机械毕业设计587电站水轮机进水阀门液压系统控制设计说明书
液压课程设计说明书
液压课程设计说明书1. 设计任务和要求1.1 设计任务本课程设计旨在通过液压系统的设计与实现,让学生掌握液压元件的工作原理、选型依据及系统设计方法。
设计内容包括:•确定液压系统的类型和应用场合;•选择合适的液压元件;•设计液压系统的工作原理和流程;•计算液压系统的主要参数;•绘制液压系统原理图;•设计液压系统的电气控制系统;•分析液压系统的性能和优缺点;•编写设计说明书。
1.2 设计要求•系统应具备的基本功能和性能要求;•系统应具备的可扩展性和可靠性;•系统应具备的节能和环保特性;•系统应具备的安装、调试和维护方便性。
2. 液压系统的设计步骤2.1 分析系统需求了解液压系统的应用场合、功能要求和工作原理,明确设计的目标和内容。
2.2 选择液压元件根据系统需求,选择合适的液压泵、液压缸、控制阀等元件,并确定其规格和性能参数。
2.3 设计液压系统原理图根据元件选型,绘制液压系统的原理图,包括系统的布局、连接方式、控制逻辑等。
2.4 计算液压系统主要参数依据系统需求和元件性能,计算液压系统的主要参数,如流量、压力、功率等。
2.5 设计液压系统的电气控制系统根据液压系统的工作原理和流程,设计相应的电气控制系统,包括控制电路、传感器、执行器等。
2.6 分析液压系统的性能和优缺点对设计的液压系统进行性能分析,评价其优点和不足之处,并提出改进措施。
2.7 编写设计说明书整理设计过程的相关资料,编写液压课程设计说明书,包括设计任务、设计要求、设计步骤、系统原理、元件选型、参数计算、电气控制、性能分析等内容。
3. 液压系统设计注意事项•确保系统安全可靠,避免因设计不合理导致的故障和事故;•考虑系统的可维护性和易损件的更换方便性;•合理利用现有资源,尽量减少成本;•注重系统性能的优化,提高能源利用效率。
4. 设计成果评价•完成设计说明书的要求,内容完整、条理清晰;•液压系统原理图设计正确,符号规范;•计算数据准确,公式引用正确;•性能分析合理,能够反映系统的优缺点;•设计过程中能够遵循相关规范和标准。
完整的液压系统设计毕业设计
完整的液压系统设计毕业设计1. 引言液压系统在工程领域中具有广泛的应用,特别是在机械制造、航空航天、汽车制造等领域中。
本文档旨在设计一个完整的液压系统作为毕业设计,并提供系统设计的详细说明。
2. 设计目标本设计的目标是创建一个可靠、高效的液压系统,满足以下需求:•传递大量的力和动力;•控制和调节工作负载;•提供良好的工作稳定性;•实现节能和环保。
3. 系统设计3.1 系统结构我们的液压系统将包含以下主要组件:1.液压泵:负责将液体加压并输送到液压马达或液压缸;2.液压马达或液压缸:负责将液压能转化为机械能,实现力的传递及工作载荷控制;3.液体储存装置:用于储存液体并平衡系统压力;4.液压阀门:用于控制液体流动和压力,实现系统工作的调节和控制;5.传感器和仪表:用于监测和测量液压系统的压力、流量、温度等参数。
3.2 液体选择在设计液压系统时,我们需要选择合适的液体作为工作介质。
一般情况下,液压系统常采用液体油作为工作介质,因为它具有良好的润滑性、稳定性和耐高温性能。
对于不同的应用场景,需要考虑液体的黏度、温度范围、氧化稳定性以及环境友好程度等因素。
3.3 液压元件选型为了实现液压系统的设计目标,我们需要对液压元件进行合理的选型。
液压泵、液压马达或液压缸、液压阀门等元件都有不同的类型和规格可供选择。
在选型过程中,需要考虑力的传递要求、流量和压力范围、工作稳定性以及适应特定工况的能力等因素。
3.4 系统控制在液压系统设计中,系统的控制是十分重要的。
通过合理的控制方法和策略,可以实现对液体流动、压力和工作负载的准确控制。
常用的液压系统控制方法有手动控制、自动控制和比例控制等。
根据具体需求,选择适合的控制方式可以提高系统的稳定性和性能。
4. 系统优化为了提高液压系统的工作效率和节能性,我们可以进行进一步的优化。
以下是一些常见的系统优化方法:•使用高效节能的液压泵和液压马达;•优化液体流动路径,减小能量损失;•采用高效的液压阀门和控制系统,减小能量损耗;•合理设计系统布局和管路,减小摩擦损失;•控制液压系统的工作温度,在适当的范围内减小能量损失。
水轮机进水阀与常用阀门
3、进水阀设置条件:
进水阀在一些电站起着非常重要的作用,但并 非所有电站均应设置进水阀。
1>轴流式(水头低、管道短、单元布置):设进口 快速闸门,可不设进水阀
2>贯流式(水头低、流量大):水轮机进口或尾管 出口设快速闸门
3>混流式(水头高)设置时应考虑:
单管多机:每台水轮机前设置进水阀;
水头大于150m的单元引水:进水口设置快速闸 门,同时在水轮机前设置进水阀;
的要求(比如承压能力);
6>机组事故时,能在动水下安全、可靠、迅速关闭
5、进水阀的工作状态:
进水阀通常只有全开或全关两种工作状态。不 宜作部分开启来调节流量(水流稳定破坏、引起 机组振动、水力损失过大)
进水阀一般不允许在动水情况下开启,因为这 样需更大的操作功,同时还伴随着产生强大的振 动,从运行的角度也没有必要 。
旁通管与旁通阀:是为满足蝶阀应在活门两侧平 压时才能开启而专门设置的。旁通阀由旁通管与 蝶阀活门的上下两侧连通。当需要开启蝶阀时, 先开旁通阀对阀后充水,平压后再开启蝶阀。旁 通管的断面面积,一般取蝶阀过流面积的1~2%, 但经过旁通管的流量必须大于导叶的漏水量,否 则无法实现平压。
空气阀:为了在蝶阀关闭时向阀后补气,和 在蝶阀开启前向阀后充水时排气,必须在阀
筒体高度(mm) 980 746 964
1315
1460 860 860 1332 258 1444 1154 1332 1424
1360
360
860
1049 1450 1710 1485 1815 1890 1405 1340 1350
投运年份 1962 1965 1969 1976 1979 1981 1981 1982 1982 1983 1984 1985 1986 1991
液压系统设计说明书
