51单片机控制步进电机程序及硬件电路图
[整理]51单片机驱动步进电机电路及程序(1)
在这里介绍一下用51单片机驱动步进电机的方法。
这款步进电机的驱动电压12V,步进角为 7.5度 . 一圈 360 度 , 需要 48 个脉冲完成!!!该步进电机有6根引线,排列次序如下:1:红色、2:红色、3:橙色、4:棕色、 5:黄色、6:黑色。
采用51驱动ULN2003的方法进行驱动。
ULN2003的驱动直接用单片机系统的5V电压,可能力矩不是很大,大家可自行加大驱动电压到12V。
;******************************************************************** *************;**************************** 步进电机的驱动***************************************; DESIGN BY BENLADN911 FOSC = 12MHz 2005.05.19;---------------------------------------------------------------------------------; 步进电机的驱动信号必须为脉冲信号!!! 转动的速度和脉冲的频率成正比!!! ; 本步进电机步进角为 7.5度 . 一圈 360 度 , 需要 48 个脉冲完成!!!;---------------------------------------------------------------------------------; A组线圈对应 P2.4; B组线圈对应 P2.5; C组线圈对应 P2.6; D组线圈对应 P2.7; 正转次序: AB组--BC组--CD组--DA组 (即一个脉冲,正转 7.5 度);----------------------------------------------------------------------------------;---------------------------- 正转--------------------------ORG 0000HLJMP MAINORG 0100HMAIN:MOV R3,#144 正转 3 圈共 144 脉冲START:MOV R0,#00HSTART1:MOV P2,#00HMOV A,R0MOV DPTR,#TABLEMOVC A,@A+DPTRJZ START 对 A 的判断,当 A = 0 时则转到 STARTMOV P2,ALCALL DELAYINC R0DJNZ R3,START1MOV P2,#00HLCALL DELAY1;-----------------------------反转------------------------ MOV R3,#144 反转一圈共 144 个脉冲START2:MOV P2,#00HMOV R0,#05START3:MOV A,R0MOV DPTR,#TABLEMOVC A,@A+DPTRJZ START2MOV P2,ACALL DELAYINC R0DJNZ R3,START3MOV P2,#00HLCALL DELAY1LJMP MAINDELAY: MOV R7,#40 步进电机的转速M3: MOV R6,#248DJNZ R6,$DJNZ R7,M3RETDELAY1: MOV R4,#20 2S 延时子程序DEL2: MOV R3,#200DEL3: MOV R2,#250DJNZ R2,$DJNZ R3,DEL3DJNZ R4,DEL2RETTABLE:DB 30H,60H,0C0H,90H 正转表DB 00 正转结束DB 30H,90H,0C0H,60H 反转表DB 00 反转结束END。
51单片机按键控制步进电机加减速及正反转
51单片机按键控制步进电机加减速及正反转之前尝试用单片机控制42步进电机正反转,电机连接导轨实现滑台前进后退,在这里分享一下测试程序及接线图,程序部分参考网上找到的,已经实际测试过,可以实现控制功能。
所用硬件:步进电机及驱动器、STC89C52单片机、直流电源1、硬件连接图•注意:上图为共阳极接法,实际连接参考总体线路连接。
•驱动器信号端定义:PUL+:脉冲信号输入正。
( CP+ )PUL-:脉冲信号输入负。
( CP- )DIR+:电机正、反转控制正。
DIR-:电机正、反转控制负。
EN+:电机脱机控制正。
EN-:电机脱机控制负。
•电机绕组连接A+:连接电机绕组A+相。
A-:连接电机绕组A-相。
B+:连接电机绕组B+相。
B-:连接电机绕组B-相。
•电源连接VCC:电源正端“+”GND:电源负端“-”注意:DC直流范围:9-32V。
不可以超过此范围,否则会无法正常工作甚至损坏驱动器.•总体线路连接输入信号共有三路,它们是:①步进脉冲信号PUL+,PUL-;②方向电平信号DIR+,DIR-③脱机信号EN+,EN-。
输入信号接口有两种接法,可根据需要采用共阳极接法或共阴极接法。
在这里我采用的是共阴极接法:分别将PUL-,DIR-,EN-连接到控制系统的地端(接入单片机地端);脉冲输入信号通过PUL+接入单片机(代码中给的P2^6脚),方向信号通过DIR+接入单片机(代码中给的P2^4脚),使能信号通过EN+接入(不接也可,代码中未接,置空)。
按键连接见代码,分别用5个按键控制电机启动、反转、加速、减速、正反转。
注意:接线时请断开电源,电机接线需注意不要错相,相内相间短路,以免损坏驱动器。
2、代码1.#include<reg51.h>2.#define MotorTabNum 53.unsigned char T0_NUM;4.sbit K1 = P3^5; // 启动5.sbit K2 = P3^4; // 反转6.sbit K3 = P3^3; // 加速7.sbit K4 = P3^2; // 减速8.sbit K5 = P3^1; //正反转9.10.sbit FX = P2^4; // 方向11.//sbit MotorEn = P2^5; // 使能12.sbit CLK = P2^6; // 脉冲13.14.inttable[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x40};15.16.unsigned char g_MotorSt = 0; //17.unsigned char g_MotorDir = 0; //18.unsigned char MotorTab[7] = {12, 10, 8, 6, 4, 2,1};19.20.signed char g_MotorNum = 0;21.22.void delayms(xms);23.void mDelay(unsigned int DelayTime);24.void T0_Init();25.26.void KeyScan(void);27.28.29.30.void main(void)31.{32.T0_Init();33.// MotorEn = 0; //34.FX = 0;35.while(1)36.{37.KeyScan(); //38.}39.40.41.}42.43.void T0_Init()44.{45.TMOD = 0x01;46.TH0 = (65535-100)/256; // 1ms47.TL0 = (65535-100)%256;48.EA = 1;49.ET0 = 1;50.// TR0 = 1;51.52.}53.54.void T0_time() interrupt 155.{56.// TR0 = 0;57.TH0 = (65535-100)/256;58.TL0 = (65535-100)%256;59.T0_NUM++;60.if(T0_NUM >= MotorTab[g_MotorNum]) //61.{62.T0_NUM = 0;63.CLK=CLK^0x01; //64.}65.// TR0 = 1;66.}67.68.69.//--------------------------70.void KeyScan(void)71.{72.if(K1 == 0)73.{74.delayms(10);75.if(K1 == 0)76.{77.g_MotorSt = g_MotorSt ^ 0x01;78.// MotorEn ^= 1;79.TR0 = 1;80.FX ^= 0; //反转81.}82.}83.84.if(K2 == 0)85.{86.delayms(10); //正转87.if(K2 == 0)88.{89.g_MotorDir = g_MotorDir ^ 0x01;90.FX ^= 1; //加速91.}92.}93.94.if(K3 == 0) //95.{96.delayms(5); //加速97.if(K3 == 0)98.{99.g_MotorNum++;100.if(g_MotorNum > MotorTabNum) 101.g_MotorNum = MotorTabNum; 102.}103.}105.if(K4 == 0) //106.{107.delayms(5); // 减速108.if(K4 == 0)109.{110.g_MotorNum--;111.if(g_MotorNum < 0)112.g_MotorNum = 0;113.}114.}115.116.if(K5 == 0) //117.{118.delayms(10); // 正反转119.if(K5 == 0)120.{121.g_MotorSt = g_MotorSt ^ 0x01; 122.g_MotorDir = g_MotorDir ^ 0x01; 123.MotorEn ^= 1;124.TR0 = 1;125.while(1)126.{127.FX ^= 1; //128.delayms(90000);129.FX ^= 0; //130.delayms(90000);131.}132.}133.}135.136.void delayms(xms)//延时137.{138.unsigned int x,y;139.for(x=xms;x>0;x--)140.for(y=110;y>0;y--);141.}3、常见问题解答•控制信号高于5v一定要串联电阻,否则可能会烧坏驱动器控制接口电路。
