关于计量经济学
计量经济学概念
第二节 计量经济学方法
一. 计量经济学方法的内容
任何计量经济研究包含两个基本要素:理论和事实, 计量经济学的主要功能就是将这两个要素结合在一起。 计量经济研究既使用理论,也使用事实,将二者结合 起来,用统计技术估计经济关系,如图1.1所示。
14
理论统计理论
计量经济模型
加工好的数据
10
3. 学科发展环境 同时,随着科学技术的发展,各门学科相互渗透,数
学、系统论、信息论、控制论等相继进入经济研究领 域,使经济科学进一步数量化,有助于计量经济学的 发展。高速电子计算机的出现和发展,为计量经济技 术的广泛应用铺平了道路。
11
4. 发展过程
上世纪三十年代,侧重于个别商品供给与需求的计 量,基本上属于个量分析或微观分析。
1. 需求函数的数学模型
尽管需求定律假定价格(P)与需求量(Q)之间 呈反向关系,但并没有给出二者之间关系的精 确形式。例如,该定律并没有告诉我们价格与 需求量之间关系是线性的还是非线性的,如图 1.2中(a)和 (b) 所示。
21
Q
Q
(a)
P
(b)
P
图1.2 线性和非线性的需求函数
22
事实上,斜率为负的曲线有千千万万,在它们 之中选择正确的函数是计量经济学家的任务。
7
计量经济学的艺术成分
计量经济学虽然以科学原理为基础,但仍保留了一 定的艺术成分,主要体现在试图找出一组合适的假设 ,这些假设既严格又现实,使得我们能够使用可获得 的数据得到最理想的结果,而现实中这种严格的假设 条件往往难以满足。
“艺术”成分的存在使得计量经济学有别于传统 的科学,是使人对它提供准确预测的能力产生怀疑的 主要原因。
31
计量经济学复习资料
计量经济学复习资料一、引言计量经济学是研究经济现象的数量关系和经济变量之间相互影响的学科。
它通过运用统计学和数学方法,以实证的方式分析经济模型和数据,以期为经济理论的验证和决策制定提供科学依据。
计量经济学作为经济学的重要分支,在经济学领域里起着举足轻重的作用。
本文将为大家提供一个关于计量经济学的复习资料,以便大家更好地复习和理解这门学科。
二、计量经济学基础1. 理论基础:回顾计量经济学的理论基础,包括经济学中的基本原理、假设和模型,以及计量经济学方法的发展演变过程。
2. 计量经济学的基本概念:介绍计量经济学中的一些基本概念,如变量、参数、模型、数据等,帮助读者建立对计量经济学基础概念的理解和认知。
三、计量经济模型1. 线性回归模型:介绍线性回归模型的基本原理和假设,包括最小二乘估计法、截距项、解释变量的选择和回归结果的解释等。
2. 多元线性回归模型:介绍多元线性回归模型的基本原理、假设和参数估计方法,包括多重共线性、异方差和自相关等问题的处理方法。
3. 非线性回归模型:介绍非线性回归模型,如对数线性模型、二项式模型和估计方法等。
4. 时间序列模型:介绍时间序列模型的基本原理、假设和参数估计方法,包括平稳性、季节性和趋势性等问题的处理方法。
四、计量经济学常用方法1. 模型诊断:介绍计量经济学中的模型诊断方法,包括残差分析、异方差检验和自相关检验等。
2. 假设检验:介绍计量经济学中的假设检验方法,包括参数显著性检验、模型拟合优度检验和模型比较等。
3. 预测方法:介绍计量经济学中的预测方法,包括时间序列分析、回归分析和面板数据分析等。
4. 因果推断:介绍计量经济学中的因果推断方法,包括工具变量法、自然实验和计量分析的注意事项等。
五、计量经济学在实际应用中的案例研究1. 劳动经济学:介绍计量经济学在劳动经济学领域的实际应用,包括劳动力市场分析、教育回报率和人力资本投资等。
2. 金融经济学:介绍计量经济学在金融经济学领域的实际应用,包括资本市场分析、投资组合选择和风险管理等。
计量经济学名词解释
计量经济学名词解释1、计量经济学计量经济学是一个分支学科,以揭示经济活动中客观存在的数量关系为内容的分支学科,统计学,经济理论和数学这结合便构成了计量经济学。
2、计量经济学模型揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述。
3、解释变量影响被解释变量的因素或因子,是原因变量,记为“X”.4、被解释变量结果变量称为被解释变量,记为“Y”。
5、结构分析结构分析是对经济现象中变量之间相互关系的研究。
所采用的主要方法是弹性分析、乘数分析与比较静力分析。
6、时间序列数据按照时间先后顺序排列的统计数据,又称为纵向数据。
7、截面数据一批发生在同一时间截面上的调查数据,又称横向数据。
8、平行数据(面板数据)时间序列数据与截面数据的合成体,又称面板数据。
9、回归分析回归分析是研究一个变量关于另一个(些)变量的依赖关系的计算方法和理论。
10、随机误差项被解释变量数值与其条件期望之间的离差,是一个不可观测的随机变量,称为随机误差项,或随机干扰项。
11、最小二乘法通过最小化误差的平方和寻找数据的最佳函数匹配。
12、最佳线性无偏估计量拥有有限样本性质或小样本性质这类性质的估计量,称为最佳线性无偏估计量。
13、拟合优度是SRF对样本观测值的拟合程度,即样本回归直线与观测散点之间的紧密程度。
14、方程显著性检验对所有被解释变量与解释变量之间的线性关系在总体上是否显著成立做出推断的检验。
15、变量显著性检验是对模型中某一个具体的解释变量X与被解释变量Y之间的线性关系在总体上是否显著成立做出判断,换言之,是考察所选择的X在总体上是否对Y有显著的线性影响。
16、最小样本容量是指从最小二乘原理和最大似然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限。
17、满足基本要求的样本容量当n≥30或者至少n≥3(k+1)时,才能说满足模型估计的基本要求。
18、需求函数的零阶齐次性当所有商品价格和消费者货币支出总额按照同一比例变动时,需求量保持不变,这就是所谓的消费者无货币幻觉。
计量经济学复习知识点重点难点
计量经济学复习知识点重点难点计量经济学知识点第一章导论1、计量经济学的研究步骤:模型设定、估计参数、模型检验、模型应用。
2、计量经济学是统计学、经济学和数学的结合。
3、计量经济学作为经济学的一门独立学科被正式确立的标志:1930年12月国际计量经济学会的成立。
4、计量经济学是经济学的一个分支学科。
第二章简单线性回归模型1、在总体回归函数中引进随机扰动项的原因:①作为未知影响因素的代表;②作为无法取得数据的已知因素的代表;③作为众多细小影响因素的综合代表;④模型的设定误差;⑤变量的观测误差;⑥经济现象的内在随机性。
2、简单线性回归模型的基本假定:①零均值假定;②同方差假定;③随机扰动项和解释变量不相关假定;④无自相关假定;⑤正态性假定。
3、OLS回归线的性质:①样本回归线通过样本均值;②估计值的均值等于实际值的均值;③剩余项ei的均值为零;④被解释变量的估计值与剩余项不相关;⑤解释变量与剩余项不相关。
4、参数估计量的评价标准:无偏性、有效性、一致性。
5、OLS估计量的统计特征:线性特性、无偏性、有效性。
6、可决系数R2的特点:①可决系数是非负的统计量;②可决系数的取值范围为[0,1];③可决系数是样本观测值的函数,可决系数是随抽样而变动的随机变量。