液压系统设计说明书⽬录第⼀章组合机床⼯况分析 (2)1.1.⼯作负载分析 (3)1.2.惯性负载分析 (3)1.3.阻⼒负载分析 (3)1.4.⼯进速度选择 (3)1.5.运动时间 (3)1.6.运动分析 (4)1.7.根据上述数据绘液压缸F-s与v-s图 (5)第⼆章液压缸主要参数确定 (6)2.1 初选液压缸⼯作压⼒ (6)2.2 计算液压缸主要尺⼨ (6)2.3 活塞杆标准⾏程的确定 (7)2.4 活塞杆稳定性校核 (7)2.5 计算液压缸流量、压⼒和功率 (7)2.6 绘制⼯况图 (9)2.7 液压缸结构设计 (9)2.8 液压缸设计需注意的事项 (10)2.9 液压缸主要零件的材料和技术要求 (10)第三章拟定液压系统图 (11)3.1 动作要求分析 (11)3.2 选⽤执⾏元件 (11)3.3 确定供油⽅式 (11)3.4 调速⽅式选择 (11)3.5 速度换接选择 (12)3.6 换向⽅式选择 (12)3.7 选择调压和卸荷回路 (12)3.8 拟定液压系统原理图 (12)3.9 液压系统⼯作原理 (13)第四章拟定液压系统图 (14)4.1确定液压泵 (14)4.2 计算总流量 (15)4.3 电动机的选择 (15)4.4 阀类元件和辅助元件的选择 (16)4.6 隔板尺⼨的确定 (17)4.7 油管选择 (17)第五章液压系统性能验算 (19)5.1验算系统压⼒损失并确定压⼒阀的调整值 (19)5.2油液温升验算 (21)第六章设计⼼得 (22)附录:参考⽂献 (23)第⼀章组合机床⼯况分析明确设计要求:组合机床动⼒滑台的⼯作要求液压系统在组合机床上主要是⽤于实现⼯作台的直线和回转运动,多数动⼒滑台采⽤液压驱动,以便实现⾃动⼯作循环。
本实验设计⼀台卧式单⾯多轴钻镗两⽤组合机床液压系统,要求液压系统实现快进——⼯进——死挡铁停留——快退——停⽌的动作循环,切削⼒为18000N,动⼒滑台采⽤平导轨,⼯进速度要求⽆级调速。
水轮机进水重锤式液压控制蝶阀 产品使用说明书
一、主要性能特点、用途及适用范围本产品为新型的水轮机进水重锤式液压控制蝶阀,全称为希斯威系列水轮机进水重锤式液控蝶阀或希斯威系列水电站开阀锁定型自动保压重锤式液控止回蝶阀,分普通型和防泥沙型两种,防泥沙型液控蝶阀用于水中含泥沙等杂质较多的水电站工程。
希斯威系列液控蝶阀开启采用液压驱动,油压可达16Mpa,减少了接力器的体积,开启过程中,同时将一重锤举起,利用举起的重锤蓄能关闭,取消蓄能罐,开启后锁锭自动投入,液压系统自动保压,重锤不下掉,蝶板不抖动。
关闭时不需动力油源,自动解除锁锭销、按预定的程序关闭,简单可靠,大大简化了液压系统。
采用双偏心阀板,水平安装的阀轴在管道中心线上抬高一定距离,使阀板下半部迎水面积大于上半部,能利用动水力的作用帮助阀门关闭以减小重锤的重量,将结构简单、体积小的油压装置、蝴蝶阀控制柜、电气自动控制箱、接力器、控制油管很紧凑的与阀门集聚在一起,不需用户另外配置。
该阀能实现就地控制、远方控制及联动控制,可满足“无人值班、少人值守”的要求,是一种理想的新型管路控制设备。
这种液控蝶阀是水电站中管线系统截断或接通介质的理想设备,适用于装在水轮机前的压力钢管处,作为水轮机进水阀,其作用为:1、水轮机发生事故且导叶不能关闭时,动水关闭阀门,紧急关闭截断水流,防止水轮机发生飞逸,确保机组安全。
2、机组停机备用时,关闭阀门,截断水流,防止水轮导叶长期漏水,既减少水能损失,又可防止在导叶端面和立面处产生间隙气蚀。
3、机组停机检修时,静水关闭阀门,截断水流。
本蝶阀还适用于高位布置在压力钢管的始端,用作压力钢管保护阀,在压力钢管发生爆裂等情况时紧急关闭截断水流,防止事故扩大,确保安全。
本系列蝶阀的驱动装置可根据厂房的需要设计在水流方向的左边或右边,重锤可根据电站需要而设计成倒向顺水流方向或逆水流方向。
二、产品型号编制说明三、主要技术参数基本参数特殊参数四、主要设计、制造、验收、包装及运输标准注:上述标准中有不一致之处,以序号在先为准。
液压系统设计说明书
摘要压力机是锻压、冲压、冷挤压、校直、弯曲、粉末冶金、成型、打包等加工工艺中应用广泛的压力加工机械设备。
液压压力机通过液压系统产生很大的静压力实现对工件进行挤压、校直、冷弯等加工。
而本次实习主要是设计汽车板簧分选实验压力机(立式),先进行查阅文献,了解并熟悉设计工况,确定执行元件主要参数,拟定系统原理草图,计算选择液压元件,验算系统性能,绘制零件图和装配图,编制技术文件,最后撰写课程设计说明书。
关键:压力机工况分析系统原理液压元件系统性能工作图AbstractPress forging, stamping, cold extrusion, straightening, bending, powder metallurgy, molding, packaging and processing technology is widely applied in the field of pressure processing machinery and equipment. Hydraulic press hydraulic system greatly by static pressure on a workpiece squeeze, straightening, bending and other processing. While this practice is mainly the design of automotive leaf spring sorting test press ( vertical), the first literature, understand and are familiar with the design conditions, determine the implementation of components of main parameters, formulation system principle sketch, selection of calculation of hydraulic components, checking the performance of the system, draw the part drawing and assembly drawing, prepare the technical document and finally written curriculum design manual.Key words: Press 、condition analysis、system hydraulic 、components of the system、performance char目录摘要 (1)第一章课程设计的目的和基本要求 (3)1.1、课程设计的目的 (3)1.2、课程设计的基本要求 (3)1.3、课程设计的主要内容 (3)、第二章液压系统设计方法 (5)2.1、设计要求及工况分析 (5)2.2、确定液压系统的主要参数 (6)2.3、拟定液压系统原理图 (10)2.4、选择液压元件 (11)第三章验算液压系统的性能 (15)3.1、液压系统压力损失的验算和泵压力调整 (15)3.2液压系统发热温升的验算 (16)第四章主要零件强度校核 (18)4.1、缸筒壁厚校核 (18)4.2、活塞杆直径校核 (18)4.3、螺栓校核 (19)第五章设计总结 (20)参考文献 (21)第一章课程设计的目的和基本要求1.1、课程设计的目的:《液压传动与控制》课程设计是机械设计制造及其自动化专业学生在学完《流体力学与液压传动》课程之后进行的一个重要的实践性教学环节。