51单片机项目教程项目 21 步进电机控制
21.2.2 步进电机转动原理及内 部结构
减速步进电机28BYJ-48的原理如下图:
中间部分是转子,由一个永磁体组成,边上的是定子绕组。当定子 的一个绕组通电时,将产生一个方向的电磁场,如果这个磁场的方 向和转子磁场方向不在同一条直线上,那么定子和转子的磁场将产 生一个扭力将定子扭转。 依次改变绕组的磁场,就可以使步进电机正转或反转(比如通电 次序为A->B->C->D正转,反之则反转)。而改变磁场切换的时间间 隔,就可以控制步进电机的速度了,这就是步进电机的驱动原理。 不管是两相四相,四相五线,四相六线步进电机。内部构造都是 如此。至于究竟是四线,五线,还是六线。
21-2 步进电机内部结构(与转轴平行方向的断面图)
图 21-3
步进电机拆解图
21.2.3 ULN2003驱动板
由于步进电机的驱动电流较大,单片机不能直接驱动,一般都是使 用ULN2003达林顿阵列驱动。ULN2003内部有一个非门电路,包 含7个单元,单独每个单元驱动电流最大可达500mA,9脚可以悬 空。其与开发板及步进电机连接,原理图如下:
项目 21步进电机控制
项目目标 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步 进电机件。在非超载的情况下,电机的转速、停止的位置只取决 于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱 动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动 一个固定的角度,称为“步距角”,它的旋转是以固定的角度一 步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达 到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动 的速度和加速度,从而达到调1.2.1 步进电机简介 步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲: 当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方 向转动一个固定的角度(及步进角)。您可以通过控制脉冲个来控 制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲 频率来控制电机转动的速度和加速度,从而达到调速的目的。 图20-1为所用的步进电机及驱动 板,型号28BYJ-48
基于51单片机控制步进电机正反转
基于51单片机控制步进电机正反转此次采用uln2003模块来链接步进电机;## 步进电机工作原理步进电机是一种将电脉冲信号转换成相应角位移或线位移的电动机。
每输入一个脉冲信号,转子就转动一个角度或前进一步,其输出的角位移或线位移与输入的脉冲数成正比,转速与脉冲频率成正比。
步进电动机的结构形式和分类方法较多,一般按励磁方式分为磁阻式、永磁式和混磁式三种;按相数可分为单相、两相、三相和多相等形式。
因此我们可以控制单片机I/O口的电平来控制步进电机,此次设计中采用四相单拍工作方式,在这种工作方式下,A、B、C、D 三相轮流通电,电流切换三次,磁场旋转一周,转子向前转过一个齿距角。
因此这种通电方式叫做四相单四拍工作方式。
1.电机正转代码unsigned char code tableZ[8]={0x08,0x0c,0x04,0x06,0x02,0x03,0x01,0x09};2.电机反转代码unsigned char code tableF[8]={0x09,0x01,0x03,0x02,0x06,0x04,0x0c,0x08};代码如下#include <reg52.h>#define uint unsigned int #define uchar unsigned charunsigned char code tableZ[8]={0x08,0x0c,0x04,0x06,0x02,0x03,0x01,0x09};unsigned char code tableF[8]={0x09,0x01,0x03,0x02,0x06,0x04,0x0c,0x08};//²½½øµç»úzhengvoid delay(unsigned int t);sbit S3=P3^4; //反转sbit S4=P3^5; //反停sbit S5=P3^6; // 正停//正转写入数据void motor_z() { unsigned char i,j; for (i=0; i<8; i++) { if(S5==0){break;} for(j=0;j<8;j++){ P1 = tableZ[i]&0x1f; delay(50); } } }//反转写入数据void motor_f(){ unsigned char i,j; for (i=0; i<8; i++) { if(S4==0){break;} for(j=0;j<8;j++){ P1 = tableF[i]&0x1f;delay(50); } }}void delay(unsigned int t)//延时函数{ unsigned int k; while(t--) { for(k=0; k<60; k++) { } }}void main(){while(1){motor_z();if(S3 == 0){motor_f();}}}•1•2•3•4•5•6•7•8•9•10•11•12•13•14•15•16•17•18•19•20•21•22•23•24•25•26•27•29 •30 •31 •32 •33 •34 •35 •36 •37 •38 •39 •40 •41 •42 •43 •44 •45 •46 •47 •48 •49 •50 •51 •52 •53 •54 •55 •56 •1•3 •4 •5 •6 •7 •8 •9 •10 •11 •12 •13 •14 •15 •16 •17 •18 •19 •20 •21 •22 •23 •24 •25 •26 •27 •28 •29 •30 •31•33•34•35•36•37•38•39•40•41•42•43•44•45•46•47•48•49•50•51•52•53•54•55•56protel仿真图如下。
51单片机实现步进电机控制
摘要8051单片机控制步进电机进行简单的转速控制,包括启停变换转速控制等。
利用利用单片机实验箱以模拟电压提供电机转速设定值,使用并行模数转换芯片ADC0809 进行电压信号的采集和数据处理转换得到速度给定的数字量,通过单片机的P1 口控制步进电机的控制端,使其按一定的控制方式进行转动。
调节步进电机转速,使其与给定值相当,最后,利用ZLG7290模块驱动LED数码管显示速度设定值。
通过这个单片机控制系统的设计来掌握A/D转换的原理,了解步进电机的工作原理,掌握它的转速控制方式和调速方法,并且掌握LED显示原理和ZLG7290模块的使用方法,用LED数码管显示模数转换的结果,设计电路的硬件接线图和实现上述要求的程序。
最后实现通过改变模拟电压就可以改变步进电机的转速控制,并且在LED 数码管上显示步进电机的转速这一功能。
关键词:51单片机调速步进电机LED显示绪论在进行51单片机的学习和实验过程中曾利用51单片机对步进电机进行过简单的控制,包括利用单片机试验箱对步进电机进行转角控制,方向控制等。
即按照设定的转动角度步进电机进行动作,来实现步进电机的实时控制,通过设定的方向来实现步进电机的方向反转控制等,并利用利用ZLG7290模块驱动LED数码管显示步进电机的设定值与步进电机实际所转过过的角度,同时显示步进电机的旋转方向等。
这次所进行的步进电机转速控制系统是对步进电机的另一种控制,即实现步进电机的转速控制而不是单单的转动角度控制,并且是通过模拟量输入来时时的控制步进电机的转速。
并且通过数码管来显示出所设定的步进电机的转速。
第一章系统程序及分析1.1对步进电机控制系统的设计要求进行设计,主程序程序如下:#include<reg51.h>#include"VIIC_C51.h"#include"zlg7290.h"sbit PA=P1^0;sbit PB=P1^1;sbit PC=P1^2;sbit PD=P1^3;sbit SDA=P1^7;sbit SCL=P1^6;sbit RST=P1^4;sbit KEY_INT=P1^5;unsigned char xdata *port;unsigned char count,count1=0,c[3],n;/*****************ADC0809*******************************************/int1()interrupt 2{count=*port;*port=0;}/*******************************************************************//*****************延迟函数*****************************************/delay(unsigned int t){unsigned int i;for(i=0;i<t;i++){TMOD=0X11;TH0=-500/256;TL0=-500%256;TR0=1;while(TF0!