论:①S △ODB=S △OCA;②四边形OAMB的面积不变;③当点A是MC 的中点时,则点B是MD的中点.其中正确结论的个数是( ) A.0 B.1C.2 D.3二、填空题(本大题共8个小题,请将答案填在答题卡的答案栏内,每小题4分,共32分) 11.分解因式:4ax 2-ay 2=______________________ 12.计算 (a-a ab b 22-) ÷ a b a -的结果是___________________ 13.在半径为6cm 的圆中,120°的圆心角所对的弧长为 cm . 14.如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了 米.(第14题) (第15题) (18题)15.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=110°,则∠B AD=_度. 16.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不是标准的克数记为负数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FE DAB C湖南省中考数学模拟试卷时量:120 分钟 满分:100 分温馨提示:1、写好学校,姓名,班级,考试号,座位号; 2、注意考试时,认真细致,书写工整。

3、解答题要写完整的解题过程。

一、选择题(每题3分,共24分)1、-2的绝对值是 A 、-12 B 、12C 、-2D 、22、下列运算正确的是( )A 、1055a a a =+ B 、426=÷a a a C 、33)(--=mn mn D 、b a b a 33)(3--=--3、下列事件中,是确定事件的有( )A 、打开电视,正在播放广告;B 、三角形三个内角的和是180°;C 、两个负数的和是正数D 、某名牌产品一定是合格产品 4、如左图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )5、下列命题中错误的是 ( ) A 、两组对边分别相等的四边形是平行四边形 B 、平行四边形对边相等 C 、对角线相等的四边形是矩形 D 、矩形的对角线相等6、如图,已知直线AB ∥CD ,CE 交AB 于点F ,∠DCF=110°,且AE=AF ,则∠A 等于A 、30︒B 、40︒C 、50︒D 、70︒7、若直线y x a =-+与直线b x y +=的交点坐标为(m ,6)则)(2b a +的结果为( ) A 、8 B 、16 C 、24 D 、32 8、已知函数c bx ax y ++=2的图象如右图所示,那么关于x 的方程2ax +bx +c +1=0的根的情况是( ) A 、无实数根B 、有两个相等实数根C 、有两个异号实数根D 、有两个同号不等实数根学校______________ 班级______________ 姓名_______________ 考室 _____________ 考号______________………………………………密……………………………………封…………………………………………线…………………………………A .B .C .D .x y0 3-(第14题图)OCBA ()01 3.14cos 602π-+--︒二、填空题(每小题3分,共24分)9、分解因式:=-2282b a ;10、据株洲市统计局公布的数据,今年一季度全市实现国民生产总值约为3920000万元,那么3920000万元用科学计数法表示为 万元;11、函数31+=x y 的自变量取值范围是 ; 12、不等式组2621x x -<⎧⎨-+>⎩的解集是 ;13、已知方程2x 3x +k =0-有两个相等的实数根,则k = ;14、如图,A 、B 、C 为⊙O 上三点,∠ACB =20○,则∠BAO 的度数为____ ______度;15、抛物线23(1)2y x =--的顶点坐标为_____ _____;16、阅读材料:设一元二次方程c bx ax y ++=2的两根为1x ,2x ,则两根与方程系数之间有如下关系: 12bx x a+=-,a c x x =•21.根据该材料填空:已知1x ,2x 是方程2420x x ++=的两实数根,则2112x x x x +的值为__ 。

三、解答题(52分)17、(本小题满分4分)18、(本小题满分4分)先化简,再求值:⎪⎭⎫ ⎝⎛--+2122x x ÷24--x x,其中42-=x .19、(本小题满分6分) “五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元. (1) 该顾客至多可得到 元购物券;(2) 请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.20、(本小题满分6分)如上图,在△ABC 和△EDC 中,AC =CE =CB =CD ,∠ACB =∠ECD =ο90, AB 与CE 交于F ,ED 与AB 、BC 分别交于M 、H . (1) 求证:CF =CH ;(2) 如下图,△ABC 不动,将△EDC 绕点C 旋转到∠BCE=ο45时, 试判断四边形ACDM 是什么四边形?并证明你的结论.21、(本小题满分6分)小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示。

根据图中的数据(单位:m ),解答下列问题: (1) 用含x 、y 的代数式表示地面总面积;(2) 小王发现客厅面积比卫生间面积大21m 2,且地面总面积 是卫生间面积的15倍。

若铺1m 2地砖的平均费用为80元, 那么铺地砖的总费用为多少元?22、(本小题满分8分)如图,A (2,1y=k x 经过点A ,交BC 于点E ,交BD (1) 求双曲线的解析式; (2))求点F 的坐标;(3) 连接EF 、DC ,求证:EF ∥DC 。

yx25 题图322卫生间厨房卧室客厅623、(本小题满分8分) 如图1,OA 、OB 是⊙O 的半径,且OA ⊥OB ,点C 是OB 延长线上任意一点, 过点C 作CD 切⊙O 于点D ,连结AD 交DC 于点E . (1) 求证:CD=CE ;(2) 如图2,若将图1中的半径OB 所在直线向上平移,交OA 于F ,交⊙O 于B’,其他条件不变, 求证:∠C=2∠A ;(3) 如图3,在(2)的条件下,若CD=6.5,AE=3,sin A= ,求⊙O 半径OA 的长。