第三章多元线性回归模型1、多元线性回归模型的古典假定:①零均值假定;②同方差和无自相关假定;③随机扰动项和解释变量不相关假定;④无多重共线性假定;⑤正态性假定。
2、估计多元线性回归模型参数的方法:最小二乘估计、极大似然估计、矩估计、广义矩估计。
3、参数最小二乘估计的性质:线性性质、无偏性、有效性。
4、可决系数必定非负,但是根据公式计算的修正的可决系数可能为负值,这时规定为0。
5、可决系数只是对模型拟合优度的度量,可决系数越大,只是说明列入模型中的解释变量对被解释变量的联合影响程度越大,并非说明模型中各个解释变量对被解释变量的影响程度也大。
6、当R2=0时,F=0;当R2越大时,F值也越大;当R2=1时,F→∞。
关于计量经济学参考文献汇总
关于计量经济学参考文献汇总关于计量经济学参考文献汇总摘要:以下是关于计量经济学参考文献汇总,以供参考。
参考文献1、唐国兴,计量经济学——理论、方法和模型,复旦大学出版社,1988。
2、张寿、于清文,计量经济学,上海交通大学出版社,1984。
3、邹至庄,经济计量学,中国友谊出版公司,1988。
4、古扎拉蒂计量经济学(上,下),中国人民大学出版社2000年中译本。
5、伍德里奇,计量经济学导论——现代观点,中国人民大学出版社2003年中译本。
6、William H. Greene, Econometrics, 4th ed. 清华大学出版社2001年影印本。
7、汉密尔顿,时间序列分析,中国社会科学出版社1999中译本。
8、易丹辉,数据分析与Eviews应用,中国统计出版社2002。
9、张晓峒主编,计量经济学软件Eviews使用指南,南开大学出版社2003。
10、拉姆.拉玛丹山《应用计量经济学》,机械工业出版社2003中译本。
11、Box, Jenkins, Reinsel《时间序列分析:预测和控制(第三版)》,中国统计出版社,1997年中译本。
12、陆懋祖《高等时间序列计量经济学》,上海人民出版社,1999。
13、韩德瑞、秦朵《动态经济计量学》,上海人民出版社,1998。
14、谢识予、朱弘鑫《高级计量经济学》复旦大学出版社,2005。
15、弗朗西斯《商业和经济预测中的时间序列模型》,中国人民大学出版社,2002。
16、朱平芳《现代计量经济学》,上海财经大学出版社,2004。
17、Pindyck R S, Rubinfeld D L, Econometrics Models and Economic Forecasts, 4th ed. The McGraw-Hill Companies, Inc. 1998.18、Johnston, J. and J. DiNardo, 1997, Econometric Methods, 4th ed., McGraw-Hill.19、Wallace T D, Silver J L. Econometrics-An Introduction. Addison-Wesley Publishing Company, Inc. 1988.20、Gujarati, D. N., 1995, Basic Econometrics, 3nd. ed., McGraw-Hill.。
计量经济学讲义
计量经济学讲义第一部分:引言计量经济学是研究经济现象的量化方法,它结合了统计学和经济学原理,旨在提供对经济现象进行定量分析的工具和技术。
本讲义将介绍计量经济学的基本概念和方法,帮助读者理解和应用计量经济学的基本原理。
第二部分:经济数据和计量经济学模型1. 经济数据的类型- 我们将介绍经济数据的两种主要类型:时间序列数据和截面数据。
时间序列数据是在一段时间内收集的数据,而截面数据是在同一时间点上收集的数据。
2. 计量经济学模型- 我们将讨论计量经济学模型的基本原理和应用,例如最小二乘法和线性回归模型。
这些模型可以帮助我们分析经济数据之间的关系,并进行预测和政策评估。
第三部分:经济数据的描述性统计分析1. 描述性统计分析的概念- 我们将介绍描述性统计分析的基本概念和方法,包括中心趋势测量、离散度测量和分布形态测量。
这些方法可以帮助我们理解和总结经济数据的基本特征。
2. 经济数据的描述性统计分析实例- 我们将通过实例演示如何使用描述性统计分析方法来分析和解释经济数据。
例如,我们可以使用均值和方差来描述一个国家的经济增长和收入分配。
第四部分:计量经济学的统计推断1. 统计推断的概念- 我们将讨论统计推断的基本概念和方法,包括假设检验和置信区间。
这些方法可以帮助我们从样本数据中推断总体参数,并评估推断的精度和可靠性。
2. 统计推断的实例- 我们将通过实例演示如何使用统计推断方法来研究和解释经济现象。
例如,我们可以使用假设检验来判断一个政策措施对经济增长的影响。
第五部分:计量经济学的回归分析1. 单变量线性回归模型- 我们将介绍单变量线性回归模型的基本原理和应用。
这个模型可以帮助我们分析一个因变量和一个自变量之间的关系,并进行预测和政策评估。
2. 多变量线性回归模型- 我们将讨论多变量线性回归模型的基本原理和应用。
这个模型可以帮助我们分析多个自变量对一个因变量的影响,并进行政策评估和变量选择。
第六部分:计量经济学的时间序列分析1. 时间序列模型的基本概念- 我们将介绍时间序列模型的基本概念和方法,包括自回归模型和移动平均模型。
计量经济学简介
Function Y=f(x) ? Random Variables Correlation between y and x? Not causality
since w may be correlated with other factors that also affect y.
6
Ceteris Paribus Analysis
10
Example 1: Effects of Fertilizer on Soybean Yield
Intuition tells us that more fertilizer should lead to higher yields. Experiment? In the simplest case, this implies an equation like:
计量经济学
计量经济学是以一定的经济理论和统计资料为基础, 运用数学、统计学方法与电脑技术,以建立经济计量 模型为主要手段,定量分析具有随机性特性的经济变 量关系,主要内容包括理论计量经济学和应用计量经 济学。理论经济计量学主要研究如何运用、改造和发 展数理统计的方法,使之成为随机经济关系测定的特 殊方法。应用计量经济学是在一定的经济理论的指导 下,以反映事实的统计数据为依据,用经济计量方法 研究经济数学模型的实用化或探索实证经济规律。 计量经济学广泛采用计算机组织教学,着重培养学生 定量地分析问题、解决问题的能力。
Deciding on the list of proper controls is not
always straightforward, and using different controls can lead to different conclusions about a causal relationship between y and w.
