分式方程与二次根式较难题

合集下载

(专题精选)初中数学二次根式难题汇编及答案解析

(专题精选)初中数学二次根式难题汇编及答案解析

(专题精选)初中数学二次根式难题汇编及答案解析一、选择题 1.使代数式a a +-有意义的a 的取值范围为()n nA .0a >B .0a <C .0a =D .不存在【答案】C【解析】试题解析:根据二次根式的性质,被开方数大于等于0,可知:a≥0,且-a≥0. 所以a=0.故选C .2.实数a ,b 在数轴上对应点的位置如图所示,化简|a |+2(a b )-的结果是( )A .2a+bB .-2a+bC .bD .2a-b 【答案】B【解析】【分析】根据数轴得出0a <,0a b -<,然后利用绝对值的性质和二次根式的性质化简.【详解】解:由数轴可知:0a <,0b >, ∴0a b -<,∴()()22a a b a b a a b -=-+-=-+, 故选:B .【点睛】本题考查了数轴、绝对值的性质和二次根式的性质,根据数轴得出0a <,0a b -<是解题的关键.3.在下列算式中:257=②523x x x =;188944+==;94a a a =,其中正确的是( ) A .①③B .②④C .③④D .①④ 【答案】B【解析】【分析】根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案.【详解】25①错误;=②正确;222==,故③错误;==④正确;故选:B.【点睛】本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.4.下列计算结果正确的是()A3B±6CD.3+=【答案】A【解析】【分析】原式各项计算得到结果,即可做出判断.【详解】A、原式=|-3|=3,正确;B、原式=6,错误;C、原式不能合并,错误;D、原式不能合并,错误.故选A.【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键.5.m的值不可以是()A.18m=B.4m=C.32m=D.627m=【答案】B 【解析】【分析】【详解】A. 18m =时,12==84m ,是同类二次根式,故此选项不符合题意;B. 4m =时,=2m ,此选项符合题意C. 32m =时,=32=42m ,是同类二次根式,故此选项不符合题意;D. 627m =时,62==273m ,是同类二次根式,故此选项不符合题意 故选:B【点睛】本题考查二次根式的化简和同类二次根式的定义,掌握二次根式的化简法则是本题的解题关键.6.下列运算正确的是( )A .3+2=5B .(3-1)2=3-1C .3×2=6D .2253-=5-3 【答案】C【解析】【分析】根据二次根式的加减及乘除的法则分别计算各选项,然后与所给结果进行比较,从而可得出结果.【详解】解:A.3+25≠,故本选项错误;B. (3-1)2=3-23+1=4-23,故本选项错误;C. 3×2=6,故本选项正确;D.2253-=25916-= =4,故本选项错误.故选C.【点睛】本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.7.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】.8.下列计算或运算中,正确的是()A .=B =C .=D .-=【答案】B【解析】【分析】 根据二次根性质和运算法则逐一判断即可得.【详解】A 、=BC 、=D 、-=,此选项错误;故选B .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及二次根式的性质.9.x 的取值范围是( )A .1x ≥-B .12x -≤≤C .2x ≤D .12x -<<【答案】B【解析】【分析】【详解】解:要使二次根式有意义,则必须满足二次根式的被开方数为非负数,则1020xx+≥⎧⎨-≥⎩,解得:12x-≤≤故选:B.【点睛】本题考查二次根式的性质.10的值是一个整数,则正整数a的最小值是()A.1 B.2 C.3 D.5【答案】B【解析】【分析】根据二次根式的乘法法则计算得到a的最小值即可.【详解】∴正整数a是最小值是2.故选B.【点睛】本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简.11.有意义的x的取值范围()A.x>2 B.x≥2C.x>3 D.x≥2且x≠3【答案】D【解析】试题分析:分式有意义:分母不为0;二次根式有意义,被开方数是非负数.根据题意,得20{30xx-≥-≠解得,x≥2且x≠3.考点:(1)、二次根式有意义的条件;(2)、分式有意义的条件12.有意义时,a的取值范围是()A.a≥2B.a>2 C.a≠2D.a≠-2【答案】B【解析】解:根据二次根式的意义,被开方数a﹣2≥0,解得:a≥2,根据分式有意义的条件:a﹣2≠0,解得:a≠2,∴a>2.故选B.13.计算÷的结果是()A B C.23D.34【答案】A【解析】【分析】根据二次根式的运算法则,按照运算顺序进行计算即可.【详解】解:÷1(24=⨯÷=16=⨯2=.故选:A.【点睛】此题主要考查二次根式的运算,根据运算顺序准确求解是解题的关键.14.婴儿游泳是供婴儿进行室内或室外游泳的场所,婴儿游泳池的样式多种多样,现已知积为()A.B.C.D.【答案】D【解析】【分析】根据底面积=体积÷高列出算式,再利用二次根式的除法法则计算可得.【详解】故选:D .【点睛】考核知识点:二次根式除法.理解题意,掌握二次根式除法法则是关键.15.在实数范围内有意义,则x 的取值范围是( )A .3x >B .3x ≠C .3x ≥D .0x ≥【答案】C【解析】【分析】先根据二次根式有意义的条件是被开方式大于等于0,列出关于x 的不等式,求出x 的取值范围即可.【详解】在实数范围内有意义,∴x-3≥0,解得x≥3.故选:C .【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0.16.当实数x 41y x =+中y 的取值范围是( ) A .7y ≥-B .9y ≥C .9y <-D .7y <-【答案】B【解析】【分析】根据二次根式有意义易得x 的取值范围,代入所给函数可得y 的取值范围.【详解】解:由题意得20x -≥,解得2x ≥, 419x ∴+≥,即9y ≥.故选:B .【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x 的取值是解决本题的关键.17.下列运算正确的是( )A =B =C 123=D 2=-【答案】B【解析】【分析】根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】A .≠A 错误;B .=,故B 正确;C .=C 错误;D .2=,故D 错误.故选:B .【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.18.有意义的条件是( )A .x>3B .x>-3C .x≥3D .x≥-3 【答案】D【解析】【分析】根据二次根式被开方数大于等于0即可得出答案.【详解】根据被开方数大于等于0有意义的条件是+30≥x解得:-3≥x故选:D【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.19.下列根式中属最简二次根式的是( )A.21a+B.12C.8D.2【答案】A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A、无法化简;B、原式=;C、原式=2;D、原式=.考点:最简二次根式20.下列计算正确的是()A1836=B822=C.332=D2(5)5-=-【答案】B【解析】【分析】根据二次根式的混合运算顺序和运算法则逐一计算可得.【详解】A1831836=÷=822222==C.2333=,此选项计算错误;2(5)5-=,此选项计算错误;故选:B.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.。