液压系统设计1说明书
液压系统设计1说明书课程设计任务书⼀、课程设计(论⽂)题⽬JDY500混凝⼟搅拌机设计-----液压系统I⼆、课程设计(论⽂)应达到的⽬的⑴培养个⼈独⽴分析问题、解决问题的能⼒,并初步建⽴“系统设计”的思想;⑵训练学⽣应⽤⼿册和标准、查阅⽂献资料及撰写科技论⽂的能⼒;⑶了解并掌握UG软件的建模、⼯程制图、运动仿真等模块;⑷学习混凝⼟机械的主要零部件的功能及设计计算⽅法。
三、课程设计内容⑴上料部分、倾翻部分的设计计算⑵液压缸的设计计算⑶液压泵,电机,液压阀,液压管件,液压油箱的选择四、主要技术参数⑴出料容量 500 L⑵进料容量 800 L⑶⼯作周期≤72 s摘要JDY500型单卧轴式强制式搅拌机是随着混凝⼟施⼯⼯艺的改进⽽发展起来的新型机。
强制式单卧轴搅拌机兼有⾃落式和强制式两种机型的特点,即搅拌质量好、⽣产效率⾼耗能低,不仅能搅拌⼲硬性、塑性或低流动性混凝⼟,还可以搅拌轻⾻料混凝⼟、砂浆或硅酸盐等物料。
上料系统采⽤液压缸及增速滑轮组机构,它是以液压缸活塞的伸缩,通过滑轮组牵引联结在料⽃上的钢丝绳来实现的,料⽃沿上料架上升的⾼度有液压缸活塞的⾏程决定。
该系统结构简单、操作⾃由⽅便,减少了机械上料系统带来的冲击,使料⽃运⾏平稳,并解决了料⽃上下限位问题.卸料系统采⽤液压倾翻卸料机构。
利⽤卸料液压缸活塞的伸缩倾翻搅拌筒卸料,搅拌筒的倾翻⾓度由液压缸的⾏程来决定。
该机构具有机械式倾翻所⽆法⽐拟的良好使⽤性能,可针对不同混凝⼟的运输⼯具,完成⼀次卸料或分批卸料,操作⾃如⽅便,并解决了搅拌筒卸料时的限位问题。
关键词:混凝⼟搅拌机;液压系统;液压缸;油箱;AbstractWith the improvement and construction technology to develop a new type of aircraft.JDY500single spot Coaxial compulsory concrete mixer come forth. Compulsory single horizontal axis mixer-style have both compulsory and the characteristics of the two models, namely mixing good quality and high production efficiency of low energy-consuming,can not only stir dry hard, plastic or low mobility of concrete, can also stir light Aggregate concrete, mortar or Portland, and other materials.Coaxial-lying mainly compose by mixing concrete mixer device, stirring drive system, feeding system, discharge systems, electrical control system and the water supply system. Transmission system is divided into two parts which are stirring drive and hydraulic transmission, Stirring drive which is motor torque output through belt drive, and then after two gear reducer which reached to the stirring shaft couplings, stirring rotation axis achieve concrete mixing. Hydraulic transmission is the use of hydraulic systems to achieve carrying materials and unloading materials,to achieve workers lower operating in labor intensity. JDY500-mixer that is taking stirring drive system, hydraulic systems and other devices installed in a certain location on the mixer rack, and realization of the purpose of mixing machines in the ultimate.Keywords:Concrete mixer;Hydraulic system;Hydraulic cylinder;tank⽬录第5章JDY500搅拌机液压系统的设计 (4)5.1上料部分计算 (5)5.1.1计算上料料重 (5)5.1.2料⽃重 (5)5.1.3上料部分受⼒分析 (6)5.2倾翻部分计算 (6)5.3液压系统的优化改进 (7)5.3.1液压系统的⼯作原理 (8)5.3.2上料回程时⼯作状况分析计算 (8)5.3.3液压系统的改进 (9)5.4液压泵的选择 (10)5.5液压电机的选择 (11)5.6液压缸的设计计算 (12)5.6.1提升液压缸的设计计算: (12)5.6.2倾翻液压缸设计及计算: (13)5.6.3液压缸的选取 (13)5.7液压管件的选择 (14)5.7.1提升液压管件的选择 (15)5.7.2倾翻液压缸管件选择 (16)5.8液压油箱的选择 (17)5.9液压阀的选择 (18)6.致谢 (19)7.参考⽂献 (20)8.结论 (21)5.1上料部分计算5.1.1上料料重计算进料容量1800V L =,出料容量2500V L =上料料重()3312 2.4510500109.812005G V g N ρ-=??==混其中式中:ρ混——混凝⼟密度 g ——重⼒加速度ρ混=31.8 2.45/t m -,取ρ混=2.453/t m5.1.2料⽃重这⾥采⽤近似计算()()23131105355215105251021022S ??=??+??++??++()()2221505025 4.3315 4.3310373.210S cm =++?+??=?设上料⽃的壁厚h=0.5cm()373.20.57.8145.55M S h kg ρ=??=??=钢钢其中:ρ钢——钢材的密度,取37.8/g cm ρ=钢从安全⾓度考虑取 200M kg =钢()2009.81960G N =?=钢所以料⽃和料总重G 总: ()112005196013965G G G N =+=+=总钢5.1.3上料部分受⼒分析()N 111530.813965sina GF s=?==总)(83796.013965cos G F N N a =?==总)(摩擦N 27930.213965f F FN =?==其中:f ——摩擦系数,查《机械设计课程设计》表 4.2-6,0.15f =,但由于料⽃与上料导轨相对运动是滚动形式,摩擦系数不⼤,考虑到⼯作情况,取0.2f =。