=1);TF0=0;}}/*****************脉冲函数********************************************/ time1()interrupt 3{if(count==0X00)count1=4;TH1=-3*1000000/(256*count);TL1=-3*1000000%(256*count);switch(count1){ case 0:{PA=1;PB=1;PC=0;PD=0;}break;case 1:{PA=0;PB=1;PC=1;PD=0;}break;case 2:{PA=0;PB=0;PC=1;PD=1;}break;case 3:{PA=1;PB=0;PC=0;PD=1;}break;default:{PA=0;PB=0;PC=0;PD=0;}}count1++;if(count1>=4){count1=0;}}/************************主函数*******************************************/ main(){ RST=0;delay(1);RST=1;delay(10);port=0x7ff8;EA=1;ET1=1;ET0=1;TMOD=0X11;TH1=-100000/256;TL1=-100000%256;TR1=1;EX1=1;IT1=1;*port=0;while(1){c[0]=count/100;c[1]=count%100/10;c[2]=count%10;for(n=0;n<3;n++)ZLG7290_SendCmd(0x60+(2-n),c[n]);}}1.2程序分析:程序的开头包含了3个头文件,第一个头文件<reg51.h>中对所有的特殊功能寄存器进行了SFR定义,只要引用了<reg51.h> 就可以直接引用特殊功能寄存器名。
51单片机原理图
2.3 51单片机增强型学习系统各组成部份原理图及功能简介2.3.1 共阴极数码管动态扫描控制图2.2 51单片机增强型学习系统的四位共阴极数码管动态扫描硬件连接原理图AT89S51单片机P0口是一组8位漏极开路型双向I/O 口,也即地址/数据总线复用口。
作为输出口用时,每位能驱动8个TTL 逻辑门电路,对端口写“1”可作为高阻抗输入端用。
在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。
在Flash 编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上接电阻。
AT89S51单片机P2口是一个带有内部上拉电阻的8位双向I/O 口,P2的输出缓冲级可驱动(吸收或输出电流)4个TTL 逻辑门电路。
对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流。
在访问外部程序存储器或16位地址的外部数据存储器(例如执行MOVX @DPTR 指令)时,P2口送出高8位地址数据。
在访问8位地址的外部数据存储器(如执行MOVX @Ri 指令)时,P2口线上的内容(也即特殊功能寄存器SFR 区中P2寄存器的内容),在整个访问期间不改变。
Flash 编程或校验时,P2亦接收高位地址和其它控制信号。
在上面的硬件连接原理图里,我们用到的是P0和P2口控制四位数码管显示的。
四位数码管显示的方式是动态扫描显示,动态扫描显示是单片机中应用最为广泛的一种显示方式之一。
其接口电路如上图是把所有显示器的8个笔划段a-h同名端连在一起由单51单片机增强型学习系统片机的P0.0~P0.7控制,而每一个数码管的公共极(阴极)是各自独立地受单片机P2.7~P2.4控制。
CPU向字段输出口P0口送出字形码时,所有数码管接收到相同的字形码,但究竟是那个数码管亮则取决于P2.7~P2.4的输入结果,所以我们就可以自行决定何时显示哪一位了。
51单片机驱动步进电机电路及程序
相绕组通断,P1.1控制B相,P1.2
控制C相。
2021/8/5
13
以A相控制为例:
当 P1 . 0 输 出 为 1 , 发 光管不发光,因此光敏二极 管截止,使担负驱动任务的 达林顿管导通。A相绕组通电。
相反,当P1.0=0→发 光管发光→光敏管导通→达 林顿管截止→A相绕组不通 电。
2021/8/5
2021/8/511 NhomakorabeaSUB: SETB P3.0
SETB P3.0 ;保证输出高电平的时间>5μs
SETB P3.0
CLR P3.0
;变为低电平
MOV R7,30H
LOOP: NOP
;软件延时程序:
NOP
;基本延时(10μs×时间常数)
NOP
DJNZ R7,LOOP
RET
※时间常数事先可装入30H单元,改变30H单元的内容就可改
所以按照 A→AB→B→BC→C→CA→A
的顺序控制,电机将按顺时针方向旋转, 每步转动1.5°,即步距角=1.5°,
由于要经过6步才走完一个齿距 (6×1.5°=9°),所以叫三相六拍。
2021/8/5
7
如果要使步进电机反转,只要按
A→AC→C→CB→B→BA
顺序通电就行了。
结论:从上面两种运行方式可看出,错齿是促使步
进电机旋转的根本原因,当某相通电,相应的齿对
齐,迫使电机旋转一个步距角,未通电的各相的齿
出现了新的错位。改变通电的顺序和通电的相数,
可组合出其它的运行方式。
讨论:三项三拍和三项六拍运行方式,哪种定位
2021更/8/5精确?
8
三、步进电机有如下特点:
❖ 给步进脉冲电机就转,不给步进脉冲电机就不转; ❖ 步进脉冲频率高,步进电机转得快;步进脉冲频率
51单片机驱动步进电机__终极完整版
51单片机驱动步进电机__终极(完整版)在这里介绍一下用51单片机驱动步进电机的方法。
这款步进电机的驱动电压12V,步进角为 7.5度 . 一圈360 度 , 需要 48 个脉冲完成!!!该步进电机有6根引线,排列次序如下:1:红色、2:红色、3:橙色、4:棕色、5:黄色、6:黑色。
采用51驱动ULN2003的方法进行驱动。
ULN2003的驱动直接用单片机系统的5V电压,可能力矩不是很大,大家可自行加大驱动电压到12V。
;************************************************ ******************************;************************* 步进电机的驱动*************************************** ; DESIGN BY BENLADN911 FOSC = 12MHz 2005.05.19;---------------------------------------------------------------------------------; 步进电机的驱动信号必须为脉冲信号!!! 转动的速度和脉冲的频率成正比!!!; 本步进电机步进角为 7.5度 . 一圈 360 度 , 需要48 个脉冲完成!!!;---------------------------------------------------------------------------------; A组线圈对应 P2.4; B组线圈对应 P2.5; C组线圈对应 P2.6; D组线圈对应 P2.7; 正转次序: AB组--BC组--CD组--DA组 (即一个脉冲,正转 7.5 度);----------------------------------------------------------------------------------;----------------------------正转-------------------------- ORG 0000H LJMP MAIN ORG 0100HMAIN:MOV R3,#144 正转 3 圈共 144 脉冲 START: MOVR0,#00H START1: MOV P2,#00H MOV A,R0MOV DPTR,#TABLE MOVC A,@A+DPTRJZ START 对 A 的判断,当 A = 0 时则转到 START MOV P2,ALCALL DELAY INC R0DJNZ R3,START1MOV P2,#00H LCALL DELAY1;-----------------------------反转------------------------MOV R3,#144 反转一圈共 144 个脉冲 START2:MOV P2,#00H MOV R0,#05 START3: MOV A,R0MOV DPTR,#TABLE MOVC A,@A+DPTR JZ START2 MOV P2,A CALL DELAY INC R0DJNZ R3,START3 MOV P2,#00HLCALL DELAY1 LJMP MAINDELAY: MOV R7,#40 步进电机的转速 M3: MOV R6,#248 DJNZ R6,$ DJNZ R7,M3RETDELAY1: MOV R4,#20 2S 延时子程序 DEL2: MOV R3,#200 DEL3: MOV R2,#250 DJNZ R2,$ DJNZ R3,DEL3 DJNZ R4,DEL2 RET TABLE:DB 30H,60H,0C0H,90H 正转表 DB 00 正转结束DB 30H,90H,0C0H,60H 反转表 DB 00 反转结束 END 51单片机控制四相步进电机拿到步进电机,根据以前看书对四相步进电机的了解,我对它进行了初步的测试,就是将5伏电源的正端接上最边上两根褐色的线,然后用5伏电源的地线分别和另外四根线(红、兰、白、橙)依次接触,发现每接触一下,步进电机便转动一个角度,来回五次,电机刚好转一圈,说明此步进电机的步进角度为 360/(4×5)=18度。
用51单片机控制两相四线步进电机
用51单片机控制两相四线步进电机最近学习步进电机的驱动原理,照着教材自己实践了一下用ULN2003驱动28BYJ-48两相5线步进电机,可以正常转动。
手头有一个旧光驱,拆开发现里面有三个电机,其中有一个控制激光头寻迹的两相四线步进电机,我就用51的单片机让它也转起来。