计量经济学重点知识整理
计量经济学重点知识整理1一般性定义计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
研究的主体〔动身点、回宿、核心〕:经济现象及数量变化规律研究的工具〔手段〕:模型数学和统计方法必须明确:方法手段要服从研究对象的实质特征〔与数学不同〕,方法是为经济咨询题效劳2注重:计量经济研究的三个方面理论:即讲明所研究对象经济行为的经济理论——计量经济研究的根底数据:对所研究对象经济行为瞧测所得到的信息——计量经济研究的原料或依据方法:模型的方法与估量、检验、分析的方法——计量经济研究的工具与手段三者缺一不可3计量经济学的学科类型●理论计量经济学研究经济计量的理论和方法●应用计量经济学:应用计量经济方法研究某些领域的具体经济咨询题4区不:●经济理论重在定性分析,并不对经济关系提供数量上的具体度量●计量经济学对经济关系要作出定量的估量,对经济理论提出经验的内容5计量经济学与经济统计学的关系联系:●经济统计侧重于对社会经济现象的描述性计量●经济统计提供的数据是计量经济学据以估量参数、验证经济理论的全然依据●经济现象不能作实验,只能被动地瞧测客瞧经济现象变动的既成事实,只能依靠于经济统计数据6计量经济学与数理统计学的关系联系:●数理统计学是计量经济学的方法论根底区不:●数理统计学是在标准假定条件下抽象地研究一般的随机变量的统计规律性;●计量经济学是从经济模型动身,研究模型参数的估量和推断,参数有特定的经济意义,标准假定条件经常不能满足,需要建立一些专门的经济计量方法3、计量经济学的特点:计量经济学的一个重要特点是:它自身并没有固定的经济理论,而是依据其它经济理论,应用计量经济方法将这些理论数量化。
4、计量经济学什么缘故是一门单独的学科计量经济学是经济理论、数理经济、经济统计与数理统计的混合物。
1、经济理论所作的陈述或假讲大多数是定性性质的,计量经济学对大多数经济理论给予经验内容。
计量经济学复习题
一、问答题1、什么是计量经济学?答:计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科,是由经济学、统计学和数学三者结合而成的交叉学科。
2、计量经济学的研究的对象和内容是什么?计量经济学模型研究的经济关系有哪两个基本特征?答:计量经济学的研究对象是经济现象,是研究经济现象中的具体数量规律(或者说,计量经济学是利用数学方法,根据统计测定的经济数据,对反映经济现象本质的经济数量关系进行研究)。
计量经济学的内容大致包括两个方面:一是方法论,即计量经济学方法或理论计量经济学;二是应用,即应用计量经济学;无论是理论计量经济学还是应用计量经济学,都包括理论、方法和数据三种要素。
计量经济学模型研究的经济关系有两个基本特征:一是随机关系;二是因果关系。
3、模型的检验包括几个方面?其具体含义是什么?答:模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验。
在经济意义检验中,需要检验模型是否符合经济意义,检验求得的参数估计值的符号与大小是否与根据人们的经验和经济理论所拟订的期望值相符合;在统计检验中,需要检验模型参数估计值的可靠性,即检验模型的统计学性质;在计量经济学检验中,需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;模型的预测检验主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围。
4、计量经济模型中为何要包括随机误差项?简述随机误差项形成的原因。
答:由于客观经济现象的复杂性,以至于人们目前仍难以完全地透彻地了解它的全貌。
对于某一种经济现象而言,往往受到很多因素的影响,而人们在认识这种经济现象的时候,只能从影响它的很多因素中选择一种或若干种来说明。
这样就会有许多因素未被选上,这些未被选上的因素必然也会影响所研究的经济现象。
因此,由被选因素构成的数学模型与由全部因素构成的数学模型去描述同一经济现象,必然会有出入。
关于计量经济学的几点思考
关于计量经济学的几点思考Part 1标题一:计量经济学的概念和本质标题二:计量经济学的研究方法标题三:计量经济学的广泛应用标题四:计量经济学应用中的问题和挑战标题五:计量经济学未来的发展方向1.计量经济学的概念和本质计量经济学是研究经济现象及其规律的科学,其本质是运用数学和统计学方法验证和量化经济学理论。
计量经济学作为一门经济学分支学科,与经济学其他分支学科的关系密切。
计量经济学将经济现象定量化,可以更加准确地揭示人类经济活动的内在规律和关系,为经济发展提供理论支持。
2.计量经济学的研究方法计量经济学从统计学和经济学的基础出发,运用数学工具来构建模型,推导出经济变量之间的关系,并通过实证研究对模型进行验证。
其中包括回归分析、面板数据、时间序列等方法。
此外,计量经济学还需要注意数据的选择和处理,避免因数据本身问题而产生的误差,以保证研究结论的有效性。
3.计量经济学的广泛应用计量经济学的应用领域非常广泛,包括宏观经济学、劳动经济学、产业经济学等。
例如,在宏观经济领域,通过对经济增长方面的研究,可以为经济政策制定者提供有力的决策支持。
在劳动经济学领域,应用计量经济学方法研究劳动力市场的变动,还可以分析劳动力市场中的性别、年龄和教育等因素对薪资的影响。
在产业经济学领域,可以通过计量经济学方法来研究市场结构和行业竞争力,为企业决策提供理论支持。
4.计量经济学应用中的问题和挑战虽然计量经济学方法非常强大,但在实际应用中也会遇到一些问题和挑战。
首先,选择合适的模型和数据样本是非常重要的,不合理的选择会导致结果的不准确。
其次,在处理数据时需要考虑误差的来源,避免因自身数据问题而影响研究结论的准确性。
最后,在研究中需要注意成果的可重复性和可验证性,以便他人可以验证研究的结论。
5.计量经济学未来的发展方向随着科技的进步和研究方法的不断提高,计量经济学将会得到更广泛的应用和发展。
未来的研究方向可能包括多维度分析、非线性建模、大数据分析等方面。
计量经济学课件
ˆ ˆ ˆ ˆ P
2.5 一元回归模型的应用:预测
Yi 0 1 X i
EYi | X i 0 1 X i
ˆ ˆX ˆi Y 0 1 i
2 2 2 i 1 i 1 i 1 i 1
n
n
n
n
1 R 1 R =1,称为完全正相关; R >0,正相关; R =0,不相关; R <0,负相关; R = 1 ,完全负相关。
10. 相关系数的检验 可通过查表对相关系数进行检验(双侧
检验或两侧检验)
H0 : R=0; H1: R≠0 在给定的显箸性水平比如 5 %下,自由 度为 n - 2(n 为样本数 ) ,通过查相关系数检 验表得一相关系数。若计算出来的相关系数 R的绝对值大于查表所得的相关系数,则否 定原假设 H 0 : R=0 ,接受 H 1 , 即认为 x 与 y 之 间存在显箸的相关,否则不相关。
1
n(n 1)
i 1 2
d x y,
n为样本数
关于Rs的检验可用Spearman‘s rank correlation test方法同相关系数检验,不同 之处是在查表时,相关系数查自由度为 n -2,而斯皮尔曼秩查样本数n。 例子 参看P39-41
第二章 一元线性回归模型
一元回归模型
性模型。 自律性的模型:由深厚的经济理论所
推导出的模型,通过对自律性模型的实证
分析,有可能发现稳定的经济规律,提高
对未来预测的准确度,并提出真正有效的
政策建议。
数据收集:需经济统计学知识
常用二类数据 ① 时间序列数据
② 横截面数据
模型的统计估计及检验 假设检验:运用收集的数据,对
计量经济学简答
(2)给定a,由n和k的大小查DW分布表,得临界值dL和dU
(3)比较、判断
若0<D.W.<dL,存在正自相关
dL<D.W.<dU,不能确定
dU <D.W.<4-dU,无自相关
4-dU <D.W.<4-dL,不能确定
4-dL <D.W.<4 , 存在负自相关
分布滞后模型使用OLS法存在以下问题:(1)对于无限期的分布滞后模型,由于样本观测值的有限性,使得无法直接对其进行估计σ。(2)对于有限期的分布滞后模型,使用OLS方法会遇到:没有先验准则确定滞后期长度,对最大滞后期的确定往往带有主观随意性;如果滞后期较长,由于样本容量有限,当滞后变量数目增加时,必然使得自由度减少,将缺乏足够的自由度进行估计和检验;同名变量滞后期之间可能存在高度线性相关,即模型可能存在高度的多重共线性。
5、计量经济学模型主要有哪些应用领域?各自的原理是什么?