水轮机毕业设计说明书(经典)
目录摘要 (4)1 前言 (5)2 东风水电站的水轮机选型设计 (5)2.1 水轮机的选型设计概述 (5)2.2 水轮机选型的任务 (6)2.3水轮机选型的原则 (6)2.4水轮机选型设计的条件及主要参数 (7)2.5 确定电站装机台数及单机功率 (7)2.6 选择机组类型及模型转轮型号 (8)2.7 初选设计(额定)工况点 (10)2.8 确定转轮直径D (11)12.9 确定额定转速n (12)2.10 效率及单位参数的修正 (13)2.11 核对所选择的真机转轮直径D (14)12.12 确定水轮机导叶的最大可能开度a (25)0k2.13 计算水轮机额定流量Qr (27)2.14 确定水轮机允许吸出高度H (27)s2.15 计算水轮机的飞逸转速 (31)2.16 计算轴向水推力P (31)oc2.17 估算水轮机的质量 (31)2.18 绘制水轮机运转综合特性曲线 (32)3 水轮机导水机构运动图的绘制 (41)3.1 导水机构的基本类型 (41)3.2 导水机构的作用 (42)3.3 导水机构结构设计的基本要求 (42)3.4 导水机构运动图绘制的目的 (43)3.5导水机构运动图的绘制步骤 (43)4 水轮机金属蜗壳水力设计 (47)4.1 蜗壳类型的选择 (47)4.2 金属蜗壳的水力设计计算 (47)5尾水管设计 (56)5.1 尾水管概述 (56)5.2 尾水管的基本类型 (56)5.3 弯肘形尾水管中的水流运动 (57)6水轮机结构设计 (57)6.1 概述 (57)6.2 水轮机主轴的设计 (58)6.3 水轮机金属蜗壳的设计 (59)6.4 水轮机转轮的设计 (60)6.5 导水机构设计 (62)6.6 水轮机导轴承结构设计 (66)6.7 水轮机的辅助装置 (69)7 金属蜗壳强度计算 (71)7.1 金属蜗壳受力分析 (71)7.2 蜗壳强度计算 (72)7.3 计算程序及结果 (74)8 结论 (78)总结与体会 (79)谢辞 (79)参考文献 (80)摘要本次毕业设计是根据东风水电站的水力参数和具体要求,确定了水轮机机型及型号(HL220/A153-LJ-180)。
2-液压机液压系统的设计说明书
ba
2.4 主要工作原理 ...................................................... - 3 -
o.
2.3 设计所需主要技术参数 .............................................. - 2 -
co
2.2 单注液压机的用途及使用范围 ........................................ - 2 -
3.6.5 活塞杆 ......................................................... - 29 3.6.6 液压缸的排气装置 ............................................... - 31 3.6.7 液压缸安装联接部分的型式 ....................................... - 31 4 标准化审查报告 ..................................................... - 32 5 小型单柱液压机使用说明书 ........................................... - 34 -
华
Keywords: Single Column Hydraulic Presses; The Design of Hydraulic System;
Hydraulic cylinder;
ht 天 tp de :/ si /s gn ho p1 06
Hydraulic drive is a technique becoming mature, what has been applied in Manufacture,
毕业设计(论文)—水轮机导水控制装置结构设计及加工工艺
兰州工业高等专科学校毕业设计(论文)题目水轮机导水控制装置结构设计及加工工艺系别机械工程系专业机械制造及自动化班级机制09-2班姓名寇文辉学号 200903103105指导教师(职称)马淑霞水轮机是当今社会水力发电必不可少的发电设备,然而它的控制系统对于不同的水轮机有着不同的控制类型,水轮机导水机构的控制的研究也是一大研究课题。
在本次设计中,主要研究水轮机导水系统的控制,此次用的事机械控制系统,有调速轴的转动,将力量传递给摇臂和连杆来控制水轮机的转动,来控制导叶的打开和关闭来实现水轮机的导水控制。
在本次设计中,不仅设计了水轮机导水控制系统,而且画了大量的零件图和装配图,以及几种零件的加工工艺过程。
通过这次的毕业设计为以后工作打下了结实基础。