浙教版初中数学八年级下册第一单元《二次根式》(困难)(含答案解析)

浙教版初中数学八年级下册第一单元《二次根式》(困难)(含答案解析)

浙教版初中数学八年级下册第一单元《二次根式》(困难)(含答案解析)考试范围:第一单元; &nbsp; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. 在实数范围内,√x−1有意义,则x的取值范围是( )A. x≥1B. x≤1C. x>1D. x<12. 设等式√a(x−a)+√a(y−a)=√x−a−√a−y在实数范围内成立,其中a、x、y是两两不同的实数,则3x 2+xy−y2x2−xy+y2的值是( )A. 3B. 13C. 2 D. 533. 设x、y、z是两两不等的实数,且满足下列等式:√x3(y−x)3+√x3(z−x)3=√y−x−√x−z,则x3+y3+z3−3xyz的值是( )A. 0B. 1C. 3D. 条件不足,无法计算4. 化简二次根式√−8a3的结果为( )A. −2a√−2aB. 2a√2aC. 2a√−2aD. −2a√2a5. 如果a+√a2−6a+9=3成立,那么实数a的取值范围是( )A. a≤0B. a≤3C. a≥−3D. a≥36. 如图为直线l:y=mx+n(m,n为常数且m≠0)的图象,化简√n2−|m−n|的结果为( )A. −mB. mC. m−2nD. 2n−m7. a,b,c为有理数,且等式a+b√2+c√3=√5+2√6成立,则2a+999b+1001c的值是( )A. 1999B. 2000D. 不能确定8. a,b,c为有理数,且等式a+b√2+c√3=√5+2√6成立,则2a+999b+1001c的值是( )A. 1999B. 2000C. 2001D. 不能确定9. 如图,在长方形ABCD中,AB=6,BC=10,其内部有边长为a的正方形AEFG与边长为b的正方形HIJK,两个正方形的重合部分也为正方形,且面积为5,若S2=4S1,则正方形AEFG与正方形HIJK的面积之和为( )A. 20B. 25C. 492D. 81410. 已知x=√2021−√2020,则x6−2√2020x5−x4+x3−2√2021x2+2x−√2021的值为( )A. 0B. 1C. √2020D. √202111. 下列根式中为最简二次根式的是( )B. √a2+b2C. √12D. √3a312. 二次根式:①√9−x2;②√(a+b)(a−b);③√a2−2a+1;④√1;⑤√0.75中最简x二次根式是( )A. ①②B. ③④⑤C. ②③D. 只有④第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 若√4−a有意义,则a的取值范围为.a+214. 已知a<b,化简二次根式√−2a2b的结果是______.15. 实数a、b、c在数轴上的位置如图所示,化简下列代数式的值√a2−√(c−a+b)2+|b+3=______.c|−√b33=___________16. 若x<0,则√x2−√x3三、解答题(本大题共10小题,共80.0分。