一开始照葫芦画瓢用ULN2003驱动,结果发现无论如何也不行。
原来ULN2003基本没输出电流,只能驱动有公共端的两相五线、两相六线步进电机,不能驱动2相4线步进电机。
然后改用L293D驱动,可以转动。
通过按钮控制正反转时发现,按键释放后,电机迅速发热,烫手。
用万用表测量,发现电机A,A-或B,B-直接存在电位差!应该是按键释放时,IN1-IN4没有归零。
找到问题,就容易解决了。
修改程序,可以完美运行,键1按下正转,释放停下,键2按下反转,释放停下。
IN1-IN4分别接P1口的低四位。
工作方式选用8拍。
A 1 1 0 0 0 0 0 1A- 0 0 0 1 1 1 0 0B 0 1 1 1 0 0 0 0B- 0 0 0 0 0 1 1 1附上源程序,仅供参考。
#include#define uint unsigned int#define uchar unsigned charsbit K3=P2^5;sbit K4=P2^4;//k3正转。
k4反转。
释放停止uchar code step_table[]={0x8,0xa,0x2,0x6,0x4,0x5,0x1,0x9};void delay(unsigned int m){unsigned int i,j;for(i=m;i>0;i--)for(j=110;j>0;j--);}void xp()//x轴正转{while(!K3){uint i;for(i=0;i<8;i++){P1=step_table[ i];delay(10);}}P1=0;//按键释放时,反转P1停在table某处,导致电机有电压从而使电机发热,需要归零。
51单片机驱动步进电机电路及程序
51单片机驱动步进电机电路及程序(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--51单片机驱动步进电机电路及程序在这里介绍一下用51单片机驱动步进电机的方法。
这款步进电机的驱动电压12V,步进角为度 . 一圈 360 度 , 需要 48 个脉冲完成!!!该步进电机有6根引线,排列次序如下:1:红色、2:红色、3:橙色、4:棕色、5:黄色、6:黑色。
采用51驱动ULN2003的方法进行驱动。
ULN2003的驱动直接用单片机系统的5V电压,可能力矩不是很大,大家可自行加大驱动电压到12V。
;*********************************************************************************;********** ******************步进电机的驱动***************************************; DESIGN BY BENLADN911 FOSC = 12MHz ;---------------------------------------------------------------------------------; 步进电机的驱动信号必须为脉冲信号!!! 转动的速度和脉冲的频率成正比!!!; 本步进电机步进角为度 . 一圈 360 度 , 需要 48 个脉冲完成!!!;---------------------------------------------------------------------------------; A组线圈对应; B组线圈对应; C组线圈对应; D组线圈对应; 正转次序: AB组--BC组--CD组--DA组 (即一个脉冲,正转度);----------------------------------------------------------------------------------;----------------------------正转--------------------------ORG 0000HLJMP MAINORG 0100HMAIN:MOV R3,#144 正转 3 圈共 144 脉冲START:MOV R0,#00HSTART1:MOV P2,#00HMOV A,R0MOV DPTR,#TABLEMOVC A,@A+DPTRJZ START 对 A 的判断,当 A = 0 时则转到STARTMOV P2,ALCALL DELAYINC R0DJNZ R3,START1MOV P2,#00HLCALL DELAY1;-----------------------------反转------------------------MOV R3,#144 反转一圈共 144 个脉冲START2:MOV P2,#00HMOV R0,#05START3:MOV A,R0MOV DPTR,#TABLEMOVC A,@A+DPTRJZ START2 MOV P2,ACALL DELAYINC R0DJNZ R3,START3MOV P2,#00HLCALL DELAY1LJMP MAINDELAY: MOV R7,#40 步进电机的转速M3: MOV R6,#248DJNZ R6,$DJNZ R7,M3RETDELAY1: MOV R4,#20 2S 延时子程序DEL2: MOV R3,#200DEL3: MOV R2,#250DJNZ R2,$DJNZ R3,DEL3DJNZ R4,DEL2RETTABLE:DB 30H,60H,0C0H,90H 正转表DB 00 正转结束DB 30H,90H,0C0H,60H 反转表DB 00 反转结束END。
(整理)51单片机驱动步进电机电路及程序1.
在这里介绍一下用51单片机驱动步进电机的方法。
这款步进电机的驱动电压12V,步进角为 7.5度 . 一圈 360 度 , 需要 48 个脉冲完成!!!该步进电机有6根引线,排列次序如下:1:红色、2:红色、3:橙色、4:棕色、 5:黄色、6:黑色。
采用51驱动ULN2003的方法进行驱动。
ULN2003的驱动直接用单片机系统的5V电压,可能力矩不是很大,大家可自行加大驱动电压到12V。
;******************************************************************** *************;**************************** 步进电机的驱动***************************************; DESIGN BY BENLADN911 FOSC = 12MHz 2005.05.19;---------------------------------------------------------------------------------; 步进电机的驱动信号必须为脉冲信号!!! 转动的速度和脉冲的频率成正比!!! ; 本步进电机步进角为 7.5度 . 一圈 360 度 , 需要 48 个脉冲完成!!!;---------------------------------------------------------------------------------; A组线圈对应 P2.4; B组线圈对应 P2.5; C组线圈对应 P2.6; D组线圈对应 P2.7; 正转次序: AB组--BC组--CD组--DA组 (即一个脉冲,正转 7.5 度);----------------------------------------------------------------------------------;---------------------------- 正转--------------------------ORG 0000HLJMP MAINORG 0100HMAIN:MOV R3,#144 正转 3 圈共 144 脉冲START:MOV R0,#00HSTART1:MOV P2,#00HMOV A,R0MOV DPTR,#TABLEMOVC A,@A+DPTRJZ START 对 A 的判断,当 A = 0 时则转到 STARTMOV P2,ALCALL DELAYINC R0DJNZ R3,START1MOV P2,#00HLCALL DELAY1;-----------------------------反转------------------------MOV R3,#144 反转一圈共 144 个脉冲START2:MOV P2,#00HMOV R0,#05START3:MOV A,R0MOV DPTR,#TABLEMOVC A,@A+DPTRJZ START2MOV P2,ACALL DELAYINC R0DJNZ R3,START3MOV P2,#00HLCALL DELAY1LJMP MAINDELAY: MOV R7,#40 步进电机的转速M3: MOV R6,#248DJNZ R6,$DJNZ R7,M3RETDELAY1: MOV R4,#20 2S 延时子程序DEL2: MOV R3,#200DEL3: MOV R2,#250DJNZ R2,$DJNZ R3,DEL3DJNZ R4,DEL2RETTABLE:DB 30H,60H,0C0H,90H 正转表DB 00 正转结束DB 30H,90H,0C0H,60H 反转表DB 00 反转结束END。
51单片机控制步进电机程序及硬件电路图
