2018北京中考数学一模——7、24题数据分析、统计、概率专题
【中考汇编】北京市各区2018届中考一模数学试卷精选汇编88页含答案
北京市各区2018届中考一模数学试卷精选汇编目录北京市各区2018届中考一模数学试卷精选汇编:解不等式组(含答案)北京市各区2018届中考一模数学试卷精选汇编:计算题(含答案)北京市各区2018届中考一模数学试卷精选汇编:解四边形(含答案)北京市各区2018届中考一模数学试卷精选汇编:几何证明(含答案)北京市各区2018届中考一模数学试卷精选汇编:几何综合(含答案)北京市各区2018届中考一模数学试卷精选汇编:函数计算及运用(含答案)北京市各区2018届中考一模数学试卷精选汇编:二次函数综合(含答案)北京市各区2018届中考一模数学试卷精选汇编:统计(含答案)解不等式组专题东城区18. 解不等式组4+6,23x x x x ⎧⎪+⎨⎪⎩>≥, 并写出它的所有整数解. 18. 解:4+6,23x x x x ⎧⎪⎨+⎪⎩①②>≥, 由①得,-x >2,------------------1分由②得,1x ≤, ------------------2分∴不等式组的解集为-1x 2<≤.所有整数解为-1, 0, 1. ---------------------5分西城区18.解不等式组3(2)4112x x x ++⎧⎪⎨-<⎪⎩≥,并求该不等式组的非负整数解.【解析】解①得,364x x ++≥,22x -≥,1x -≥,解②得,12x -<,3x <,∴原不等式解集为13x -<≤,∴原不等式的非负整数解为0,,2.海淀区18.解不等式组:()5331,263.2x x x x +>-⎧⎪⎨-<-⎪⎩ 18.解:() 5331, 263. 2x x x x +>-⎧⎪⎨-<-⎪⎩①② 解不等式①,得3x >-. …2分解不等式②,得2x <. ………4分所以 原不等式组的解集为32x -<<. ………5分18.解不等式组:341,51 2.2x x x x ≥-⎧⎪⎨->-⎪⎩ 18.解:解不等式①,得1x ≤, ……………………2分解不等式②,得1x >-. ……………………4分∴原不等式组的解集是11x -<≤.………5分石景山区18.解不等式组:3(1)45622x x x x +>++<⎧⎪⎨⎪⎩,. 18.解:原不等式组为3(1)45,62.2x x x x +>++<⎧⎪⎨⎪⎩ 解不等式①,得2x <-. ………………2分 解不等式②,得2x <. ………………4分 ∴原不等式组的解集为<2x -. ………………5分 朝阳区18. 解不等式组 :⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x18. 解:原不等式组为⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x解不等式①,得 5<x . ………………………………………2分解不等式②,得 21>x .………………………………………………4分 ∴ 原不等式组的解集为521<<x . …………………………………5分① ②18.解不等式组:⎩⎪⎨⎪⎧x -32<1,2(x +1)≥x -1.18.解:由(1)得,x-3<2X<5 ……………………….2′(2) 得 2x+2≥x-1x ≥-3 ……………………….4′所以不等式组的解是-3≤x <5……………………….5′ 门头沟区18. 解不等式组:1031+1.x x x ⎧-<⎪⎨⎪-⎩,≤3()18.(本小题满分5分)解不等式①得,x <3, …………………………………………2分解不等式②得,x ≥﹣2, ………………………………4分所以,不等式组的解集是﹣2≤x <3. ………………5分大兴区17.解不等式组:⎪⎩⎪⎨⎧>++≤+x x x x 2274)3(2 并写出它的所有整数解. 17. 解:⎪⎩⎪⎨⎧>++≤+x x x x 2274)3(2 由①,得21-≥x . ………………………………………………………1分 由②,得2<x . …………………………………………………………2分 ∴原不等式组的解集为221<≤-x . ………………………………………4分 它的所有整数解为0,1. …………………………………………………5分① ②18.解不等式组3(1)45,513x x x x -≥-⎧⎪-⎨->⎪⎩,并写出它的所有整数解.... 18.解:3(1)455 3 1x x x x -≥-⎧⎪⎨-->⎪⎩①② 解不等式①,得 x ≤2. ·········································································1 解不等式②,得 x >-1. ·······································································3 ∴原不等式组的解集为12x -<≤. ························································4 ∴适合原不等式组的整数解为0,1,2. ·······················································5 怀柔区18.解不等式组:()⎪⎩⎪⎨⎧<+-<-.1213,213x x x x 18.解:由①得:3x < . ………………………………………………………………………2分由②得:9x >- …………………………………………………………………………4分 原不等式组的解集为93x -<< ………………………………………………………5分 延庆区18.解不等式组:523(2)53.2x x x x -<+⎧⎪⎨+≤⎪⎩, 并写出它的所有整数解. 18.解:由①得,x <4. ……1分由②得,x ≥1 . ……3分∴ 原不等式组的解集为1≤x <4. ……4分∴ 原不等式组的所有整数解为1,2,3. ……5分18.解不等式组:()7+1,2315 1.x x x x +⎧≥-⎪⎨⎪+<-⎩18.解不等式组:()7+12315x x x x +⎧≥-⎪⎨⎪+<-⎩解:解不等式①得 x ≥3- ……………………………………………………………2分 解不等式②得 2x > ………………………………………………………………4分 不等式组的解集是 2x > …………………………………………………………5分计算题专题东城区17.计算:()2012sin 60-π-2++1-3-⎛⎫︒ ⎪⎝⎭. =217.解:原式分分西城区17114sin 3015-⎛⎫+︒- ⎪⎝⎭.【解析】原式1541)52122=+⨯-=+=. 海淀区17.计算:11()3tan 302|3-︒+. 17.解:原式=3323-⨯+- ………………4分=5- ………………5分丰台区1702cos 45(3π)|1-︒+-+-.1702cos 45(3π)|1︒+-+.=211++ ……………………4分= ……………………5分石景山区17.计算:012sin 455(3--++° 17.解:原式=2512⨯-+- ………………4分4=-- ………………5分朝阳区17. 计算:2sin30°+ .8)4()31(01+-+-π17. 解:原式 2213212+++⨯= …………………………………………………4分 225+=. ……………………………………………………………5分燕山区17.计算:4cos30°-12 + 20180 + ||1-317.4cos30°-12 + 20180 + ||1-3 =13132234-++-⨯=3 门头沟区17.计算:()201254sin 603π-⎛⎫--++-︒ ⎪⎝⎭.平谷区17.计算:(1013132sin 603-⎛⎫-+-︒ ⎪⎝⎭π.17.解:(1013132sin 603-⎛⎫-+--︒ ⎪⎝⎭π=331312-- ···········································································4 =1 ····································································································5 怀柔区17.计算:102130tan 3)3(31-︒⎪⎭⎫ ⎝⎛-+---π. 17.解:原式331132=--+ …………………………………………………4分.…………………………………………………………………5分延庆区17.计算:0113tan 301(2)()3π-︒+---.17.原式=3⨯33+3-1+1-3 ……4分=23-3 ……5分顺义区17.计算:()01312sin 452π--︒+-.17.解:()01312sin 452π--︒+-112132=-⨯+ (4)分13= ……………………………………………………………………………… 5分4=-解四边形专题东城区21.如图,已知四边形ABCD 是平行四边形,延长BA 至点E ,使AE = AB ,连接DE ,AC .(1)求证:四边形ACDE 为平行四边形;(2)连接CE 交AD 于点O . 若AC=AB =3,1cos 3B =,求线段CE 的长.21.(1) 证明:∵平行四边形ABCD ,∴=AB DC ,AB DC ∥.∵AB =AE ,∴=AE DC ,AE DC ∥.∴四边形ACDE 为平行四边形. -------------------2分(2) ∵=AB AC ,∴=AE AC .∴平行四边形ACDE 为菱形.∴AD ⊥CE .∵AD BC ∥,∴BC ⊥CE.在Rt △EBC 中,BE =6, 1cos 3BC B BE ==, ∴=2BC . 根据勾股定理,求得=42BC 分 西城区21.如图,在ABD △中,ABD ADB ∠=∠,分别以点B ,D 为圆心,AB 长为半径在BD 的右侧作弧,两弧交于点C ,分别连接BC ,DC ,AC ,记AC 与BD 的交点为O . (1)补全图形,求AOB ∠的度数并说明理由;(2)若5AB =,3cos 5ABD ∠=,求BD 的长.BDA【解析】(1)补全的图形如图所示.90AOB ∠=︒. 证明:由题意可知BC AB =,DC AB =, ∵在ABD △中,ABD ADB ∠=∠, ∴AB AD =,∴BC DC AD AB ===, ∴四边形ABCD 为菱形, ∴AC BD ⊥, ∴90AOB ∠=︒.(2)∵四边形ABCD 为菱形, ∴OB OD =.在Rt ABO △中,90AOB ∠=︒,5AB =,3cos 5ABD ∠=,∴cos 3OB AB ABD =⋅∠=, ∴26BD OB ==.ABCDO海淀区21.如图,□ABCD 的对角线,AC BD 相交于点O ,且AE ∥BD ,BE ∥AC ,OE = CD . (1)求证:四边形ABCD 是菱形;(2)若AD = 2,则当四边形ABCD 的形状是__________时,四边形AOBE 的面积取得最大值是_______.C B EOAD21.(1)证明:∵AE BD ∥,BE AC ∥,∴四边形AEBO 是平行四边形. ………………1分 ∵四边形ABCD 是平行四边形,∴DC AB =. ∵OE CD =, ∴OE AB =.∴平行四边形AEBO 是矩形. ………………2分 ∴90BOA ∠=︒. ∴AC BD ⊥.∴平行四边形ABCD 是菱形. ………………3分 (2) 正方形; ………………4分2. ………………5分丰台区21.已知:如图,菱形ABCD ,分别延长AB ,CB 到点F ,E ,使得BF = BA ,BE = BC ,连接AE ,EF ,FC ,CA .(1)求证:四边形AEFC 为矩形;(2)连接DE 交AB 于点O ,如果DE ⊥AB ,AB = 4,求DE 的长.ABCEDF21.(1)证明:∵BF =BA ,BE =BC ,∴四边形AEFC 为平行四边形. ………………………1分 ∵四边形ABCD 为菱形, ∴BA =BC .∴BE =BF .∴BA + BF = BC + BE ,即AF =EC .∴四边形AEFC 为矩形. ………………………2分(2)解:连接DB .由(1)知,AD ∥EB ,且AD =EB . ∴四边形AEBD 为平行四边形 ∵DE ⊥AB ,∴四边形AEBD 为菱形.∴AE =EB ,AB =2AG ,ED =2EG . ………………………4分 ∵矩形ABCD 中,EB =AB ,AB=4, ∴AG =2,AE =4.∴Rt △AEG 中,EG=23.∴ED=43. ………………………5分 (其他证法相应给分)石景山区21.如图,在四边形ABCD 中,90A BCD ∠=∠=°,210BC CD ==,CE AD ⊥于点E . (1)求证:AE CE =;(2)若tan 3D =,求AB 的长.BA CE D21.(1)证明:(法一)过点B 作BH ⊥CE 于H ,如图1. ∵CE ⊥AD ,∴∠BHC =∠CED =90°,190D ∠+∠=︒. ∵∠BCD =90°, ∴1290∠+∠=︒, ∴2D ∠=∠. 又BC =CD∴BHC △≌CED △. ∴BH CE =.∵BH ⊥CE ,CE ⊥AD ,∠A =90°, ∴四边形ABHE 是矩形, ∴AE BH =.∴AE CE =. ………………3分 (法二)过点C 作CH ⊥AB 交AB 的延长线于H .图略,证明略. (2)解: ∵四边形ABHE 是矩形, ∴AB HE =.∵在Rt CED △中,tan 3CE D DE==,设,3DE x CE x ==,∴10210CD x ==. ∴2x =.∴2DE =,6CE =. ………………4分 ∵2CH DE ==.∴624AB HE ==-=. ………………5分朝阳区21. 如图,在△ABC 中,D 是AB 边上任意一点,E 是BC 边中点,过点C作AB 的平行线,交DE 的延长线于点F ,连接BF ,CD . (1)求证:四边形CDBF 是平行四边形; (2)若∠FDB =30°,∠ABC =45°,BC =,求DF 的长.21.(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD . ∵E 是BC 中点, ∴CE =BE .∵∠CEF =∠BED , ∴△CEF ≌△BED . ∴CF =BD .∴四边形CDBF 是平行四边形. ………………………2分(2)解:如图,作EM ⊥DB 于点M ,∵四边形CDBF 是平行四边形,BC =24,∴2221==BC BE ,DE DF 2=. 在Rt △EMB 中,2sin =∠⋅=ABC BE EM . ……………………3分在Rt △EMD 中,42==EM DE . …………………4分∴DF =8. ………………………………………………………5分燕山区23. 如图,在△ABC 错误!未找到引用源。
2018年北京市海淀区中考一模数学试卷含答案解析 精品
2018届北京市海淀区初三一模数学试卷一、单选题(共10小题)1.“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2018年3月3日在北京胜利召开.截止到2018年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为()A.96.5×107B.9.65×107C.9.65×108 D.0.965×109考点:科学记数法和近似数、有效数字答案:B试题解析:科学记数法是一个数表示成a×10的n次幂的形式,其中1≤|a|<10,n为整数,所以根据题意得96 500 000=9.65×107.故选B.2.如图是某个几何体的三视图,该几何体是()A.长方体B.正方体C.圆柱D.三棱柱考点:立体图形的展开与折叠答案:D试题解析:由图可得此为三棱锥,故选D。
3.一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为()A.B.C.D.考点:概率及计算答案:C试题解析:共有15个球,3个红球,则摸出红球的概率为,故选C。
4.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.考点:中心对称与中心对称图形轴对称与轴对称图形答案:C试题解析:A既不是轴对称图形,也不是中心对称图形;B既是轴对称图形,也是中心对称图形;C 是轴对称图形但不是中心对称图形;D部是轴对称图形但是中心对称图形。
故选C。
5.如图,在四边形ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为()A.5B.4C.3D.2考点:平行四边形的性质答案:D试题解析:由题意可得,AB=AE=3,则ED=2,故选D。
6.如图,等腰直角三角板的顶点A,C分别在直线,上.若∥,,则的度数为()A.B.C.D.考点:平行线的判定及性质答案:C试题解析:根据平行线的性质可得:∠1+∠BAC+∠ACB+∠2=180,则∠2=10°。
2018北京各区初三数学一模试题分类汇编——统计分析(读图表信息、选择题)(无答案)