二次根式难题及答案

二次根式难题及答案

二次根式难题及答案【篇一:二次根式提高练习习题(含答案)】判断题:(每小题1分,共5分)21.(?2)ab=-2ab.???????()2.-2的倒数是3+2.()23.(x?1)=(x?1)2.?()4.ab、5.8x,13a3b、?2a是同类二次根式.?() xb1,9?x2都不是最简二次根式.() 31有意义. x?3(二)填空题:(每小题2分,共20分)6.当x__________时,式子7.化简-15828.a-a2?1的有理化因式是____________. 9.当1<x<4时,|x-4|+x2?2x?1=________________.ab?c2d2ab?cd2210.方程2(x-1)=x+1的解是____________. 11.已知a、b、c为正数,d为负数,化简12.比较大小:-=______.127_________-14.y?3=0,则(x-1)2+(y+3)2=____________.15.x,y分别为8-的整数部分和小数部分,则2xy-y2=____________.(三)选择题:(每小题3分,共15分)16.已知x3?3x2=-xx?3,则??????()(a)x≤0(b)x≤-3(c)x≥-3(d)-3≤x≤0222217.若x<y<0,则x?2xy?y+x?2xy?y=?????????()(a)2x(b)2y(c)-2x(d)-2y 18.若0<x<1,则(x?)?4-(x?(a)1x212)?4等于?????????() x22(b)-(c)-2x(d)2x xx?a3(a<0)得????????????????????????() 19.化简a(a)?a(b)-a(c)-?a(d)a20.当a<0,b<0时,-a+2ab-b可变形为???????????????()(a)(a?b)2 (b)-(a?b)2 (c)(?a??b)2 (d)(?a??b)2(四)计算题:(每小题6分,共24分)21.(5??2)(5?3?2);22.54?-42-;?73?23.(a2abn-mmmn+n24.(a+a?babb?ababab?bab?aa?(五)求值:(每小题7分,共14分)x3?xy23?2?25.已知x=,y=,求4的值. 3223xy?2xy?xy3?2?226.当x=1-2时,求xx?a?xx?a2222+2x?x2?a2x?xx?a222+1x?a22的值.六、解答题:(每小题8分,共16分)27.计算(2+1)(1111+++?+).1?22??4?28.若x,y为实数,且y=?4x+4x?1+(一)判断题:(每小题1分,共5分)1xyxy.求?2?-?2?的值. 2yxyx2、【提示】1?23?4?223、(x?1)=|x-1|,(x≥1).两式相等,必须x≥1.但等式左边x 可取任何数.【答(x?1)2=x-113a3b、?2a化成最简二次根式后再判断.【答案】√. xb6、【提示】x何时有意义?x≥0.分式何时有意义?分母不等于零.【答案】x≥0且x≠9.7、【答案】-2aa.【点评】注意除法法则和积的算术平方根性质的运用.8、【提示】(a-a2?1)(________)=a2-(a2?1)2.a+a2?1.【答案】a+a2?1. 9、【提示】x2-2x+1=()2,x-1.当1<x<4时,x-4,x-1是正数还是负数?x-4是负数,x-1是正数.【答案】3. 10、【提示】把方程整理成ax=b的形式后,a、b分别是多少?2?1,2?1.【答案】x=3+22. 11、【提示】c2d2=|cd|=-cd.【答案】ab+cd.【点评】∵ ab=(ab)2(ab>0),∴ ab-c2d2=(ab?cd)(ab?cd). 12、【提示】27=28,43=48.【答案】<.【点评】先比较28,48的大小,再比较-111,的大小,最后比较-与2848281的大小. 48【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14、【答案】40.【点评】x?1≥0,y?3≥0.当x?1+y?3=0时,x+1=0,y-3=0.15、【提示】∵ 3<<4,∴ _______<8-<__________.[4,5].由于8-介于4与5之间,则其整数部分x=?小数部分y=?[x=4,y=4-]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分) 16、【答案】d.【点评】本题考查积的算术平方根性质成立的条件,(a)、(c)不正确是因为只考虑了其中一个算术平方根的意义. 17、【提示】∵ x<y<0,∴ x-y<0,x+y<0.