答:计量经济学模型主要有以下几个方面的用途:
⑴。结构分析,其原理是弹性分析、乘数分析与比较分析;
⑵。经济预测,其原理是模拟历史,从已经发生的经济活动中找出变化规律;
⑶。政策评价,是对不同政策执行情况的“模拟仿真”;
⑷。检验与发展经济理论,其原理是如果按照某种经济理论建立的计量经济学模型可以很好地拟合实际观察数据。
5、简述变量显著性检验的步骤。
答:(1)对总体参数提出假设: H0:b1=0, H1:b110。
(2)以原假设H0构造t统计量,并由样本计算其值:
(3)给定显著性水平a,查t分布表得临界值t a/2(n-2)
(4)比较,判断
若 |t|> t a/2(n-2),则拒绝H0 ,接受H1 ;
计量经济学知识点
计量经济学知识点1.假设检验:在计量经济学中,研究者通常会提出一些假设,然后使用统计方法来检验这些假设的有效性。
例如,研究者可能提出一个关于变量之间关系的假设,并使用样本数据来检验这个假设是否成立。
2.回归分析:回归分析是计量经济学中一种常用的统计方法,用于分析因变量与自变量之间的关系。
通过回归分析,研究者可以确定自变量对因变量的影响程度,并进一步预测因变量的数值。
回归模型的选择和估计是计量经济学中的核心内容之一3.模型设定:在计量经济学中,研究者通常会基于对经济理论的理解来设定一个经济模型,并使用实证分析来验证模型的有效性。
模型设定是计量经济学研究的第一步,决定了后续研究的方向和方法。
4.面板数据分析:面板数据是一种具有时间序列和截面维度的数据,可以用于研究变量的动态关系。
在面板数据分析中,研究者可以使用固定效应模型或者随机效应模型来估计变量的影响。
5.工具变量法:工具变量法是计量经济学中一种常用的估计方法,用于解决内生性问题。
内生性问题是由于自变量和误差项之间的相关性而导致的估计结果不准确的问题,在工具变量法中,研究者使用一个与自变量相关但与误差项无关的变量作为工具变量来解决内生性问题。
6.时间序列分析:时间序列分析是计量经济学中研究时间序列数据的方法。
研究者可以使用时间序列模型来分析和预测经济变量的发展趋势和波动性。
常用的时间序列模型包括ARMA模型、ARIMA模型等。
7.异方差问题:异方差问题是指误差项的方差不是恒定的,而是与自变量或其他变量相关的情况。
异方差问题会导致估计结果的不准确性,在计量经济学中,研究者可以使用加权最小二乘法或者稳健标准误等方法来解决异方差问题。
8.时间序列平稳性:时间序列平稳性是指时间序列数据的均值和方差在时间上不发生系统性的变化。
平稳时间序列数据能够提供可靠的统计推断结果,因此在时间序列分析中需要对数据的平稳性进行检验。
9.效应估计方法:在计量经济学中,研究者通常会使用OLS估计法来估计参数的值。
计量经济学复习知识要点
第一章导论第一节计量经济学的涵义和性质计量经济学是以一定的经济理论和实际统计资料为依据,运用数学、统计学方法和计算机技师,通过建立计量经济模型,定量分析经济变量之间的随机因果关系。
计量经济学是经济学的一个重要分支,以揭示经济活动中客观存在的数量关系的理论与方法为主要内容,其核心是建立计量经济学模型。
第二节计量经济学的内容体系及与其他学科的关系一、计量经济学与经济学、统计学、数理统计学学科间的关系计量经济学是经济理论、统计学和数学的综合。
经济学着重经济现象的定性研究,而计量经济学着重于定量方面的研究。
统计学是关于如何惧、整理和分析数据的科学,而计量经济学则利用经济统计所提供的数据来估计经济变量之间的数量关系并加以验证。
数量统计各种数据的惧、整理与分析提供切实可靠的数学方法,是计量经济学建立计量经济模型的主要工具,但它与经济理论、经济统计学结合而形成的计量经济学则仅限于经济领域。
计量经济模型建立的过程,是综合应用理论、统计和数学方法的过程。
因此计量经济学是经济理论、统计学和数学三者的统一。
二、计量经济学的内容体系1、按范围分为广义计量经济学和狭义计量经济学。
2、按研究内容分为理论计量经济学和应用计量经济学。
理论计量经济学的核心内容是参数估计和模型检验。
应用计量经济学的核心内容是模型设定和模型应用。
第三节基本概念(4、5、7、8了解即可)1.经济变量:经济变量是用来描述经济因素数量水平的指标。
2.解释变量:解释变量也称自变量,是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。
它对因变量的变动作出解释,表现为议程所描述的因果关系中的“因”。
3.被解释变量:被解释变量也称因变量或应变量,是作为研究对象的变量。
它的变动是由解释变量作出解释的,表现为议程所描述的因果关系的果。
4.内生变量:内生变量是由模型系统内部因素所决定的变量,表现为具有一定概率颁的随机变量,其数值受模型中其他变量的影响,是模型求解的结果。
计量经济学重要简答题
计量经济学重点简答题1.简述计量经济学与经济学、统计学、数理统计学学科间的关系;答:计量经济学是经济理论、统计学和数学的综合;经济学着重经济现象的定性研究,计量经济学着重于定量方面的研究;统计学是关于如何收集、整理和分析数据的科学,而计量经济学则利用经济统计所提供的数据来估计经济变量之间的数量关系并加以验证;数理统计学作为一门数学学科,可以应用于经济领域,也可以应用于其他领域;计量经济学则仅限于经济领域;计量经济模型建立的过程,是综合应用理论、统计和数学方法的过程,计量经济学是经济理论、统计学和数学三者的统一;2、计量经济模型有哪些应用答:①结构分析②经济预测③政策评价④检验和发展经济理论3、简述建立与应用计量经济模型的主要步骤;答:模型设定估计参数模型检验模型应用或1经济理论或假说的陈述2 收集数据3建立数理经济学模型 4建立经济计量模型5模型系数估计和假设检验6模型的选择7理论假说的选择8经济学应用4、对计量经济模型的检验应从几个方面入手答:①经济意义检验②统计推断检验③计量经济学检验④模型预测检验5、计量经济学应用的数据是怎样进行分类的答:时间序列数据截面数据面板数据虚拟变量数据6、解释变量和被解释变量,内生变量和外生变量被解释变量是模型要研究的对象,被称为“因变量”,是变动的结果;解释变量是说明被解释变量变动的原因,被称为“自变量”,是变动的原因;内生变量是其数值由模型所决定的变量,是模型求解的结果;外生变量是其数值由模型以外决定的变量;7、计量经济学的含义计量经济学是以经济理论和经济数据的事实为依据,运用数学、统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科;8.