统计分析(读图表信息、选择题)1.(18平谷一模8)中小学时期是学生身心变化最为明显的时期,这个时期孩子们的身高变化呈现一定的趋势,7~15岁期间生子们会经历一个身高发育较迅速的阶段,我们把这个年龄阶段叫做生长速度峰值段,小明通过上网查阅《2016年某市儿童体格发育调查表》,了解某市男女生7~15岁身高平均值记录情况,并绘制了如下统计图,并得出以下结论:①10岁之前,同龄的女生的平均身高一般会略高于男生的平均身高;②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生; ③7~15岁期间,男生的平均身高始终高于女生的平均身高;④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大. 以上结论正确的是( )A .①③B .②③C .②④D .③④2.(18延庆一模7)下面的统计图反映了我国2013年到2017年国内生产总值情况.(以上数据摘自国家统计局《中华人民共和国2017年国民经济和社会发展统计公报》)根据统计图提供的信息,下列推断不合理的是( )A .与2016年相比,2017年我国国内生产总值有所增长;B .2013-2016年,我国国内生产总值的增长率逐年降低;C .2013-2017年,我国国内生产总值的平均增长率约为6.7% ;D .2016-2017年比2014-2015年我国国内生产总值增长的多.20000040000060000010000000520%亿元2013-2017年国内生产总值及其增长速度3.(18房山一模6)某班体育委员对本班所有学生一周锻炼时间(单位:小时)进行了统计,绘制了统计图,如图所示,根据统计图提供的信息,下列推断正确的是( )A.该班学生一周锻炼时间的中位数是11B. 该班学生共有44人C.该班学生一周锻炼时间的众数是10D.该班学生一周锻炼12小时的有9人4.(18西城一模7)空气质量指数(简称为AQI )是定量描述空气质量状况的指数,它的类别如下表所示.某同学查阅资料,制作了近五年月份北京市AQI 各类别天数的统计图如下图所示.根据以上信息,下列推断不合理的是A .AQI 类别为“优”的天数最多的是2018年月B .AQI 数据在0~100之间的天数最少的是2014年月C .这五年的月里,6个AQI 类别中,类别“优”的天数波动最大D .2018年月的AQI 数据的月均值会达到“中度污染”类别5.(18朝阳一模7)“享受光影文化,感受城市魅力”,2018年4月15-22日第八届北京国际电影节顺利举办.下面的统计图反映了北京国际电影节﹒电影市场的有关情况...A.两届相比较,所占比例最稳定的是动作冒险类B.两届相比较,所占比例增长最多的是剧情类C.第八届悬疑惊悚犯罪类申报数量比第六届2倍还多D.在第六届中,所占比例居前三位的类型是悬疑惊悚犯罪类、剧情类和爱情类优良轻度污染中度污染重度污染严重污染1月1月1月1月1月6.(18顺义一模8)某超市的某种商品一周内每天的进价与售价信息和实际每天的销售量情况如图表所示,则下列推断不合理的是( )进价与售价折线图(单位:元/斤)实际销售量表(单位:斤)A .该商品周一的利润最小B .该商品周日的利润最大C .由一周中的该商品每天售价组成的这组数据的众数是4(元/斤)D .由一周中的该商品每天进价组成的这组数据的中位数是(3元/斤)7.(18大兴一模6)自2008年实施国家知识产权战略以来,我国具有独立知识产权的发明专利日益增多.下图显示了2010-2013年我国发明专利申请量占世界发明专利申请量的比重.根据统计图提供的信息,下列说法不合理...的是() A .统计图显示了2010-2013年我国发明专利申请量占世界发明专利申请量的比重的情况 B .我国发明专利申请量占世界发明专利申请量的比重,由2010年的19.7%上升至2013年的32.1% C .2011年我国发明专利申请量占世界发明专利申请量的比重是28% D .2010-2013年我国发明专利申请量占世界发明专利申请量的比重逐年增长8.(18丰台一模7)太阳能是来自太阳的辐射能量.对于地球上的人类来说,太阳能是对环境无任何污染的可再生能源,因此许多国家都在大力发展太阳能.下图是2013-2017年我国光伏发电装机容量统计图.根据统计图提供的信息,判断下列说法不合理...的是( ) A.截至2017年底,我国光伏发电累计装机容量为13 078万千瓦B.2013-2017年,我国光伏发电新增装机容量逐年增加C.2013-2017年,我国光伏发电新增装机容量的平均值约为2 500万千瓦D.2017年我国光伏发电新增装机容量大约占当年累计装机容量的40%9.(18海淀一模7)在线教育使学生足不出户也能连接全球优秀的教育资源. 下面的统计图反映了我国在线教育用户规模的变化情况.(以上数据摘自《2017年中国在线少儿英语教育白皮书》)根据统计图提供的信息,下列推断一定不合理...的是 A .2015年12月至2017年6月,我国在线教育用户规模逐渐上升B .2015年12月至2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续上升C .2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值超过7000万D .2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70%2015-2017年中国在线教育用户规模统计图6月12月6月12月10.(18怀柔一模6)下图是某品牌毛衣和衬衫2016年9月至2017年4月在怀柔京北大世界的销量统计图.根据统计图提供的信息,下列推断不合理的是( )A. 9月毛衣销量最低,10月衬衫销量最高B.与10月相比,11月时,毛衣的销量有所增长,衬衫的销量有所下降C.9月—11月毛衣和衬衫的销量逐月增长D.2月毛衣的销售量是衬衫销售量的7倍左右11. (18门头沟一模7)下面的统计图反映了我市2011-2016年气温变化情况,下列说法不合理的是( )A .2011-2014年最高温度呈上升趋势;B .2014年出现了这6年的最高温度;C .2011-2015年的温差成下降趋势;D .2016年的温差最大.12.(18通州一模7)下面的统计图反映了我国近十年间核电发电量的增长情况.根据统计图提供的信息,下列推断合理..的是( ) A.2011年我国的核电发电量占总发电量的比值约为1.5% B.2006年我国的总发电量约为25 000亿千瓦时C.2013年我国的核电发电量占总发电量的比值是2006年的2倍D.我国的核电发电量从2008年开始突破1000亿千瓦时——毛衣的销量 ……衬衫的销量温度50北京市2011-2016年气温变化情况最高气温最低气温。
最新-北京市朝阳区2018年初中毕业考试(一模)数学试卷
北京市朝阳区2018年初中毕业考试数学试卷 2018.4第Ⅰ卷(共30分)一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个是符合题意的.请用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.1.在下列各数中,绝对值最大的数是A .1B .-2C .21D .13-2.2018年10月16日,新一期全球超级计算机500强榜单在美国公布,中国“天河二号”超级计算机以每秒338600000亿次浮点运算速度连续第六度称雄.将338600000用科学记数法表示为A .3.386×107B .0.3386×109C .3.386×108D .0.3386×1083. 右图是某个几何体的三视图,则这个几何体是A .圆柱B .圆锥C .三棱柱D .三棱锥4.阿仁是一名非常爱读书的学生.他制作了五张材质和外观完全一样的书签,每张书签上写有一本书的名称和作者,分别是:《海底两万里》(作者:凡尔纳,法国)、《三国演义》(作者:罗贯中)、《西游记》(作者:吴承恩)、《骆驼祥子》(作者:老舍)、《钢铁是怎样炼成的》(作者:尼·奥斯特洛夫斯基,前苏联),从这五张书签中随机抽取一张,则抽到的书签上的作者是中国人的概率是A .15B .25C .35D .455. 下列运算正确的是A .236x x x =B .632x x x ÷=C .32422x x x -=D .()236xx =6.一次函数y kx b =+的图象如右图所示, 则k,b 应满足的条件是A .0,0k b >>B .0,0k b ><C .0,0k b <>D .0,0k b <<7.如图,将一块含有45°的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,则∠2的度数是A .15°B .20°C .25°D .30°8.如图,⊙O 的半径为10,AB 是弦,OC ⊥AB 于点C , 若AB =12,则OC 的长为A .2B .C .6D .89.某闭合电路中,电源电压为定值,电流I(A)与电阻R(Ω)成反比例, 右图表示的是该电路中电流I 与电阻R 之间函数关系的图象,则 电流I 关于电阻R 的函数关系式为 A .6I R =B .6I R =-C .3I R =D .2I R=10.如图,把正方形ABCD 绕它的中心O 顺时针旋转,得到正方形A ’B ’C ’D ’,旋转角大于0°小于90°.△A ’EF 的面积为S ,线段AE 的长度为x ,那么S 关于x 的函数的图象可能是机读答题卡A B C D第13题图 第14题图 第Ⅱ卷 (共70分)二、填空题 (共6道小题,每小题3分,共18分) 11. 分解因式:22ax ay -=___________.12.某校在进行―阳光体育活动‖中,统计了7位原来偏胖的学生的情况,他们的体重分别降低了5,9,3,10,6,8,5(单位:kg ),则这组数据的中位数是__________.13. 如图,若在象棋棋盘上建立直角坐标系,使―帥‖位于点(-3,-2),“炮”位于点(-2.0),则―兵‖位于的点的坐标为 . 14.如图,“吃豆小人”是一个经典的游戏形象,它的形状是一个扇形,开口∠1=60°,半径为错误!未找到引用源。
2018北京中考数学一模——7、24题数据分析、统计、概率专题
2018北京中考数学一模——数据分析、统计、概率专题1.概率【2018东城一模】7.第24届冬奥会将于2022年在北京和张家口举行.冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有5张形状、大小、质地均相同的卡片,正面分别印有跳台滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的项目图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪图案的概率是A.15B.25C.12D.35【2018西城一模】8.将,两位篮球运动员在一段时间内的投篮情况记录如下:下面有三个推断:①投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767.②随着投篮次数的增加,A运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A运动员投中的概率是0.750.③投篮达到200次时,B运动员投中次数一定为160次.其中合理的是().A.①B.②C.①③D.②③【2018海淀一模】9.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是.【2018朝阳一模】15. 下列随机事件的概率:①投掷一枚均匀的骰子,朝上一面为偶数的概率;②同时抛掷两枚质地均匀的硬币,两枚硬币全部正面朝上的概率;③抛一枚图钉,“钉尖向下”的概率;④某作物的种子在一定条件下的发芽率.既可以用列举法求得又可以用频率估计获得的是(只填写序号).【2018丰台一模】15.“明天的降水概率为80%”的含义有以下四种不同的解释:① 明天80%的地区会下雨;② 80%的人认为明天会下雨;③ 明天下雨的可能性比较大;④ 在100次类似于明天的天气条件下,历史纪录告诉我们,大约有80天会下雨.你认为其中合理的解释是.(写出序号即可)【2018石景山一模】8.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.下图是对某球员罚球训练时命中情况的统计:下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.809,所以“罚球命中”的概率是0.809.其中合理的是A.①B.②C.①③D.②③【2018大兴一模】8. 某水果超市为了吸引顾客来店购物,设立了一个如图所示的可以自由转动的转盘,开展有奖购物活动. 顾客购买商品满200元就能获得一次转动转盘的机会, 当转盘停止时, 指针落在“一袋苹果”的区域就可以获得“一袋苹果”的奖品;指针落在“一盒樱桃”的区域就可以获得“一盒樱桃”的奖品. 下表是该活动的一组统计数据:下列说法不正确...的是A. 当n很大时,估计指针落在“一袋苹果”区域的频率大约是0.70B. 假如你去转动转盘一次, 获得“一袋苹果”的概率大约是0.70C. 如果转动转盘2 000次, 指针落在“一盒樱桃”区域的次数大约有600次D. 转动转盘10次,一定有3次获得“一盒樱桃”2018北京中考数学一模——数据分析、统计、概率专题【2018顺义一模】7.在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是A. 随着抛掷次数的增加,正面朝上的频率越来越小B. 当抛掷的次数很大时,正面朝上的次数一定占总抛掷次数的1 2C. 不同次数的试验,正面朝上的频率可能会不相同D. 连续抛掷11次硬币都是正面朝上,第12次抛掷出现正面朝上的概率小于1 2【2018怀柔一模】8.一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如下表:下面有三个推断:①投掷1000次时,“兵”字面朝上的次数是550,所以“兵”字面朝上的概率是0.55②随着实验次数的增加,“兵”字面朝上的频率总在0.55附近,显示出一定的稳定性,可以估计“兵”字面朝上的概率是0.55③当实验次数为200次时,“兵”字面朝上的频率一定是0.55其中合理的是()A.①B. ②C. ①②D. ①③【2018平谷一模】10.林业部门要考察某种幼树在一定条件下的移植成活率,下图是这种幼树在移植过程中幼树成活率的统计图:估计该种幼树在此条件下移植成活的概率为(结果精确到0.01).【2018延庆一模】16.某农科所在相同条件下做玉米种子发芽实验,结果如下:某位顾客购进这种玉米种子10千克,那么大约有____千克种子能发芽.%2018北京中考数学一模——数据分析、统计、概率专题2.数据分析【2018东城一模】15. 举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中一项三次挑战失败,则该项成绩为0. 甲、乙是同一重量级别的举重选手,他们近三年六次重要比赛的成绩如下(单位:公斤):如果你是教练,要选派一名选手参加国际比赛,那么你会选派____________(填“甲”或“乙”),理由是________________________________________________.【2018西城一模】7.空气质量指数(简称为AQI )是定量描述空气质量状况的指数,它的类别如下表所示.某同学查阅资料,制作了近五年月份北京市各类别天数的统计图如下图所示.根据以上信息,下列推断不合理的是A .AQI 类别为“优”的天数最多的是2018年1月B .AQI 数据在0~100之间的天数最少的是2014年1月C .这五年的1月里,6个AQI 类别中,类别“优”的天数波动最大D .2018年1月的AQI 数据的月均值会达到“中度污染”类别468优良轻度污染中度污染重度污染严重污染1月1月1月1月1月【2018海淀一模】7.在线教育使学生足不出户也能连接全球优秀的教育资源. 下面的统计图反映了我国在线教育用户规模的变化情况.(以上数据摘自《2017年中国在线少儿英语教育白皮书》) 根据统计图提供的信息,下列推断一定不合理...的是 A .2015年12月至2017年6月,我国在线教育用户规模逐渐上升B .2015年12月至2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续上升C .2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值超过7000万D .2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70%【2018朝阳一模】7.“享受光影文化,感受城市魅力”,2018年4月15-22日第八届北京国际电影节顺利举办.下面的统计图反映了北京国际电影节﹒电影市场的有关情况.第六届和第八届北京国际电影节﹒电影市场“项目创投”申报类型统计表 根据统计图提供的信息,下列推断合理..的是 (A )两届相比较,所占比例最稳定的是动作冒险(含战争)类 (B )两届相比较,所占比例增长最多的是剧情类(C )第八届悬疑惊悚犯罪类申报数量比第六届2倍还多(D )在第六届中,所占比例居前三位的类型是悬疑惊悚犯罪类、剧情类和爱情类2015-2017年中国在线教育用户规模统计图6月12月6月12月2018北京中考数学一模——数据分析、统计、概率专题【2018丰台一模】7.太阳能是来自太阳的辐射能量.对于地球上的人类来说,太阳能是对环境无任何污染的可再生能源,因此许多国家都在大力发展太阳能.下图是2013-2017年我国光伏发电装机容量统计图.根据统计图提供的信息,判断下列说法不合理...的是(A )截至2017年底,我国光伏发电累计装机容量为13 078万千瓦 (B )2013-2017年,我国光伏发电新增装机容量逐年增加(C )2013-2017年,我国光伏发电新增装机容量的平均值约为2 500万千瓦 (D )2017年我国光伏发电新增装机容量大约占当年累计装机容量的40% 【2018门头沟一模】7. 下面的统计图反映了我市2011-2016年气温变化情况,下列说法不合理的是A .2011-2014年最高温度呈上升趋势;B .2014年出现了这6年的最高温度;C .2011-2015年的温差成下降趋势;D .2016年的温差最大. 【2018门头沟一模】12. 小明为了统计自己家的月平均用电量,做了如下记录并制成了表格,通过计算分析小明得出一个结论:小明家的月平均用电量为330千瓦时.请判断小明得到的结论年份温度/℃50北京市2011-2016年气温变化情况最高气温最低气温【2018房山一模】6. 某班体育委员对本班所有学生一周锻炼时间(单位:小时)进行了统计,绘制了统计图,如图所示,根据统计图提供的信息,下列推断正确的是A. 该班学生一周锻炼时间的中位数是11B. 该班学生共有44人C. 该班学生一周锻炼时间的众数是10D. 该班学生一周锻炼12小时的有9人【2018房山一模】12. 下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择_____.【2018大兴一模】6. 自2008年实施国家知识产权战略以来,我国具有独立知识产权的发明专利日益增多.下图显示了2010-2013年我国发明专利申请量占世界发明专利申请量的比重.根据统计图提供的信息,下列说法不合理...的是A.统计图显示了2010-2013年我国发明专利申请量占世界发明专利申请量的比重的情况B.我国发明专利申请量占世界发明专利申请量的比重,由2010年的19.7%上升至2013年的32.1%C.2011年我国发明专利申请量占世界发明专利申请量的比重是28%D.2010-2013年我国发明专利申请量占世界发明专利申请量的比重逐年增长2018北京中考数学一模——数据分析、统计、概率专题【2018顺义一模】8.某超市的某种商品一周内每天的进价与售价信息和实际每天的销售量情况如图表所示,则下列推断不合理的是进价与售价折线图(单位:元/斤)实际销售量表(单位:斤)日期周一 周二 周三 周四 周五 周六 周日销售量 30403530506050A .该商品周一的利润最小B .该商品周日的利润最大C .由一周中的该商品每天售价组成的这组数据的众数是4(元/斤)D .由一周中的该商品每天进价组成的这组数据的中位数是(3元/斤) 【2018顺义一模】14.在一次测试中,甲组4人的成绩分别为:90,60,90,60,乙组4人的成绩分别为: 70,80,80,70.如果要比较甲、乙两组的成绩,你认为 组的成绩更好,理由是 . 【2018怀柔一模】6.下图是某品牌毛衣和衬衫2016年9月至2017年4月在怀柔京北大世界的销量统计图.根据统计图提供的信息,下列推断不合理的是( )A. 9月毛衣的销量最低,10月衬衫的销量最高B.与10月相比,11月时,毛衣的销量有所增长,衬衫的销量有所下降C.9月—11月毛衣和衬衫的销量逐月增长D.2月毛衣的销售量是衬衫销售量的7倍左右2.532.23 2.62.83.34545445123456周一周二周三周四周五周六周日进价售价——毛衣的销量 ……衬衫的销量【2018怀柔一模】数学老师让同学们针对统计的结果进行一下评估,学生的评估结果如下:①这次数学测试成绩中,甲、乙两个班的平均水平相同;②甲班学生中数学成绩95分及以上的人数少;③乙班学生的数学成绩比较整齐,分化较小.上述评估中,正确的是_____________.(填序号)【2018平谷一模】8.中小学时期是学生身心变化最为明显的时期,这个时期孩子们的身高变化呈现一定的趋势,7~15岁期间生子们会经历一个身高发育较迅速的阶段,我们把这个年龄阶段叫做生长速度峰值段,小明通过上网查阅《2016年某市儿童体格发育调查表》,了解某市男女生7~15岁身高平均值记录情况,并绘制了如下统计图,并得出以下结论:①10岁之前,同龄的女生的平均身高一般会略高于男生的平均身高;②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生;③7~15岁期间,男生的平均身高始终高于女生的平均身高;④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大.以上结论正确的是A.①③ B.②③ C.②④ D.③④2018北京中考数学一模——数据分析、统计、概率专题【2018延庆一模】7.下面的统计图反映了我国2013年到2017年国内生产总值情况.(以上数据摘自国家统 计局《中华人民共和国2017年国民经济和社会发展统计公报》) 根据统计图提供的信息,下列推断不合理...的是A .与2016年相比,2017年我国国内生产总值有所增长;B .2013-2016年,我国国内生产总值的增长率逐年降低;C .2013-2017年,我国国内生产总值的平均增长率约为6.7% ;D .2016-2017年比2014-2015年我国国内生产总值增长的多.【2018燕山一模】7.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界。