∴x2?2xy?y2=(x?y)2=|x-y|=y-x.x2?2xy?y2=(x?y)2=|x+y|=-x-y.【答案】c.【点评】本题考查二次根式的性质a2=|a|.18、【提示】(x-12111)+4=(x+)2,(x+)2-4=(x-)2.又∵ 0<x<1, xxxx11∴ x+>0,x-<0.【答案】d.xx【点评】本题考查完全平方公式和二次根式的性质.(a)不正确是因为用性质时没有注意当0<x<1时,x-1<0. x19、【提示】?a3=?a?a2=?aa2=|a|?a=-a?a.【答案】c. 20、【提示】∵ a<0,b<0,∴-a>0,-b>0.并且-a=(?a)2,-b=(?b)2,ab=(?a)(?b).【答案】c.【点评】本题考查逆向运用公式(a)2=a(a≥0)和完全平方公式.注意(a)、(b)不正确是因为a<0,b<0时,a、b都没有意义.(四)计算题:(每小题6分,共24分)21、【提示】将?看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(5?)2-(2)2=5-2+3-2=6-2. 22、【提示】先分别分母有理化,再合并同类二次根式.【解】原式=5(4?)4(?)2(3?)--=4+---3+7=1.16?1111?79?7abnm1nm-)22 mn+mmnabmn1nnmmmm?-? mn?+22mabmabmnnnn11a2?ab?1-+=. aba2b2a2b223、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a21b21=2b=【解】原式=24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.a??b?abaa(a?)?b(a?b)?(a?b)(a?b)a?bab(a?)(a?b)a?ba2?aab?bab?b2?a2?b2a?bab(a?)(a?b)=a?bab(a?b)(a?)=-?.a?b?ab(a?b)【点评】本题如果先分母有理化,那么计算较烦琐.(五)求值:(每小题7分,共14分) 25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.【解】∵ x=3?2=(3?2)2=5+2,3?23?2y==(3?2)2=5-26.3?2∴ x+y=10,x-y=46,xy=52-(26)2=1.2x(x?y)(x?y)x?y46x3?xy26.====2243223xy(x?y)xy(x?y)1?105xy?2xy?xy【点评】本题将x、y化简后,根据解题的需要,先分别求出“x+y”、“x-y”、“xy”.从而使求值的过程更简捷.26、【提示】注意:x2+a2=(x2?a2)2,∴ x2+a2-xx2?a2=x2?a2(x2?a2-x),x2-xx2?a2=-x (x2?a2-x).【解】原式=xx?a(x?a?x)2222-2x?x2?a2x(x?a?x)22+1x?a22=x2?x2?a2(2x?x2?a2)?x(x2?a2?x)xx?a(x?a?x)xx2?a2(x2?a2?x)2222222222222=x?2xx?a?(x?a)?xx?a?x=(x2?a2)2?xx2?a2=xx2?a2(x2?a2?x)x2?a2(x2?a2?x) xx2?a2(x2?a2?x)11.当x=1-2时,原式==-1-2.【点评】本题如果将前两个“分式”分拆成两个“分x1?2122x式”之差,那么化简会更简便.即原式=-2x?x?a+22222222x?ax?a(x?a?x)x(x?a?x)11111=(=1. ?)+?)-(2xx?a2?xxx2?a2x2?a2?xx2?a2=六、解答题:(每小题8分,共16分) 27、【提示】先将每个部分分母有理化后,再计算.【解】原式=(25+1)(2?13?24??+++?+) 2?13?24?3100?99=(25+1)[(2?1)+(?2)+(4?)+?+(?)]=(25+1)(00?1)=9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.1?x???1?4x?0?4]28、【提示】要使y有意义,必须满足什么条件?[? ]你能求出x,y的值吗?[?14x?1?0.??y?.?2?1?x???1?4x?0111?4【解】要使y有意义,必须[?,即?∴ x=.当x=时,y=.442?4x?1?0?x?1.?4?又∵xxyxy??2?-?2?=(yyxyxy2-xy2 )(?)xyx【篇二:二次根式及经典习题及答案】>知识点一:二次根式的概念形如()的式子叫做二次根式。

