最新自动控制原理3卢京潮资料
自动控制原理复习资料——卢京潮版第二章
第二章:控制系统的数学模型§ 引言·系统数学模型-描述系统输入、输出及系统内部变量之间关系的数学表达式。
·建模方法⎩⎨⎧实验法(辩识法)机理分析法·本章所讲的模型形式⎩⎨⎧复域:传递函数时域:微分方程§控制系统时域数学模型1、 线性元部件、系统微分方程的建立 (1)L-R-C 网络11cc c r Ru u u u LLC LC'''∴++= ── 2阶线性定常微分方程 (2)弹簧—阻尼器机械位移系统 分析A 、B 点受力情况 由 A 1A i 1x k )x x (k =- 解出012i A x k k x x -= 代入B 等式:020012i x k )x x k k x f(=--&&& 得:()i 1021021x fk x k k x k k f &&=++ ── 一阶线性定常微分方程(3)电枢控制式直流电动机 电枢回路:b a E i R u +⋅=┈克希霍夫 电枢及电势:m e b C E ω⋅=┈楞次 电磁力矩:i C M m m ⋅=┈安培力矩方程:m m m m m M f J =+⋅ωω& ┈牛顿变量关系:m mb a M E i u ω----消去中间变量有:(4)X-Y 记录仪(不加内电路)消去中间变量得:a m 321m 4321m u k k k k k k k k k T =++l l l &&&─二阶线性定常微分方程即:a mm 321m m 4321m u T k k k k l T k k k k k l T 1l =++&&&2、 线性系统特性──满足齐次性、可加性 ● 线性系统便于分析研究。
● 在实际工程问题中,应尽量将问题化到线性系统范围内研究。
● 非线性元部件微分方程的线性化。
例:某元件输入输出关系如下,导出在工作点0α处的线性化增量方程解:在0αα=处线性化展开,只取线性项: 令 ()()0y -y y αα=∆ 得 αα∆⋅-=∆00sin E y 3、 用拉氏变换解微分方程 a u l l l 222=++&&& (初条件为0)复习拉普拉斯变换的有关内容1 复数有关概念 (1)复数、复函数 复数 ωσj s += 复函数 ()y x jF F s F += 例:()ωσj 22s s F ++=+= (2)复数模、相角 (3)复数的共轭(4)解析:若F(s)在s 点的各阶导数都存在,称F(s)在s 点解析。
卢京潮自控课件
自动控制原理
本次课程作业(1)
1 — 1,2,3,4
自动控制理论发展简史
• 经典控制理论
( 19世纪初 ) 时域法
复域法 (根轨迹法) 频域法
• 现代控制理论
( 20世纪60年代 ) 线性系统 最优控制 最佳估计 系统辨识
• 智能控制理论
( 20世纪70年代 ) 专家系统 模糊控制 神经网络 遗传算法
自动控制原理
讲授:卢 京 潮 作者:周 雪 琴 张 洪 才 出版:西北工业大学出版社
自动控制原理
西北工业大学自动化学院
自动控制原理教学组
自动控制原理
西北工业大学自动化学院
自动控制原理教学组
自动控制原理
(第 1 讲)
第一章 自动控制的一般概念
§1.1 §1.2 §1.3 §1.4 §1.5
引言 自动控制理论发展概述 自动控制和自动控制系统的基本概念 自动控制系统的基本组成 控制系统示例
____ 构成闭环控制系统的核心
闭环(反馈)控制系统的特点:
(1) 系统内部存在反馈,信号流动构成闭回路 (2) 偏差起调节作用
控制系统的组成 (1)
被控对象
控制系统
控制装置
测量元件 比较元件
放大元件 执行机构 校正装置 给定元件
控制系统的组成 (2)
课 程小结
1. 自动控制的一般概念 基本控制方式 控制系统的基本组成 控制系统的分类 对控制系统的要求 课程研究的内容
2. 要求掌握的知识点 负反馈控制系统的特点及原理 由系统工作原理图绘制方框图
Байду номын сангаас
自动控制原理
本次课程作业(1)
1 — 1,2,3,4
卢京潮自动控制原理西北工业大学自动化学院自动控制原理教学组自动控制原理西北工业大学自动化学院自动控制原理教学组自动控制原理第1讲第一章自动控制的一般概念11引言12自动控制理论发展概述13自动控制和自动控制系统的基本概念14自动控制系统的基本组成15控制系统示例自动控制原理11234本次课程作业1自动控制理论发展简史经典控制理论19世纪初时域法复域法根轨迹法频域法现代控制理论20世纪60年代线性系统自适应控制最优控制鲁
自动控制原理_卢京潮_利用开环频率特性分析系统的性能
5.6 利用开环频率特性分析系统的性能在频域中对系统进行分析、设计时,通常是以频域指标作为依据的,但是不如时域指标来得直接、准确。
因此,须进一步探讨频域指标与时域指标之间的关系。
考虑到对数频率特性在控制工程中应用的广泛性,本节将以Bode 图为基点,首先讨论开环对数幅频特性)(ωL 的形状与性能指标的关系,然后根据频域指标与时域指标的关系估算出系统的时域响应性能。
实际系统的开环对数幅频特性)(ωL 一般都符合如图5-49所示的特征:左端(频率较低的部分)高;右端(频率较高的部分)低。
将)(ωL 人为地分为三个频段:低频段、中频段和高频段。
低频段主要指第一个转折点以前的频段;中频段是指穿越频率(或截止频率)c ω附近的频段;高频段指频率远大于c ω的频段。
这三个频段包含了闭环系统性能不同方面的信息,需要分别进行讨论。
需要指出,开环对数频率特性三频段的划分是相对的,各频段之间没有严格的界限。
一般控制系统的频段范围在Hz 100~01.0之间。
这里所述的“高频段”与无线电学科里的“超高频”、“甚高频”不是一个概念。
5.6.1 )(ωL 低频渐近线与系统稳态误差的关系系统开环传递函数中含积分环节的数目(系统型别)确定了开环对数幅频特性低频渐近线的斜率,而低频渐近线的高度则取决于开环增益的大小。
因此,)(ωL 低频段渐近线集中反映了系统跟踪控制信号的稳态精度信息。
根据)(ωL 低图5-49 对数频率特性三频段的划分频段可以确定系统型别υ和开环增益K ,利用第3章中介绍的静态误差系数法可以确定系统在给定输入下的稳态误差。
5.6.2 )(ωL 中频段特性与系统动态性能的关系开环对数幅频特性的中频段是指穿越(或截止)频率c ω附近的频段。
设开环部分纯粹由积分环节构成,图5-50(a )所示的对数幅频特性对应一个积分环节,斜率为dec dB /20-,相角 90)(-=ωϕ,因而相角裕度 90=γ;图5-50(b )的对数幅频特性对应两个积分环节,斜率为dec dB /40-,相角 180)(-=ωϕ,因而相角裕度 0=γ。
卢京潮自动控制原理
卢京潮自动控制原理
1.什么是卢京潮自动控制?