2018【海淀区】中考一模数学试卷(含答案解析)
北京市海淀区2018年中考一模数学试卷一、选择题(本题共16分,每小题2分)1.用三角板作ΔABC 的边BC 上的高,下列三角板的摆放位置正确的是( )2.图1是数学家皮亚特·海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成. 图2不可能... 是下面哪个组件的视图( )3.若正多边形的一个外角是120°,则该正多边形的边数是( ) A.6 B.5 C.4 D.3 4.下列图形中,既是中心对称图形,也是轴对称图形的是( )5.如果1a b -=,那么代数式2222(1)b a a a b-⋅+的值是( )A.2B.2-C.1D.1-6.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示. 若0b d +=,则下列结论中正确的是( )A.0b c +>B.1ca >C.ad bc >D.a d > 7.在线教育使学生足不出户也能连接全球优秀的教育资源. 下面的统计图反映了我国在线教育用户规模的变化情况.2015-2017年中国在线教育用户规模统计图用户规模/万人在线教育用户手机在线教育课程用户11990979849871442613764117891101453032017年 6月2016年 12月2016年 6月2015年 12月160001200080004000(以上数据摘自《2017年中国在线少儿英语教育白皮书》) 根据统计图提供的信息,下列推断 一定不合理... 的是( ) A .2015年12月至2017年6月,我国在线教育用户规模逐渐上升B .2015年12月至2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持 续上升C .2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值超过7000万D .2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70%※8.如图1,矩形的一条边长为X ,周长的一半为y. 定义〔X ,y 〕为这个矩形的坐标. 如图2,在平面直角坐标系中,直线X=1, y=3将第一象限划分成4个区域.已知矩形1的坐标的对应点A 落在如图所示的双曲线上,矩形2的坐标的对应点落在区域④中. 则下面叙述中正确的是( ) A. 点A 的横坐标有可能大于3B. 矩形1是正方形时,点A 位于区域②b c a dC. 当点A 沿双曲线向上移动时,矩形1的面积减小D. 当点A 位于区域①时,矩形1可能和矩形2全等 二、填空题(本题共16分,每小题2分)9.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取 一张,则这张卡片上面恰好写着“加”字的概率是 .10.我国计划2023年建成全球低轨卫星星座——鸿雁星座系统,该系统将为手机网络用户提供无死角全覆盖的网络服务. 2017年12月,我国手机网民规模已达753 000 000,将753 000 000用 科学记数法表示为 .11.如图,AB ∥DE ,若AC=4,BC=2,DC=1,则EC== .12.写出一个解为1的分式方程: .13.京张高铁是2022年北京冬奥会的重要交通基础设施,考虑到不同路段的特殊情况,将根据不同的运行区间设置不同的时速.其中,北京北站到清河段全长11千米,分为地下清华园隧道 和地上区间两部分,运行速度分别设计为80千米/小时和120千米/小时.按此运行速度,地下隧道运行时间比地上大约多2分钟..(130小时),求清华园隧道全长为多少千米.设清华园隧 道全长为x 千米,依题意,可列方程为__________.14.如图,四边形ABCD 是平行四边形,⊙O 经过点A ,C ,D ,与BC 交于点E ,连接AE ,若∠D = 72°, 则∠BAE = °.※15.定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦.阿基米德折弦定理:如图1,AB 和BC 组成圆的折弦,AB >BC ,M 是弧ABC 的中点,MF ⊥AB 于F ,则AF=FB+BC .如图2,△ABC 中,∠ABC=60°,AB=8,BC=6, D 是AB 上一点,BD=1,作DE ⊥AB 交△ABC 的 外接圆于E ,连接EA ,则∠EAC==________°.E DCBAE A16.下面是“过圆上一点作圆的切线”的尺规作图过程.请回答尺规作图的依据是 .三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题6分;第27~28小题, 每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.计算:11()123tan 30|32|3--+︒+-.18.解不等式组:()5331,263.2x x x x +>-⎧⎪⎨-<-⎪⎩19.如图,△ABC 中,∠ACB=90°,D 为AB 的中点,连接CD , 过点B 作CD 的平行线EF , 求证:BC 平分∠ABF .20.关于x 的一元二次方程22(23)10x m x m --++=. (1)若m 是方程的一个实数根,求m 的值; (2)若m 为负数..,判断方程根的情况.21.如图,□ABCD 的对角线AC, BD 相交于点O ,且AE ∥BD ,BE ∥AC ,OE = CD. (1)求证:四边形ABCD 是菱形;(2)若AD = 2,则当四边形ABCD 的形状是______时,四边形AOBE 的面积取得最大值是_____.FEDCBACB EOAD22.在平面直角坐标系X O y 中,已知点P (2,2),Q (-1,2),函数m y x=. (1)当函数my x=的图象经过点P 时,求m 的值并画出直线y x m =+. ※(2)若P ,Q 两点中恰有一个点的坐标(x ,y )满足不等式组,m y xy x m⎧>⎪⎨⎪<+⎩(m >0),求m 的取值范围.23.如图,AB 是⊙O 的直径,弦EF ⊥AB 于点C ,过点F 作⊙O 的切线交AB 的延长线于点D. (1)已知∠A=α ,求∠D 的大小(用含α 的式子表示);(2)取BE 的中点M ,连接MF ,请补全图形;若∠A=30°,MF=7,求⊙O 的半径.24.某校九年级八个班共有280名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,DA开展了一次调查研究,请将下面的过程补全.收集数据: 调查小组计划选取40名学生的体质健康测试成绩作为样本,下面的取样方法中,合理的是___________(填字母);A.抽取九年级1班、2班各20名学生的体质健康测试成绩组成样本.B.抽取各班体育成绩较好的学生共40名学生的体质健康测试成绩组成样本.C.从年级中按学号随机选取男女生各20名学生学生的体质健康测试成绩组成样本.整理、描述数据: 抽样方法确定后,调查小组获得了40名学生的体质健康测试成绩如下:整理数据,如下表所示:分析数据、得出结论:调查小组将统计后的数据与去年同期九年级的学生的体质健康测试成绩(直方图)进行了对比,你能从中得到的结论是_____________,你的理由是___________________________.体育老师计划根据2018年的统计数据安排75分以下的同学参加体质加强训练项目,则全年级约有 ________名同学参加此项目.25.在研究反比例函数1yx的图象与性质时,我们对函数解析式进行了深入分析.成绩分频数2017年九年级部分学生体质健康成绩直方图010095908580757065605550首先,确定自变量X 的取值范围是全体非零实数,因此函数图象会被y 轴分成两部分; 其次,分析解析式,得到y 随X 的变化趋势:当X >0时,随着X 值的增大,1x的值减小,且逐渐 接近于零,随着X 值的减小,1x的值会越来越大,由此,可以大致画出1y x=在X >0时的部分图象,如图1所示:利用同样的方法,我们可以研究函数y =的图象与性质. 通过分析解析式画出部分函数图象如图2(1)请沿此思路在图2中完善函数图象的草图并标出此函数图象上横坐标为0的点A ; (画出网格区域内的部分即可)(2)观察图象,写出该函数的一条性质:____________________; ※(3)若关于X (1)a x =-有两个不相等的实数根,结合图象,直接写出实数a 的取值范围:__________.26.在平面直角坐标系xOy 中,已知抛物线y =X 2 –2aX +b 的顶点在X 轴上,P 〔X 1 , m 〕,Q 〔X 2 , m 〕 (X 1 <X 2 )是此抛物线上的两点.(1)若a=1,①当m =b 时,求X 1 ,X 2的值;②将抛物线沿y 轴平移,使得它与x 轴的两个交点间的距离为4,试描述出这一变化过程;※(2)若存在实数c ,使得X 1 ≤ c –1,且X 2 ≥ c+7成立,则m 的取值范围是 .27.如图,已知∠AOB=60°,点P 为射线OA在∠AOB 内,且满足∠DPA=∠OPE , (1)当DP=PE 时,求DE 的长;※(2)在点P28.在平面直角坐标系xOy 中,对于点P 和⊙C ,给出如下定义:若⊙C 上存在一点T 不与O 重合, 使点P 关于直线OT 的对称点'P 在⊙C 上,则称P 为⊙C 的反射点.下图为⊙C 的反射点P 的示意图.(1)已知点A的坐标为〔1,0〕,⊙A的半径为2,①在点O〔0,0〕,M〔1,2〕,N〔0,–3〕中,⊙A的反射点是____________;※②点P在直线y=–X上,若P为⊙A的反射点,求点P的横坐标的取值范围;※(2)⊙C的圆心在X轴上,半径为2,y轴上存在点P是⊙C的反射点,直接写出圆心C的横坐标X的取值范围.北京市海淀区2018年中考一模数学试卷参考答案及评分标准一、选择题〔每小题2分〕 1.A 2.C 3.D 4.B 5.A 6.D 7.B 8.D二、填空题(本题共16分,每小题2分)9.1510.7.53×108 11.2 12.11x=(答案不唯一)13.1118012030x x--= 14.36 15.6016.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;经过半径的外端并且垂直于这条半径的直线是圆的切线;两点确定一条直线.※ 8.如图1,矩形的一条边长为X,周长的一半为y. 定义〔X,y〕为这个矩形的坐标.如图2,在平面直角坐标系中,直线X=1, y=3将第一象限划分成4个区域.已知矩形1的坐标的对应点A落在如图所示的双曲线上,矩形2的坐标的对应点落在区域④中.则下面叙述中正确的是()A. 点A的横坐标有可能大于3B. 矩形1是正方形时,点A位于区域②C. 当点A沿双曲线向上移动时,矩形1的面积减小D. 当点A位于区域①时,矩形1可能和矩形2全等解析:可知双曲线中的K<3,∵矩形的一条边长为X,周长的一半为y.另一条边长为y–X∴y>X①矩形1的坐标的对应点A〔X,y〕中Xy应小于3; ∴如果X>3,则y>3 K=Xy>9,∴A错②矩形1是正方形时,y=2X,据题意点A〔X,2X〕应落在双曲线上, 而y=2X图像在区域②与双曲线无交点,∴ B错。
2018年北京市朝阳区中考一模数学试题及答案 精品
北京市朝阳区九年级综合练习(一)数 学 试 卷 2014.5一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.-5的相反数是A .5B .-5C .15D .152.高速公路假期免费政策带动了京郊旅游的增长.据悉,2014年春节7天假期,我市乡村民俗旅游接待游客约697 000人次,比去年同期增长14.1%.将697 000用科学记数法 表示应为A .697³103B .69.7³104C .6.97³105D .0.697³1063.把多项式x 2y ﹣2 x y 2 + y 3分解因式,正确的结果是( )A .y (x ﹣y)2B .y (x + y )(x ﹣y )C .y (x + y )2D .y (x 2﹣2xy + y 2)4.在九张质地都相同的卡片上分别写有数字1,2,3,4,5,6,7,8,9,的概率是A .29B .13C .49D 95.如图,△ABC 中,∠C =90°,点D 在AC 边上,DE ∥AB ,B5题图若∠ADE =46°,则∠B 的度数是A .34°B .44°C .46°D .54°6.期中考试后,班里有两位同学议论他们小组的数学成绩,小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是 A .众数和平均数 B .平均数和中位数 C .众数和方差 D .众数和中位数7.如图,在平面直角坐标系xOy 中,抛物线y =2x 2+mx +8的顶点A 在x 轴上,则m 的值是A .±4B . 8C .-8D .±88.正方形网格中的图形(1)~(4)如图所示,其中图(1)、图(2)中的阴影三角形都是有一个角是60°的直角三角形,图(3)、图(4)中的阴影三角形都是有一个角是60°的锐角三角形.以上图形能围成正三棱柱的图形是A .(1)和(2)B .(3)和(4)C .(1)和(4)D .(2)、(3)、(4)7题图二、填空题(本题共16分,每小题4分)9.请写出一个经过第一、二、三象限,并且与y 轴交与点(0,1)的直线表达式 ____________.10.如图,已知零件的外径为30 mm ,现用一个交叉卡钳(两条尺长AC 和BD 相等,OC =OD )测量零件的内孔直径AB .若OC ∶OA =1∶2,且量得CD =12 mm ,则零件的厚度_____x =mm .11.将一张半径为4的圆形纸片(如图①)连续对折两次后展开得折痕AB 、CD ,且AB ⊥CD ,垂足为M (如图②),之后将纸片如图③翻折,使点B 与点M 重合,折痕EF 与AB 相交于点N ,连接AE 、AF (如图④),则△AEF 的面积是__________.12.如图,在反比例函数2y x=(x > 0)的图象上有点A 1,A 2,A 3,…,A n -1,A n ,这些点的横坐标分别是1,2,3,…,n -1,n 时,点A 2的坐标是__________;过点A 1 作x 轴的垂线,垂足为B 1,再过点A 2作A 2 P 1⊥A 1 B 1于点P 1,以点图① 图② 图③ 图④P 1、A 1、A 2为顶点的△P 1A 1A 2的面积几位S 1,按照以上方法继续作图,可以得到△P 2 A 2A 3,…,△P n -1 A n -1 A n ,其面积分别记为S 2,…,S n -1,则S 1+ S 2+…+ S n =________.三、解答题(本题共30分,每小题5分) 13. 计算:11()3---8-(5-π)0+4cos45°.14.解不等式组:220211.3x x x -≥⎧⎪+⎨>-⎪⎩,15. 已知2240x x +-=,求22(1)(6)3x x x ---+的值.16.如图,四边形ABCD 是正方形,AE 、CF 分别垂直于过顶点B 的直线l ,垂足分别为E 、F .求证:BE =CF .17.如图,在平面直角坐标系xOy中,矩形ABCD的边AD=6,A(1,0),B (9,0),直线y=kx+b经过B、D两点.(1)求直线y=kx+b的表达式;(2)将直线y=kx+b平移,当它l与矩形没有公共点时,直接写出b的取值范围.18.列方程或方程组解应用题:从A地到B地有两条行车路线:路线一:全程30千米,但路况不太好;路线二:全程36千米,但路况比较好,一般情况下走路线二的平均车速是走路线一的平均车速的1.8倍,走路线二所用的时间比走路线一所用的时间少20分钟.那么走路线二的平均车速是每小时多少千米?.四、解答题(本题共20分,每小题5分)19.如图,△ABC 中,BC >AC ,点D 在BC 上,且CA =CD ,∠ACB 的平分线交AD 于点F ,E 是AB 的中点. (1)求证:EF ∥BD ;(2)若∠ACB =60°,AC =8,BC =12,求四边形BDFE 的面积.20.据报道,历经一年半的调查研究,北京PM 2.5源解析已经通过专家论证.各种调查显示,机动车成为PM 2.5的最大来源,一辆车一天行驶20千米,那么这辆车每天至少就要向大气里排放0.035千克污染物.