分式方程和二次根式试题和答案

分式方程和二次根式试题和答案

分式方程和二次根式专项讲解一.知识框架二.知识概念?A的整式叫做分式。

其中中含有未知数且B不等于0B1、分式:形如,A、B 是整式,?叫做分式的分母。

叫做分式的分子,B.分母中含有未知数的方程叫做分式方程分式方程的意义: 的算一般地,形如√ā(a ≥0)的代数式叫做二次根式。

当a>0时,√a表示a 二次根式:数平方根,其中√0=00 2、分式有意义的条件:分母不等于的整式,分式的值分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为03、C≠0)A/B=A÷C/B÷C (A,B,C为整式,且不变。

用式子表示为:A/B=A*C/B*C一般将一.约分时,、最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式5 个分式化为最简分式.①同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加6、分式的四则运算:ba?ab??用字母表示为:减. ccc然后再按同分母,异分母的分式相加减,先通分,化为同分母的分式②异分母分式加减法则:bcad?ca??用字母表示为:.分式的加减法法则进行计算bdbd把分母相乘的积作为积,:两个分式相乘,把分子相乘的积作为积的分子③分式的乘法法则acac??.用字母表示为:的分母bdbd.两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘④分式的除法法则:(1).dacaacad?????: (2).除以一个分式,等于乘以这个分式的倒数cbdbbcbd理解并掌握下列结论:7、????????220aa?0aa??aa?aa?0;3()1();2是非负数;()三、知识讲解1x??1)时,x_____年黔东南州)(1【例】2009当有意义.(x?1 11x x=2 .的值是★直通中考:1、(2009年漳州)若分式无意义,则实数2x?22xx??x.的值等于x=2 2、(2009年天津市)若分式的值为0,则21x?x?2 2+a )B 、(2010安徽芜湖有意义,)要使式子a的取值范围是(3a0 ≠且a.a≥-2 D2>-且a≠0 C.a>-2或a≠0 A.a≠0 B.a象限.__四__、已知有意义,则在平面直角坐标系中,点P(m,n)位于第412?分式方程年成都)2】(2009的解是x=2 【例1?3xx13?)(x=91、(2009年潍坊)方程的解是.★直通中考:32xx?7x12???x.))解分式方程:(2、(2009宁夏x?33x?3??xy112??()【例3】(2009 年佛山市)化简:??22y y??yxx?yx??11?)★直通中考:1、(2009年湖南长沙)分式C 的计算结果是(1)?a(aa?11?a1a1C.A.D B..aa?a1?1a a a1???1?)(= (2、2009年佳木斯)计算??21?1aa?1?a??22y?x?yxy2??1()=_______ 3、(2009年成都)化简:22y?9x?6x?xy3yyx?2)<1 ,化简D =(4、(2010广东广州)若a11)?(a?a.﹣ D C.a .Aa﹣2B.2﹣a225)?(x2)(x?、)(35<=,化简+5________.已知2<x28122()=】(2009年内江市)已知,则__________.【例40x??5x5?3?x5x?2255?2x5x?b?a22a?b?6ab?020a??b,2009,烟台市)设则(1的值等于.()★直通中考:、a?b11ab??,,P,设=Q==1ab为实数,且、已知2009、2(年枣庄市)ab1ba?1?1b??a1则P = Q(填“>”、“<”或“=”).221x2)的值为________.(、3(2011·呼和浩特)若x-3x+1=0,则241x+x+8 11253))若m为正实数,且m-=3,则m(-=________.4、(2011·乐山2mmxy0?y?2|x?2y|?)的值为(、5(2010四川广安),则若A6? D C.5 . A .8 B.22x5?2?2?x?y?x=________、已知.(,则6)y522ba?1?1b??,求= 2,的值.(2009年河北)已知a 【例5】1÷2ab?aa1??ba2??12?1化简后解:,代入可得22?4xx?4x?,x??1x? 1.先化简,再求值:其中、(2009年莆田)★直通中考:22xx??4x--1 解:化简后,代入可得11a1?a??)a(4?.,其中先化简,再求值:2、(2009年衡阳市)32??aaa2 101?3??13a?,代入可得解:化简后320?3x?1?xx式代,求数方次程数的实根已年3、(2011中考)知一是元二3x5?????x?2??的值.22?x??x?63x11201?x?3x?1?x(?3)x可化为解:化简后,因为,故原式可得)3(x?3x3yyx?x?11?33)?)?((计算代数式x,=2=2+,y已知2009(、4湖北省荆门市)yx?x?y22xy 的值.444?---,代入可得解:化简后????3xy332?2? 3的坐标为(﹣,0),点B在直线Ay=x上运动,当线段AB最短时点B的5、如图,点)坐为(AD..C.(0,0)B A.)(﹣,﹣,﹣)(,)(﹣6、如图所示,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为__4_______.【例6】(2009年安顺)下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的统计图表如下:依据上列图表,回答下列问题:(1)其中观看足球比赛的门票有_50__张;观看乒乓球比赛的门票占全部门票的_20_%;(2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地完全相同且充分洗匀),3);(问员工小华抽到男篮门票的概率是101,求每张乒乓球门票的价)若购买乒乓球门票的总款数占全部门票总款数的(36格。