卢京潮自动控制(Lugal surge automatic control)是一种现代化控制原理,它将所有沿桥涉及到的潮汐流量作为控制变量进行控制,以实现潮汐流量的最佳运行效果。
该原理采用复杂的计算机算法和图像处理技术,对潮汐流动进行连续的测量、监测和控制,从而实现潮汐的有效利用和环境保护。
2.卢京潮自动控制技术的应用
(1)海流控制:通过考虑桥涵水和海流等外部影响因素,有效地控制潮流,保持桥涵安全。
(2)沉积物控制:通过有效控制潮流,减少沉积物的积存,减少对航行的影响。
(3)防洪:结合潮汐与人工干涸技术,有效控制潮汐水位,减轻洪灾危害。
(4)节能:采用卢京潮自动控制能够有效地节省人工的运行成本,减少电能消耗。
3.卢京潮自动控制原理的优势
(1)实现高效控制:通过对潮汐流动的封闭式控制,有效地达到节能和安全的自动控制。
(2)提高可靠性:采用可靠的信息通信和网络系统,保证了潮汐流动的准确监测和精确控制。
(3)减少维护成本:卢京潮自动控制原理采用复杂的模型,可以避免人工的运行成本。
(4)绿色可持续发展:卢京潮自动控制技术可以实现有效的节能与环境保护控制,从而达到可持续发展的目的。
《自动控制原理》(卢京潮,西北工业大学)第一章习题及答案[1]
一、 习 题 及 解 答第1章习题及解答1-1 根据图1-15所示的电动机速度控制系统工作原理图,完成:(1) 将a ,b 与c ,d 用线连接成负反馈状态;(2) 画出系统方框图。
解 (1)负反馈连接方式为:,d a ↔c b ↔;(2)系统方框图如图解1-1 所示。
1-2 图1-16是仓库大门自动控制系统原理示意图。
试说明系统自动控制大门开、闭的工作原理,并画出系统方框图。
图1-16 仓库大门自动开闭控制系统解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。
与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。
反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。
系统方框图如图解1-2所示。
1-3 图1-17为工业炉温自动控制系统的工作原理图。
分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。
图1-17 炉温自动控制系统原理图解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置,该触点由可逆转的直流电动机驱动。
炉子的实际温度用热电偶测量,输出电压f u 。
f u 作为系统的反馈电压与给定电压r u 进行比较,得出所控制偏差电压,经电压放大器、功率放大器放大成后,作为 况下,炉温等于某个期望值e u a u 控制电动机的电枢电压。
在正常情T °C ,热电偶的输出电压f u 正好等于给定电压r u 。
此时,0=−=f r e u u u 故01,==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值。
这时,炉子散失量正好等于从加热器吸的热取的热量,形成稳定的热平衡状态,温度保持恒定。
自动控制原理复习资料——卢京潮版第七章
第七章 非线性控制系统分析§7.1 非线性系统概述● 非线性系统运动的规律,其形式多样。
线性系统只是一种近似描述 ● 非线性系统特征—不满足迭加原理1) 稳定性 ⎩⎨⎧平衡点灯可能有多个入有关关,而且与初条件,输不仅与自身结构参数有2) 自由运动形式,与初条件,输入大小有关。
3) 自振,在一定条件下,受初始扰动表现出的频率,振幅稳定的周期运动。
自振是非线性系统特有的运动形式。
4) 正弦响应的复杂性 (1) 跳跃谐振及多值响应 (2) 倍频振荡与分频振荡 (3) 组合振荡(混沌) (4) 频率捕捉 ● 非线性系统研究方法 1) 小扰动线性化处理2) 相平面法-----用于二阶非线性系统运动分析3) 描述函数法-----用于非线性系统的稳定性研究及自振分析。
4) 仿真研究---利用模拟机,数字机进行仿真实验研究。
常见非线性因素对系统运动特性的影响:1. 死区:(如:水表,电表,肌肉电特性等等)死区对系统运动特性的影响:⎪⎩⎪⎨⎧↓↓↑↓动不大时)]此时可能稳定(初始扰[原来不稳定的系统,,振荡性声,提高抗干扰能力差),能滤去小幅值噪跟踪阶跃信号有稳态误等效%(e K ss σ 可见:非线性系统稳定性与自由响应和初始扰动的大小有关。
2. 饱和(如运算放大器,学习效率等等)饱和对系统运动特性的影响:进入饱和后等效K ↓⎪⎩⎪⎨⎧↓↑↓↓,快速性差限制跟踪速度,跟踪误统最多是等幅振荡)(原来不稳,非线性系振荡性统一定稳定)原来系统稳定,此时系(%σ 3. 间隙:(如齿轮,磁性体的磁带特性等)间隙对系统影响:1) 间隙宽度有死区的特点----使ss e ↓2) 相当于一个延迟τ时间的延迟环节,%σ→↑ 振荡性 减小间隙的因素的方法:(1) 提高齿轮精度 ; (2) 采用双片齿轮; (3) 用校正装置补偿。
4. 摩擦(如手指擦纸) 摩擦引起慢爬现象的机理改善慢变化过程平稳性的方法1)2)3)⎧⎪⎨⎪⎩、良好润滑、采用干扰补偿、增加阻尼,减少脉冲,提高平衡性 摩擦对系统运动的影响:影响系统慢速运动的平稳性5. 继电特性:对系统运动的影响:1)K (2K %3)ss e σ⎧⎧⎪⎨⎩⎪⎪⎧↑⎪⎪⎪⎧↓⎨⎨⎪⎨⎪⎪↓⎪⎩⎩⎪⎪⎪⎪⎩一、二阶系统可以稳定、理想继电特性 等效: 一般地,很多情况下非线性系统会自振带死区))、带死区继电特性 等效: 快态影响(死区+饷)的综合效果振荡性、一般继电特性:除3、2中听情况外,多出一个延迟效果(对稳定性不利)§7.2 相平面法基础(适用于二阶系统)1. 相平面相轨迹二阶非线性系统运动方程:()[(),()]xt f x t x t = ――定常非线性运动方程即:[,][,]dxdx f xx dx dtdx f x x dx x⋅==()()xxt x t ⎧⎪⎪⎨⎪⎪⎩以为纵标,x为横标,构成一个平面(二维空间)称之为相平面(状态平面)系统运动时,,以t为参变量在相平面上描绘出的轨迹称为相轨迹(可以描述系统运动) 相平面法是用图解法求解一般二阶非线性控制系统的精确方法。
自动控制原理卢京潮主编课后习题答案西北工业大学出版社
