小论文函数不等式数列在生活中的应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小论文:函数、不等式、数列在生活中的应用
第一部分不等式的应用
日常生活中常用的不等式有:一元一次不等式、一元二次不等式和平均值不等式。

前两类不等式的应用与其对应函数及方程的应用如出一辙,而平均值不等式在生产生活中起到了不容忽视的作用。

在生产和建设中,许多与最优化设计相关的实际问题通常可应用平均值不等式来解决。

包装罐设计问题
1、“白猫”洗衣粉桶
“白猫”洗衣粉桶的形状是等边圆柱
若容积一定且底面与侧面厚度一样,问高与底面半径是什么关系时用料最省(即表面积最小)?
分析:容积一定=>лr h=v(定值)
=>s=2лr +2лrh=2л(r +rh)= 2л(r +rh/2+rh/2)
≥2л3 (r h) /4 =3 2лv (当且仅当r =rh/2=>h=2r时取等号),
∴应设计为h=d的等边圆柱体.
2、“易拉罐”问题
圆柱体上下第半径为r,高为h,若体积为定值v,且上下底
厚度为侧面厚度的二倍,问高与底面半径是什么关系时用料最
省(即表面积最小)?
分析:应用均值定理,同理可得h=2d∴应设计为h=2d的圆柱体.
第二部分数列的应用
在实际生活和经济活动中,很多问题都与数列密切相关。

如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。

按揭货款中的数列问题
随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。

众所周知,按揭货款(公积金贷款)中都实行按月等额还本付息。

这个等额数是如何得来的,此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。

下面就来寻求这一问题的解决办法。

若贷款数额a0元,贷款月利率为p,还款方式每月等额还本付息a 元.设第n月还款后的本金为an,那么有:
a1=a0(1+p)-a,
a2=a1(1+p)-a,
a3=a2(1+p)-a,
......
an+1=an(1+p)-a,.........................(*)
将(*)变形,得(an+1-a/p)/(an-a/p)=1+p.
由此可见,{an-a/p}是一个以a1-a/p为首项,1+p为公比的等比数
列。

日常生活中一切有关按揭货款的问题,均可根据此式计算。

第三部分函数的应用
我们所学过的函数有:一元一次函数、一元二次函数、分式函数、无理函数、幂、指、对数函数及分段函数等八种。

这些函数从不同角度反映了自然界中变量与变量间的依存关系,因此代数中的函数知识是与生产实践及生活实际密切相关的。

一元一次函数的应用
一元一次函数在我们的日常生活中应用十分广泛。

当人们在社会生活中从事买卖特别是消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题。

随着优惠形式的多样化,“可选择性优惠”逐渐被越来越多的经营者采用。

例如超市购物,购买茶壶、茶杯时有两种优惠方法:(1)买一送一(即买一只茶壶送一只茶杯);(2)打九折(即按购买总价的90% 付款)。

其下还有前提条件是:购买茶壶3只以上(茶壶20元/个,茶杯5元/个)。

这两种优惠办法有区别吗?到底哪种更便宜呢?这时可以应用所学的函数知识,运用解析法将此问题解决。

设某顾客买茶杯x只,付款y元,(x>3且x∈n),则
用第一种方法付款y1=4×20+(x-4)×5=5x+60;
用第二种方法付款y2=(20×4+5x)×90%=4.5x+72.
接着比较y1y2的相对大小.
设d=y1-y2=5x+60-(4.5x+72)=0.5x-12.
然后便要进行讨论:
当d>0时,0.5x-12>0,即x>24;
当d=0时,x=24;
当d<0时,x<24.
综上所述,当所购茶杯多于24只时,法(2)省钱;恰好购买24只时,两种方法价格相等;购买只数在4—23之间时,法(1)便宜.
二、三角函数的应用
在山林绿化中,须在山坡上等距离植树,且山坡上两树之间的距离投影到平地上须同平地树木间距保持一致。

(如左图)因此,林业人员在植树前,要计算出山坡上两树之间的距离。

这便要用到锐角三角函数的知识。

令c=90 ,b=α ,平地距为d,山坡距为r,则secα=secb =ab/cb=r/d. ∴r=secα×d这个问题至此便迎刃而解了。

相关文档
最新文档