关键词:水轮机;控制系统:导水控制Essential in today's society hydroelectric turbine power generation equipment, but its control system for different turbine types have different control, control of turbine guide apparatus of the research is a major research topic.In this design, the main research turbine guide water system control, the control system with mechanical things, there is the shaft rotation speed, the power delivered to the rocker arm and the connecting rod to control the rotation of the turbine, guide vane control the opening and closing to achieve control of the turbine's hydraulic conductivity.In this design, not only designed the turbine control system, hydraulic conductivity, and drew a large number of parts and assembly drawings, and several parts of the machining process. Through this work after graduation designed to lay a solid foundation.Key words:hydroelectric;control system;turbine's hydraulic conductivity目录1 水轮机的基础知识 (5)1.1水轮机的简介 (5)1.2水轮机导水机构作用及几何参数 (5)1.3水轮机的工作原理 (8)1.3.1发电机原理 (8)1.3.2水轮发电机基本工作原理 (8)1.4水轮机的分类 (10)1.5水轮机的主要参数 (12)2 水轮机导水机构方案设计及核算 (13)2.1水轮机导水控制部分的主要参数 (13)3 机械装配图的设计和绘制 (25)3.1机械装配图的设计概念 (25)3.2画正式装配图注意的事项 (25)3.3装配草图的设计和绘制 (28)3.4装配工作图的设计和总成设计 (31)3.5装配图的分析和说明 (32)4零件工作图的设计和绘制 (35)4.1零件工作图设计概述 (35)4.2 零件工作图设计概述 (36)4.3轴类零件工作图的设计和绘制 (37)4.4箱体(铸造)工作图的设计和绘制 (38)4.5 零件工作图设计概述 (40)4.6零件图的作用和分析 (41)5 零件的工艺规程 (47)5.1 工艺规程 (47)5.2机械加工工艺规程 (49)5.3 零件的机械加工工艺分析 (50)5.3.1机械加工工艺规程的制订原则 (50)5.3.2 制订机械加工工艺规程的内容和步骤 (50)5.4 轴类零件的加工工艺制订 (51)5.5 箱体类零件的加工工艺 (54)5.6拨动杆零件机械加工工艺规程 (57)5.7零件的加工工艺过程 (58)结论 (62)致谢 (63)参考文献 (64)1 水轮机的基础知识1.1 水轮机的简介:水轮机:水轮机是把水流的能量转换为旋转机械能的动力机械,它属于流体机械中的透平机械。
液压系统设计说明书
液压系统设计说明书一、设计概述液压系统是一种将动力转换为机械能的传动系统,广泛应用于各种工业设备和机器中。
本次设计的液压系统主要应用于挖掘机的操作,该系统需要具备高效率、高可靠性、低能耗和易于维护的特点。
二、系统组成1. 液压泵:液压泵是液压系统的核心部件,负责提供压力油。
本设计选用柱塞泵,其具有高压力、高效率、长寿命等优点。
2. 液压缸:液压缸是将液压能转换为机械能的执行元件。
本设计选用双作用活塞缸,以满足挖掘机在挖掘和提升等不同工况下的需求。
3. 控制阀:控制阀用于控制液压油的流向和流量,从而实现执行元件的运动控制。
本设计选用方向控制阀和压力控制阀,以实现挖掘机的各种动作。
4. 油箱:油箱是液压系统的油液储存部件,具有散热、沉淀杂质等功能。
本设计选用封闭式油箱,以减少油液污染和散热不良等问题。
5. 管路与接头:管路与接头用于连接液压元件,保证液压油的流动畅通。
本设计选用耐高压、耐腐蚀的管路和标准接头,以提高系统的可靠性和安全性。
三、系统特点1. 高效率:本设计采用高效率的柱塞泵,可有效降低能量损失,提高系统效率。
2. 高可靠性:选用高质量的液压元件和管路,采用标准化的连接方式,提高了系统的可靠性和稳定性。
3. 低能耗:通过优化液压元件的参数和系统布局,降低能耗,符合绿色环保要求。
4. 易于维护:采用模块化设计,便于拆卸和维修;同时,选用易于购买的标准件,降低了维护成本。
四、系统控制本设计的液压系统采用手动控制和自动控制相结合的方式。
手动控制主要用于初次的设备调试和应急情况下的操作;自动控制则根据预设的程序,自动完成挖掘机的各种动作。
在自动控制中,还引入了传感器和电液比例阀等智能控制元件,以提高控制的精度和响应速度。
五、系统安全为确保系统的安全运行,采取了以下措施:1. 设置溢流阀和减压阀等安全保护装置,防止过载和压力过高对系统造成损坏;2. 在油箱中设置液位计和温度计,实时监测油液的液位和温度,防止油液不足或温度过高对系统造成影响;3. 在管路中设置过滤器,防止杂质进入系统对元件造成损坏;4. 设置报警装置,当系统出现异常情况时,及时发出报警信号并切断电源,确保设备和人员的安全。
水力控制阀技术说明书
水力控制阀系列TDJD745X多功能水泵控制阀TDF745X遥控浮球阀TDYX741X可调减压稳压阀TDAX742X安全泄压/持压阀TDJ745X电动遥控阀TD100X遥控浮球阀TD300X缓闭逆止阀TD900X紧急关闭阀TD400X流量控制阀多功能水力控制阀型号编制说明用途安装在给排水、建筑、石油化工、食品、医药、电站等领域的取水、进水、潜水污水泵房及石油化工流体的输送系统中,具有电动阀、止回阀和水锤消除器三种功能。
能有效地提高系统安全可靠性,满足系统工程设备自动化控制要求结构特点水力控制阀一般分为隔膜型和活塞型两大类,两者工作原理相同,它由一个主阀(如图所示)及其外装之针阀、导阀、导管和压力表等组合而成,并配合使用目的、功能及场所的不同而演变成遥控浮球阀、减压阀、缓闭止回阀、流量控制阀、泄压/持压阀、水力电动控制阀、定水位阀、水泵控制阀、紧急关闭阀等。
建议DN450 口径以下选用隔膜式,500 以上选用活塞式。
工作原理水力控制阀都是上下有压力差4P为动力,由导阀控制,使隔膜(活塞)液压式差动△> 操作,完全由水力自动调节,从而使主阀阀盘完全开启或完全关闭,或处于调节状态。
1、全闭状态:当主阀进口端水压分别进入阀体及控制室,且主并外部之球阀同时关闭,此时主阀处于全闭状态。
2、全开状态:当主阀外部之球阀全开后,此时控制室内水压全部被排到大气或下游低压区时,所以主阀呈现全开状态。
3、浮动状态:调节主阀外部之球阀开度,使水流过针阀与球阀之间水流达到平衡,此时主阀处于浮动状态。