在计量经济模型中,为什么会存在随机误差项答:随机误差项是计量经济模型中不可缺少的一部分;产生随机误差项的原因有以下几个方面:①模型中被忽略掉的影响因素造成的误差;②模型关系认定不准确造成的误差;③变量的测量误差;④随机因素;9.对于多元线性回归模型,为什么在进行了总体显着性F检验之后,还要对每个回归系数进行是否为0的t检验答:多元线性回归模型的总体显着性F检验是检验模型中全部解释变量对被解释变量的共同影响是否显着;通过了此F检验,就可以说模型中的全部解释变量对被解释变量的共同影响是显着的,但却不能就此判定模型中的每一个解释变量对被解释变量的影响都是显着的;因此还需要就每个解释变量对被解释变量的影响是否显着进行检验,即进行t检验;10.古典线性回归模型具有哪些基本假定;答:1 随机误差项与解释变量不相关; 2 随机误差项的期望或均值为零;3 随机误差项具有同方差,即每个随机误差项的方差为一个相等的常数;4 两个随机误差项之间不相关,即随机误差项无自相关;11.在多元线性回归分析中,为什么用修正的决定系数衡量估计模型对样本观测值的拟合优度答:因为人们发现随着模型中解释变量的增多,多重决定系数2R的值往往会变大,从而增加了模型的解释功能;这样就使得人们认为要使模型拟合得好,就必须增加解释变量;但是,在样本容量一定的情况下,增加解释变量必定使得待估参数的个数增加,从而损失自由度,而实际中如果引入的解释变量并非必要的话可能会产生很多问题,比如,降低预测精确度、引起多重共线性等等;为此用修正的决定系数来估计模型对样本观测值的拟合优度;12.修正的决定系数2R及其作用;解答:222/11()/1tte n kRy y n--=---∑∑,其作用有:1用自由度调整后,可以消除拟合优度评价中解释变量多少对决定系数计算的影响;2对于包含解释变量个数不同的模型,可以用调整后的决定系数直接比较它们的拟合优度的高低,但不能用原来未调整的决定系数来比较;13.多重共线性含义:多重共线性是指解释变量之间存在完全或近似的线性关系;产生原因:1样本数据的采集是被动的,只能在一个有限的范围内得到观察值,无法进行重复试验;2经济变量的共同趋势3滞后变量的引入4模型的解释变量选择不当后果:(1)完全多重共线性产生的后果参数的估计值不确定、参数估计值的方差无限大(2)不完全多重共线性产生的后果参数估计值的方差无限大;对参数区间估计时,置信区间趋于变大;严重多重共线性时假设检验易作出错误判断;模型总体性检验F值和R2值都很高,但各回归系数估计量的方差很大,t 值很低,系数不能通过显着性检验检验:简单相关系数检验法、方差扩大因子法、直观判断法、逐步回归检验法 补救措施:剔出不重要变量;增加样本数量;改变模型形式;改变变量形式;利用先验信息,逐步回归法;14.异方差含义:异方差性是指模型中随机误差项的方差不是常量,而且它的变化与解释变量的变动有关;产生原因:1模型中遗漏了某些解释变量;2模型函数形式的设定误差;3样本数据的测量误差;4随机因素的影响;后果:如果线性回归模型的随机误差项存在异方差性,会对模型参数估计、模型检验及模型应用带来重大影响,主要有:1不影响模型参数最小二乘估计值的无偏性;2参数的最小二乘估计量不是一个有效的估计量;3对模型参数估计值的显着性检验失效;4模型估计式的代表性降低,预测精度精度降低;检验方法:1图示检验法;2GQ 检验;3怀特检验;4Glejser 检验5ARCH 检验 解决方法:1模型变换法;2加权最小二乘法;3模型的对数变换等15.加权最小二乘法的基本原理最小二乘法的基本原理是使残差平方和∑2t e 为最小,在异方差情况下,总体回归直线对于不同的t t e x ,的波动幅度相差很大;随机误差项方差2t σ越小,样本点t y 对总体回归直线的偏离程度越低,残差t e 的可信度越高或者说样本点的代表性越强;而2t σ较大的样本点可能会偏离总体回归直线很远,t e 的可信度较低或者说样本点的代表性较弱;因此,在考虑异方差模型的拟合总误差时,对于不同的2t e 应该区别对待;具体做法:对较小的2te给于充分的重视,即给于较大的权数;对较大的2te给于充分的重视,即给于较小的权数;更好的使 2t e反映)var(iu对残差平方和的影响程度,从而改善参数估计的统计性质;16.自相关含义:自相关是指总体回归模型的随机误差项u之间存在相关关系;产生原因:答:1经济变量惯性的作用引起随机误差项自相关;2经济行为的滞后性引起随机误差项自相关;3一些随机因素的干扰或影响引起随机误差项自相关;4模型设定误差引起随机误差项自相关;5观测数据处理引起随机误差项自相关;后果:1模型参数估计值不具有最优性;2随机误差项的方差一般会低估;3模型的统计检验失效;4区间估计和预测区间的精度降低;检验方法:1图示法;2DW检验;3LM检验法补救措施:广义差分法、CO迭代法17.简述DW检验的局限性;答:从判断准则中看到,DW检验存在两个主要的局限性:首先,存在一个不能确定的..DW值区域,这是这种检验方法的一大缺陷;其次:..DW检验只能检验一阶自相关;但在实际计量经济学问题中,一阶自相关是出现最多的一类序列相关,而且经验表明,如果不存在一阶自相关,一般也不存在高阶序列相关;所以在实际应用中,对于序列相关问题—般只进行..DW检验;18.试述D-W检验的适用条件及其检验步骤使用条件:1回归模型包含一个截距项;2变量X 是非随机变量;3扰动项的产生机制:1t t t u u v ρ-=+ 11ρ-≤≤;4因变量的滞后值不能作为解释变量出现在回归方程中;检验步骤1进行OLS 回归,并获得残差;2计算D 值;3已知样本容量和解释变量个数,得到临界值;4根据下列规则进行判断:19.广义最小二乘法GLS 的基本思想是什么答:基本思想就是对违反基本假定的模型做适当的线性变换,使其转化成满足基本假定的模型,从而可以使用OLS 方法估计模型;20.请简述什么是虚假序列相关,如何避免答:数据表现出序列相关,而事实上并不存在序列相关;要避免虚假序列相关,就应在做定量分析之间先进行定性分析,看从理论上或经验上是否有存在序列相关的可能,可能性是多大;21.在建立计量经济学模型时,为什么要引入虚拟变量答案:在现实生活中,影响经济问题的因素除具有数量特征的变量外,还有一类变量,这类变量所反映的并不是数量而是现象的某些属性或特征,即它们反映的是现象的质的特征;这些因素还很可能是重要的影响因素,这时就需要在模型中引入这类变量;引入的方式就是以虚拟变量的形式引入;22.