以下是相关的统计图、表:北京市空气中PM 2.5本地污染源扇形统计图2013年北京市全年空气质量等级天数统计表(1)请根据所给信息补全扇形统计图;(2)请你根据“2013年北京市全年空气质量等级天数统计表”计算该年度重度污染和严重污染出现的频率共是多少?(精确到0.01)(3)小明是社区环保志愿者,他和同学们调查了本社区的100辆机动车,了解到其中每天出行超过20千米的有40辆.已知北京市2013年机动车保有量已突破520万辆,请你通过计算,估计2013年北京市一天中出行超过20千米的机动车至少要向大气里排放多少千克污染物?21.如图,CA、CB为⊙O的切线,切点分别为A、B.直径延长AD与CB的延长线交于点E. AB、CO交于点M,连接OB.(1)求证:∠ABO=12∠ACB;(2)若sin∠EAB,CB=12,求⊙O22.以下是小辰同学阅读的一份材料和思考:五个边长为1的小正方形如图①放置,用两条线段把它们分割成三BCB 图①图②图③小辰阅读后发现,拼接前后图形的面积相等....,若设新的正方形的由此可知新正方形边长等于两个边长为x(x>0),可得x2=5,x参考上面的材料和小辰的思考方法,解决问题:五个边长为1的小正方形(如图④放置),用两条线段把它们分割成四部分,移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的矩形,且所得矩形的邻边之比为1:2.具体要求如下:(1)设拼接后的长方形的长为a,宽为b,则a的长度为;(2)在图④中,画出符合题意的两条分割线(只要画出一种即可);(3)在图⑤中,画出拼接后符合题意的长方形(只要画出一种即可)图④图⑤五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x的一元二次方程23(1)230-+++=.mx m x m(1)如果该方程有两个不相等的实数根,求m的取值范围;(2)在(1)的条件下,当关于x的抛物线23(1)23=-+++与xy mx m x m轴交点的横坐标都是整数,且4x<时,求m的整数值.24.在△ABC中,CA=CB,在△AED中, DA=DE,点D、E分别在CA、AB 上,.(1)如图①,若∠ACB=∠ADE=90°,则CD与BE的数量关系是;(2)若∠ACB=∠ADE=120°,将△AED绕点A旋转至如图②所示的位置,则CD与BE的数量关系是;,(3)若∠ACB=∠ADE=2α(0°< α< 90°),将△AED绕点A旋转至如图③所示的位置,探究线段CD与BE的数量关系,并加以证明(用含α的式子表示).25.如图,在平面直角坐标系xOy 中,点A( 0),点B (0,2),点C是线段OA 的中点.(1)点P 是直线AB 上的一个动点,当PC +PO 的值最小时,①画出符合要求的点P (保留作图痕迹); ②求出点P 的坐标及PC +PO 的最小值;(2)当经过点O 、C 的抛物线y =ax 2+bx +c 与直线AB 只有一个公共点时,求a 的值并指出这个公共点所在象限.A 图① A图②北京市朝阳区九年级综合练习(一)数学试卷参考答案及评分标准 2014.5 一、选择题(本题共32分,每小题4分)1.A 2.C 3.A 4.D 5.B 6.D 7.B 8.C 二、填空题(本题共16分,每小题4分) 9.答案不唯一,如y =x12. (2,1); 1n n-.(每空2分)三、解答题(本题共30分,每小题5分) 13. 解:原式3142=--+?………………………………………… 4分=-4.………………………………………………………………… 5分14.解:220211.3x x x -≥⎧⎪⎨+>-⎪⎩①②,由不等式①,得x ≥1. ……………………………………………………… 2分 由不等式②,得x <4. ……………………………………………………… 4分所以不等式组的解为1≤x <4. …………………………………………… 5分 15.解:原式2224263x x x x =-+-++ ………………………………………………2分=x2+2x+5. (3)分∵x2+2x -4 =0,∴x2+2x= 4. ……………………………………………………………………4分∴原式=4+5=9. …………………………………………………………………5分16. 证明:∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°.……………………………………………………1分即∠ABE+∠CBF=90°.∵AE⊥l,CF⊥l ,∴∠AEB=∠BFC=90°,且∠ABE+∠BAE=90°.……………………… 2分∴∠BAE=∠CBF.………………………………………………………… 3分∴△ABE≌△BCF.………………………………………………………… 4分∴BE=CF.………………………………………………………………… 5分17. 解:(1)∵ A (1,0), B (9,0),AD =6.∴D (1,6). ………………………………………………………………… 1分将B , D 两点坐标代入y =kx +b 中,得6,90k b k b +=⎧⎨+=⎩ 解得 34,274k b ⎧=-⎪⎪⎨⎪=⎪⎩∴32744y x =-+. …………………………………………………… 3分(2)34b <或514b >. ……………………………………………………………… 5分18. 解:设走路线一的平均车速是每小时x 千米,则走路线二平均车速是每小时1.8x 千米. …………………………………… 1分由题意,得3036201.860x x =+ ……………………………………………………… 2分解方程,得x=30. …………………………………………………………3分经检验,x =30是原方程的解,且符合题意. …………………………………4分所以1.8x =54. (5)分答:走路线二的平均车速是每小时54千米.四、解答题(本题共20分,每小题5分) 19.(1)证明:∵ CA =CD ,CF 平分∠ACB , ∴CF 是AD 边的中线. …………………………………………………1分 ∵ E 是AB 的中点,∴ EF 是△ABD 的中位线. ∴EF ∥BD ; ………………………………………………………………2分(2)解:∵ ∠ACB =60°,CA =CD ,∴ △CAD 是等边三角形.∴ ∠ADC =60°,AD =DC =AC =8.∴ BD =BC -CD =4.过点A 作AM ⊥BC ,垂足为M . ∴sin AM AD ADC=⋅∠=.12ABD S BD AM ∆=⋅=. …………………………………………………… 3分∵ EF ∥BD ,∴ △AEF ∽△ABD ,且12EF BD=.∴14AEF ABD S S ∆∆=.∴AEF S ∆= (4)分四边形BDFE 的面积=ABD AEF S S ∆∆-=. (5)分20.解:(1)31.1; ……………………………………………………………………… 1分(2)45134113584474513++++++ ………………………………………………2分 ≈0.16 . …………………………………………………………………… 3分该年度重度污染和严重污染出现的频率共是0.16.(3)4052000000.035100⨯⨯ …………………………………………………… 4分 =72800. …………………………………………………………………… 5分估计2013年北京市一天中出行超过20千米的机动车至少要向大气里排放72 800千克污染物.21. 解:(1)证明:∵CA、CB为⊙O的切线,∴CA=CB,∠BCO=12∠ACB,∴∠CBO=90°.……………………………… 1分∴CO⊥AB.∴∠ABO +∠CBM=∠BCO +∠CBM=90°.∴∠ABO =∠BCO.∴∠ABO=12∠ACB.……………………………………………………………2分(2)∵OA=OB,∴∠EAB=∠ABO.∴∠BCO=∠EAB.∵ sin∠BCO =sin∠EAB∴OBCB =13.∵CB=12,∴OB=4.即⊙O 的半径为4.∴∠OBE=∠CAE=90°,∠E=∠E,∴△OBE∽△CAE.∴BEAE =OBCA.∵CA=CB=12,A∴BE=AE1.………………………………………………………………………5分322. 解:(1); (1)分(2)如图(画出其中一种情况即可)…………………………………… 3分(2)如图(画出其中一种情况即可)……………………………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 解:(1)由题意 m ≠ 0, ………………………………………………………… 1分 ∵ 方程有两个不相等的实数根,∴△>0. ……………………………………………………………… 2分即 22[3(1)]4(23)(3)0m m m m -+-+=+>. 得m ≠﹣3. ………………………………………………………………… 3分∴ m 的取值范围为m ≠0和m ≠﹣3;(2)设y =0,则23(1)230mx m x m -+++=.∵ 2(3)m ∆=+, ∴ 33(3)2m m x m+±+=.∴123m x m+=,21x =.……………………………………………… 5分当 123m x m+=是整数时,可得m =1或m =-1或m =3.………………………………………………………… 6分∵ 4x <,∴m 的值为﹣1或3 . …………………………………………………………… 7分 24.解:(1)BE=; (1)分(2)BE =; (3)分 (3)BE =2CD ²sinα. ……………………………………………………………… 4分证明:如图,分别过点C 、D 作CM ⊥AB 于点M ,DN ⊥AE 于点N , ∵ CA =CB ,DA =DE ,∠ACB =∠ADE =2α ,∴ ∠CAB =∠DAE ,∠ACM =∠ADN=α ,AM=12AB ,AN=12AE .∴∠CAD =∠BAE . ……………………………………………………………… 5分Rt △ACM 和Rt △ADN 中,sin ∠ACM =AM AC,sin ∠ADN =AN AD. ∴ sin AM ANAC ADα==. ∴2sin AB AEAC ADα==.……………………… 6分又 ∵∠CAD =∠BAE , ∴ △BAE ∽△CAD . ∴ 2sin BE AB CDACα==∴ BE =2DC ²sinα. ……………………………………………………………… 7分25.解:(1)①如图1.②如图2,作DF ⊥OA 于点F ,根据题意,得AC =CO BAO =30°,CE =DE ,∴ CD CF,DF =32.∴ D (,32). (2)分求得直线AB 的表达式为2y =+,直线OD 的表达式为y x =,∴ P (1在△DFO 中,可求得 DO =3.∴PC +PO 的最小值为3. ……………………… 4分(2)∵抛物线y =ax 2+bx +c 经过点O 、C , ∴2y ax =+. ……………………………………………………………… 5分图2由题意,得22ax++ .…………………………………………… 6分整理,得22=0+-.ax x∵242=0a=().∆-⨯-∴a= (7)分当a=当a=象限.…………………………………………………………………………………… 8分说明:各解答题其它正确解法请参照给分.。
2018年北京市中考数学一模分类24题统计题
2018年北京市中考数学一模分类——24题统计题东24.随着高铁的建设,春运期间动车组发送旅客量越来越大.相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018年春运期间铁路发送旅客量情况进行了调查,具体过程如下.()收集、整理数据请将表格补充完整:()描述数据为了更直观地显示春运期间动车组发送旅客量占比的变化趋势,需要用 ___________(填“折线图”或“扇形图”)进行描述;()分析数据、做出推测预计2019年春运期间动车组发送旅客量占比约为___________,你的预估理由是 _________________________________________ .西23. 某同学所在年级的500名学生参加“志愿北京”活动,现有以下5个志愿服务项目:A.纪念馆志愿讲解员;B.书香社区图书整理;C.学编中国结及义卖;D.家风讲解员;E.校内志愿服务.每位同学都从中选择一个项目参加.为了解同学们选择这5个项目的情况,该同学随机对年级中的40名同学选择的志愿服务项目进行了调查,过程如下.收集数据设计调查问卷,收集到如下的数据(志愿服务项目的编号,用字母代号表示)B,E,B,A,E,C,C,C,B,B,A,C,E,D,B,A,B,E,C,A,D,D,B,B,C,C,A,A,E,B,C,B,D,C,A,C,C,A,C,E.整理、描述数据划记、整理、描述样本数据、绘制统计图如下.请补全统计表和统计图.选择各志愿服务项目的人数统计表分析数据、推断结论a.抽样的40个样本数据(志愿服务项目的编号)的众数是(填A-E的字母代号)b. 请你任选A-E中的两个志愿服务项目,根据该同学的样本数据估计全年级大约有多少名同学选择这两个志愿服务项目.海24.某校九年级八个班共有280名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,请将下面的过程补全.收集数据调查小组计划选取40名学生的体质健康测试成绩作为样本,下面的取样方法中,合理的是___________(填字母);A.抽取九年级1班、2班各20名学生的体质健康测试成绩组成样本B.抽取各班体育成绩较好的学生共40名学生的体质健康测试成绩组成样本C.从年级中按学号随机选取男女生各20名学生学生的体质健康测试成绩组成样本整理、描述数据抽样方法确定后,调查小组获得了40名学生的体质健康测试成绩如下:77 83 80 64 86 90 75 92 838185 86 88 62 65 86 97 96 827386 84 89 86 92 73 57 77 878291 81 86 71 53 72 90 76 6878整理数据,如下表所示:2018年九年级部分学生学生的体质健康测试成绩统计表分析数据、得出结论调查小组将统计后的数据与去年同期九年级的学生的体质健康测试成绩(直方图)进行了对比,你能从中得到的结论是_____________,你的理由是________________________________.体育老师计划根据2018年的统计数据安排75分以下的同学参加体质加强训练项目,则全年级约有________名同学参加此项目.朝24. 水果基地为了选出适应市场需求的小西红柿秧苗,在条件基本相同的情况下,把两个品种的小西红柿秧苗各300株分别种植在甲、乙两个大棚. 对于市场最为关注的产量和产量的稳定性,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个大棚各收集了25株秧苗上的小西红柿的个数:甲26 32 40 51 44 74 44 63 73 74 81 54 6241 33 54 43 34 51 63 64 73 64 54 33乙48576675474671整理、描述数据按如下分组整理、描述这两组样本数据个数株数x大棚25≤x<3535≤x<4545≤x<55 55≤x<6565≤x<7575≤x<85甲 5 5 5 5 4 1乙 2 4 6 2(说明:45个以下为产量不合格,45个及以上为产量合格,其中45~65个为产量良好,65~85个为产量优秀)分析数据两组样本数据的平均数、众数和方差如下表所示:大棚平均数众数方差甲53 54 3047得出结论a.估计乙大棚产量优秀的秧苗数为株;b.可以推断出大棚的小西红柿秧苗品种更适应市场需求,理由为.(至少从两个不同的角度说明推断的合理性)丰24.第二十四届冬季奥林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有400名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整.【收集数据】从甲、乙两校各随机抽取20名学生,在这次竞赛中他们的成绩如下:甲 30 60 6070608030901006060100 80 60 7060 6090 60 60乙 8090 40 60 8080 90 4080 5080 70 70 70 7060805080 80成【整理、描述数据】按如下分数段整理、描述这两组样本数据:(说明:优秀成绩为80<x≤100,良好成绩为50<x≤80,合格成绩为30≤x≤50.)【分析数据】两组样本数据的平均分、中位数、众数如下表所示:其中a=__________.【得出结论】(1)小明同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是________校的学生;(填“甲”或“乙”)(2)张老师从乙校随机抽取一名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为________;(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由.(至少从两个不同的角度说明推断的合理性)石24.某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.(1)按如下分数段整理、描述这两组数据:(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:(3)若从甲、乙两人中选择一人参加知识竞赛,你会选(填“甲”或“乙),理由为.门24.地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态坏境保护意识,举办了“我参与,我环保”的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一: 76 88 93 65 78 94 89 68 95 5089 88 89 89 77 94 87 88 92 91初二: 74 97 96 89 98 74 69 76 72 7899 72 97 76 99 74 99 73 98 74(1)根据上表中的数据,将下列表格补充完整;整理、描述数据:(说明:成绩分及以上为优秀,~分为良好,~分为合格,分以下为不合格)分析数据:(2)得出结论:你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).顺23.中华文明,源远流长,中华汉字,寓意深广,为了传承优秀传统文化,某校九年级组织600名学生参加了一次“汉字听写”大赛.