隔膜型活塞型主要零部件材质表序号名称材料1 阀盖灰铸铁、球墨铸铁、碳钢、不锈钢2 弹簧弹簧钢、不锈钢3 膜片压板球墨铸铁4 膜片丁腈橡胶5 阀杆2Cr136 阀瓣球墨铸铁7 密封圈不锈钢8 密封垫压板球墨铸铁9 阀座不锈钢10 阀体灰铸铁、球墨铸铁、碳钢、不锈钢序号名称材料1 阀盖灰铸铁、球墨铸铁、碳钢、不锈钢2 缸套不锈钢3 活塞球墨铸铁4 密封圈丁腈橡胶5 阀杆2Cr136 弹簧弹簧钢、不锈钢7 阀盘球墨铸铁8 密封垫丁腈橡胶9 阀座不锈钢10 密封压板球墨铸铁11 阀板铸铁、球墨铸铁、碳钢性能特点1、自动控制,轻载启泵:受控制室压力影响,在启动水泵时,主阀缓慢开启,从而控制了因流量过大而造成水泵负载启动。
液压控制阀的理论研究与设计毕业设计说明书
液压控制阀的理论研究与设计第1章绪论液压技术作为一门新兴应用学科,虽然历史较短,发展的速度却非常惊人。
液压设备能传递很大的力或力矩,单位功率重量轻,结构尺寸小,在同等功率下,其重量的尺寸仅为直流电机的10%~20%左右;反应速度快、准、稳;又能在大范围内方便地实现无级变速;易实现功率放大;易进行过载保护;能自动润滑,寿命长,制造成本较低。
因此,世界各国均已广泛地应用在锻压机械、工程机械、机床工业、汽车工业、冶金工业、农业机械、船舶交通、铁道车辆和飞机、坦克、导弹、火箭、雷达等国防工业中。
液压传动设备一般由四大元件组成,即动力元件——液压泵;执行元件——液压缸和液压马达;控制元件——各种液压阀;辅助元件——油箱、蓄能器等。
液压阀的功用是控制液压传动系统的油流方向,压力和流量;实现执行元件的设计动作以控制、实施整个液压系统及设备的全部工作功能。
1.1 液压技术的发展历史液压传动理论和液压技术发展的历史可追溯17世纪,当时的荷兰人史蒂文斯(Strvinus)研究指出,液体静压力随液体的深度变化,与容器的形状无关。
之后托里塞勒(Torricelli)也对流体的运动进行研究。
17世纪末,牛顿对液体的粘度以及浸入运动流动体中的物体所受的阻力进行了研究。
18世纪中叶,伯努利提出的流束传递能量理论及帕斯卡提出的静压传递原理,使液压理论有了关键性的进展。
1795年英国伦敦的约瑟夫.布拉默(Joseph Bramah 1749~1814)创造了世界上第一台水压机——棉花、羊毛液压打包机。
1905年,詹尼(Janney)设计了一台带轴向柱塞泵的油压传动与控制装置,并于1906年成功地应用在弗吉尼亚号战舰的炮塔俯仰、转动机构中。
1936年,哈里.威克斯(Harry Vikers)提出了包括先导式溢流阀在内的些液压控制元件有力地推动了液压技术的进步。
1958年美国麻萨诸塞州理工学院的布莱克本(Blackburn)、李诗颖创造了电液伺服阀,并于1960年发表了对液压技术有杰出贡献的论著——《流体动力控制》。
液压系统设计说明书
一、设计目的及要求
(一)、设计的目的
液压传动与机械传动,电气传动为当代三大传动形式,是现代发展起来的一门新技术。《液压传动》课是工科机械类专业的重点课程之一。既有理论知识学习,又有实际技能训练。为此,在教学中安排一周的课程设计。该课程设计的目的是:
液压传动课程设计计算说明书
设计题目:专用铣床液压系统设计
学院:机电工程学院
专业:机械设计制造及其自动化
班级:11机三
:敏
指导老师:徐建方
2013年12月28日
5、液压缸工况分析—————————————————————15
小结—————————————————————————————29
摘 要
本次课程设计的是液压专用铣床的液压设计,专用铣床是根据工件加工需要,以液压传动为基础,配以少量专用部件组成的一种机床。在生产中液压专用铣床有着较大实用性,可以以液压传动的大小产生不同性质的铣床。此次设计主要是将自己所学的知识结合辅助材料运用到设计中,巩固和深化已学知识,掌握液压系统设计计算的一般步骤和方法,正确合理的确定执行机构,选用标准液压元件,能熟练的运用液压基本回路,组成满足基本性能要求的液压系统。在设计过程中最主要的是图纸的绘制,这不仅可以清楚的将所设计的容完整的显示出来,还能看出所学知识是否已完全掌握了。
整个设计过程主要分成六个部分:参数的选择、方案的制定、图卡的编制、专用铣床的设计、液压系统的设计以及最后有关的验算。主体部分基本在图的编制和液压系统的设计两部分中完成的。
关键词专用铣床液压传动
Abstract
The graduation design is semi-automatic hydraulic special milling machine, hydraulic design special milling machine is based on needs of work, based on hydraulic transmission, match with a few special parts of a machine tool. During production has great practical hydraulic special milling machine, can with hydraulic drive size produces different nature of the milling machine. This design is mainly with my own knowledge will be applied to design of auxiliary materials, strengthening and deepening prior knowledge of hydraulic system design calculation, the general procedure and method to determine the correct method of actuator, choose standard hydraulic components, can skilled using hydraulic basic circuit, composition satisfybasic performance requirements of the hydraulic system. In the design process of the main is drawing, which not only can clearly drawn designed by the completeness of the contents will show out, still can see whether the knowledge already complete mastery.