模型中引入虚拟变量的作用是什么答:1可以描述和测量定性因素的影响;2能够正确反映经济变量之间的关系,提高模型的精度;3便于处理异常数据;23.虚拟变量引入的原则是什么答:1如果一个定性因素有m方面的特征,则在模型中引入m-1个虚拟变量;2如果模型中有m个定性因素,而每个定性因素只有两方面的属性或特征,则在模型中引入m个虚拟变量;如果定性因素有两个及以上个属性,则参照“一个因素多个属性”的设置虚拟变量;24.虚拟变量引入的方式及每种方式的作用是什么答:1加法模式:其作用是改变了模型的截距水平;2乘法模式:其作用在于两个模型间的比较、因素间的交互影响分析和提高模型的描述精度;25.举例说明如何引进加法模式和乘法模式建立虚拟变量模型;答案:设Y为个人消费支出;X表示可支配收入,定义如果设定模型为此时模型仅影响截距项,差异表现为截距项的和,因此也称为加法模型;如果设定模型为此时模型不仅影响截距项,而且还影响斜率项;差异表现为截距和斜率的双重变化,因此也称为乘法模型;26.判断计量经济模型优劣的基本原则是什么答:1模型应力求简单;2模型具有可识别性;3模型具有较高的拟合优度;4模型应与理论相一致;5模型具有较好的超样本功能;27.设定误差产生的主要原因是什么答案:原因有四:1模型的制定者不熟悉相应的理论知识;1分2对经济问题本身认识不够或不熟悉前人的相关工作;1分3模型制定者缺乏相关变量的数据;1分4解释变量无法测量或数据本身存在测量误差;2分28.以一元回归为例叙述普通最小二乘回归的基本原理;解:依据题意有如下的一元样本回归模型:t t t e X b b Y ++=21 1 普通最小二乘原理是使得残差平方和最小,即∑∑--==2212)(min min min t t t X b b Y e Q 2根据微积分求极值的原理,可得0)(202111=---=∂∂⇔=∂∂∑t t X b b Y b Q b Q 30)(202122=---=∂∂⇔=∂∂∑t t t X X b b Y b Q b Q 4将3和4式称为正规方程,求解这两个方程,我们可得到:∑∑∑∑∑+=+=22121i i i i i iX b X b X Y Xb nb Y 5解得:其中Y Y y X X x i i i i -=-=,,表示变量与其均值的离差; 29.T 检验课本42页 30.F 检验课本76页31.结果报告的书写和预测区间的计算课本43页。
计量经济学
1.826
b t 15.653 s e b
t0.025 (3) 3.182
接受" =0"的假设,拒绝" =0"的假设.
当样本容量n=30左右, t ≥ 2时 则至少以0.05的显著水平拒绝零假设。
一、基本思想
二、预测的点估计
三、平均值的区间估计
四、个别值的区间估计
2 2 X Y nXY X nX t tt
定义: S XX X t X X t2 nX 2
2
S XY X t X Yt Y X tYt nXY 则 式变为: S XX S XY S XY S XX
部分占的比重越大,模型拟合优度越好。反乊可决系数 越小,说明模型对样本观测值的拟合程度越差。 可决系数的特点: 2 ●可决系数取值范围: 0 R 1 ●随抽样波动,样本可决系数 是随抽样而变 动的随机变量 ●可决系数是非负的统计量
39
3、可决系数与相关系数的关系
R2 ˆ x) ˆ y ( y y ˆ x ( x y ) x ( x ) y y
t t 2 t XX
a vtYt wt ,vt 均为确定性变量。
t
Xt X 令:wt ,wt 满足: wt 0 S XX
w X
t
t
1
1 1 a Y bX Y wtYt X Xwt Yt , 令vt wt X n n
Y X
Y:某国家(地区)消费 X:收入
2、计量经济学的发展史 1926年,挪威经济学家、第一届诺贝尔经济学奖得主 弗里希(R.Frish)仿照生物计量学(biometrics)提出 来计量经济学(econometrics)这个词。
计量经济学基础知识
内生变量:由模型所决定的变量,是随机变量。 内生变量又称为不可控制变量。
外生变量:决定模型的变量,是非随机变量。 外生变量由称可控制变量。
滞后内生变量、前定变量、虚拟变量、工具变 量。
模型设计阶段具体技术工作:
(1)模型应该包括那些变量?哪些是因变 量?哪些是自变量?
(2)模型包括几个参数,它们的符号(正 负)如何?
(3)模型函数的数学形式,线性的?亦或 是非线性的?
根据凯恩斯(J.M.Keynes)消费理论: “平均说来,当人们收入增多时,他们倾向于消
费,但其增长的程度并不和收入增加的程度一样 多。”设y为消费,x为收入,用数学方程表示为 y=f(x)=b0+b1x+e 其中参数b1=dy/dx为编辑消费倾向,e为随机项, 表明消费的随机性。按照凯恩斯的观点,0<b1<1。
库兹涅茨假设
但是,库兹涅茨对凯恩斯这种边际消费倾 向下降的观点持否定态度。他研究的结论, 消费与国民收入之间存在稳定的上升比例。 因此,上式只是根据凯恩斯消费理论设定 的消费模型。
3.确定变量和函数形式
包括:(1)、数学模型的设定
(2)、计量经济模型的设定
模型应当反映客观经济活动,但是这种反映不 可能也不应该是包罗万象,巨细无疑的。这需 要合理的假设,删除次要关系和因素。
1969年首届诺贝尔经济学奖授予弗里希和 丁伯根。
自1969年设立诺贝尔经济学奖至1989年27 为获奖者中有15位是计量经济学家,其中 10位是世界计量经济学会的会长。
计量经济学应运而生
计量经济学知识点汇总
计量经济学知识点汇总1. 计量经济学概念
- 定义和作用
- 理论基础和研究方法
2. 数据处理
- 数据收集和探索性分析
- 异常值处理和缺失值处理
- 数据转换和规范化
3. 回归分析
- 简单线性回归
- 多元线性回归
- 回归假设和诊断
4. 时间序列分析
- 平稳性和单位根检验
- 自相关和偏自相关
- ARIMA模型和Box-Jenkins方法
5. 面板数据分析
- 固定效应模型和随机效应模型
- hausman检验
- 动态面板数据模型
6. 内生性和工具变量
- 内生性问题及其检验
- 工具变量法
- 两阶段最小二乘法
7. 离散选择模型
- 二项Logit/Probit模型
- 多项Logit/Probit模型
- 计数数据模型
8. 模型评估和选择
- 模型适合度检验
- 信息准则
- 交叉验证和预测评估
9. 计量经济学软件应用
- R/Python/Stata/EViews等软件使用 - 数据导入和清洗
- 模型构建和结果解释
10. 实证研究案例分析