自动控制原理卢京潮主编课后习题答案西北工业大学出版社SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第五章 线性系统的频域分析与校正习题与解答5-1 试求题5-75图(a)、(b)网络的频率特性。
(a) (b)图5-75 R-C 网络解 (a)依图:⎪⎪⎪⎩⎪⎪⎪⎨⎧+==+=++=++=2121111212111111221)1(11)()(R R C R R T C R RR R K s T s K sC R sC R R R s U s U r c ττ (b)依图:⎩⎨⎧+==++=+++=C R R T CR s T s sCR R sC R s U s U r c)(1111)()(2122222212ττ 5-2 某系统结构图如题5-76图所示,试根据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出)(t c s 和稳态误差)(t e s(1) t t r 2sin )(=(2) )452cos(2)30sin()(︒--︒+=t t t r 解 系统闭环传递函数为: 21)(+=Φs s 图5-76 系统结构图 频率特性: 2244221)(ωωωωω+-++=+=Φj j j 幅频特性: 241)(ωω+=Φj相频特性: )2arctan()(ωωϕ-=系统误差传递函数: ,21)(11)(++=+=Φs s s G s e 则 )2arctan(arctan )(,41)(22ωωωϕωωω-=++=Φj j e e(1)当t t r 2sin )(=时, 2=ω,r m =1则 ,35.081)(2==Φ=ωωj 45)22arctan()2(-=-=j ϕ (2) 当 )452cos(2)30sin()(︒--︒+=t t t r 时: ⎩⎨⎧====2,21,12211m m r r ωω5-3 若系统单位阶跃响应 试求系统频率特性。
自动控制原理_卢京潮_二阶系统的时间响应及动态性能
自动控制原理_卢京潮_二阶系统的时间响应及动态性能3.3 二阶系统的时间响应及动态性能3.3.1 二阶系统传递函数标准形式及分类常见二阶系统结构图如图3-,所示其中,为环节参数。
系统闭环传递函数为 KT K ,s, ()2Ts,s,K1化成标准形式2,n (首1型) (3-5) ,(s),22s,2,,s,,nn1,(s), (尾1型) (3-6) 22Ts,2T,s,111T1K1式中,,,。
,,,,,,Tn2KTTTK11、分别称为系统的阻尼比和无阻尼自然频率,是二阶系统重要的特征参数。
二阶系统的首,,n1标准型传递函数常用于时域分析中,频域分析时则常用尾1标准型。
二阶系统闭环特征方程为22 D(s),s,2,,s,,,0nn其特征特征根为2,,,,,,,,,1 nn1,2若系统阻尼比取值范围不同,则特征根形式不同,响应特性也不同,由此可将二阶系统分类,见,表3-3。
表3-3 二阶系统(按阻尼比)分类表 ,分类特征根特征根分布模态,t1e ,,12,,,,,,,,,1 nn 1,2,t2e过阻尼,,tn ,,1e,,,, 1,2n,,tnte临界阻尼,,t,2n,,esin1,t0,,,1 n2,,,,,,j,1,, nn1,2t,,,2necos1,,,t欠阻尼 n57,sint ,,0n ,,,j, 1,2ncos,tn零阻尼数学上,线性微分方程的解由特解和齐次微分方程的通解组成。
通解由微分方程的特征根决定,,t,t,tn12代表自由响应运动。
如果微分方程的特征根是,,且无重根,则把函数,,eee,,,?,?,12n称为该微分方程所描述运动的模态,也叫振型。
,t2,t,如果特征根中有多重根,则模态是具有,形式的函数。
tete,?(,,j,)t(,,j,)t如果特征根中有共轭复根,则其共轭复模态与可写成实函数模态ee,,,,j,,t,t与。
esin,tecos,t每一种模态可以看成是线性系统自由响应最基本的运动形态,线性系统自由响应则是其相应模态的线性组合。
《自动控制原理》(卢京潮,西北工业大学)第八章习题及答案[1]
&1 ⎤ ⎡ 0 0 1 ⎤ ⎡ x1 ⎤ ⎡0⎤ ⎡x ⎢x ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ & ⎢ 2 ⎥ = ⎢ − 2 − 3 0 ⎥ ⎢ x 2 ⎥ + ⎢ 2⎥ u ⎢ &3 ⎥ 2 − 3⎥ ⎣0 ⎦⎢ ⎣0 ⎥ ⎦ ⎣x ⎦ ⎢ ⎣ x3 ⎥ ⎦ ⎢ ⎡ x1 ⎤ ⎥ y = x1 = [1 0 0]⎢ ⎢ x2 ⎥ ⎢ ⎣ x3 ⎥ ⎦
181
由上式,可列动态方程如下
⎡ &1 ⎤ ⎢0 ⎡x 1 ⎥ ⎢x ⎢ & 0 ⎢ 2 ⎥ = ⎢0 R f + K bCm a m ⎢ &3 ⎥ ⎦ ⎢0 − ⎣x La J m ⎢ ⎣
⎤ 0 ⎥ ⎥ 1 La f m + J m R a ⎥ ⎥ − La J m ⎥ ⎦
⎡ x1 ⎤ ⎢ ⎢ x ⎥ + ⎢0 ⎢ 2 ⎥ ⎢0 ⎢ ⎦ ⎢ ⎣ x3 ⎥ ⎢ Cm
182
⎡ ⎢ 0 由上式可得变换矩阵为 T = ⎢ 0 ⎢C ⎢ m ⎢ ⎣ Jm
8-2
1 0
⎤ 0 ⎥ 1 ⎥ f ⎥ 0 − m⎥ Jm ⎥ ⎦
&& + 6 & & + 11y & + 6 y = 6u 。式中 u 和 y 分别为系统输入、输 设系统微分方程为 & y y
出量。试列写可控标准型(即矩阵 A 为友矩阵)及可观测标准型(即矩阵 A 为友矩阵转置) 状态空间表达式,并画出状态变量图。 解: 由题意可得:
0⎤ ⎥ et ⎦
187
( sI − A) −1
⎡s + 1 0 ⎤ =⎢ s − 1⎥ ⎣ 0 ⎦
《自动控制原理》-卢京潮主编-西北工业大学(清华大学)-第四章习题及答案
图解 4-4 根轨迹图
4-5 已知控制系统的开环传递函数为
G(s)H (s) = K(∗ s + 2) (s 2 + 4s + 9)2
69
试概略绘制系统根轨迹。 解 根轨迹绘制如下:
① 实轴上的根轨迹: (− ∞,−2]
② 渐近线:
⎧ ⎪⎪σ a ⎨ ⎪⎪⎩ϕ a
= =
−2 (2k
− j 5−2+
= ± π , ± 3π 55
,π
③ 分离点:
1+ 1 + 1 + 1 + 1 =0 d d + 1 d + 3.5 d + 3 − j2 d + 3 + j2