赛后发现所有参赛学生的成绩均不低于60分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本,成绩如下:90,92,81,82,78,95,86,88,72,66, 62,68,89,86,93,97,100,73,76,80, 77,81,86,89,82,85,71,68,74,98, 90,97,100,84,87,73,65,92,96,60.对上述成绩(成绩x取整数,总分100分)进行了整理,得到下列不完整的统计图表:请根据所给信息,解答下列问题:(1)a = ,b = ,c = ,d = ;(2)请补全频数分布直方图;(3)若成绩在90分以上(包括90分)的为“优”等,请你估计参加这次比赛的600名学生中成绩“优”等的约有多少人?通怀24.某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:排球 109.59.510899.5971045.5 10 9.5 9.5 10篮球 9.5 9 8.5 8.510 9.5 10 86 9.5 10 9.5 9 8.5 9.5 6整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格.)分析数据两组样本数据的平均数、中位数、众数如下表所示:得出结论(1)如果全校有160人选择篮球项目,达到优秀的人数约为人;(2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.你同意的看法,理由为.(至少从两个不同的角度说明推断的合理性)房24. 某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每个营业员在某月的销售额(单位:万元),数据如下,请补充完整.收集数据 17 18 16 12 24 1527 2518 1922 17 16 19 31 29 16 14 15 2515 3123 17 15 15 27 2716 19整理、描述数据分析数据样本数据的平均数、众数、中位数如下表所示:得出结论⑴如果想让一半左右的营业员都能达到销售目标,你认为月销售额应定为万元.⑵如果想确定一个较高的销售目标,这个目标可以定为每月万元,理由为.大24.甲乙两组各有10名学生,进行电脑汉字输入速度比赛,现将他们的成绩进行统计,过程如下:收集数据各组参赛学生每分钟输入汉字个数统计如下表:分析数据两组数据的众数、中位数、平均数、方差如下表所示:得出结论(1)若每分钟输入汉字个数136及以上为优秀,则从优秀人数的角度评价甲、乙两组哪个成绩更好一些?(2)请你根据所学的统计知识,从不同角度评价甲、乙两组学生的比赛成绩(至少从两个角度进行评价).平23.为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整.收集数据随机抽取甲乙两所学校的20名学生的数学成绩进行分析:整理、描述数据按如下数据段整理、描述这两组数据分析数据两组数据的平均数、中位数、众数、方差如下表:经统计,表格中m的值是.得出结论a 若甲学校有400名初二学生,估计这次考试成绩80分以上人数为.b可以推断出学校学生的数学水平较高,理由为. (至少从两个不同的角度说明推断的合理性)延24.从北京市环保局证实,为满足2022年冬奥会对环境质量的要求,北京延庆正在对其周边的环境污染进行综合治理,率先在部分村镇进行“煤改电”改造.在治理的过程中,环保部门随机选取了永宁镇和千家店镇进行空气质量监测.过程如下,请补充完整.收集数据:从2016年12月初开始,连续一年对两镇的空气质量进行监测(将30天的空气污染指数(简称:API)的平均值作为每个月的空气污染指数,12个月的空气污染指数如下:千家店镇:120 115 100 100 95 85 80 70 50 50 50 45永宁镇:110 90 105 80 90 85 90 60 90 45 70 60整理、描述数据:空气质量按如下表整理、描述这两镇空气污染指数的数据:(说明:空气污染指数≤50时,空气质量为优;50<空气污染指数≤100时,空气质量为良;100<空气污染指数≤150时,空气质量为轻微污染.)分析数据:两镇的空气污染指数的平均数、中位数、众数如下表所示;请将以上两个表格补充完整;得出结论:可以推断出______镇这一年中环境状况比较好,理由为_____________.(至少从两个不同的角度说明推断的合理性)。
2018年北京各区中考数学一模试卷及答案
8
(3)若关于 x 的方程 1 a(x 1) 有两个不相等的实数根,结合图象,直接写出实数 a 的取值范围: x 1
___________________________.
26.在平面直角坐标系 xOy 中,已知抛物线 y x2 2ax b 的顶点在 x 轴上, P(x1, m) ,Q(x2, m) ( x1 x2 )
17.计算: (1)1 12 3 tan 30 | 3 2 | . 3
5x 3 3 x 1,
18.解不等式组:
x
2
2
6
3x.
19.如图,△ ABC 中, ACB 90 , D 为 AB 的中点,连接 CD ,过点 B 作 CD 的平行线 EF ,求证: BC 平分 ABF .
50 x 55 55 x 60 60 x 65 65 x 70 70 x 75 75 x 80 80 x 85 85 x 90 90 x 95 95 x 100
1
1
2
2
4
5
5
2
分析数据、得出结论 调查小组将统计后的数据与去年同期九年级的学生的体质健康测试成绩(直方图)进行了对比,
x
,y
)满足不等式组
y
m x
,
y x m
( m >0),求 m 的取值范围.
6
23.如图, AB 是 O 的直径,弦 EF AB 于点 C ,过点 F 作 O 的切线交 AB 的延长线于点 D . (1)已知 A ,求 D 的大小(用含 的式子表示); (2)取 BE 的中点 M ,连接 MF ,请补全图形;若 A 30 , MF 7 ,求 O 的半径.
北京市朝阳区2018年中考一模数学试卷(含答案)
北京市朝阳区2018年中考一模数学试卷(含答案)北京市朝阳区2018年中考一模数学试卷一、选择题(本题共16分,每小题2分)1.如图,直线a ∥b ,则直线a ,b 之间距离是( )(A )线段AB 的长度 (B )线段CD的长度(C )线段EF 的长度 (D )线段GH 的长度2.若代数式12 x x 有意义,则实数x 的取值范围是( )(A )x =0 (B )x =1 (C )x ≠0(D )x ≠13.若图是某几何体的三视图,则这个几何体是( )(A)球(B)圆柱(C)圆锥(D)三棱柱4.已知l1∥l2,一个含有30°角的三角尺按照如图所示位置摆放,则∠1+∠2的度数为()(A)90°(B)120°(C)150°(D)180°5.下列图形中,是中心对称图形但不是..轴对称图形的是()6.实数a,b,c,d在数轴上的对应点的位置如图所示,下列结论①a<b;②|b|=|d| ;③a+c=a;④ad>0中,正确的有()(A)4个(B)3个(C)2个(D)1个7. “享受光影文化,感受城市魅力”,2018年4月15-22日第八届北京国际电影节顺利举办.下面的统计图反映了北京国际电影节﹒电影市场的有关情况.根据统计图提供的信息,下列推断合理..的是()(A)两届相比较,所占比例最稳定的是动作冒险(含战争)类(B)两届相比较,所占比例增长最多的是剧情类(C)第八届悬疑惊悚犯罪类申报数量比第六届2倍还多(D )在第六届中,所占比例居前三位的类型是悬疑惊悚犯罪类、剧情类和爱情类8. 如图,△ABC 是等腰直角三角形,∠A =90°,AB =6,点P 是AB 边上一动点(点P 与点A 不重合),以AP为边作正方形APDE ,设AP =x ,正方形APDE 与△ABC重合部分(阴影部分)的面积为y ,则下列能大致反映y 与x 的函数关系的图象是( )二、填空题(本题共16分,每小题2分)9. 赋予式子“ab ”一个实际意义: .10.如果023≠=n m,那么代数式)2(4322n m n m n m +⋅--的值是 .11.足球、篮球、排球已经成为北京体育的三张名片,越来越受到广大市民的关注. 下表是北京两支篮球队在2017-2018赛季CBA常规赛的比赛成绩:设胜一场积x分,负一场积y分,依题意,可列二元一次方程组为.1CD,S△ABO:S△CDO=.12. 如图,AB∥CD,AB=213. 如图,点A,B,C在⊙O上,四边形OABC是平行四边形,OD⊥AB于点E,交⊙O于点D,则∠BAD= 度.14. 如图,在平面直角坐标系xOy中,△O'A'B'可以看作是△OAB经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OAB得到△O'A'B'的过程:.15.下列随机事件的概率:①投掷一枚均匀的骰子,朝上一面为偶数的概率;②同时抛掷两枚质地均匀的硬币,两枚硬币全部正面朝上的概率;③抛一枚图钉,“钉尖向下”的概率;④某作物的种子在一定条件下的发芽率.既可以用列举法求得又可以用频率估计获得的是(只填写序号).16.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程.请回答:该尺规作图的依据是 .三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27题,每小题7分,第28题8分)17. 计算:2sin30°+.8)4()31(01+-+-π18. 解不等式组 :⎪⎩⎪⎨⎧>-->-.2216),3(21x x x x19. 如图,在△ACB 中,AC =BC ,AD 为△ACB 的高线,CE 为△ACB 的中线.求证:∠DAB =∠ACE.20. 已知关于x 的一元二次方程0)1(2=+++k x k x .(1)求证:方程总有两个实数根;(2)若该方程有一个根是正数,求k 的取值范围.21. 如图,在△ABC中,D是AB边上任意一点,E是BC边中点,过点C作AB的平行线,交DE的延长线于点F,连接BF,CD.(1)求证:四边形CDBF是平行四边形;(2)若∠FDB=30°,∠ABC=45°,BC=,求DF的长.22. 如图,在平面直角坐标系xOy 中,直线AB 与x 轴、y 轴分别交于点A 、B ,与反比例函数xk y 的图象在第四象限交于点C ,CD ⊥x 轴于点D ,tan ∠OAB =2,OA=2,OD =1.(1)求该反比例函数的表达式;(2)点M 是这个反比例函数图象上的点,过点M 作MN ⊥y 轴,垂足为点N ,连接OM 、AN ,如果S △ABN =2S △OMN ,直接写出点M 的坐标.23. 如图,在⊙O中,C,D分别为半径OB,弦AB的中点,连接CD并延长,交过点A的切线于点E.(1)求证:AE⊥CE.1,求⊙O半径的长.(2)若AE=,sin∠ADE=324. 水果基地为了选出适应市场需求的小西红柿秧苗,在条件基本相同的情况下,把两个品种的小西红柿秧苗各300株分别种植在甲、乙两个大棚. 对于市场最为关注的产量和产量的稳定性,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个大棚各收集了25株秧苗上的小西红柿的个数:整理、描述数据按如下分组整理、描述这两组样本数据(说明:45个以下为产量不合格,45个及以上为产量合格,其中45~65个为产量良好,65~85个为产量优秀)分析数据两组样本数据的平均数、众数和方差如下表所示:得出结论a.估计乙大棚产量优秀的秧苗数为株;b.可以推断出大棚的小西红柿秧苗品种更适应市场需求,理由为.(至少从两个不同的角度说明推断的合理性)25.如图,AB是⊙O的直径,AB=4cm,C为AB上一动点,过点C的直线交⊙O于D、E两点,且∠ACD=60°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x cm,DE=y cm(当x的值为0或3时,y的值为2),探究函数y随自变量x的变化而变化的规律.(1)通过取点、画图、测量,得到了x与y的几组对应值,如下表:(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:点F与点O 重合时,DE长度约为cm(结果保留一位小数).26. 在平面直角坐标系xOy中,抛物线()2440=--≠与y ax ax ay轴交于点A,其对称轴与x轴交于点B.(1)求点A,B的坐标;(2)若方程()244=00--≠有两个不相等的实数根,且两ax ax a根都在1,3之间(包括1,3),结合函数的图象,求a的取值范围.27. 如图,在菱形ABCD中,∠DAB=60°,点E为AB 边上一动点(与点A,B不重合),连接CE,将∠ACE 的两边所在射线CE,CA以点C为中心,顺时针旋转120°,分别交射线AD于点F,G.(1)依题意补全图形;(2)若∠ACE=α,求∠AFC的大小(用含α的式子表示);(3)用等式表示线段AE、AF与CG之间的数量关系,并证明.28. 对于平面直角坐标系xOy中的点P和线段AB,其中A(t,0)、B(t+2,0)两点,给出如下定义:若在线段AB上存在一点Q,使得P,Q两点间的距离小于或等于1,则称P为线段AB的伴随点.(1)当t=-3时,①在点P1(1,1),P2(0,0),P3(-2,-1)中,线段AB的伴随点是;②在直线y=2x+b上存在线段AB的伴随点M、N,且MN5=b的取值范围;(2)线段AB的中点关于点(2,0)的对称点是C,将射线CO以点C为中心,顺时针旋转30°得到射线l,若射线l上存在线段AB的伴随点,直接写出t的取值范围.北京市朝阳区2018年中考一模数学试卷参考答案及评分标准一、选择题(本题共16分,每小题2分)二、填空题 (本题共16分,每小题2分) 9. 答案不惟一,如:边长分别为a ,b 的矩形面积10. 47 11. ⎩⎨⎧=+=+.562018,631325y x y x 12. 1:4 13. 1514. 答案不唯一,如:以x 轴为对称轴,作△OAB 的轴对称图形,再将得到三角形沿向右平移4个单位长度 15. ①②16. 与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;直径所对的圆周角是直角三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26-27题,每小题7分,第28题8分) 17.解:原式 2213212+++⨯= …………………………………………………………………4分225+=. ……………………………………………………………………………5分18. 解:原不等式组为⎪⎪⎨⎧>-->-.216),3(21x x x x解不等式①,得5<x . ………………………………………………………………………2分解不等式②,得 21>x .………………………………………………………………………4分∴ 原不等式组的解集为521<<x . …………………………………………………………5分19. 证明:∵AC =BC ,CE 为△ACB 的中线,∴∠CAB=∠B ,CE ⊥AB . ………………………………………………………………2分∴∠CAB+∠ACE =90°. …………………………………………………………………3分∵AD 为△ACB 的高线, ∴∠D =90°. ∴∠DAB+∠B =90°. ……………………………………………………………………4分∴∠DAB=∠ACE . ………………………………………………………………………5分 20.(1)证明:依题意,得kk 4)1(2-+=∆ ……………………………………………………1分.)1(2-=k ……………………………………………………………2分∵0)1(2≥-k ,∴方程总有两个实数根. ……………………………………………………………3分(2)解:由求根公式,得11-=x ,kx -=2. …………………………………………………4分∵方程有一个根是正数, ∴0>-k .∴0<k .…………………………………………………………………………………5分21.(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD . ∵E 是BC 中点, ∴CE =BE .∵∠CEF =∠BED , ∴△CEF ≌△BED . ∴CF =BD . ∴四边形CDBF是平行四边形. ……………………………………………………2分(2)解:如图,作EM ⊥DB 于点M ,∵四边形CDBF 是平行四边形,BC =24, ∴2221==BC BE ,DE DF 2=. 在Rt △EMB 中,2sin =∠⋅=ABC BE EM . (3)分EA在Rt△EMD中,DE. ………………………………………………=EM2=4……4分∴DF=8. ……………………………………………………………………………………5分22. 解:(1)∵AO=2,OD=1,∴AD=AO+ OD=3. ……………………………………………………………………1分∵CD⊥x轴于点D,∴∠ADC=90°.在Rt△ADC中,6AD=OABCD..∠⋅tan=∴C(1,-6). ……………………………………………………………………………2分∴该反比例函数的表达式是xy 6-=. …………………………………………………3分(2)点M 的坐标为(-3,2)或(53,-10). ……………………………………………5分23. (1)证明:连接OA ,∵OA 是⊙O 的切线, ∴∠OAE=90º. ………………………………1分∵ C ,D 分别为半径OB ,弦AB 的中点,∴CD 为△AOB 的中位线. ∴CD ∥OA . ∴∠E =90º.∴AE ⊥CE . …………………………………2分12ECBOD(2)解:连接OD ,∴∠ODB=90º. ………………………………………………………………………3分∵AE =,sin ∠ADE =31, 在Rt △AED 中,23sin =∠=ADEAE AD . ∵CD ∥OA , ∴∠1=∠ADE .在Rt △OAD 中,311sin ==∠OA OD (4)分设OD =x ,则OA =3x , ∵222OA AD OD=+, ∴()()222323x x =+.解得231=x ,232-=x(舍).∴293==x OA . ……………………………………………………………………5分即⊙O 的半径长为29.24. 解:整理、描述数据 按如下分组整理、描述这两组样本数据…………………………………………………………………………………………………2分得出结论 a .估计乙大棚产量优秀的秧苗数为 84 株; …………………………3分b .答案不唯一,理由须支撑推断的合理性. ………………………………5分25. 解:本题答案不唯一,如:25≤x <35 35≤x <45 45≤x <55 55≤x <65 65≤x <75 75≤x <85甲 5 5 5 5 4 1 乙246652x大棚个数 株数(1)…………………………………………………………………………………………………1分(2)…………………………………………………………………………………………………4分 (3)3.5.…………………………………………………………………………………………6分26.解:(1)44)2(4422---=--=a x a ax axy .∴A (0,-4),B (2,0).…………………………………………………………2分(2)当抛物线经过点(1,0)时,34-=a .……………………………………………4分当抛物线经过点(2,0)时,1-=a . ……………………………………………6分结合函数图象可知,a 的取值范围为134<≤-a .…………………………………7分27.(1)补全的图形如图所示.…………………………………………………………………………………………………1分(2)解:由题意可知,∠ECF=∠ACG=120°.∴∠FCG=∠ACE=α.∵四边形ABCD是菱形,∠DAB=60°,∴∠DAC=∠BAC=30°. ………………………………………………………………2分∴∠AGC=30°.∴∠AFC=α+30°. ………………………………………………………………………3分(3)用等式表示线段AE、AF与CG之间的数量关系为CG=+.AE3AF证明:作CH⊥AG于点H.由(2)可知∠BAC=∠DAC=∠AGC=30°.∴CA=CG.………………………………………………………………………………………5分1AG.∴HG =2∵∠ACE =∠GCF,∠CAE =∠CGF,∴△ACE≌△GCF.……………………………………………………………………………6分∴AE =FG.在Rt △HCG 中, .23cos CG CGH CG HG =∠⋅=∴AG =3CG . …………………………………………………………………………………7分即AF+AE =3CG .28. 解:(1)①线段AB 的伴随点是: 23,P P . ………………………………………………2分②如图1,当直线y =2x +b 经过点(-3,-1)时,b =5,此时b 取得最大值.………………………………………………………………………………4分如图2,当直线y =2x +b 经过点(-1,1)时,b=3,此时b取得最小值.………………………………………………………………………………5分∴b的取值范围是3≤b≤5. (6)分(2)t的取值范围是-12.2t≤≤………………………………………………………………8分图图。