[电力水利]水轮机毕业设计说明书[管理资料]
目录摘要 (3)1 前言 (4)2 水轮机选型设计 (5)水轮机台数及型号的选择 (5)初选额定工况点 (6)确定转轮直径 (6) (7)效率及单位参数修正值 (8)检验所选水轮机的实际工作区域 (9)确定导叶开度 (10)计算额定流量 (11)确定水轮机的吸出高度 (11)计算水轮机飞逸转速 (15)估算轴向水推力 (15)估算水轮机质量 (16)绘制水轮机运转综合特性曲线 (16)3 蜗壳水力设计 (20)概述 (20)蜗壳类型的选择 (21)金属蜗壳主要参数的确定 (21)金属蜗壳水力设计计算 (22)4 尾水管设计 (27)尾水管的作用及类型 (27) (28)绘制尾水管水力单线图 (28)5 水轮机导水机构运动图的绘制 (28)导水机构的作用及类型 (28)绘制导水机构运动图的目的 (29)径向式导水机构运动图的绘制 (29)6 水轮机结构设计 (33)概述 (33)转轮的结构设计 (34)导叶的结构、系列尺寸和轴颈选择 (36)导叶的传动机构 (36)导水机构的环形部件设计 (37)真空破坏阀 (38)主轴的设计 (39)轴承的结构 (40)补气装置 (41)主轴的密封 (42)7 导叶加工图的绘制 (43)8 蜗壳强度计算 (43)对金属蜗壳的受力分析 (43)编程进行强度计算 (46)9 结论 (51)总结与体会 (51)谢辞 (52)参考文献 (52)摘要本次设计是在给出仙溪水电站原始资料的情况下,为电站进行水轮机选型设计,并绘制出运转综合特性曲线。
从最大水头考虑,初步选定了HL D和HL220/A153两个转轮型号,然后从机组的运行稳定性和经240/41济性(电站开挖量)对两个转轮进行综合比较分析,最终确定出水轮机型号为220/153140--,机组台数为两台。
在此基础上,完成蜗壳及HL A LJ尾水管的水力设计及单线图的绘制、导水机构运动图的绘制、水轮机总装图的绘制、水轮机导叶零件图的绘制以及蜗壳的强度计算等设计任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言毕业设计和毕业论文是本科生培养方案中的重要环节。
学生通过毕业论文,综合性地运用几年内所学知识去分析、解决一个问题,在作毕业论文的过程中,所学知识得到疏理和运用,它既是一次检阅,又是一次锻炼。
通过这次检验,不但可以提高学生的综合训练设计能力、科研能力(包括实际动手能力、查阅文献能力,撰写论文能力)、还是一次十分难得的提高创新能力的机会,并从下个方面得到训练:(1)学会进行方案的比较和可行性的论证;(2)了解设计的一般步骤;(3)正确使用各种工具书和查阅各种资料;(4)培养发现和解决实际问题的能力。
利用所学的液压方面的知识,我选择这个课题为我的毕业设计,进行大胆的尝试。
设计中主要以课本和各种参考资料作为依据,从简单入手,循序渐进,逐步掌握设计的一般方法,把所学的知识形成一个整体,以适应以后的工作需要。
当然,初次设计,知识有限,经验不足,一些问题考虑不周,也可能存在有某些错误和遗漏,恳请各位老师批评指正。
液压传动系统是液压机械的一个组成部分,液压传动系统的设计要同主机的总体设计同时进行。
着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动的优点,力求设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便的液压传动系统。
1 设计步骤液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。
一般来说,在明确设计要求之后,大致按如下步骤进行。
1)进行工况分析,确定系统的主要参数;2)制定基本方案,拟定液压系统原理图;3)选择液压元件;4)液压系统的性能验算;5)绘制工作图,设计液压装置6)液压系统的维护2 明确设计要求设计要求是进行每项工程设计的依据。
在制定基本方案并进一步着手液压系统各部分设计之前,必须把设计要求以及与该设计内容有关的其他方面了解清楚。
1)主机的概况:用途、性能、工艺流程、作业环境、总体布局等;2)液压系统要完成哪些动作,动作顺序及彼此联锁关系如何;3)液压驱动机构的运动形式,运动速度;4)各动作机构的载荷大小及其性质;5)对调速范围、运动平稳性、转换精度等性能方面的要求;6)自动化程序、操作控制方式的要求;7)对防尘、防爆、防寒、噪声、安全可靠性的要求;8)对效率、成本等方面的要求。
第一章概述本液压系统控制的阀门为水电站水轮机进水阀门,公称直径为DN2000,为重锤式液压驱动和控制的液控蝶阀。
该系统能实现开启后自动投入、自动保压,重锤和蝶板不抖动。
关阀时能先关导叶,自动解除锁定,在重锤和水力驱动下按调定的时间关闭阀门。
本控制系统积液控与电控为一体,配置一手动泵和蓄能器,可在电机不能正常启动时,为系统提供压力油源。
系统结构紧凑,动作简单可靠,且具有能耗低的特点,完全满足用户提供的原理要求。
本套液压系统配有电了压力开关,可对系统压力实现自动控制。
阀门开关时间:60-90S(可调)第二章液压缸的设计第2.1 工况分析启动力为308KN,液压缸的平均输出速度为0.9m/min,设计液压缸的行程,由于采用伸缩式液压缸,其中一级活塞的行程为358mm,二级活塞(内缸筒活塞)的行程为267mm。
第2.2节 液压缸主要几何尺寸的计算液压缸的主要几何尺寸,包括液压缸的内径,活塞杆的直径,液压缸行程等。
2.2.1液压缸内径的确定 2.2.1.1初选液压缸的工作压力根据分析,此起重机的负载较大,按类型属于起重运输机械,初选液压缸的工作压力为p=16Mpa 。
2.2.1.2计算液压缸的尺寸取F=max F =308000NA=F/p =308000/16⨯106=0.01925m 2 D=14.301925.044⨯=πAm=13.865⨯10-2m查机械设计手册GB2348-80,按标准取:D=140mm 。
2.2.2活塞杆直径的确定与校核 2.2.2.1活塞杆直径的计算根据φ和P 的关系速度比φ取1.6来确定活塞杆的直径:d=Dφφ1- d=120.56mm同上,按标准取:d=130mm 。
2.2.2.2活塞杆的稳定性校核因为活塞杆行程为358mm ,所以取活塞长为567mm ,而活塞直径为130mm , L/d=567/130=4.36<10,无需进行稳定性校核。
2.2.3液压缸的有效面积根据上面的结果,则液压缸的有效面积为:无杆腔面积4140.014159.34221⨯==D A π㎡ =0.0158m 2有杆腔面积4130.014159.34222⨯==d A π㎡ =0.013m 22.2.4液压缸内缸筒的行程 液压缸内缸筒的行程为L=267mm 。
2.2.5液压缸内缸筒的长度液压缸内缸筒的长度由液压缸的行程决定,液压缸内缸筒长度L=526mm 。