解得: d1 = −0.45 , d2 − 2.4 (舍去) , d3、4 = −3.25 ± j1.90 (舍去)
④ 与虚轴交点:闭环特征方程为
自动控制原理卢京潮主编西北工业大学清华大学第四章习题及答案卢京潮自动控制原理卢京潮卢京潮自控视频卢京潮自动控制视频会计基础第四章练习题财经法规第四章练习题概率论第四章习题解答第四章三角形练习题中级经济法第四章习题
+++++++++++++++本资料由CORE_0整理上传++++++++++++++++++
essn
=
lim
s→0
s
⋅Φ
en
(
s)
⋅
E
控制系统的数学模型(卢京潮课件)
y( x ) y( x ) y( x0 )
E0 sin x0 ( x x0 )
即有
y E0 sin x0 x
线性定常微分方程求解
微分方程求解方法
复习拉普拉斯变换有关内容(1)
1 复数有关概念
(1)复数、复函数 复数
s j
复函数 F ( s ) Fx ( s ) jF y ( s ) 例1 F ( s ) s 2 2 j
§2.2 控制系统的数学模型—微分方程
§2.2.1 线性元部件及系统的微分方程
例1 R-L-C 串连电路
ur ( t ) L di ( t ) Ri( t ) uc ( t ) dt du ( t ) i (t ) C c dt
d 2 uc ( t ) duc ( t ) LC RC uc ( t ) 2 dt dt
例7 例8 例9
1 1 L 1 t e Le ss sa sa s3 s - 3t 2 L e cos 5t 2 2 2 s 3 5 s 5 s s 3
f (t ) e
F ( s ) F ( s A) 右 dt源自00
0
0-f 0 s f t e st dt sF s f 0 右
L f n t s n F s s n-1 f 0 s n- 2 f 0 sf n- 2 0 f n1 0
d 2 uc ( t ) R duc ( t ) 1 1 u ( t ) ur ( t ) c 2 dt L dt LC LC
§2.2.1 线性元部件及系统的微分方程(1)
自动控制原理复习资料——卢京潮版第五章
第五章频率响应法5.1 频率特性的基本概念5.1.1 频率特性的定义5.1.2 频率特性和传递函数的关系5.1.3 频率特性的图形表示方法5.2 幅相频率特性(Nyquist图)5.2.1 典型环节的幅相特性曲线5.2.2 开环系统的幅相特性曲线5.3 对数频率特性(Bode图)5.3.1 典型环节的Bode图5.3.2 开环系统的Bode图5.3.3 最小相角系统和非最小相角系统5.4 频域稳定判据5.4.1 奈奎斯特稳定判据5.4.2 奈奎斯特稳定判据的应用5.4.3 对数稳定判据5.5 稳定裕度5.5.1 稳定裕度的定义5.5.2 稳定裕度的计算5.6 利用开环频率特性分析系统的性能L低频渐近线与系统稳态误差的关系5.6.1 )(ωL中频段特性与系统动态性能的关系5.6.2 )(ωL高频段对系统性能的影响5.6.3 )(ω5.7 闭环频率特性曲线的绘制5.7.1 用向量法求闭环频率特性5.7.2 尼柯尔斯图线5.8 利用闭环频率特性分析系统的性能5.8.1 闭环频率特性的几个特征量5.8.2 闭环频域指标与时域指标的关系5.9 频率法串联校正引言频率响应法的特点1)由开环频率特性→闭环系统稳定性及性能2)二阶系统频率特性↔时域性能指标高阶系统频率特性↔时域性能指标3)物理意义明确许多元部件此特性都可用实验法确定工程上广泛应用4)在校正方法中,频率法校正最为方便§5.1频率特性 1.定义1: 2. 3.ss r t A t c t r t G s s j G j c t r t ωωω=⎧⎪=⎨⎪⎩时,与的幅值比,相角差构成的复数中,令得出为频率特性的富氏变换与的富氏变换之比一、 地位:三大分析方法之一二、 特点:1)2)()3)⎧⎪→⎨⎪⎩图解法,简单不直接解闭环根,从开环闭环特征特别适用于校正,设计近似法,不完全精确以右图R -C 网络为例:r cc r c cu iR u i Cu q u Cu R u =+↓===+ ()(1)r c U s CRs U =+⋅()1()()1T CR c r U s G s U s Ts ===+ 设()sin r u t A t ω= 求()c u t22()1t Tc A Tu t e t t T ωωωω-⎡⎤∴=+⎥+⎦ 2222)11tTA T e t arctg t T T ωωωωω-=+-++瞬态响应稳态响应网络频率特性()()()()()ss ss c r c t G j G j r t G j arctgT ωωωϕϕω⎧⎪⎪===⎨⎪⎪∠=-=-⎩幅频特性:相频特性频率特性定义一:——频率特性物理意义:频率特性()G jω是当输入为正弦信号时,系统稳态输出(也是一个与输入同频率的正弦信号)与输入信号的幅值比,相角差。
《自动控制原理(第二版)》课后答案(卢京潮著)西北工业大学出版社_1-185
第一章自动控制的一般概念习题及答案1-1 根据题1-15图所示的电动机速度控制系统工作原理图,完成:(1)将a,b与c,d用线连接成负反馈状态;(2)画出系统方框图。
解(1)负反馈连接方式为:a↔d,b↔c;(2)系统方框图如图解1-1所示。
1-2 题1-16图是仓库大门自动控制系统原理示意图。
试说明系统自动控制大门开、闭的工作原理,并画出系统方框图。
图1-16仓库大门自动开闭控制系统1解当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。
与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。
反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。
系统方框图如图解1-2所示。
1-3 图1-17为工业炉温自动控制系统的工作原理图。
分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。
图1-17 炉温自动控制系统原理图解加热炉采用电加热方式运行,加热器所产生的热量与调压器电压u c的平方成正比,u c 增高,炉温就上升,u c的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。