#include <AT89X51.h>static unsigned int count; //计数static int step_index; //步进索引数,值为0-7static bit turn; //步进电机转动方向static bit stop_flag; //步进电机停止标志static int speedlevel; //步进电机转速参数,数值越大速度越慢,最小值为1,速度最快static int spcount; //步进电机转速参数计数void delay(unsigned int endcount); //延时函数,延时为endcount*0.5毫秒void gorun(); //步进电机控制步进函数void main(void){count = 0;step_index = 0;spcount = 0;stop_flag = 0;P1_0 = 0;P1_1 = 0;P1_2 = 0;P1_3 = 0;EA = 1; //允许CPU中断TMOD = 0x11; //设定时器0和1为16位模式1 ET0 = 1; //定时器0中断允许TH0 = 0xFE;TL0 = 0x0C; //设定时每隔0.5ms中断一次TR0 = 1; //开始计数turn = 0;speedlevel = 2;delay(10000);speedlevel = 1;do{speedlevel = 2;delay(10000);speedlevel = 1;delay(10000);stop_flag=1;delay(10000);stop_flag=0;}while(1);}//定时器0中断处理void timeint(void) interrupt 1{TH0=0xFE;TL0=0x0C; //设定时每隔0.5ms中断一次count++;spcount--;if(spcount<=0){spcount = speedlevel;gorun();}}void delay(unsigned int endcount) {count=0;do{}while(count<endcount);}void gorun(){ if (stop_flag==1){P1_0 = 0;P1_1 = 0;P1_2 = 0;P1_3 = 0;return;}switch(step_index){case 0: //0P1_0 = 1;P1_1 = 0;P1_2 = 0;P1_3 = 0; break; case 1: //0、1 P1_0 = 1;P1_1 = 1;P1_2 = 0;P1_3 = 0; break; case 2: //1P1_0 = 0;P1_1 = 1;P1_2 = 0;P1_3 = 0; break; case 3: //1、2 P1_0 = 0;P1_1 = 1;P1_2 = 1;P1_3 = 0;break; case 4: //2 P1_0 = 0;P1_1 = 0;P1_2 = 1;P1_3 = 0; break; case 5: //2、3 P1_0 = 0;P1_1 = 0;P1_2 = 1;P1_3 = 1; break; case 6: //3P1_0 = 0;P1_1 = 0;P1_2 = 0;P1_3 = 1; break; case 7: //3、0 P1_0 = 1;P1_1 = 0;P1_2 = 0;P1_3 = 1;}if (turn==0){step_index++; if (step_index>7)step_index=0; }else{step_index--;if (step_index<0)step_index=7; }}。
51配件接线图(旧版)
51单片机学习板配件接线及演示程序1.步进电机把步进电机的插头插在学习板上标有“步进电机”的插座中,如下图所示,并把编写好程序下载到学习板的单片机中去,就可以看到步进电机运行相应的动作。
例子:步进电机正转AA: MOV P1,#11111110BLCALL KKMOV P1,#11111101BLCALL KKMOV P1,#11111011BLCALL KKMOV P1,#11110111BLCALL KKSJMP AA;延时KK:MOV R5,#01K1:MOV R6,#80HK2:MOV R7,#80HK3:NOPDJNZ R7,K3DJNZ R6,K2DJNZ R5,K1RET2.DS18B20温度传感器把DS18B20温度传感器的三个管脚对应插到学习板上黑色的标注“温度”插座,注意板上有一个弧度,传感器对应弧度方向,有字的一面向里面,弧度那面向外面插入。
如下图所示。
把编写好的程序下载到学习板的单片机中,从相应的数码管可看到当前温度的变化。
例子:两位数码管温度显示ORG 0000HSTART: MOV R5,#00HMOV P0,#00111111BMOV P2,#00001111BMOV R0,#24A5: MOV R1,#250A4: LCALL D1MSDJNZ R1,A4DJNZ R0,A5;-------------------单片机内存分配申明!TEMPER_L EQU 29H ;用于保存读出温度的低8位TEMPER_H EQU 28H ;用于保存读出温度的高8位FLAG1 EQU 38H ;是否检测到DS18B20标志位G_BIT EQU 20H ;数码管个位数存放内存位置S_BIT EQU 21H ;数码管十位数存放内存位置BG_BIT EQU 22HBS_BIT EQU 23HMAIN:LCALL GET_TEMPER ;调用读温度子程序,显示范围00到99度,显示精;度为1度,因为12位转化时每一位的精度为0.0625;度,我们不要求显示小数所以可以抛弃29H的低4;位将28H中的低4位移入29H中的高4位,这样获;得一个新字节,这个字节就是实际测量获得的温度;这个转化温度的方法非常简洁无需乘于0.0625系数 MOV A,29HMOV C,40H ;将28H中的最低位移入CRRC AMOV C,41HRRC AMOV C,42HRRC AMOV C,43HRRC AMOV 29H,ALCALL DISPLAY ;调用数码管显示子程序AJMP MAIN; 这是DS18B20复位初始化子程序INIT_1820:SETB P2.1NOPCLR P2.1;主机发出延时537微秒的复位低脉冲MOV R1,#3TSR1: MOV R0,#107DJNZ R0,$DJNZ R1,TSR1SETB P2.1 ;然后拉高数据线NOPNOPNOPMOV R0,#25HTSR2: JNB P2.1,TSR3 ;等待DS18B20回应DJNZ R0,TSR2LJMP TSR4 ;延时TSR3: SETB FLAG1 ;置标志位,表示DS1820存在CLR P1.7 ;检查到DS18B20就点亮P1.7LEDLJMP TSR5TSR4: CLR FLAG1 ;清标志位,表示DS1820不存在LJMP TSR7TSR5: MOV R0,#117TSR6: DJNZ R0,TSR6 ;时序要求延时一段时间TSR7: SETB P2.1RET; 读出转换后的温度值GET_TEMPER:SETB P2.1LCALL INIT_1820 ;先复位DS18B20JB FLAG1,TSS2RET ;判断DS1820是否存在?若DS18B20不存在则返回 TSS2: CLR P1.7 ;DS18B20已经被检测到!MOV A,#0CCH ;跳过ROM匹配LCALL WRITE_1820MOV A,#44H ;发出温度转换命令LCALL WRITE_1820;这里通过调用显示子程序实现延时一段时间,等待AD转换结束,;12位的话750微秒LCALL DISPLAYLCALL INIT_1820 ;准备读温度前先复位MOV A,#0CCH ;跳过ROM匹配LCALL WRITE_1820MOV A,#0BEH ;发出读温度命令LCALL WRITE_1820LCALL READ_18200 ;将读出的温度数据保存到35H/36HCLR P1.7RET;写DS18B20的子程序(有具体的时序要求)WRITE_1820:MOV R2,#8 ;一共8位数据CLR CWR1: CLR P2.1MOV R3,#6DJNZ R3,$RRC AMOV P2.1,CMOV R3,#23DJNZ R3,$SETB P2.1NOPDJNZ R2,WR1SETB P2.1RET; 读DS18B20的程序,从DS18B20中读出两个字节的温度数据READ_18200:MOV R4,#2 ;将温度高位和低位从DS18B20中读出MOV R1,#29H ;低位存入29H(TEMPER_L),高位存入28H(TEMPER_H) RE00: MOV R2,#8 ;数据一共有8位RE01: CLR CSETB P2.1NOPNOPCLR P2.1NOPNOPNOPSETB P2.1MOV R3,#9RE10: DJNZ R3,RE10MOV C,P2.1MOV R3,#23RE20: DJNZ R3,RE20RRC ADJNZ R2,RE01MOV @R1,ADEC R1DJNZ R4,RE00RET;显示子程序DISPLAY:MOV A,29H ;将29H中的十六进制数转换成10进制MOV B,#10 ;10进制/10=10进制DIV ABMOV S_BIT,A ;十位在AMOV G_BIT,B ;个位在BMOV DPTR,#TABMOV R0,#4DPL1: MOV R1,#250 ;显示1000次DPLOP: MOV A,G_BIT ;取个位数MOVC A,@A+DPTR ;查表MOV P0,ACLR P2.4LCALL D1MSSETB P2.4MOV A,S_BITMOVC A,@A+DPTRMOV P0,ACLR P2.5LCALL D1MSSETB P2.5;--------显示温度的同时检测温度是否在设定的温度范围内,是则仅仅是显示, ;不做别的操作。
51单片机控制步进电机
设计方案与原理1 设计方案设计一个51单片机四相步进电机控制系统要求系统具有如下功能:(1)由I/O口产生的时序方波作为电机控制信号;(2)信号经过驱动芯片驱动电机的运转;(3)电机的状态通过键盘控制,包括正转,反转,加速,减速,停止和单步运行。
2 设计原理步进电机实际上是一个数字\角度转换器,也是一个串行的数\模转换器。
步进电机的基本控制包括启停控制、转向控制、速度控制、换向控制4个方面。
从结构上看,步进电机分为三相、四相、五相等类型,本次设计的是四相电机。
四相步进电机的工作方式有单四拍、双四拍和单双八拍三种。
在本次设计中,我们使用的是四相单八拍的工作方式。
通过P1口给A,B,C,D四相依次输出高电平即可实现步进电机的旋转,通过控制两次输出的间隔,即可实现对步进电机的速度控制。