北京市各区2018届中考数学一模试卷精选汇编统计专题(附答案)
统计专题东城区24.随着高铁的建设,春运期间动车组发送旅客量越来越大.相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018年春运期间铁路发送旅客量情况进行了调查,具体过程如下.(I)收集、整理数据请将表格补充完整:(II)描述数据为了更直观地显示春运期间动车组发送旅客量占比的变化趋势,需要用 ___________(填“折线图”或“扇形图”)进行描述;(III)分析数据、做出推测预计2019年春运期间动车组发送旅客量占比约为___________,你的预估理由是_________________________________________ .24. 解:(I):56.8%;----------------------1分(II)折线图; ----------------------3分(III)答案不唯一,预估的理由须支撑预估的数据,参考数据61%左右.--------5分西城区23.某同学所在年级的500名学生参加“志愿北京”活动,现有以下5个志愿服务项目:A.纪念馆志愿讲解员.B.书香社区图书整理.C.学编中国结及义卖.D.家风讲解员.E.校内志愿服务.要求:每位学生都从中选择一个项目参加,为了了解同学们选择这个5个项目的情况,该同学随机对年级中的40名同学选择的志愿服务项目进行了调查,过程如下:收集数据:设计调查问卷,收集到如下数据(志愿服务项目的编号,用字母代号表示).B,E,B,A,E,C,C,C,B,B,A,C,E,D,B,A,B,E,C,A,D,D,B,B,C,C,A,A,E,B,C,B,D,C,A,C,C,A,C,E,整理、描述诗句:划记、整理、描述样本数据,绘制统计图如下,请补全统计表和统计图.选择各志愿服务项目的人数统计表分析数据、推断结论:a:抽样的40个样本数据(志愿服务项目的编号)的众数是__________.(填A E-的字母代号)b:请你任选A E-中的两个志愿服务项目,根据该同学的样本数据估计全年级大约有多少名同学选择这两个志愿服务项目.【解析】B项有10人,D项有4人.选择各志愿服务项目的人数比例统计图中,B占25%,D占10%.分析数据、推断结论:a.抽样的40个样本数据(志愿服务项目的编号)的众数是C.b:根据学生选择情况答案分别如下(写出任意两个即可).⨯=(人).A:50020%100⨯=(人).B:50025%125⨯=(人).C:50030%150⨯=(人).D:50010%50⨯=(人).E:50015%75海淀区24. 某校九年级八个班共有280名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,请将下面的过程补全. 收集数据调查小组计划选取40名学生的体质健康测试成绩作为样本,下面的取样方法中,合理的是___________(填字母);A .抽取九年级1班、2班各20名学生的体质健康测试成绩组成样本B .抽取各班体育成绩较好的学生共40名学生的体质健康测试成绩组成样本C .从年级中按学号随机选取男女生各20名学生学生的体质健康测试成绩组成样本 整理、描述数据抽样方法确定后,调查小组获得了40名学生的体质健康测试成绩如下:整理数据,如下表所示:分析数据、得出结论调查小组将统计后的数据与去年同期九年级的学生的体质健康测试成绩(直方图)进行了对比,分频数2017年九年级部分学生体质健康成绩直方图0864210095908580757065605550你能从中得到的结论是_____________,你的理由是________________________________.体育老师计划根据2018年的统计数据安排75分以下的同学参加体质加强训练项目,则全年级约有________名同学参加此项目.24.………………1分………………2分 (2)去年的体质健康测试成绩比今年好.(答案不唯一,合理即可) ………………3分去年较今年低分更少,高分更多,平均分更大.(答案不唯一,合理即可)………………4分 (3)70. ………………6分 丰台区24.第二十四届冬季奥林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有400名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整.【收集数据】从甲、乙两校各随机抽取20名学生,在这次竞赛中他们的成绩如下:【整理、描述数据】按如下分数段整理、描述这两组样本数据:(说明:优秀成绩为80<x≤100,良好成绩为50<x≤80,合格成绩为30≤x≤50.)【分析数据】两组样本数据的平均分、中位数、众数如下表所示:其中a =__________.【得出结论】(1)小明同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是________校的学生;(填“甲”或“乙”)(2)张老师从乙校随机抽取一名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为________;(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由.(至少从两个不同的角度说明推断的合理性)24.解:a=80;………………………1分(1)甲;………………………2分(2)110;………………………3分(3)答案不唯一,理由需支持推断结论.如:乙校竞赛成绩较好,因为乙校的平均分高于甲校的平均分说明平均水平高,乙校的中位数75高于甲校的中位数65,说明乙校分数不低于70分的学生比甲校多. ………………………5分石景山区24.某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.(1)按如下分数段整理、描述这两组数据:(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:24.解:(1) 0,1,4,5,0,0 ………………1分(2) 14,84.5,81 ………………4分(3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小.(写出其中一条即可)或:乙,理由:在90≤x≤100的分数段中,乙的次数大于甲.………………6分(答案不唯一,理由须支撑推断结论)朝阳区24. 水果基地为了选出适应市场需求的小西红柿秧苗,在条件基本相同的情况下,把两个品种的小西红柿秧苗各300株分别种植在甲、乙两个大棚. 对于市场最为关注的产量和产量的稳定性,进行了抽样调查,过程如下,请补充完整.收集数据 从甲、乙两个大棚各收集了25株秧苗上的小西红柿的个数:甲 26 32 40 51 44 74 44 63 73 74 81 54 6241 33 54 43 34 51 63 64 73 64 54 33 乙 27 35 46 55 48 36 47 68 82 48 57 66 7527 36 57 57 66 58 61 71 38 47 46 71整理、描述数据 按如下分组整理、描述这两组样本数据(说明:45个以下为产量不合格,45个及以上为产量合格,其中45~65个为产量良好,65~85个为产量优秀)分析数据 两组样本数据的平均数、众数和方差如下表所示:得出结论 a .估计乙大棚产量优秀的秧苗数为 株;b .可以推断出 大棚的小西红柿秧苗品种更适应市场需求,理由为 .(至少从两个不同的角度说明推断的合理性)24. 解:整理、描述数据 按如下分组整理、描述这两组样本数据2分得出结论 a .估计乙大棚产量优秀的秧苗数为 84 株; …………………………3分b .答案不唯一,理由须支撑推断的合理性. ………………………………5分燕山区:(1)4月5日,4月6日,豆豆妈妈没来得及作记录,只有手机图片,请你根据图片数据,帮她补全表格. (2)豆豆利用自己学习的统计知识,把妈妈步行距离与燃烧脂肪情况用如下统计图表示出来,请你根据图中提供的信息写出结论: .(写一条即可)步行距离燃烧脂肪4月1日-6日妈妈步行距离与燃烧脂肪情况统计图(3)豆豆还帮妈妈分析出步行距离和卡路里消耗数近似成正比例关系,豆豆妈妈想使自己的卡路里消耗数达到250千卡,预估她一天步行距离为__________公里.(直接写出结果,精确到个位)22. (1)填数据……………………….2′(2)写出一条结论:……………………….4′(3)预估她一天步行约为__________公里.(直接写出结果,精确到个位)门头沟区24.地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态坏境保护意识,举办了“我参与,我环保”的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一: 76 88 93 65 78 94 89 68 95 5089 88 89 89 77 94 87 88 92 91初二: 74 97 96 89 98 74 69 76 72 7899 72 97 76 99 74 99 73 98 74(1)根据上表中的数据,将下列表格补充完整;整理、描述数据:(说明:成绩90分及以上为优秀,80~90分为良好,60~80分为合格,60分以下为不合格)(2)得出结论:你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).24.(1)补全表格正确:初一: 8 …………………………………………1分众数:89 …………………………………………2分中位数:77 …………………………………………3分(2)可以从给出的三个统计量去判断如果利用其它标准推断要有数据说明合理才能得分………………5分大兴区24.甲乙两组各有10名学生,进行电脑汉字输入速度比赛,现将他们的成绩进行统计,过程如下:收集数据各组参赛学生每分钟输入汉字个数统计如下表:分析数据两组数据的众数、中位数、平均数、方差如下表所示:得出结论(1)若每分钟输入汉字个数136及以上为优秀,则从优秀人数的角度评价甲、乙两组哪个成绩更好一些?(2)请你根据所学的统计知识,从不同角度评价甲、乙两组学生的比赛成绩(至少从两个角度进行评价). 24. (1)乙组成绩更好一些…………………………………………………………………2分(2)答案不唯一,评价需支撑推断结论…………………………………………………6分(说明:评价中只要说对2条即可,每条给2分,共4分)平谷区23.为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整. 收集数据随机抽取甲乙两所学校的20名学生的数学成绩进行分析:甲91 89 77 86 71 31 97 93 72 9181 92 85 85 95 88 88 90 44 91乙84 93 66 69 76 87 77 82 85 8890 88 67 88 91 96 68 97 59 88整理、描述数据分析数据两组数据的平均数、中位数、众数、方差如下表:统计量平均数中位数众数方差学校甲81.85 88 91 268.43乙81.95 86 m 115.25经统计,表格中m的值是.得出结论a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为 .b可以推断出学校学生的数学水平较高,理由为 . (至少从两个不同的角度说明推断的合理性)分析数据经统计,表格中m的值是 88 . (3)得出结论a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为 300 . (4)b 答案不唯一,理由须支撑推断结论. (7)怀柔区24.某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格.)分析数据两组样本数据的平均数、中位数、众数如下表所示:得出结论(1)如果全校有160人选择篮球项目,达到优秀的人数约为人;(2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.你同意的看法,理由为.(至少从两个不同的角度说明推断的合理性)24.补全表格:成绩x…………………………………………………………………………………………………2分(1)130;…………………………………………………………………………………………4分(2)答案不唯一,理由需支持判断结论. ………………………………………………………6分延庆区24.从北京市环保局证实,为满足2022年冬奥会对环境质量的要求,北京延庆正在对其周边的环境污染进行综合治理,率先在部分村镇进行“煤改电”改造.在治理的过程中,环保部门随机选取了永宁镇和千家店镇进行空气质量监测.过程如下,请补充完整.请将以上两个表格补充完整;得出结论:可以推断出______镇这一年中环境状况比较好,理由为_____________.(至少从两个不同的角度说明推断的合理性)24.(1)1,9,2.……1分(2) 82.5,90.……3分(3)千家店镇……4分理由:千家店镇污染指数平均数为80,永宁镇污染指数平均数为81.3,所以千家店镇污染指数平均数较低,空气质量较好;千家店镇空气质量为优的天数是4天,永宁镇空气质量为优的天数是1天,所以千家店镇空气质量为优的天数多,空气质量较好.…6分顺义区23.中华文明,源远流长,中华汉字,寓意深广,为了传承优秀传统文化,某校九年级组织600名学生参加了一次“汉字听写”大赛.赛后发现所有参赛学生的成绩均不低于60分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本,成绩如下:频数成绩x /分12108640100908070602141690,92,81,82,78,95,86,88,72,66, 62,68,89,86,93,97,100,73,76,80, 77,81,86,89,82,85,71,68,74,98, 90,97,100,84,87,73,65,92,96,60.对上述成绩(成绩x 取整数,总分100分)进行了整理,得到下列不完整的统计图表:请根据所给信息,解答下列问题:(1)a = ,b = , c = ,d = ; (2)请补全频数分布直方图;(3)若成绩在90分以上(包括90分)的为“优”等,请你估计参加这次比赛的600名学生中成绩“优”等的约有多少人?23.解:(1)a = 14 ,b = 0.35 , c = 12 ,d = 0.3 ;………… 2分 (2)补全频数分布直方图如下:…………………… 4分(3)估计参加这次比赛的600名学生中成绩“优”等的约有180人.……… 5分161426070809010004681012成绩x /分频数。
2018年北京市东城区中考一模数学试卷含答案解析 精品
2018年北京市东城区初三一模数学试卷一、单选题(共10小题)1.数据显示,2018年全国新建、改扩建校舍约为51 660 000平方米,全面改善贫困地区义务教育薄弱学校基本办学条件工作取得明显成果.将数据51 660 000用科学记数发表示应为()A.B.C.D.考点:科学记数法和近似数、有效数字答案:A试题解析:科学记数法是一个数表示成a×10的n次幂的形式,其中1≤|a|<10,n为整数,所以根据题意得51 660 000=5.166×107.故选A.2.下列运算中,正确的是()A.x·x3=x3B.(x2)3=x5C.D.(x-y)2=x2+y2考点:整式的运算答案:C试题解析:根据整式的运算公式正确,故选A。
3.有五张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,5,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是()A.B.C.D.考点:概率及计算答案:C试题解析:五张卡片中有三张奇数,则概率为,故选C4.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁考点:极差、方差、标准差答案:B试题解析:方差越小发挥越稳定,则选B。