炉子的实际温度用热电偶测量,输出电压u f。
u f作为系统的反馈电压与给定电压u r进行比较,得出偏差电压u e,经电压放大器、功率放大器放大成u a后,作为控制电动机的电枢电压。
在正常情况下,炉温等于某个期望值T°C,热电偶的输出电压u f正好等于给定电压u r。
此时,u e=u r−u f=0,故u1=u a=0,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使u c保持一定的数值。
这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。
当炉膛温度T°C由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下2的控制过程:控制的结果是使炉膛温度回升,直至T°C的实际值等于期望值为止。
自动控制原理复习资料——卢京潮版第二章
⾃动控制原理复习资料——卢京潮版第⼆章第⼆章:控制系统的数学模型§2.1 引⾔·系统数学模型-描述系统输⼊、输出及系统内部变量之间关系的数学表达式。
·建模⽅法?实验法(辩识法)机理分析法·本章所讲的模型形式??复域:传递函数时域:微分⽅程§2.2控制系统时域数学模型1、线性元部件、系统微分⽅程的建⽴(1)L-R-C ⽹络 C r u R i dtdiL u +?+?=↓ci C u =?&c c c u u C R u C L +'??+''??=11cc c r R u u u u LLC LC'''∴++= ── 2阶线性定常微分⽅程(2)弹簧—阻尼器机械位移系统分析A 、B 点受⼒情况02B0A AA i 1x k )x x f()x x (k =-=-∴&&由 A 1A i 1x k )x x (k =- 解出012i A x k k x x -=代⼊B 等式:020012i x k )x x k k x f(=--i x k x )k k 1f(x f ++=?&& 得:()i 1021021x fk x k k x k k f &&=++ ──⼀阶线性定常微分⽅程(3)电枢控制式直流电动机电枢回路:b a E i R u +?=┈克希霍夫电枢及电势:m e b C E ω?=┈楞次电磁⼒矩:i C M m m ? =┈安培⼒矩⽅程:m m m m m M f J =+?ωω& ┈⽜顿变量关系:m mb a M E i u ω----消去中间变量有:a m m m m u k T =+ωω& [][]??+=+=传递函数时间函数 C C f R C k C C f R RJ T m e m mm m e m m m(4)X-Y 记录仪(不加内电路)=?===+??==?ll 4p 3m2am m m m 1a p r k u :k :k :u k T :u k u :u -u u :电桥电路绳轮减速器电动机放⼤器⽐较点θθθθθ&&& a m rp u u u u l θθ?----------- 消去中间变量得:a m 321m 4321m u k k k k k k k k k T =++l l l &&&─⼆阶线性定常微分⽅程即:a mm 321m m 4321m u T kk k k l T k k k k k l T 1l =++&&&2、线性系统特性──满⾜齐次性、可加性●线性系统便于分析研究。
自动控制原理复习资料——卢京潮版第三章
第三章 线性系统的时域分析法●时域分析法在经典控制理论中的地位和作用时域分析法是三大分析方法之一,在时域中研究问题,重点讨论过渡过程的响应形式。
时域分析法的特点:1).直观、精确。
2).比较烦琐。
§3.1 概述 1. 典型输入 2. 性能指标∙稳→基本要求 ∙准→稳态要求↓ss e :∙快→过渡过程要求⎪⎩⎪⎨⎧↓↓⨯∞∞-=sp t h h t h %)()()(%σ§3.2 一阶系统的时域响应及动态性能 设系统结构图如右所示开环传递函数sKs G =)(闭环传递函数)1(11111)(T Ts Ts T K s K s K s K s -=+=+=+=+=Φλ :)(1)(时t t r =Ts sTs s T s R s s C 111)1(1)()()(+-=+=Φ=1)(,0)0( 1)(1=∞=-=∴-c c et c t TTc e T t c t T 1)0( 1)(1='='-依)(t h 特点及s t 定义有:95.01)(1=-=-s t Ts et h05.095.011=-=-s t Te305.0ln 1-==-s t TT t s 3=∴一阶系统特征根T1-=λ分布与时域响应的关系:t t h s s s s R s s C ===Φ==∙)( 11.1)().()( 02时λat e t h as s a s s a s C a +-=-+-=-==∙1)( 11)()( 时λ 例1 已知系统结构图如右其中:12.010)(+=s s G加上H K K ,0环节,使s t 减小为原来的0.1倍,且总放大倍数不变,求H K K ,0解:依题意,要使闭环系统02.00.21.0*=⨯=s t ,且闭环增益=10。
1101)101(10 1012.01012.0112.010.)(1)(.(s)0000+++=++=+++=+=Φs K K K K s K s s K s G K s G K H H H H H令 101011002.01012.00⎪⎪⎩⎪⎪⎨⎧=+==+=H H K K K K T 联立解出⎩⎨⎧==109.00K K H例2 已知某单位反馈系统的单位阶跃响应为at e t h --=1)(求(1).闭环传递函数)(s Φ;(2).单位脉冲响应;(3).开环传递函数。
自动控制原理_卢京潮_利用开环频率特性分析系统的性能
自动控制原理_卢京潮_利用开环频率特性分析系统的性能自动控制原理是指通过对系统采集的输入与输出信号进行比较,利用控制器对系统进行调节,实现对所控对象的自动调整的一种技术。
其中,开环控制是一种最基本的控制方式,其通过直接将控制量输入到被控对象中,实现对系统的控制。
而开环频率特性分析则是通过对开环控制系统进行频率特性分析,来评估系统的性能。
开环频率特性分析主要包括幅频特性分析和相频特性分析。
首先,幅频特性分析是指通过改变输入信号的频率,观察输出信号的幅值变化,从而分析系统的频率响应。