图 2.1 步进电机内部结构截图根据步进电机的相关相序表我们可以正常的控制电机的步进运行。
3 硬件设计根据设计要求和设计原理,我们可以绘制出基本的功能方框图,以便之后我们连接实际电路时的方便和可靠。
用键盘控制具体的功能模块,这样更能直观方便的控制整体的系统,使其达到我们预期的操作效果。
图3.1中简单描述了整个单片机系统的控制模式和控制流程,包括通过时钟电路和键盘电路,来控制ULN2003驱动电机动作。
图表图 3.1 硬件电路功能方框图4 电路原理图4.C程序代码#include <reg52.h>#define KeyPort P3#define DataPort P0 //定义数据端口程序中遇到DataPort 则用P0 替换sbit LATCH1=P2^2;//定义锁存使能端口段锁存sbit LATCH2=P2^3;// 位锁存unsigned char code dofly_DuanMa[10]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};// 显示段码值0~9unsigned char code dofly_WeiMa[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};//分别对应相应的数码管点亮,即位码unsigned char TempData[8]; //存储显示值的全局变量sbit A1=P1^0; //定义步进电机连接端口sbit B1=P1^1;sbit C1=P1^2;sbit D1=P1^3;#define Coil_AB1 {A1=1;B1=1;C1=0;D1=0;}//AB相通电,其他相断电#define Coil_BC1 {A1=0;B1=1;C1=1;D1=0;}//BC相通电,其他相断电#define Coil_CD1 {A1=0;B1=0;C1=1;D1=1;}//CD相通电,其他相断电#define Coil_DA1 {A1=1;B1=0;C1=0;D1=1;}//DA相通电,其他相断电#define Coil_A1 {A1=1;B1=0;C1=0;D1=0;}//A相通电,其他相断电#define Coil_B1 {A1=0;B1=1;C1=0;D1=0;}//B相通电,其他相断电#define Coil_C1 {A1=0;B1=0;C1=1;D1=0;}//C相通电,其他相断电#define Coil_D1 {A1=0;B1=0;C1=0;D1=1;}//D相通电,其他相断电#define Coil_OFF {A1=0;B1=0;C1=0;D1=0;}//全部断电unsigned char Speed=1;bit StopFlag;void Display(unsigned char FirstBit,unsigned char Num);void Init_Timer0(void);unsigned char KeyScan(void);/*------------------------------------------------uS延时函数,含有输入参数 unsigned char t,无返回值unsigned char 是定义无符号字符变量,其值的范围是0~255 这里使用晶振12M,精确延时请使用汇编,大致延时长度如下 T=tx2+5 uS------------------------------------------------*/void DelayUs2x(unsigned char t){while(--t);}/*------------------------------------------------mS延时函数,含有输入参数 unsigned char t,无返回值unsigned char 是定义无符号字符变量,其值的范围是0~255 这里使用晶振12M,精确延时请使用汇编------------------------------------------------*/void DelayMs(unsigned char t)while(t--){//大致延时1mSDelayUs2x(245);DelayUs2x(245);}}/*------------------------------------------------主函数------------------------------------------------*/ main(){unsigned int i=512;//旋转一周时间unsigned int n=0;unsigned char num,vo,v;Init_Timer0();Coil_OFF;while(1) //正向{num=KeyScan(); //循环调用按键扫描if(num==1)//第一个按键,速度等级增加{if(Speed<15)Speed=Speed+2;}if(num==2)//第二个按键,速度等级减小{if(Speed>1)Speed=Speed-2;}if(num==3)//第三个按键,电机停转{Coil_OFFStopFlag=1;}if(num==4)//第四个按键,电机启动{StopFlag=0;TR0=1;}if(num==5)//第五个按键,电机反转{TR0=0;TR1=1;}if(num==6)//第六个按键,电机正传{TR0=1;TR1=0;}vo=(0.25*(20-Speed)*64*32)/1000;v=60/vo;TempData[0]=dofly_DuanMa[v/10]; //分解显示信息,如要显示68,则68/10=6 68%10=8TempData[1]=dofly_DuanMa[v%10];}}/*------------------------------------------------显示函数,用于动态扫描数码管输入参数 FirstBit 表示需要显示的第一位,如赋值2表示从第三个数码管开始显示如输入0表示从第一个显示。
51单片机控制步进电机硬件图及C语言编程
51单片机控制步进电机硬件图#include <reg51.h> //51芯片管脚定义头文件#include <intrins.h> //内部包含延时函数_nop_();#include<absacc.h>#define uchar unsigned char#define uint unsigned intuchar code FFW[8]={0x01,0x03,0x02,0x06,0x04,0x0c,0x08,0x09}; //四相八拍正转编码uchar code REV[8]={0x09,0x08,0x0c,0x04,0x06,0x02,0x03,0x01}; ////四相八拍反转编码sbit P14=P1^4; //将P14位定义为P1.4引脚sbit P15=P1^5; //将P15位定义为P1.5引脚sbit P16=P1^6; //将P16位定义为P1.6引脚sbit P17=P1^7; //将P17位定义为P1.7引脚sbit P20=P2^0; //将P20位定义为P2.0引脚sbit P21=P2^1; //将P21位定义为P2.1引脚sbit P22=P2^2; //将P22位定义为P2.2引脚sbit P23=P2^3; //将P23位定义为P2.3引脚sbit P24=P2^4; //将P24位定义为P2.4引脚sbit P25=P2^5; //将P25位定义为P2.5引脚sbit P26=P2^6; //将P26位定义为P2.6引脚sbit P27=P2^7; //将P27位定义为P2.7引脚sbit P34=P3^4; //将P34位定义为P3.4引脚sbit P35=P3^5; //将P35位定义为P3.5引脚sbit P36=P3^6; //将P36位定义为P3.6引脚sbit P37=P3^7; //将P37位定义为P3.7引脚sbit P30=P3^0; //将P30位定义为P3.0引脚sbit P31=P3^1; //将P31位定义为P3.1引脚sbit BEEP=P3^2; // 蜂鸣器bit on=0;bit off=1; //运行与停止标志bit zdirection=0; //方向标志bit fdirection=0; //方向标志uchar h,l,k; //定义行键值//定义列键值uchar idata count[3]; //0-9数值储存unsigned char code Tab[ ]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; //数字0~9的段码uchar keyval=0; //定义变量储存按键值uchar dat=0; //按键值uint run_i=0;uchar count_i=0;uint run=0; //需要运行的步数uint drun=0; //当前运行的步数bit flag;uint x=60;uint y=60;uint z=0;/* uint k=0; //调速按键次*//**************************************************************/ void led_delay1(void){unsigned char j;for(j=0;j<52;j++);}void beep(){uchar j;for (j=0;j<200;j++){led_delay1();BEEP=!BEEP; //BEEP取反}BEEP=1; //关闭蜂鸣器}/**************************************************************函数功能:数码管动态扫描延时**************************************************************/void led_delay(void){unsigned char j;for(j=0;j<200;j++);}/**************************************************************/**************************************************************函数功能:软件延时去抖动子程序**************************************************************/void delay20ms(void){unsigned char i,j;for(i=0;i<70;i++)for(j=0;j<60;j++);}void display(uint run){ //显示设点步数P31=1; //点亮数码管DS6P30=0;P34=0;P35=0;P36=0;P37=0;P14=0;P15=0;if((run/100)!