- 经典文献阅读和评析
- 实证研究设计和实施
- 结果分析和政策建议
以上是计量经济学的主要知识点汇总,每个知识点都包含了相关的理论基础、模型方法和实践应用,可根据具体需求进行深入学习和研究。
计量经济学重点
1. 计量经济学是以经济理论为前提,利用数学、数理统计方法与计算技术,根据实际观测资料来研究带有随机影响的经济数量关系和规律的一门学科。
经济理论、数据和统计理论这三者对于真正了解现代经济生活中的数量关系都是必要的,但本身并非是充分条件。
三者结合起来就是力量,这种结合便构成了计量经济学。
经济理论的作用是对经济现象进行分析和解释,描述在一定条件下经济变量之间的相互关系。
体现在计量经济学模型之中。
2. 三大要素的经济理论:经济理论对于计量经济学是建立计量经济模型的依据和出发点。
计量经济学对于经济理论而言是理论到实际的桥梁和检验工具。
观测数据:主要是指统计数据和各种调查数据。
是所考察的经济对象的客观反映和信息载体,是计量经济工作处理的主要现实素材。
经济数据是计量经济分析的材料。
经济数据是经济规律的信息载体。
数据类型有时间序列数据、截面数据、平行数据、虚拟变量数据。
统计理论:是指各种数理统计方法,包括参数的估计,假设检验等内容。
是计量经济的主要数学基础,很多计量经济学方法都是在数理统计的基础上发展起来的。
3. 计量经济模型的应用:结构分析 经济预测 政策评价 检验与发展经济理论4. 回归的含义:回归分析是研究关于一个叫做被解释变量的变量对另一个或多个叫做解释变量的依赖关系。
其用意在于通过后者(在重复抽样中)的已知或被设定值去估计和(或)预测前者的(总体)均值。
回归分析构成计量经济学的方法论基础,主要内容包括:根据样本观察值对经济计量模型参数进行估计,求得回归方程;对回归方程、参数估计值进行显著性检验;利用回归方程进行分析、评价及预测。
回归分析的用途:通过自变量的值来估计应变量的值。
对独立性进行假设检验——根据经济理论建立适当的假设。
通过自变量的值对应变量进行预测。
上述多个目标的综合。
5. 回归关系与确定性关系:回归关系(统计关系):研究的是非确定现象随机变量间的关系。
确定性关系(函数关系):研究的是确定现象非随机变量间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于计量经济学一、计量论文的两大要点是什么?二、如何判断计量论文的水平高低?三、做计量的“大杀器”有哪些?四、瞎倒腾计量的秘诀五、大规模发CSSCI的建议一、计量论文的两大要点是什么?1、计量模型的建立(就是那个方程,表达什么经济含义要知道);2、模型中的系数如何估计出来(关键在于估计方法的选择)。
第1个要点涉及你论文主题。
你一般要想用数据检验某种经济关系,根据这种经济关系来建立计量模型。
如果你不知道要检验什么经济关系,那我劝你就此打住。
你发不了经济研究了。
第2个要点。
千万种方法的出现,目的都是要把那个系数给估计出来。
不同估计方法的估计效果好坏,就是根据各种统计量来判断。
如果能选择一种最合适你数据的估计方法,那么这论文基本就成了。
二、如何判断计量论文的水平高低?掌握了上面两个要点,只是说你能写出一篇计量论文,并不是说能写出一篇高水平的论文。
水平的高低在于你处理这两个要点时水平的高低。
下面仔细讲解。
如果只是为了写计量论文,只需要“知其然”即可。
没有人会因为不会推导OLS估计量而对软件里面出来的结果不知所措。
这条途径,最快捷的走法是找一个懂的人,把结果里面的各种东西所表示的意思给你讲一遍,每个东西要注意什么。
基本就可以了。
在一般的CSSCI 上发表论文没有什么问题。
如果找不到人,就看STATA的手册,里面的例子会讲解每个指标参数统计量的含义。
这样慢一点,但效果很好,而且也能成为STATA专家。
STATA手册比高级计量教材看起来轻松多了,就是告诉你怎么操作软件,然后得到什么结果的。
计量论文中的估计问题,最关键的事情,不是能推导估计量,而是在STATA里面选择一个“合适”的方法估计出来。
然后解释结果的经济意义。
而计量水平的高低,不在于方法的复杂性,而在于方法的合适程度。
因此高水平的计量论文,不必要求作者掌握高深的计量推导,而在于“选择”的技巧。
每种计量方法,都有优劣。
所谓用人之长,容人之短。
水平高的人,能够选择以其之长,攻它之短。
同时又能隐藏计量方法内在的拙劣。
其实,计量论文的水平主要决定于论文的主题的重要性。
这个话题大家都很关心,就很重要,发表就很容易。
所以,你会发现国际顶级期刊上一些计量论文所用的方法很简单。
这些论文能发表,主要是他讨论的问题很重要(这涉及第一个要点),采用的方法即使有缺陷,也无伤大雅。
如果问题不是非常重要,只是有新意,但是估计方法比较合适,也能发一个中上等期刊。
如果问题属于鸡毛蒜皮之类,那就只能诉诸于超级复杂的计量方法,祈求审稿人看论文时,方法还没看完就已经累得半死,再也没有心情来思考你的问题的重要性,然后也能通过了。
三、做计量的“大杀器”有哪些?所谓的大杀器,不是指超级复杂的计量方法,而是指这种东西一旦用起来,一般不会有人来攻击。
所谓的一招毙命,毙了审稿人的命。
计量方法很多,可以说满天飞。
但是,真正有价值的方法,被人公认为具有一定可信度的方法(就是所谓的“大杀器”),只有5种。
并不是你所看到的所有的方法都有人信。
这点大部分初学计量的人都不会意识到。
看到书上介绍一个方法,就认为这是一个好方法。
其实不是。
书上很多方法的介绍,仅仅是出于理论推演的需要,并不是实际研究中都能用的。
你如果查阅一下国际上关于经验研究类的论文,会发现大部分论文所用方法无非是:1、简单回归;2、工具变量回归;3、面板固定效应回归;4、差分再差分回归(difference in differnece);5、狂忒二回归(Quantile)。
大杀器就这几种,破绽最少,公认度最高,使用最广泛。
真是所谓的老少皆宜、童叟无欺。
其他的方法都不会更好,只会招致更多的破绽。
你在STATA里面还可以看到无数的其他方法,例如GMM、多层次分析法等。
这个GMM实在是一个没有用的忽悠,他还分为diffGMM和系统GMM。
其关键思想是当你找不到工具变量时,用滞后项来做工具变量。
结果你会发现令人崩溃的情况:不同滞后变量的阶数,严重影响你的结果,更令人崩溃的是,一些判断估计结果优劣的指标会失灵。
这完全是胡搞!这GMM的唯一价值在于理论价值,而不在于实践价值。
你如果要玩计量,你就可以在GMM的基础上进行修改(玩计量的方法后面讲)。