5.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.62°考点:平行线的判定及性质答案:A试题解析:如图,∠2=∠3=38°,则∠1=90°-38°=52°6.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE =CB,连接ED. 若量出DE=58米,则A,B间的距离为()A.29米B.58米C.60米D.116米考点:全等三角形的判定全等三角形的性质答案:B试题解析:由题意可得△ABC≌△DEC(SAS),则ED=AB=58,故选B。
2018北京市各区初三数学一模试题分类——概率与统计部分
目录类型1:平均数、众数、中位数、方差 (2)类型2:概率 (4)(1)概率含义与计算 (4)(2)频率估计概率 (5)类型3:统计分析(读图表信息、选择) (8)类型4:统计分析(综合) (13)类型5:其他统计相关 (25)类型1:平均数、众数、中位数、方差1.(18燕山一模7)每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界。
某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是()用水量x(吨) 3 4 5 6 7频数 1 2 5 4-x xA.平均数、中位数 B .众数、中位数C .平均数、方差D .众数、方差2.(18房山一模12)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数9.14 9.15 9.14 9.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择_________.3.(18东城一模15)举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中一项三次挑战失败,则该项成绩为0. 甲、乙是同一重量级别的举重选手,他们近三年六次重要比赛的成绩如下(单位:公斤):2015上半年2015下半年2016上半年2016下半年2017上半年2017下半年年份选手甲290(冠军)170(没获奖)292(季军)135(没获奖)298(冠军)300(冠军)乙285(亚军)287(亚军)293(亚军)292(亚军)294(亚军)296(亚军)如果你是教练,要选派一名选手参加国际比赛,那么你会选派____________(填“甲”或“乙”),理由是______________________________________.4.(18怀柔一模14)在一次数学测试中,同年级人数相同的甲、乙两个班的成绩统计如下表:班级平均分中位数方差甲班92.5 95.5 41.25乙班92.5 90.5 36.06数学老师让同学们针对统计的结果进行一下评估,学生的评估结果如下:这次数学测试成绩中,甲、乙两个班的平均水平相同;①甲班学生中数学成绩95分及以上的人数少;②乙班学生的数学成绩比较整齐,分化较小.上述评估中,正确的是_____________.(填序号)5.(18门头沟一模12)小明为了统计自己家的月平均用电量,做了如下记录并制成了表格,通过计算分析小明得出一个结论:小明家的月平均用电量为330千瓦时.请判断小明得到的结论是否合理并且说明理由__________________________________ .月份六月七月八月用电量(千瓦时)290 340 360月平均用电量(千瓦时) 3306. (18顺义一模14)在一次测试中,甲组4人的成绩分别为:90,60,90,60,乙组4人的成绩分别为:70,80,80,70.如果要比较甲、乙两组的成绩,你认为组的成绩更好,理由是:.类型2:概率(1)概率含义与计算1.(18丰台一模15)“明天的降水概率为80%”的含义有以下四种不同的解释:①明天80%的地区会下雨;② 80%的人认为明天会下雨;③明天下雨的可能性比较大;④在100次类似于明天的天气条件下,历史纪录告诉我们,大约有80天会下雨.你认为其中合理的解释是.(写出序号即可)2.(18朝阳毕业4)小鹏和同学相约去影院观看《厉害了,我的国》,在购票选座时,他们选定了方框所围区域内的座位(如图). 取票时,小鹏从这五张票中随机抽取一张,则恰好抽到这五个座位正中间的座位的概率是()A.21 B.54C.53 D.513.(18东城一模7)第24届冬奥会将于2022年在北京和张家口举行.冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有5张形状、大小、质地均相同的卡片,正面分别印有跳台滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的项目图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪图案的概率是()A .15B .25C .12D .354.(18海淀一模9)从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是.5.(18燕山一模13)二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录。
2018北京各区初三数学一模试题分类——统计分析(综合题)
统计分析(综合题)1.(18平谷一模23)为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整.收集数据随机抽取甲乙两所学校的20名学生的数学成绩进行分析:整理、描述数据按如下数据段整理、描述这两组数据分析数据两组数据的平均数、中位数、众数、方差如下表:经统计,表格中m的值是.得出结论a.若甲学校有400名初二学生,估计这次考试成绩80分以上人数为 .b.可以推断出学校学生的数学水平较高,理由为. (至少从两个不同的角度说明推断的合理性)2.(18延庆一模24)从北京市环保局证实,为满足2022年冬奥会对环境质量的要求,北京延庆正在对其周边的环境污染进行综合治理,率先在部分村镇进行“煤改电”改造.在治理的过程中,环保部门随机选取了永宁镇和千家店镇进行空气质量监测.过程如下,请补充完整.收集数据:从2016年12月初开始,连续一年对两镇的空气质量进行监测(将30天的空气污染指数(简称:API)的平均值作为每个月的空气污染指数,12个月的空气污染指数如下:千家店镇:120 115 100 100 95 85 80 70 50 50 50 45永宁镇:110 90 105 80 90 85 90 60 90 45 70 60整理、描述数据:按如下表整理、描述这两镇空气污染指数的数据:质量为良;100<空气污染指数≤150时,空气质量为轻微污染.)分析数据:两镇的空气污染指数的平均数、中位数、众数如下表所示;得出结论:可以推断出______镇这一年中环境状况比较好,理由为_________________________________________________________________________________________________.(至少从两个不同的角度说明推断的合理性)3.(18房山一模24)某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每个营业员在某月的销售额(单位:万元),数据如下,请补充完整.收集数据17 18 16 12 24 15 27 25 18 1922 17 16 19 31 29 16 14 15 2515 31 23 17 15 15 27 27 16 19整理、描述数据分析数据样本数据的平均数、众数、中位数如下表所示:得出结论(1)如果想让一半左右的营业员都能达到销售目标,你认为月销售额应定为万元.(2)如果想确定一个较高的销售目标,这个目标可以定为每月万元,理由为.4.(18石景山一模24)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.(1)按如下分数段整理、描述这两组数据:(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:5.(18西城一模23)某同学所在年级的500名学生参加“志愿北京”活动,现有以下5个志愿服务项目:A.纪念馆志愿讲解员.B.书香社区图书整理.C.学编中国结及义卖.D.家风讲解员.E.校内志愿服务.要求:每位学生都从中选择一个项目参加,为了了解同学们选择这个5个项目的情况,该同学随机对年级中的40名同学选择的志愿服务项目进行了调查,过程如下:收集数据:设计调查问卷,收集到如下数据(志愿服务项目的编号,用字母代号表示).B,E,B,A,E,C,C,C,B,B,A,C,E,D,B,A,B,E,C,A,D,D,B,B,C,C,A,A,E,B,C,B,D,C,A,C,C,A,C,E,整理、描述诗句:划记、整理、描述样本数据,绘制统计图如下,请补全统计表和统计图.选择各志愿服务项目的人数统计表分析数据、推断结论:a:抽样的40个样本数据(志愿服务项目的编号)的众数是__________.(填A E-的字母代号)b:请你任选A E-中的两个志愿服务项目,根据该同学的样本数据估计全年级大约有多少名同学选择这两个志愿服务项目.6.(18朝阳毕业22)北京市积极开展城市环境建设,其中污水治理是重点工作之一,以下是北京市2012—2017年污水处理率统计表:(1)用折线图将2012—2017年北京市污水处理率表示出来,并在图中标明相应的数据;北京市2012—2017年污水处理率统计图(2)根据统计图表中提供的信息,预估2018年北京市污水处理率约为%,说明你的预估理由:.7.(18怀柔一模24)某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:排球10 9.5 9.5 10 8 9 9.5 97 10 4 5.5 10 9.5 9.5 10篮球9.5 9 8.5 8.5 10 9.5 10 86 9.5 10 9.5 9 8.5 9.5 6整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格.)分析数据两组样本数据的平均数、中位数、众数如下表所示:得出结论(1)如果全校有160人选择篮球项目,达到优秀的人数约为人;(2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.你同意 的看法, 理由为 .(至少从两个不同的角度说明推断的合理性)8.(18海淀一模24)某校九年级八个班共有280名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,请将下面的过程补全.收集数据:调查小组计划选取40名学生的体质健康测试成绩作为样本,下面的取样方法中,合理的是___________(填字母);A .抽取九年级1班、2班各20名学生的体质健康测试成绩组成样本B .抽取各班体育成绩较好的学生共40名学生的体质健康测试成绩组成样本C .从年级中按学号随机选取男女生各20名学生学生的体质健康测试成绩组成样本整理、描述数据:抽样方法确定后,调查小组获得了40名学生的体质健康测试成绩如下:77 83 80 64 86 90 75 92 83 81 85 86 88 62 65 86 97 96 82 73 86 84 89 86 92 73 57 77 87 82 91 81 86 71 53 72 90 76 68 78整理数据,如下表所示:2018年九年级部分学生学生的体质健康测试成绩统计表分析数据、得出结论:调查小组将统计后的数据与去年同期九年级的学生的体质健康测试成绩(直方图)进行了对比,你能从中得到的结论是_____________,你的理由是_______________________________________________________________________________________________.体育老师计划根据2018年的统计数据安排75分以下的同学参加体质加强训练项目,则全年级约有________名同学参加此项目.分2017年九年级部分学生体质健康成绩直方图9.(18朝阳一模24)水果基地为了选出适应市场需求的小西红柿秧苗,在条件基本相同的情况下,把两个品种的小西红柿秧苗各300株分别种植在甲、乙两个大棚. 对于市场最为关注的产量和产量的稳定性,进行了抽样调查,过程如下,请补充完整.收集数据:从甲、乙两个大棚各收集了25株秧苗上的小西红柿的个数:甲26 32 40 51 44 74 44 63 73 74 81 54 6241 33 54 43 34 51 63 64 73 64 54 33乙27 35 46 55 48 36 47 68 82 48 57 66 7527 36 57 57 66 58 61 71 38 47 46 71整理、描述数据:按如下分组整理、描述这两组样本数据(说明:45个以下为产量不合格,45个及以上为产量合格,其中45~65个为产量良好,65~85个为产量优秀)分析数据:两组样本数据的平均数、众数和方差如下表所示:得出结论:a.估计乙大棚产量优秀的秧苗数为株;b.可以推断出大棚的小西红柿秧苗品种更适应市场需求,理由为.(至少从两个不同的角度说明推断的合理性)10.(18东城一模24)随着高铁的建设,春运期间动车组发送旅客量越来越大.相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018年春运期间铁路发送旅客量情况进行了调查,具体过程如下.(I)收集、整理数据请将表格补充完整:(II)描述数据为了更直观地显示春运期间动车组发送旅客量占比的变化趋势,需要用___________(填“折线图”或“扇形图”)进行描述;(III)分析数据、做出推测预计2019年春运期间动车组发送旅客量占比约为___________,你的预估理由是:_________________________________________ .11.(18丰台一模24)第二十四届冬季奥林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有400名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整.【收集数据】从甲、乙两校各随机抽取20名学生,在这次竞赛中他们的成绩如下:甲30 60 60 70 60 80 30 90 100 6060 100 80 60 70 60 60 90 60 60乙80 90 40 60 80 80 90 40 80 5080 70 70 70 70 60 80 50 80 80【整理、描述数据】按如下分数段整理、描述这两组样本数据:(说明:优秀成绩为80<x≤100,良好成绩为50<x≤80,合格成绩为30≤x≤50.)【分析数据】两组样本数据的平均分、中位数、众数如下表所示:其中a【得出结论】(1)小明同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是________校的学生;(填“甲”或“乙”)(2)张老师从乙校随机抽取一名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为________;(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由.(至少从两个不同的角度说明推断的合理性)12.(18门头沟一模24)地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态坏境保护意识,举办了“我参与,我环保”的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一:76 88 93 65 78 94 89 68 95 5089 88 89 89 77 94 87 88 92 91初二:74 97 96 89 98 74 69 76 72 7899 72 97 76 99 74 99 73 98 74(1)根据上表中的数据,将下列表格补充完整;整理、描述数据:(说明:成绩90分及以上为优秀,80~90分为良好,60~80分为合格,60分以下为不合格)分析数据:得出结论:你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).13.(18大兴一模24)甲乙两组各有10名学生,进行电脑汉字输入速度比赛,现将他们的成绩进行统计,过程如下:收集数据:各组参赛学生每分钟输入汉字个数统计如下表:分析数据:两组数据的众数、中位数、平均数、方差如下表所示:得出结论:(1)若每分钟输入汉字个数136及以上为优秀,则从优秀人数的角度评价甲、乙两组哪个成绩更好一些?(2)请你根据所学的统计知识,从不同角度评价甲、乙两组学生的比赛成绩(至少从两个角度进行评价).14.(18燕山一模22)豆豆妈妈用小米运动手环记录每天的运动情况,下面是她6天的数据记录(不完整):(1)4月5日,4月6日,豆豆妈妈没来得及作记录,只有手机图片,请你根据图片数据,帮她补全表格. (2)豆豆利用自己学习的统计知识,把妈妈步行距离与燃烧脂肪情况用如下统计图表示出来,请你根据图中提供的信息写出结论: .(写一条即可)(3)豆豆还帮妈妈分析出步行距离和卡路里消耗数近似成正比例关系,豆豆妈妈想使自己的卡路里消耗数达到250千卡,预估她一天步行距离为__________公里.(直接写出结果,精确到个位)步行距离燃烧脂肪4月1日-6日妈妈步行距离与燃烧脂肪情况统计图15.(18顺义一模23)中华文明,源远流长,中华汉字,寓意深广,为了传承优秀传统文化,某校九年级组织600名学生参加了一次 “汉字听写”大赛.赛后发现所有参赛学生的成绩均不低于60分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩作为样本,成绩如下:90,92,81,82,78,95,86,88,72,66,62,68,89,86,93,97,100,73,76,80,77,81,86,89,82,85,71,68,74,98,90,97,100,84,87,73,65,92,96,60.对上述成绩(成绩x 取整数,总分100分)进行了整理,得到下列不完整的统计图表:请根据所给信息,解答下列问题:(1)a = ,b = , c = ,d = ;(2)请补全频数分布直方图;(3)若成绩在90分以上(包括90分)的为“优”等,请你估计参加这次比赛的600名学生中成绩“优”等的约有多少人?161426070809010004681012成绩x /分频数16.(18通州一模23)体育教师为了解本校九年级女生“仰卧起坐”体育测试项目的达标情况,从该校九年级136名女生中,随机抽取了20名女生,进行了1分钟仰卧起坐测试.获取数据如下:收集数据:抽取20名女生的1分钟仰卧起坐测试成绩(个)如下:38 46 42 52 55 43 59 46 25 3835 45 51 48 57 49 47 53 58 49整理、描述数据:请你按如下分组整理、描述样本数据:(说明:每分钟仰卧起坐个数达到49个及以上时在中考体育测试中可以得到满分)分析数据:样本数据的平均数、中位数、众数如下表所示:得出结论:①估计该校九年级女生在中考体育测试中仰卧起坐项目可以得到满分的人数为;②该中学所在区县的九年级女生在1分钟仰卧起坐总体测试成绩如下:请你结合该校样本测试成绩和该区县的总体测试成绩,对该校九年级女生的“仰卧起坐”达标情况做一下评估,并提出相应建议.。