二次根式经典难题

二次根式经典难题

1、例1、计算5051122183133++-- 2 、二次根式的加减:需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变。

注意:对于二次根式的加减,关键是合并同类二次根式,通常是先化成最简二次根式,再把同类二次根式合并.但在化简二次根式时,二次根式的被开方数应不含分母,不含能开得尽的因数. 例2、3、二次根式的乘法:4、二次根式的除法:注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式.例3、a c c b b a 53654⋅⋅例4、)254414()3191(3323y y x x y yx x +-+ 练习1、已知1018222=++x x x x ,则x 等于()A 、4B 、±2C 、2D 、±45、积的算术平方根语言叙述:积的算术平方根等于各因式的算术平方根的积。

性质:()0,0≥≥•=•b a b a b a例5、化简(1)8116⨯;(2)2000;(3)222853-6、商的算术平方根语言叙述:商的算术平方根等于被除式的算术平方根除以除以除式的算术平方根。

性质:()0,0>≥=b a ba b a 例6、化简643;(2)971二次根式经典难题1.已知31=+a a ,求a a 1+的值。

2. 当m 在可以取值范围内取不同的值时,代数式22427m m +-的最小值是3.如实数c b a ,,满足22+=b a ,且041232=++c ab ,则a bc =4. 已知342--+=b a a A 是2+a 的算术平方根,9232-+-=b a b B 是b -2的立方根, 求B A +的n 次方根.5. 已知72=+y x ,且y x <<0,那么满足题给式的整数对()y x ,有 组.6. 已知x -11x -+67=,求x x ---611的值。