图 1 图 2 图 324、(本小题满分10分) 如图,平面直角坐标系中,矩形OABC 的顶点A (0,3),C (1-,0).将矩形OABC 绕原点顺时针旋转90°,得到矩形C B A O '''.解答下列问题: (1) 求出直线B B '的函数解析式;(2) 直线B B '与x 轴交于点M 、与y 轴交于点N ,抛物线c bx ax y ++=2的图象经过点 C 、M 、N ,求抛物线的函数解析式(3) 将△MON 沿直线MN 翻折,点O 落在点P 处,请你判断点P 是否在抛物线上,说明理由.OxyA BCA 'B 'C 'NM13518、先化简,再求值:⎪⎭⎫ ⎝⎛--+2122x x ÷24--x x,其中42-=x .(本小题满分4分) 答案时量:120 分钟 满分:100 分温馨提示:1、写好学校,姓名,班级,考试号,座位号; 2、注意考试时,认真细致,书写工整。

3、解答题要写完整的解题过程。

(每题3分,共24分)题号 1 2 3 4 5 6 7 8 答案DBBDABCD二.填空题(每小题3分,共24分)9. ; 10. ;11. ; 12. ;13. ; 14. ;15. ; 16. .三、解答题(52分)17、 (本小题满分4分) 解:原式= =1解:原式= 4x -- 当42-=x原式=2-学校______________ 班级______________ 姓名_______________ 考室 _____________ 考号______________………………………………密……………………………………封…………………………………………线………………………………… ()()222a b a b -+()01 3.14cos602π-+--︒63.9210⨯3x ≠-3x >70︒694()1,2-11122+-解:(1) 6x+12y+18(m 2) (2) 由题意得⎩⎨⎧⨯=++=-y y x y x 21518262126,解得:⎪⎩⎪⎨⎧==234y x∴地面总面积为:451826=++y x (m 2) ∴铺地砖的总费用为:36008045=⨯(元) 19、(本小题满分6分) (1) 该顾客至多可得到 70 元购物券;(2) 请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率. 解:所求概率为1220、(本小题满分6分) (1) 求证:CF =CH ; (2) 如下图,△ABC 不动,将△EDC 绕点C 旋转到∠BCE=ο45时,试判断四边形ACDM 是什么四边形?并证明你的结论.(1) 证明:ACBECD ∠∠︒Q ==90 ACE BCE BCD BCF ∠+∠∠+∠∴= ACF BCD ∠∴∠= AC CE CB CD Q === ACF DCH ∆≅∆∴ CF CH ∴=(2) 四边形ACDM 是菱形。

证明如下:ACB AC CB ∠︒,Q =90= B ∴∠︒=45,ECD BCE ∠︒∠︒Q =90=45BCD ∠∴︒=45 AB CD ∴P 同理 AC DM ∴P ∴四边形ACDM 是平行四边形 AC CD Q = ∴四边形ACDM 是菱形。

21、(本小题满分6分) (1) 用含x 、y 的代数式表示地面总面积;(2) 小王发现客厅面积比卫生间面积大21m 2,且地面总面积 是卫生间面积的15倍。

若铺1m 2地砖的平均费用为80元, 那么铺地砖的总费用为多少元?yx25 题图322卫生间厨房卧室客厅6(1)∵双曲线y=k x 经过点A (2,1)∴1=2k ∴k=2 ∴双曲线的解析式为y=2x(2) 设直线OB 的解析式为y=ax∵直线y=ax经过点A (2,1) ∴a=12 ∴直线的解析式为y=12x∵CE =23,代入双曲线解析式得到点E(3,23) ∴点B 的横坐标为3, 代入直线解析式,得到点B 的坐标为(3,32) ∴点F 的纵坐标为32, 代入双曲线的解析式,得到点F 的坐标为(43,32)22、(本小题满分8分) (1) 求双曲线的解析式; (2) 求点F 的坐标; (3) 连接EF 、DC ,求证:EF ∥DC 。

(3) 由中位线可证 23、(本小题满分8分) (1) 如图1,求证:CD=CE ; (2) 如图2,求证:∠C=2∠A ;(3) 如图3,在(2)的条件下,若CD=6.5,AE=3,sinA= ,求⊙O 半径OA 的长。

图 1 图 2 图 3 (1)、 (2)证明略 (3) 连接OD ,作ON ⊥AD 、CM ⊥AD 由(1)、 (2)可知:CD=CE ,∠ DCE=2∠A∴DM=CD ·sin A=6.5× =2.5∴DE=2 ×2.5=5∴AD=3+5=8 ∴AN=4∵ON=OA ·sin A ,设OA=x ,依题意得: 解得:x=⊙O 半径OA 的长为x y C EA FD B O 135MN B`E O A FC D 1352225x =(x)+413222OA =ON +AN 13313324、(本小题满分10分) 如图,平面直角坐标系中,矩形OABC 的顶点A (0,3),C (1-,0). 将矩形OABC 绕原点顺时针旋转90°,得到矩形C B A O '''.解答下列问题: (1) 求出直线B B '的函数解析式; (2) 直线B B '与x 轴交于点M 、与y 轴交于点N ,抛物线c bx ax y ++=2的图象经过点 C 、M 、N ,求抛物线的函数解析式 (3) 将△MON 沿直线MN 翻折,点O 落在点P 处,请你判断点P 是否在抛物线上,说明理由. (1)由题意得,B (1-,3),B '(3,1), ∴ 直线B B '的解析式为2521+-=x y ; (2)直线B B '与x 轴的交点为M (5,0),与y 轴的交点N (0,25), 设抛物线的解析式为()()15+-=x x a y , ∵ 抛物线过点N ,∴()1525⨯-⨯=a , ∴ 21-=a , ∴ 抛物线的解析式为()()1521+--=x x y =252212++-x x ; (3)过点O 作OD ⊥MN 于点D , ∵ M (5,0),N (0,25) ∴ ON=25,OM=5 ∴ MN=552∴ OD=5∵ 将△MON 沿直线MN 翻折,点O 落在点P 处, ∴ OP=25∴ P (2,4)代入抛物线的解析式, 点P 不在抛物线上。

相关文档
最新文档