有人会问:简单回归会不会太简单?我只能说你真逗。
STATA里面那么多选项,你加就是了。
什么异方差、什么序列相关,一大堆尽管加。
如果你实在无法确定是否有异方差和序列相关,那就把选项都加上。
反正如果没有异方差,结果是一样的。
有异方差,软件就自动给你纠正了。
这不很爽嘛。
如果样本太少,你还能加一个选项:bootstrap 来估计方差。
你看爽不爽!bootstrap就是自己提靴子的方法。
自己把脚抬起来扛在肩上走路,就这么牛。
这个bootstrap就是用30个样本能做到30万样本那样的效果。
有吸引力吧。
你说这个简单回归简单还是不简单!很简单,就是加选项。
可是,要理论推导,就不简单了。
我估计国内能推导的没几个人。
经济研究上论文作者,最多只有5%的人能推导,而且大部分是海龟。
所以,你不需要会推导,也能把计量做的天花乱坠。
工具变量(IV)回归,这不用说了,有内生性变量,就用这个吧。
一旦有内生性变量,你的估计就有问题了。
国际审稿人会拼了老命整死你。
国内审稿人大部分不懂这东西(除了经济研究这类刊物的部分审稿人以外)。
工具变量的选择只要掌握一个关键点就行:找一个和内生性变量有数据相关的,但是没有因果关系的东西,这就是你的IV了。
例如贸易量如果是内生的,那么你找地理距离作为IV。
北京到纽约的距离,那是自然形成的,没人认为是由贸易量导致的,这就是没有因果关系。
但是你会发现两者在数据上具有相关性。
这就很好。
这种数据相关性越强,IV的效果就越好。
就这么一段话,IV变量回归就讲完了。
在STATA里面,你直接把原回归方程写出来,然后把IV 填进去就可以了,回车就得到你的结果。
关键是你不一定能找到这样的工具变量。
你能找到,这个工具也不大能用。
不过要注意,IV不灵不代表你不能发表。
经济研究上还不是发了一大堆这样的论文。
所以,你只要找到一个IV,效果不是差的太离谱,一般都能发。
当然不能发国际一流了。
国内是没问题。
国内审稿人没人会重复你的结果看看是否有问题,因此你说这个IV效果已经是最好的了,世界上还找不到第二个比这个更好的了,审稿人也没的话说。
就发表呗!如果审稿人说,另外一个IV效果可能要比你的好。
那你就采纳他的建议用他的IV(尽管他的建议会更差),然后感谢他一下。
第二次审稿,难道他还会说自己上次是胡说八道???所以就发表了,哈哈哈哈!有人又会问:面板不是还有个随机效应嘛?我只能说,你是看过书的人,所以才知道随机效应。
其实随机效应压根就没什么用处。
有人信誓旦旦说可以用hausman来检验。
我只能告诉你,这检验压根就不可靠。
可靠也是理论上可靠,实践上根本没人信。
当然中国人都信,不信的都是美国欧洲这样的计量经济学家。
你难道不知道hausman 还会出现负值!做过这个检验的人都很头疼这个负值,不知道该怎么做。
你如果看看一些高手的建议,或者一些书籍,你就会发现,最权威的建议就是:当你无法判断该用固定效应还是随机效应的时候,选择固定效应更可靠。
随机效应不是任何时候都可以做,但是固定效应是任何时候都可以做。
所以你知道该怎么做了吧。
差分再差分,是固定效应的一个变种,在估计某个事件发生带来的效应时最有用的方法,特简单,看看STATA手册就明白了。
狂忒二回归(Quantile)是一般均值回归的一个推广。
看名字挺吓人,其实很简单。
如果你知道OLS是一个均值回归,那类推就可以知道1/2分位数回归。
你知道的,正态分布下,均值就是1/2分位数的地方。
均值回归就是1/2分位数回归。
知道了1/2回归,你自然知道1/4和3/4分位数回归了。
如果还不懂,翻开伍德里奇的书,讲到简单OLS回归时,我记得有一个图,上面对不同位置的x位置画了不同的正态分布密度函数(第2版是figure 2.1,pp26,见下面)。
如果是异方差问题,那么不同x位置的正太分布图的方差就有变化。
这个图上注明了预测值是E(Y|X),就是Y的条件期望,就是那根回归预测直线啦。
在正态分布下就是Y的密度函数的中心点的连线,就是1/2分位数点的连线。
如果那条预测线画在密度函数的1/4和3/4分位数点上,那么预测结果就不是Y的均值(在非正态下可能是均值),而是1/4和3/4分位数点的预测值。
这下明白狂忒二回归了吧。
分位数回归就是看看那根预测直线在不同的分位数点上有什么结果,得到什么样的回归系数。
通常的OLS预测直线,仅仅是一个特例而已。
进一步推广,可以推广到任意分位数点回归的情况。
道理一样。
伍德里奇《计量经济学导论——现代观点》的图2.1(解释Quantile 回归的意义)不过要注意,大杀器要用对。
有内生性变量,你就不要用简单回归了,你得用IV回归。
这几种大杀器的精髓一领会,基本上其他东西就难不倒你了。
就是STATA里面的选项多选几个或者少选几个的问题。
你所要做的就是在STATA里面打钩、设置参数。
对付一般的CSSCI 论文,已经是绰绰有余了。
如果你提了一个大家很感兴趣的问题,就是一个重要问题,那么用用IV,或者固定面板,发个经济研究基本没问题。
如果你的问题不是很重要,还想发经济研究,那你就要简单问题复杂化。
上面大杀器能解决的问题,你就用更不可靠的方法但更复杂的方法去解决吧。
大家用开源软件就会知道,一般开源软件会有一个稳定版本,功能比较少,效果很稳定,能满足你日常几乎所有的需求。
还有一个开发版本,专门给那些吃饱了撑着没事干的人倒腾的版本,因为是开发版本,所以很不稳定,经常会出错、崩溃。
不过能倒腾的人不怕崩溃,崩溃了能自己修。
你要是想倒腾,接着往下看吧。
四、瞎倒腾计量的秘诀瞎倒腾有两种水平,第一种是低水平,第二种,那你也猜到了,就是高水平瞎倒腾。
低水平瞎倒腾,就是大杀器不够过瘾,要用摄人魂魄、但容易走火入魔的计量方法达到发表经济研究的目的。
例如,没事弄弄协整,搞一把单位根检验之类的。
听起来头头是道,其实都是杞人忧天。
你想想,要是有协整,时间序列你根本不用着急。
要是没有协整,你着急也没用。
那你还协整个啥!面板来说,你有协整,也没有一个较好的估计方法,期刊上不是还有很多人在用固定效应OLS,或者是加点滞后滞前项变成一个固定效应动态OLS来估计非平稳面板嘛。
面板到现在为止也没有一个公认的可靠的协整向量估计方法,否则STATA这样的软件早就提供按钮了(STATA和EVIEW现在只有协整的检验方法,不是协整向量的估计)。
既然没有公认可靠的方法,你急啥!其实,协整这玩意,最大的价值也在于理论价值,实践价值几乎没有。
当年格兰杰发表协整思想,说如果变量不平稳,在没有协整关系的情况下,前人回归都不可靠。