在开环控制系统中,通过改变输入信号的频率,可以得到系统的频率特性曲线,即Bode图。
Bode图包括幅频特性曲线和相频特性曲线两部分。
幅频特性曲线反映了系统对不同频率的输入信号的放大或衰减程度。
它是由系统的增益裕度和截止频率决定的。
增益裕度表示系统对输入信号幅值的放大倍数,而截止频率则表示系统能够传递的最高频率。
通过幅频特性曲线的分析,可以判断系统的稳定性和频率特性,以及对各个频率成分的衰减程度。
相频特性分析是指通过改变输入信号的频率,观察输出信号与输入信号之间的相位差,从而分析系统的相位特性。
相频特性曲线反映了系统对不同频率输入信号的相位差变化。
通过相频特性曲线的分析,可以得出系统响应的相位裕度和相角裕度。
相位裕度表示系统对输入信号相位变化的响应程度,相角裕度则表示系统能够承受的相位变化范围。
通过对开环控制系统的幅频特性和相频特性进行分析,可以对系统的性能进行评估。
常用的评估指标包括频率响应曲线的特征参数,如增益裕度、相位裕度、截止频率等。
增益裕度和相位裕度越大,说明系统对干扰和变化的抑制能力越强,系统的稳定性越好。
截止频率则表示了系统对高频信号的响应能力。
通过频率特性分析,可以对系统进行合理的调整和优化,确保系统具有足够的控制能力和稳定性。
总之,利用开环频率特性分析系统的性能,可以为控制系统的设计和调整提供指导。
通过分析系统的幅频特性和相频特性,可以评估系统的稳定性、频率响应特性和抑制能力,从而实现对系统的优化和改进。
(完整word版)自动控制原理3卢京潮
第三章 线性系统的时域分析与校正习题及答案3-1 已知系统脉冲响应t e t k 25.10125.0)(-=试求系统闭环传递函数)(s Φ。
解 Φ()()./(.)s L k t s ==+00125125 3-2 设某高阶系统可用下列一阶微分方程T c t c t r t r t ••+=+()()()()τ近似描述,其中,1)(0<-<τT 。
试证系统的动态性能指标为 T T T t d ⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=τln 693.0t T r =22. T T T t s ⎥⎦⎤⎢⎣⎡-+=)ln(3τ 解 设单位阶跃输入ss R 1)(= 当初始条件为0时有:11)()(++=Ts s s R s C τ 11111)(+--=⋅++=∴Ts T s s Ts s s C ττC t h t T Te t T()()/==---1τ 1) 当 t t d = 时h t T Te t td ()./==---051τ12=--T T e t T d τ/ ; Tt TT d-⎪⎭⎫ ⎝⎛-=-τln 2ln ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∴T T T t d τln 2ln2) 求t r (即)(t c 从1.0到9.0所需时间)当 Tt eTT t h /219.0)(---==τ; t T T T 201=--[ln()ln .]τ 当 Tt eTT t h /111.0)(---==τ; t T T T 109=--[ln()ln .]τ 则 t t t T T r =-==21090122ln ... 3) 求 t sTt s s eTT t h /195.0)(---==τ ]ln 3[]20ln [ln ]05.0ln [ln TT T T T T T T T t s τττ-+=+-=--=∴3-3 一阶系统结构图如图3-45所示。
要求系统闭环增益2=ΦK ,调节时间4.0≤s t s ,试确定参数21,K K 的值。
自动控制原理复习资料卢京潮版
第二章:控制系统的数学模型§ 2.1 引言-系统数学模型一描述系统输入、输出及系统内部变量之间关系的数学表达式-建模方法机理分析法 实验法(辩识法)§ 2.2控制系统时域数学模型1、线性元部件、系统微分方程的建立(1) L-R-C 网络-本章所讲的模型形式时域:微分方程 复域:传递函数1 LC Uc1 LC Ur2阶线性定常微分方程(2)弹簧一阻尼器机械位移系统分析A 、B 点受力情况由 k 1(X i X A )&X A解出 X A X i k -2X 0k 1代入B 等式:f (X ik 2k 1X o X o )k 2X得:f k 1 k 2 X 0 k 1k 2X 0 fk 1X i一阶线性定常微分方程T m l I k 1k 2k 3k 4k m l k 1k 2k 3k m u a —二阶线性定常微分方程2、线性系统特性——满足齐次性、可加性线性系统便于分析研究。
在实际工程问题中,应尽量将问题化到线性系统范围内研究。
(3)电枢控制式直流电动机电枢回路:u a R i E b —克希霍夫电枢及电势:E b C em-…楞次电磁力矩: M m C m i - -安培力矩方程:J m m f mmM m —牛顿变量关系:iM mUaE bm消去中间变量有:即:Ik 1k 2k 3k 4k k 1k 2k 3k T mT m消去中间变 量得:非线性元部件微分方程的线性化例:某元件输入输出关系如下,导出在工作点0处的线性化增量方程解:在0处线性化展开,只取线性项:令y y -y o得y E o sin o3、用拉氏变换解微分方程I 21 21 2u a(初条件为0)复习拉普拉斯变换的有关内容1复数有关概念(1)复数、复函数复数s j复函数 F s F x jF y例:Fs s 2 2 j(2)复数模、相角(3)复数的共轭(4)解析:若F(s)在s点的各阶导数都存在,称F(s)在s点解析。
卢京潮零点极点法求动态指标
卢京潮零点极点法求动态指标(实用版)目录一、卢京潮零点极点法简介二、动态指标的定义与意义三、卢京潮零点极点法在求动态指标中的应用四、具体求解过程与示例五、结论与展望正文一、卢京潮零点极点法简介卢京潮零点极点法是一种求解复杂数学问题的有效方法,起源于我国著名数学家卢京潮提出的一种求解函数零点和极点的算法。
该算法广泛应用于数学、物理、工程等领域,尤其在解决动态指标方面有着显著的优势。
二、动态指标的定义与意义动态指标是描述某一系统或过程在时间推移过程中发生变化的指标,通常包括速度、加速度、力矩等。
在科学研究和工程技术中,准确地求解动态指标对于分析系统的稳定性和性能至关重要。