北京市西城区2018年中考一模数学试题(含答案)
北京市西城区2018年九年级统一测试数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.在国家大数据战略的引领下,我国在人工智能领域取得显著成就,自主研发的人工智能“绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储58000000000本书籍,将58000000000用科学记数法表示应为( ). A .105.810⨯B .115.810⨯C .95810⨯D .110.5810⨯2.在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是( ).A .B .C .D .3.将34b b -分解因式,所得结果正确的是( ). A .2(4)b b -B .2(4)b b -C .2(2)b b -D .(2)(2)b b b +-4.如图是某个几何体的三视图,该几何体是( ). A .三棱柱 B .圆柱 C .六棱柱 D .圆锥千里江山图京津冀协同发展内蒙古自治区成立七十周年河北雄安新区建立纪念俯视图左视图主视图5.若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( ). A .5a <- B .0b d +< C .0a c -< D.c <6.如果一个正多边形的内角和等于720︒,那么该正多边形的一个外角等于( ). A .45︒B .60︒C .72︒D .90︒7.空气质量指数(简称为AQI )是定量描述空气质量状况的指数,它的类别如下表所示.某同学查阅资料,制作了近五年1月份北京市AQI 各类别天数的统计图如下图所示.根据以上信息,下列推断不合理的是A.AQI 类别为“优”的天数最多的是2018年1月 B .AQI 数据在0~100之间的天数最少的是2014年1月C .这五年的1月里,6个AQI 类别中,类别“优”的天数波动最大D .2018年1月的AQI 数据的月均值会达到“中度污染”类别优良轻度污染中度污染重度污染严重污染1月1月1月1月1月8.将A ,B 两位篮球运动员在一段时间内的投篮情况记录如下:下面有三个推断:①投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767.②随着投篮次数的增加,A 运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A 运动员投中的概率是0.750.④投篮达到200次时,B 运动员投中次数一定为160次. 其中合理的是( ). A .①B .②C .①③D .②③二、填空题(本题共16分,每小题2分) 9.若代数式11x x -+的值为0,则实数x 的值为__________. 10.化简:()()42(1)a a a a +--+=__________.11.如图,在ABC △中,DE AB ∥,DE 分别与AC ,BC 交于D ,E 两点. 若49DEC ABC S S =△△,3AC =,则DC =__________.12.从杭州东站到北京南站,原来最快的一趟高铁G20次约用5h 到达.从2018年4月10日起,全国铁路开始实施新的列车运行图,并启用了“杭京高铁复兴号”,它的运行速度比原来的G20次的运行速度快35km/h ,约用4.5h 到达。
北京市燕山区2018年中考一模数学试卷及答案
北京市燕山地区2018年初中毕业暨一模考试数学试卷2018.5考生须知1.本试卷共8页,共三道大题,28道小题,满分100分.考试时间120分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束,请将本试卷、答题卡一并交回。
一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的.1.2017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌。
综合实力稳步提升。
全市地区生产总值达到280000亿元,将280000用科学记数法表示为A.280×103B.28×104C.2.8×105D.0.28×1062.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是A.晴B.浮尘C.大雨D.大雪3.实数a,b在数轴上对应的点的位置如图所示, 则正确的结论是A.0<+ba B.2->a C.π>b D.0<ba4.下列四个几何体中,左视图为圆的是5.如图,AB∥CD, DB⊥BC, ∠2=50°, 则∠1的度数是A.40°B.50°C.60°D.140°6.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,AC=8, BC=6 ,则∠ACD的正切值是ba-5-4-3-2-154321A.B.C.D.DB12A BC DA .34 B .53 C .35D .43 7.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界。
某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是A .平均数、中位数B .众数、中位数C .平均数、方差D .众数、方差 8.小带和小路两个人开车从 A 城出发匀速行驶至 B 城.在整个行驶过程中,小带和小路两人的车离开 A 城的距离 y (千米)与行驶的时间 t (小时)之间的函数关系如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 241.概率【2018东城一模】7.第24届冬奥会将于2022年在北京和张家口举行.冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有5张形状、大小、质地均相同的卡片,正面分别印有跳台滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的项目图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪图案的概率是A .15 B .25 C .12 D .35【2018西城一模】8.将,两位篮球运动员在一段时间内的投篮情况记录如下:下面有三个推断:① 投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767.② 随着投篮次数的增加,A 运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A 运动员投中的概率是0.750.③ 投篮达到200次时,B 运动员投中次数一定为160次. 其中合理的是( ). A .① B .② C .①③ D .②③ 【2018海淀一模】9. 从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是 . 【2018朝阳一模】15. 下列随机事件的概率:①投掷一枚均匀的骰子,朝上一面为偶数的概率;②同时抛掷两枚质地均匀的硬币,两枚硬币全部正面朝上的概率; ③抛一枚图钉,“钉尖向下”的概率; ④某作物的种子在一定条件下的发芽率.既可以用列举法求得又可以用频率估计获得的是 (只填写序号).15.“明天的降水概率为80%”的含义有以下四种不同的解释:① 明天80%的地区会下雨;② 80%的人认为明天会下雨;③ 明天下雨的可能性比较大;④ 在100次类似于明天的天气条件下,历史纪录告诉我们,大约有80天会下雨.你认为其中合理的解释是.(写出序号即可)【2018石景山一模】8.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.下图是对某球员罚球训练时命中情况的统计:下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.809,所以“罚球命中”的概率是0.809.其中合理的是A.①B.②C.①③D.②③【2018大兴一模】8. 某水果超市为了吸引顾客来店购物,设立了一个如图所示的可以自由转动的转盘,开展有奖购物活动. 顾客购买商品满200元就能获得一次转动转盘的机会, 当转盘停止时, 指针落在“一袋苹果”的区域就可以获得“一袋苹果”的奖品;指针落在“一盒樱桃”的区域就可以获得“一盒樱桃”的奖品. 下表是该活动的一组统计数据:下列说法不正确...的是A. 当n很大时,估计指针落在“一袋苹果”区域的频率大约是0.70B. 假如你去转动转盘一次, 获得“一袋苹果”的概率大约是0.70C. 如果转动转盘2 000次, 指针落在“一盒樱桃”区域的次数大约有600次D. 转动转盘10次,一定有3次获得“一盒樱桃”7.在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是A. 随着抛掷次数的增加,正面朝上的频率越来越小B. 当抛掷的次数很大时,正面朝上的次数一定占总抛掷次数的1 2C. 不同次数的试验,正面朝上的频率可能会不相同D. 连续抛掷11次硬币都是正面朝上,第12次抛掷出现正面朝上的概率小于1 2【2018怀柔一模】8.一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如下表:下面有三个推断:①投掷1000次时,“兵”字面朝上的次数是550,所以“兵”字面朝上的概率是0.55②随着实验次数的增加,“兵”字面朝上的频率总在0.55附近,显示出一定的稳定性,可以估计“兵”字面朝上的概率是0.55③当实验次数为200次时,“兵”字面朝上的频率一定是0.55其中合理的是()A.①B. ②C. ①②D. ①③【2018平谷一模】10.林业部门要考察某种幼树在一定条件下的移植成活率,下图是这种幼树在移植过程中幼树成活率的统计图:估计该种幼树在此条件下移植成活的概率为(结果精确到0.01).3 / 2416.某农科所在相同条件下做玉米种子发芽实验,结果如下:某位顾客购进这种玉米种子10千克,那么大约有____千克种子能发芽.%5 / 242.数据分析【2018东城一模】15. 举重比赛的总成绩是选手的挺举与抓举两项成绩之和,若其中一项三次挑战失败,则该项成绩为0. 甲、乙是同一重量级别的举重选手,他们近三年六次重要比赛的成绩如下(单位:公斤):如果你是教练,要选派一名选手参加国际比赛,那么你会选派____________(填“甲”或“乙”),理由是________________________________________________.【2018西城一模】7.空气质量指数(简称为AQI )是定量描述空气质量状况的指数,它的类别如下表所示.某同学查阅资料,制作了近五年月份北京市各类别天数的统计图如下图所示.根据以上信息,下列推断不合理的是A .AQI 类别为“优”的天数最多的是2018年1月B .AQI 数据在0~100之间的天数最少的是2014年1月C .这五年的1月里,6个AQI 类别中,类别“优”的天数波动最大D .2018年1月的AQI 数据的月均值会达到“中度污染”类别468优良轻度污染中度污染重度污染严重污染1月1月1月1月1月7.在线教育使学生足不出户也能连接全球优秀的教育资源. 下面的统计图反映了我国在线教育用户规模的变化情况.(以上数据摘自《2017年中国在线少儿英语教育白皮书》) 根据统计图提供的信息,下列推断一定不合理...的是 A .2015年12月至2017年6月,我国在线教育用户规模逐渐上升B .2015年12月至2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续上升C .2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值超过7000万D .2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70%【2018朝阳一模】7.“享受光影文化,感受城市魅力”,2018年4月15-22日第八届北京国际电影节顺利举办.下面的统计图反映了北京国际电影节﹒电影市场的有关情况.第六届和第八届北京国际电影节﹒电影市场“项目创投”申报类型统计表 根据统计图提供的信息,下列推断合理..的是 (A )两届相比较,所占比例最稳定的是动作冒险(含战争)类 (B )两届相比较,所占比例增长最多的是剧情类(C )第八届悬疑惊悚犯罪类申报数量比第六届2倍还多(D )在第六届中,所占比例居前三位的类型是悬疑惊悚犯罪类、剧情类和爱情类2015-2017年中国在线教育用户规模统计图6月12月6月12月7 / 247.太阳能是来自太阳的辐射能量.对于地球上的人类来说,太阳能是对环境无任何污染的可再生能源,因此许多国家都在大力发展太阳能.下图是2013-2017年我国光伏发电装机容量统计图.根据统计图提供的信息,判断下列说法不合理...的是(A )截至2017年底,我国光伏发电累计装机容量为13 078万千瓦 (B )2013-2017年,我国光伏发电新增装机容量逐年增加(C )2013-2017年,我国光伏发电新增装机容量的平均值约为2 500万千瓦 (D )2017年我国光伏发电新增装机容量大约占当年累计装机容量的40% 【2018门头沟一模】7. 下面的统计图反映了我市2011-2016年气温变化情况,下列说法不合理的是A .2011-2014年最高温度呈上升趋势;B .2014年出现了这6年的最高温度;C .2011-2015年的温差成下降趋势;D .2016年的温差最大. 【2018门头沟一模】12. 小明为了统计自己家的月平均用电量,做了如下记录并制成了表格,通过计算分析小明得出一个结论:小明家的月平均用电量为330千瓦时.请判断小明得到的结论温度50北京市2011-2016年气温变化情况最高气温最低气温6. 某班体育委员对本班所有学生一周锻炼时间(单位:小时)进行了统计,绘制了统计图,如图所示,根据统计图提供的信息,下列推断正确的是A. 该班学生一周锻炼时间的中位数是11B. 该班学生共有44人C. 该班学生一周锻炼时间的众数是10D. 该班学生一周锻炼12小时的有9人【2018房山一模】12. 下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择_____.【2018大兴一模】6. 自2008年实施国家知识产权战略以来,我国具有独立知识产权的发明专利日益增多.下图显示了2010-2013年我国发明专利申请量占世界发明专利申请量的比重.根据统计图提供的信息,下列说法不合理...的是A.统计图显示了2010-2013年我国发明专利申请量占世界发明专利申请量的比重的情况B.我国发明专利申请量占世界发明专利申请量的比重,由2010年的19.7%上升至2013年的32.1%C.2011年我国发明专利申请量占世界发明专利申请量的比重是28%D.2010-2013年我国发明专利申请量占世界发明专利申请量的比重逐年增长9 / 248.某超市的某种商品一周内每天的进价与售价信息和实际每天的销售量情况如图表所示,则下列推断不合理的是进价与售价折线图(单位:元/斤)实际销售量表(单位:斤)日期周一 周二 周三 周四 周五 周六 周日销售量 30403530506050A .该商品周一的利润最小B .该商品周日的利润最大C .由一周中的该商品每天售价组成的这组数据的众数是4(元/斤)D .由一周中的该商品每天进价组成的这组数据的中位数是(3元/斤) 【2018顺义一模】14.在一次测试中,甲组4人的成绩分别为:90,60,90,60,乙组4人的成绩分别为: 70,80,80,70.如果要比较甲、乙两组的成绩,你认为 组的成绩更好,理由是 . 【2018怀柔一模】6.下图是某品牌毛衣和衬衫2016年9月至2017年4月在怀柔京北大世界的销量统计图.根据统计图提供的信息,下列推断不合理的是( )A. 9月毛衣的销量最低,10月衬衫的销量最高B.与10月相比,11月时,毛衣的销量有所增长,衬衫的销量有所下降C.9月—11月毛衣和衬衫的销量逐月增长D.2月毛衣的销售量是衬衫销售量的7倍左右2.532.23 2.62.83.34545445123456周一周二周三周四周五周六周日进价售价——毛衣的销量 ……衬衫的销量数学老师让同学们针对统计的结果进行一下评估,学生的评估结果如下:①这次数学测试成绩中,甲、乙两个班的平均水平相同;②甲班学生中数学成绩95分及以上的人数少;③乙班学生的数学成绩比较整齐,分化较小.上述评估中,正确的是_____________.(填序号)【2018平谷一模】8.中小学时期是学生身心变化最为明显的时期,这个时期孩子们的身高变化呈现一定的趋势,7~15岁期间生子们会经历一个身高发育较迅速的阶段,我们把这个年龄阶段叫做生长速度峰值段,小明通过上网查阅《2016年某市儿童体格发育调查表》,了解某市男女生7~15岁身高平均值记录情况,并绘制了如下统计图,并得出以下结论:①10岁之前,同龄的女生的平均身高一般会略高于男生的平均身高;②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生;③7~15岁期间,男生的平均身高始终高于女生的平均身高;④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大.以上结论正确的是A.①③ B.②③ C.②④ D.③④11 / 24【2018延庆一模】7.下面的统计图反映了我国2013年到2017年国内生产总值情况.(以上数据摘自国家统 计局《中华人民共和国2017年国民经济和社会发展统计公报》) 根据统计图提供的信息,下列推断不合理...的是A .与2016年相比,2017年我国国内生产总值有所增长;B .2013-2016年,我国国内生产总值的增长率逐年降低;C .2013-2017年,我国国内生产总值的平均增长率约为6.7% ;D .2016-2017年比2014-2015年我国国内生产总值增长的多.【2018燕山一模】7.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界。