=0){ P0=Tab[run/100]; //显示百位led_delay(); //动态扫描延时led_delay(); //动态扫描延时}P0=0xff;P30=1;P31=0;P34=0;P36=0;P37=0;P14=0;P15=0;if(((run%100/10)==0)&&(run/10==0)) { P0=0xff;led_delay(); //动态扫描延时led_delay();} //点亮数码管DS5else{ P0=Tab[run%100/10]; //显示十位led_delay(); //动态扫描延时led_delay(); //动态扫描延时}P0=0xff;P37=1; //点亮数码管DS4P30=0;P34=0;P35=0;P36=0;P31=0;P14=0;P15=0;if((run/10==0)&&(run%100/10==0)&&(run%10==0)){ P0=0xff;led_delay(); //动态扫描延时led_delay(); //动态扫描延时}else{ P0=Tab[run%10]; //显示个位led_delay(); //动态扫描延时led_delay(); //动态扫描延时}P0=0xff;}/*********************************************************************/void ddisplay(uint drun){ //显示运行步数P36=1; //点亮数码管DS3P30=0;P34=0;P35=0;P31=0;P37=0;P15=0;if((drun/100)!=0){P0=Tab[drun/100]; //显示百位led_delay(); //动态扫描延时led_delay(); //动态扫描延时}P0=0xff;P35=1; //点亮数码管DS2P30=0;P34=0;P31=0;P36=0;P37=0;P14=0;P15=0;if(((drun%100/10)==0)&&(drun/10==0)) { P0=0xff;led_delay(); //动态扫描延时led_delay();}//点亮数码管DS5else{ P0=Tab[drun%100/10]; //显示十位led_delay(); //动态扫描延时led_delay(); //动态扫描延时}P0=0xff;P34=1; //点亮数码管DS1P30=0;P31=0;P35=0;P36=0;P37=0;P14=0;P15=0;if((drun/10==0)&&(drun%100/10==0)&&(drun%10==0)){ P0=0xff;led_delay(); //动态扫描延时led_delay(); //动态扫描延时}else{ P0=Tab[drun%10]; //显示个位led_delay(); //动态扫描延时led_delay(); //动态扫描延时}P0=0xff;}void dddisplay(){ P15=1;P36=0;P30=0;P34=0;P35=0;P31=0;P37=0;P14=0;if((fdirection==1)&&(on==1)){P0=0xbf; led_delay(); led_delay(); }P0=0xff;P14=1;P36=0;P30=0;P34=0;P35=0;P31=0;P37=0;P15=0;if(y==60){P0=0x08;led_delay(); led_delay();}if(y==50){P0=0x03; led_delay(); led_delay(); }if(y==40){P0=0x46; led_delay(); led_delay();}if(y==30){P0=0x21 ;led_delay(); led_delay();}if(y==20){P0=0x86; led_delay(); led_delay(); }if(y==10){P0=0x8e; led_delay(); led_delay();}P0=0xff;}/************************************************************** 函数功能:主函数**************************************************************/ void main(void){ x=60;P14=0;P15=0;P16=0;P17=0;EA=1;EX1=1; //允许使用外中断IT1=1; //选择负跳变来触发外中断PT0=1;ET0=1; //定时器T0中断允许TMOD=0x01; //使用定时器T0的模式1TH0=0xec; //定时器T0的高8位赋初值TL0=0x78; //定时器T0的低8位赋初值TR0=1;P30=1; //启动定时器T0P34=1;P35=1;P36=1;P37=1;P31=1;P2=0xf0;while(1){if(flag){P2=0x0f; h=P2&0x0f; //所有行线置为高电平"1",所有列线置为低电平"0",并把值给hif((P2&0x0f)!=0x0f) //行线中有一位为低电平"0",说明有键按下delay20ms(); //延时一段时间、软件消抖else {keyval=16;}if(h!=0x0f) //确实有键按下{h=P2&0x0f; //读取行值P2=0xf0; //反转电位l=P2&0xf0; //读取列值k=h+l; //行列相加,为键位值if(k==0x7e) keyval=12;if(k==0x7d) keyval=0;if(k==0x7b) keyval=13;if(k==0x77) keyval=15;if(k==0xbe) keyval=1;if(k==0xbd) keyval=2;if(k==0xbb) keyval=3;if(k==0xb7) keyval=14; //键位与设定对应if(k==0xde) keyval=4;if(k==0xdd) keyval=5;if(k==0xdb) keyval=6;if(k==0xd7) keyval=11;if(k==0xee) keyval=7;if(k==0xed) keyval=8;if(k==0xeb) keyval=9;if(k==0xe7) keyval=10;}else keyval=16;dat=keyval;if((dat==10)&&(run!=0)) //正转键按下{zdirection=1; //方向标志fdirection=0;on=1; //运行与停止标志off=0;}if((dat==11)&&(run!=0)) //反转键按下{fdirection=1; //方向标志zdirection=0;on=1; //运行与停止标志off=0;}if(dat==12) //加速键{if(y==10) y=10;else y=y-10;}if(dat==13) //减速键{if(y==60) y=y;else y=y+10;}if((dat==14)&&(run!=0)) //开始键按下{ if(z==1) {on=1;}elseon=1;off=0;z=0;if((zdirection==0)&&(fdirection==0)){zdirection=1;}}if(dat==15) { z++;on=0; } //停止键按下一次if((on==0)&&(z==2)) //停止键按下二次{count[0]=0; //显示清零count[1]=0;count[2]=0;drun=0; run=0;z=0;on=0;off=1; //运行与停止标志}if((dat>=0)&&(dat<=9)&&(on==0)&&(off==1)){count[count_i]=dat;if(count[0]!=0){count_i++;}if((count_i==3)&&(on==0)&(off==1)){count_i=0;}if((count_i==0)&&(on==0)&(off==1)){ if(count[0]==0)run=0;else run=count[0]*100+count[1]*10+count[2];}if((count_i==1)&&(on==0)&(off==1)){run=count[0];}if((count_i==2)&&(on==0)&(off==1)){run=count[0]*10+count[1];}}if((dat==0)&&(on==1)){off=1;}if(dat==16);flag=0;}/*if(run!=0){*/ddisplay(drun);dddisplay();display(run);/*} */ //调用按键值的数码管显示子程序if((run==drun)&&run!