三、卢京潮零点极点法在求动态指标中的应用卢京潮零点极点法在求解动态指标方面的应用具有较高的精确度和可靠性。
该方法通过分析函数的零点和极点,可以有效地确定系统的稳定性和动态性能。
同时,该方法具有较强的通用性,适用于多种类型的动态指标求解。
四、具体求解过程与示例假设有一个质量为 m 的物体,受到一个随时间变化的力 F(t) 作用,其运动方程为:m * a(t) = F(t)其中,a(t) 为物体的加速度,F(t) 为作用在物体上的力。
我们可以通过卢京潮零点极点法求解该运动方程的解,进而得到物体的加速度。
具体求解过程如下:1.对 F(t) 求导,得到 F"(t)2.求解 F(t) 的零点和极点,即求解 F(t)=0 和 F"(t)=0 的解3.根据求解得到的零点和极点,构建函数 f(s) = F(s)/s,其中 s 为复变量4.求解 f(s) 的零点和极点,即求解 f(s)=0 的解5.根据求解得到的零点和极点,求解 a(t) 的表达式6.对 a(t) 求导,得到物体的速度 v(t)7.对 v(t) 求导,得到物体的加速度 a(t)通过以上步骤,我们可以得到物体的加速度 a(t),从而分析物体在不同时间点的运动状态。
五、结论与展望卢京潮零点极点法在求解动态指标方面具有较高的精确度和可靠性,为科学研究和工程技术提供了一种有效的分析手段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 线性系统的时域分析与校正习题及答案3-1 已知系统脉冲响应t e t k 25.10125.0)(-=试求系统闭环传递函数)(s Φ。
解 Φ()()./(.)s L k t s ==+00125125 3-2 设某高阶系统可用下列一阶微分方程T c t c t r t r t ∙∙+=+()()()()τ近似描述,其中,1)(0<-<τT 。
试证系统的动态性能指标为 T T T t d ⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=τln 693.0t T r =22. T T T t s ⎥⎦⎤⎢⎣⎡-+=)ln(3τ 解 设单位阶跃输入ss R 1)(= 当初始条件为0时有:11)()(++=Ts s s R s C τ 11111)(+--=⋅++=∴Ts T s s Ts s s C ττC t h t T Te t T()()/==---1τ 1) 当 t t d = 时h t T Te t td ()./==---051τ12=--T T e t T d τ/ ; T t T T d -⎪⎭⎫ ⎝⎛-=-τln 2ln ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∴T T T t d τln 2ln2) 求t r (即)(t c 从1.0到9.0所需时间)当 Tt eTT t h /219.0)(---==τ; t T T T 201=--[ln()ln .]τ 当 Tt eTT t h /111.0)(---==τ; t T T T 109=--[ln()ln .]τ 则 t t t T T r =-==21090122ln ... 3) 求 t sTt s s eTT t h /195.0)(---==τ ]ln 3[]20ln [ln ]05.0ln [ln TT T T T T T T T t s τττ-+=+-=--=∴3-3 一阶系统结构图如图3-45所示。
要求系统闭环增益2=ΦK ,调节时间4.0≤s t s ,试确定参数21,K K 的值。
解 由结构图写出闭环系统传递函数111)(212211211+=+=+=ΦK K sK K K s K sK K s K s令闭环增益212==ΦK K , 得:5.02=K 令调节时间4.03321≤==K K T t s ,得:151≥K 。
3-4 在许多化学过程中,反应槽内的温度要保持恒定, 图3-46(a )和(b )分别为开环和闭环温度控制系统结构图,两种系统正常的K 值为1。
(1) 若)(1)(t t r =,0)(=t n 两种系统从响应开始达到稳态温度值的63.2%各需多长时间?(2) 当有阶跃扰动1.0)(=t n 时,求扰动对两种系统的温度的影响。
解 (1)对(a )系统: 1101110)(+=+=s s K s G a , 时间常数 10=T 632.0)(=T h (a )系统达到稳态温度值的63.2%需要10个单位时间;对(a )系统:11011010110010110100)(+=+=Φs s s b , 时间常数 10110=T 632.0)(=T h (b )系统达到稳态温度值的63.2%需要0.099个单位时间。
(2)对(a )系统: 1)()()(==s N s C s G n 1.0)(=t n 时,该扰动影响将一直保持。
对(b )系统: 1011011011010011)()()(++=++==Φs s s s N s C s n 1.0)(=t n 时,最终扰动影响为001.010111.0≈⨯。
3-5 一种测定直流电机传递函数的方法是给电枢加一定的电压,保持励磁电流不变,测出电机的稳态转速;另外要记录电动机从静止到速度为稳态值的50%或63.2%所需的时间,利用转速时间曲线(如图3-47)和所测数据,并假设传递函数为)()()()(a s s Ks V s s G +=Θ=可求得K 和a 的值。
若实测结果是:加10V 电压可得1200m in r 的稳态转速,而达到该值50%的时间为1.2s ,试求电机传递函数。
提示:注意a s K s V s +=Ω)()(,其中dtd t θω=)(,单位是s rad解 依题意有: 10)(=t v (伏) ππω406021200)(=⨯=∞ (弧度/秒) (1)πωω20)(5.0)2.1(=∞= (弧度/秒) (2) 设系统传递函数 as Ks V s s G +=Ω=)()()(0 应有 πω401010lim )()(lim )(000==+⋅⋅=⋅=∞→→aK a s K s s s V s G s s s (3) [][]ate a K a s s L a K a s s K L s V s G L t -----=⎥⎦⎤⎢⎣⎡+-=⎥⎦⎤⎢⎣⎡+=⋅=1101110)(10)()()(1101ω 由式(2),(3) [][]ππω20140110)2.1(2.12.1=-=-=--a a e e aK得 5.012.1=--ae解出 5776.02.15.0ln =-=a (4) 将式(4)代入式(3)得 2586.74==a K π3-6 单位反馈系统的开环传递函数)5(4)(+=s s s G ,求单位阶跃响应)(t h 和调节时间t s 。