二次根式难题汇编含答案解析

二次根式难题汇编含答案解析

二次根式难题汇编含答案解析一、选择题1.有意义,那么直角坐标系中 P(m,n)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n的取值,即可判断P点所在的象限.【详解】依题意的-m≥0,mn>0,解得m<0,n<0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.2.(的结果在()之间.A.1和2 B.2和3 C.3和4 D.4和5【答案】B【解析】【分析】的范围,再求出答案即可.【详解】(==22∵45<∴223<<(的结果在2和3之间故选:B【点睛】本题考查了无理数大小的估算,用有理数逼近无理数,求无理数的近似值.考查了二次根式的混合运算顺序,先乘方、再乘除、最后加减,有括号的先算括号里面的.3.在实数范围内有意义,则a的取值范围是()A.a≤﹣2 B.a≥﹣2 C.a<﹣2 D.a>﹣2【答案】B【解析】分析已知和所求,要使二次根式2a+在实数范围内有意义,则其被开方数大于等于0;易得a+2≥0,解不等式a+2≥0,即得答案.【详解】解:∵二次根式2a+在实数范围内有意义,∴a+2≥0,解得a≥-2.故选B.【点睛】本题是一道关于二次根式定义的题目,应熟练掌握二次根式有意义的条件;4.下列各式计算正确的是()A.22221081081082-=-=-=B.()()()()4949236-⨯-=-⨯-=-⨯-=C.11111154949236+=+=+=D.9255116164-=-=-【答案】D【解析】【分析】根据二次根式的性质对A、C、D进行判断;根据二次根式的乘法法则对B进行判断.【详解】解:A、原式=36=6,所以A选项错误;B、原式=49⨯=49⨯=2×3=6,所以B选项错误;C、原式=1336=13,所以C选项错误;D、原式255164=-=-,所以D选项正确.故选:D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.下列式子为最简二次根式的是()A.B.C.D.【答案】A【分析】【详解】解:选项A ,被开方数不含分母;被开方数不含能开得尽方的因数或因式, A 符合题意; 选项B ,被开方数含能开得尽方的因数或因式,B 不符合题意;选项C ,被开方数含能开得尽方的因数或因式, C 不符合题意;选项D ,被开方数含分母, D 不符合题意,故选A .6.已知n n 的最小值是( )A .3B .5C .15D .45【答案】B【解析】【分析】由题意可知45n 是一个完全平方数,从而可求得答案.【详解】=∵n∴n 的最小值为5.故选:B .【点睛】此题考查二次根式的定义,掌握二次根式的定义是解题的关键.7.x 的取值范围是( ) A .x≥76 B .x >76 C .x≤76 D . x <76【答案】B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】∵67x -是被开方数,∴670x -≥,又∵分母不能为零,∴670x ->,解得,x >76; 故答案为:B.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,解题的关键是熟练掌握其意义的条件.8.若代数式x 有意义,则实数x 的取值范围是( ) A .x≥1B .x≥2C .x >1D .x >2【答案】B【解析】【分析】根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x 的不等式组,解不等式组即可得.【详解】由题意得 200x x -≥⎧⎨≠⎩, 解得:x≥2,故选B.【点睛】本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.9.x 的取值范围是( )A .1x ≥-B .12x -≤≤C .2x ≤D .12x -<<【答案】B【解析】【分析】【详解】解:要使二次根式有意义,则必须满足二次根式的被开方数为非负数, 则1020x x +≥⎧⎨-≥⎩,解得:12x -≤≤ 故选:B .【点睛】本题考查二次根式的性质.10.已知25523y x x =-+--,则2xy 的值为( ) A .15-B .15C .152-D .152【答案】A【解析】 试题解析:由25523y x x =-+--,得250{520x x -≥-≥, 解得 2.5{3x y ==-.2xy =2×2.5×(-3)=-15,故选A .11.下列运算正确的是( )A .B .C .(a ﹣3)2=a 2﹣9D .(﹣2a 2)3=﹣6a 6 【答案】B【解析】【分析】各式计算得到结果,即可做出判断.【详解】解:A 、原式不能合并,不符合题意;B 、原式=,符合题意;C 、原式=a 2﹣6a +9,不符合题意;D 、原式=﹣8a 6,不符合题意,故选:B .【点睛】 考查了二次根式的加减法,幂的乘方与积的乘方,完全平方公式,以及分式的加减法,熟练掌握运算法则是解本题的关键.12.1a -a 的取值范围是( ) A .a≥-1B .a≤1且a≠-2C .a≥1且a≠2D .a>2【答案】B【解析】【分析】直接利用二次根式有意义的条件分析得出答案.【详解】 式子1a -有意义,则1-a≥0且a+2≠0, 解得:a≤1且a≠-2.故选:B .【点睛】 此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.13.如果,则a 的取值范围是( ) A . B . C . D . 【答案】B【解析】 试题分析:根据二次根式的性质1可知:,即故答案为B.. 考点:二次根式的性质.14.2222(2)(3)(5)(7)9x x x x ----≤,则x 取值范围为( ) A .26x ≤≤B .37x ≤≤C .36x ≤≤D .17x ≤≤【答案】A【解析】 【分析】先化成绝对值,再分区间讨论,即可求解.【详解】 ()()()()222223579x x x x ----,即:23579x x x x -+-+-+-≤,当2x <时,则23579x x x x -+-+-+-≤,得2x ≥,矛盾;当23x ≤<时,则23579x x x x -+-+-+-≤,得2x ≥,符合;当35x ≤<时,则23579x x x x -+-+-+-≤,得79≤,符合;当57x ≤≤时,则23579x x x x -+-+-+-≤,得6x ≤,符合;当7x >时,则23579x x x x -+-+-+-≤,得 6.5x ≤,矛盾;综上,x 取值范围为:26x ≤≤,故选:A .【点睛】本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟练运用二次根式的运算法则.15.计算÷的结果是()A B C.23D.34【答案】A【解析】【分析】根据二次根式的运算法则,按照运算顺序进行计算即可.【详解】解:÷1(24=⨯÷=16=⨯=.故选:A.【点睛】此题主要考查二次根式的运算,根据运算顺序准确求解是解题的关键.16.下列二次根式中,属于最简二次根式的是()A B C D 【答案】C【解析】【分析】根据二次根式的定义即可求解.【详解】=2,故不是最简二次根式;故选C.【点睛】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.17.计算201720192)2)的结果是( )A .B 2C .7D .7- 【答案】C【解析】【分析】先利用积的乘方得到原式= 201722)2)]2)⋅,然后根据平方差公式和完全平方公式计算.【详解】解:原式=201722)2)]2)+⋅=2017(34)(34)-⋅-1(7=-⨯-7=故选:C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.当实数x 41y x =+中y 的取值范围是( ) A .7y ≥-B .9y ≥C .9y <-D .7y <-【答案】B【解析】【分析】根据二次根式有意义易得x 的取值范围,代入所给函数可得y 的取值范围.【详解】解:由题意得20x -≥,解得2x ≥, 419x ∴+≥,即9y ≥.故选:B .【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x 的取值是解决本题的关键.19.下列运算正确的是( )A =B =C 123=D 2=-【答案】B【解析】【分析】根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】A .≠A 错误;B .=,故B 正确;C .=C 错误;D .2=,故D 错误.故选:B .【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.20.下列计算或运算中,正确的是()A .=B =C .=D .-=【答案】B【解析】【分析】 根据二次根性质和运算法则逐一判断即可得.【详解】A 、=BC 、=D 、-=,此选项错误;故选B .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及二次根式的性质.。