=0){on=0;off=1;beep();drun=0; run=0;count[0]=0; //显示清零count[1]=0;count[2]=0;count_i=0;}}}/**************************************************************外部中断键盘扫描键值保存在dat中******************************************************************************* ************/void Interrupt1() interrupt 2 using 3{flag=1;}/*************************************************************************/ void Interrupt2() interrupt 1 using 1{ TR0=0;EX1=1;TH0=0xec;TL0=0x78;x--;if(x==0){if((zdirection==1)&&(fdirection==0)&&(on==1)&&(off==0)){P1=FFW[run_i];fdirection=0;led_delay(); //动态扫描延时led_delay(); //动态扫描延时led_delay(); //动态扫描延时led_delay(); //动态扫描延时drun++;run_i++;if(run_i==8)run_i=0;if(run==drun){on=0;off=1;}}if((zdirection==0)&&(fdirection==1)&&(on==1)&&(off==0)){P1=REV[run_i];led_delay(); //动态扫描延时led_delay(); //动态扫描延时led_delay(); //动态扫描延时led_delay(); //动态扫描延时zdirection=0;drun++;run_i++;if(run_i==8)run_i=0;if(run==drun){on=0;off=1;}}if((on==0)&&(off=1))P1=0x00; x=y;}TR0=1;}。
基于51单片机的步进电机的控制设计
勘电槽洗电借专理单片机应用系统设计报告设计题目:步进电机控制器设计专业班级: _____________________________ 学生姓名:____________________________________ 指导教师:____________________________________ 设计时间:2016^ 12 月设计要求及方案可以实现步进电机正转和反转控制及速度的控制,同时实现步进电机步数的控制。
2、设计方案本次设讣采用AT89C51单片机控制一个四相步进电机。
单片机输出脉冲序列, 驱动步进电机转动;并设置开关、按键电路,来控制步进电机的2挡转速,即加速、减速;以及步数的变化,即四拍驱动方式、八拍驱动方式,同时控制步进电机的转动方向,即正转、反转。
设讣方案总体框图:单片机最小系统开关、按键电路二、步进电机简介K步进电机工作原理步进电机是一种将电脉冲转化为角位移的执行机构。
当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的LI的:同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的LI的。
步进电机可以作为一种控制用的特种电机,利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。
步进电机是一种感应电机,它的工作原理是利用电子电路,将直流电变成分时供电的,多相时序控制电流,用这种电流为步进电机供电,步进电机才能正常丄作,驱动器就是为步进电机分时供电的多相时序控制器。
虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。
它必须山双环形脉冲信号、功率驱动电路等组成控制系统方可使用。
因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。
步进电机作为执行元件,是机电一体化的关键产品之一,广泛应用在各种自动化控制系统中。
STC增强型51单片机利用PWM脉冲控制4个57步进电机的编程方法
IAP15W4K58S4单片机利用PWM脉冲控制4个步进电机的编程方法最近购入一块IAP15W4K58S4(图1)的STC单片机的最小系统,然后用它控制步进电机,步进电机驱动器为基于TB6600的MicroStep Driver(图2)驱动器。
为了能控制该驱动器,利用现有的单片机系统控制驱动器。
连接电路原理图如图3所示,图中Vcc=5V.图1 IAP15W4K58S4单片机最小系统图2 步进电机驱动器使IAP15W4K58S4单片机能够控制步进电机,首先需要产生PWM脉冲,本例子产生频率为1KHz,占空比为50%的脉冲,P2.1、P2.2、P2.3、P3.7口输出4路PWM脉冲。
生产PWM脉冲,单片机涉及到的寄存器(不考虑PWM中断)有P_SW2(端口配置寄存器)、PWMCFG(PWM配置寄存器,初始电平高低)、PWMCKS(PWM时钟选择寄存器)、由PWMCH(高7位)和PWMCL(低8位)组成的15位PWM计数器、由PWM n T1H、PWM n T1L和PWM n T2H、PWM n T2L组成的PWM脉冲翻转计数器(其中PWM n T1H、PWM n T1L组成第一次翻转15位计数器,其中PWM n T2H、PWM n T2L组成第二次翻转15位计数器,n取值范围为2、3、4、5、6、7)、PWM n CR(PWM n的控制寄存器,设置输出管脚选择和中断使能控制,n取值范围为2、3、4、5、6、7)和PWMCR(PWM控制寄存器,用于开启各个端口和PWM模块开关,该寄存器最后设置)。
由于生成PWM,需将I/O 口配置为准双向口或强推挽模式,所以还需配置P m M0和P m M1寄存器,m取值范围为0~3。
以上寄存器各个位配置可参考该单片机的数据手册,本项目的例程参考STC官方例程基础进行修改,如后文所述。
IAP15W4K58S4单片机的特殊功能寄存器区中要使用扩展的特殊功能寄存器需要配置P_SW2的bit7位,将其(bit7)置1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#include <AT89X51.h>
static unsigned int count; //计数
static int step_index; //步进索引数,值为0-7
static bit turn; //步进电机转动方向
static bit stop_flag; //步进电机停止标志
static int speedlevel; //步进电机转速参数,数值越大速度越慢,最小值为1,速度最快static int spcount; //步进电机转速参数计数
void delay(unsigned int endcount); //延时函数,延时为endcount*0.5毫秒
void gorun(); //步进电机控制步进函数
void main(void)
{
count = 0;
step_index = 0;
spcount = 0;
stop_flag = 0;
P1_0 = 0;
P1_1 = 0;
P1_2 = 0;
P1_3 = 0;
EA = 1; //允许CPU中断
TMOD = 0x11; //设定时器0和1为16位模式1
ET0 = 1; //定时器0中断允许
TH0 = 0xFE;
TL0 = 0x0C; //设定时每隔0.5ms中断一次TR0 = 1; //开始计数
turn = 0;
speedlevel = 2;
delay(10000);
speedlevel = 1;
do{
speedlevel = 2;
delay(10000);
speedlevel = 1;
delay(10000);
stop_flag=1;
delay(10000);
stop_flag=0;
}while(1);
}
//定时器0中断处理
void timeint(void) interrupt 1
{
TH0=0xFE;
TL0=0x0C; //设定时每隔0.5ms中断一次count++;
spcount--;
if(spcount<=0)
{
spcount = speedlevel;
gorun();
}
}
void delay(unsigned int endcount)
{
count=0;
do{}while(count<endcount);
}
void gorun()
{ if (stop_flag==1)
{
P1_0 = 0;
P1_1 = 0;
P1_3 = 0; return;
}
switch(step_index) {
case 0: //0
P1_0 = 1;
P1_1 = 0;
P1_2 = 0;
P1_3 = 0; break;
case 1: //0、1
P1_0 = 1;
P1_1 = 1;
P1_2 = 0;
P1_3 = 0; break;
case 2: //1
P1_0 = 0;
P1_1 = 1;
P1_2 = 0;
P1_3 = 0; break;
case 3: //1、2
P1_0 = 0;
P1_1 = 1;
P1_2 = 1;
P1_3 = 0; break;
case 4: //2
P1_0 = 0;
P1_1 = 0;
P1_2 = 1;
P1_3 = 0; break;
case 5: //2、3
P1_0 = 0;
P1_1 = 0;
P1_2 = 1;
P1_3 = 1; break;
case 6: //3
P1_0 = 0;
P1_2 = 0;
P1_3 = 1; break;
case 7: //3、0
P1_0 = 1;
P1_1 = 0;
P1_2 = 0;
P1_3 = 1;
}
if (turn==0)
{
step_index++;
if (step_index>7)
step_index=0; }
else
{
step_index--;
if (step_index<0)
step_index=7; }
}。