解:依题,系统闭环传递函数)1)(1(4)4)(1(4454)(212T s T s s s s s s ++=++=++=Φ ⎩⎨⎧==25.0121T T41)4)(1(4)()()(210++++=++=Φ=s C s C s C s s s s R s s C1)4)(1(4lim)()(lim 000=++=Φ=→→s s s R s s C s s34)4(4lim)()()1(lim 011-=+=Φ+=→-→s s s R s s C s s31)1(4lim)()()4(lim 042=+=Φ+=→-→s s s R s s C s st t e e t h 431341)(--+-=421=T T , ∴3.33.3111==⎪⎪⎭⎫ ⎝⎛=T T T t t s s 。
3-7 设角速度指示随动系统结构图如图3-48所示。
若要求系统单位阶跃响应无超调,且调节时间尽可能短,问开环增益K 应取何值,调节时间s t 是多少?解 依题意应取 1=ξ,这时可设闭环极点为02,11-=λ。
写出系统闭环传递函数Ks s Ks 101010)(2++=Φ 闭环特征多项式20022021211010)(⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛+=++=T s T s T s K s s s D 比较系数有 ⎪⎪⎩⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛=K T T 101102200 联立求解得 ⎩⎨⎧==5.22.00K T 因此有 159.075.40''<''==T t s3-8 给定典型二阶系统的设计指标:超调量%5%≤σ,调节时间 s t s 3<,峰值时间s t p 1<,试确定系统极点配置的区域,以获得预期的响应特性。
解依题%5%≤σ, )45(707.0︒≤≥⇒βξ;35.3<=ns t ωξ, 17.1>⇒n ωξ;np t ωξπ21-=1<, 14.312>-⇒n ωξ综合以上条件可画出满足要求的特征根区域如图解3-8所示。
3-9 电子心脏起博器心律控制系统结构图如题3-49图所示,其中模仿心脏的传递函数相当于一纯积分环节。
(1) 若5.0=ξ对应最佳响应,问起博器增益K 应取多大?(2) 若期望心速为60次/min ,并突然接通起博器,问1s 钟后实际心速为多少?瞬时最大心速多大?解 依题,系统传递函数为2222205.005.0105.0)(nn n s s K s s Ks ωξωω++=++=Φ ⎪⎪⎩⎪⎪⎨⎧⨯==n n Kωξω205.0105.0 令 5.0=ξ可解出 ⎩⎨⎧==2020nK ω将 s t 1=代入二阶系统阶跃响应公式()βωξξξω+---=-t e t h n t n 221sin 11)(可得 m in 00145.60000024.1)1(次次==s h5.0=ξ时,系统超调量 %3.16%=σ,最大心速为min 78.69163.1163.01(次次)==+=s t h p3-10 机器人控制系统结构图如图3-50所示。
试确定参数21,K K 值,使系统阶跃响应的峰值时间5.0=p t s ,超调量%2%=σ。
解 依题,系统传递函数为222121212112)1()1()1(1)1()(n n n s s K K s K K s K s s s K K s s K s ωξωωΦΦ++=+++=++++= 由 ⎪⎩⎪⎨⎧=-=≤=--5.0102.0212n p oo t e ωξπσξπξ 联立求解得⎩⎨⎧==1078.0nωξ 比较)(s Φ分母系数得⎪⎩⎪⎨⎧=-===146.0121001221K K K n n ξωω 3-11 某典型二阶系统的单位阶跃响应如图3-51所示。
试确定系统的闭环传递函数。
解 依题,系统闭环传递函数形式应为2222.)(nn ns s K s ωξωω++=ΦΦ 由阶跃响应曲线有:21)(lim )()(lim (0==⋅Φ=Φ=∞Φ→→K ss s s R s s h s s )⎪⎪⎩⎪⎪⎨⎧=-===-=--o oo o n p e t 25225.221212ξξπσξωπ 联立求解得 ⎩⎨⎧==717.1404.0n ωξ所以有 95.239.19.5717.1717.1404.02717.12)(2222++=+⨯⨯+⨯=Φs s s s s3-12 设单位反馈系统的开环传递函数为)12.0(5.12)(+=s s s G试求系统在误差初条件1)0(,10)0(==ee 作用下的时间响应。
解 依题意,系统闭环传递函数为 5.6255.62)(1)()()()(2++=+==Φs s s G s G s R s C s 当0)(=t r 时,系统微分方程为 0)(5.62)(5)(=+'+''t c t c t c 考虑初始条件,对微分方程进行拉氏变换[][]0)(5.62)0()(5)0()0()(2=+-+'--s C c s C s c c s s C s整理得 ()())0()0(5)(5.6252c c s s C s s'++=++ (1)对单位反馈系统有 )()()(t c t r t e -=, 所以110)0()0()0(101000()0()0(-=-='-'='-=-=-=e r c e r c )将初始条件代入式(1)得 2225.7)5.2(26)5.2(105.6255110)(++++-=++--=s s s s s s C 22225.7)5.2(5.747.35.7)5.2()5.2(10++-+++-=s s s)8.705.7sin(6.105.7sin 47.35.7cos 10)(5.25.25.2︒+-=--=---t e t e t et c t t t3-13 设图3-52(a )所示系统的单位阶跃响应如图3-52(b )所示。