第2.3节 液压缸结构参数的计算液压缸内缸筒的结构参数,主要包括缸筒壁厚,油口直径、缸底厚度、缸头厚度等。
2.3.3缸筒壁厚δ的计算和校核 2.3.3.1 壁厚的计算查机械设计手册第五卷第七章表 37·7-64,由上求得缸体内径标准值140mm ,得外径190mm 。
可知δ=(190-140)/2=50/2mm =25mm2.3.3.2 液压缸的缸筒壁厚的校核缸的额定压力p n =16Mpa>=16Mpa,取p y =1.25p n =1.25⨯16Mpa=20Mpa 。
液压缸缸壁的材料选35号钢,查金属工艺学表6-5(GB699-88),得其材料抗拉强度ζb =520Mpa 。
取安全系数为n=5,[ζ]=ζb /5=520/5MPa=104MPaD/δ=140/25 =5.6<10,δ≥yy p p D3.1][4.0][(2-+⨯σσ-1)mm)1203.1104204.0104(2140-⨯-⨯+⨯=mm =14.7mm<25mm壁厚合适。
2.3.4 液压缸油口直径0d 的计算 0013.0v vd d ⨯⨯= 式中 0d --液压缸油口直径 md —液压缸内径 0.14mv —液压缸最大输出速度 0.9m/min 查表得0v --油口液流速度 4.8m/sm d 8.49.014.013.00⨯⨯= =0.004m=4mm液压缸缸筒设计1.液压缸内径的确定根据分析,缸筒为伸缩式液压缸的二级活塞,由上面设计可知d=190mm. 由式d=Dφφ1-由φ和P 的关系取速度比φ取1.92可得D=198.53mm 按标查机械设计手册GB2348-80,按标准取取D=200mm 。
2. 内缸筒的稳定性校核因为内缸筒长为526mm ,而内缸筒直径为190mm , L/d=526/190=2.77<10,无需进行稳定性校核。
3. 液压缸的有效面积根据上面的结果,则液压缸的有效面积为:有杆腔面积419.014159.34221⨯==D A π㎡ =0.028m 2无杆腔面积420.014159.34222⨯==d A π㎡ =0.0314㎡液压缸的结构参数,主要包括缸筒壁厚,油口直径、缸底厚度、缸头厚度等。
4. 缸筒壁厚δ的计算和校核 4.1 壁厚的计算查机械设计手册第五卷第七章表 37·7-64,由上求得缸体内径标准值200mm ,得外径245mm 。
可知δ=(245-200)/2=45/2mm =22.5mm2.3.3.2 液压缸的缸筒壁厚的校核缸的额定压力p n =16Mpa>=16Mpa,取p y =1.25p n =1.25⨯16Mpa=20Mpa 。
液压缸缸壁的材料选35号钢,查金属工艺学表6-5(GB699-88),得其材料抗拉强度ζb =520Mpa 。
取安全系数为n=5,[ζ]=ζb /5=520/5MPa=104MPaD/δ=200/22.5 =8.89<10,δ≥yy p p D3.1][4.0][(2-+⨯σσ-1)mm 203.1104204.0104(2200⨯-⨯+⨯=-1)mm =4.8mm<22.5mm壁厚合适。
2.3.4 液压缸油口直径0d 的计算 0013.0v vd d ⨯⨯= 式中 0d --液压缸油口直径 md —液压缸内径 0.20mv —液压缸最大输出速度 0.9m/min0v --油口液流速度 4.8m/sm d 8.49.020.013.00⨯⨯= =4mm2.3.5 缸底厚度h 的计算该液压缸为平形缸底且无油孔,其材料是HT350。
][433.0σy p d h ⨯⨯=式中 h--缸底厚度 m d —液压缸内径 m y p --试验压力 Pa[ζ]—缸底材料的许用应力,取安全系数n=5,则[ζ]=5bσ=70Mpa 。
由于缸的额定压力n p =16MPa ≤16MPa ,所以取y p =24MPa n p =16.0MPam h 661070101620.0433.0⨯⨯⨯⨯= =0.042m =42mm2.3.6缸头与法兰的联结计算 2.3.6.1联结方式:螺栓联结 2.3.6.2螺栓的设计2.3.6.2.1计算每个螺栓的总拉力F 选用8个螺栓均布在缸头上,则N N Q F 3850083080008=== 2.3.6.2.2计算直径d螺栓连接缸头和法兰,主要受到变载荷的作用,而影响零件疲劳强度的主要因素为应力幅,故应满足疲劳强度条件][2211a a dF c c c σπσ≤⨯+=查机械原理与设计表15-3公式1][-⨯⨯⨯=σεσσk s k a ma ,设螺栓直径>20mm ,取ε=1,m k =1,a s =3.5,σk =4.5,求得1][-⨯⨯⨯=σεσσk s k a ma=MPa2405.45.311⨯⨯⨯MPa 23.15=螺栓和被联结件均为钢制,采用金属垫片,故取相对刚度系数3.0211=+c c c 即有MPa dF58.1323.02≤⨯⨯π0.3 61023.1523.0⨯⨯⨯≥πFd98.211023.1514159.33850023.06≈⨯⨯⨯⨯=mm由设计手册,选M22,与原设相符。
2.3.7缸头厚度h 的计算本液压缸选用螺钉联结法兰,其计算方法如下: ][)(30σπ⨯⨯-=op op d d D F h式中 h —法兰厚度 m F--法兰受力总和 N d —密封环内径 m H d --密封环外径 m 0D --螺钉孔分布圆直径 m op d --密封环平均半径 m [ζ]—法兰材料的许用应力 Pa均压槽一般宽为0.4mm ,深为0.8mm ,O 型密封圈的压缩率为W=(00/)d h d -,缸头和法兰的联结是固定的,其密封也是固定的,取W=20%,即00/)8.0(d d -=0.2得0d =1,0d 为密封圈直径。
F=308000N ,H d =140mm ,op d =140-0d /2=139.5mm ,间螺L d d D H 20+++=δ=140mm+23+22+2⨯7=272mm[ζ]=MPa MPa nb1205600==σ mm mm h 481205.13914159.3)5.139272(3080003≈⨯⨯-⨯⨯=2.3.8法兰直径和厚度的确定法兰直径取与缸头直径相同,即mm d 308=法 法兰厚度取mm h 38=法 2.3.9缸盖的联结计算 联接方式:螺栓联接 缸体螺纹处的拉应力为:zd FK ⨯⨯⨯=214πσ切应力:zd d F K K ⨯⨯⨯⨯=31012.0τ合成应力为:][3.1322σστσσ≤≈+=n式中 K —螺纹拧紧系数,动载荷,取K=1.5 F--缸体螺纹处所受的拉力 N ,F=308000N 1d --螺纹内径 mm z--螺栓个数,取z=8 ζ—螺纹处的拉应力 Pa[ζ]—螺纹材料的许用应力,[ζ]=MPa MPa nb4005.1600==σ n —安全系数,一般取1.5-2.5MPa d 400843080005.13.13.121≤⨯⨯⨯⨯=πσmm d 4.151≥由设计手册,取M16。