中考《分式与二次根式》经典例题及解析

中考《分式与二次根式》经典例题及解析

分式与二次根式一、分式 1.分式的定义(1)一般地,整式A 除以整式B ,可以表示成A B 的形式,如果除式B 中含有字母,那么称AB为分式. (2)分式AB中,A 叫做分子,B 叫做分母. 【注】①若B ≠0,则A B 有意义;②若B =0,则A B 无意义;③若A =0且B ≠0,则AB=0.2.分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示为(0)A A C C B B C ⋅=≠⋅或(0)A A C C B B C÷=≠÷,其中A ,B ,C 均为整式. 3.约分及约分法则(1)约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.(2)约分法则:把一个分式约分,如果分子和分母都是几个因式乘积的形式,约去分子和分母中相同因式的最低次幂;分子与分母的系数,约去它们的最大公约数.如果分式的分子、分母是多项式,先分解因式,然后约分. 【注】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因式.4.最简分式分子、分母没有公因式的分式叫做最简分式.【注】约分一般是将一个分式化为最简分式,分式约分所得的结果有时可能成为整式. 5.通分及通分法则(1)通分:根据分式的基本性质,把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这一过程称为分式的通分. (2)通分法则把两个或者几个分式通分:①先求各个分式的最简公分母(即各分母系数的最小公倍数、相同因式的最高次幂和所有不同因式的积); ②再用分式的基本性质,用最简公分母除以原来各分母所得的商分别去乘原来分式的分子、分母,使每个分式变为与原分式的值相等,而且以最简公分母为分母的分式; ③若分母是多项式,则先分解因式,再通分.【注】通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母.6.最简公分母:几个分式通分时,通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的分母叫做最简公分母. 7.分式的运算(1)分式的加减 ①同分母的分式相加减②异分母的分式相加减法则:先通分,变为用式子表示为:a c ad bcb d bd bd ±=±=(2)分式的乘法乘法法则:分式乘分式,用分子的积作为积(3)分式的除法除法法则:分式除以分式,把除式的分子用式子表示为:a c a d a db d bc b⋅÷=⋅=⋅.(4)分式的乘方乘方法则:分式的乘方,把分子、分母分别(5)分式的混合运算含有分式的乘方、乘除、加减的多种运算叫混合运算顺序:先算乘方,再算乘除,最后二、二次根式1.二次根式的有关概念 (1)二次根式的概念形如)0(≥a a 的式子叫做二次根式.其中【注】被开方数a 只能是非负数.即要使二(2)最简二次根式:被开方数所含因数是简二次根式.(3)同类二次根式: 化成最简二次根式后2.二次根式的性质(1)a ≥ 0(a ≥0);(2))(2=a(40,0)a b =≥≥3.二次根式的运算 (1)二次根式的加减合并同类二次根式:在二次根式的加减运算类二次根式合并成一个二次根式.相加减法则:分母不变,分子相加减.用式子表示为变为同分母的分式,然后再加减. ad bcbd±. 作为积的分子,分母的积作为积的分母.用式子表示分子、分母颠倒位置后与被除式相乘. c母分别乘方.用式子表示为:()(nn n a a n b b=为正整数运算叫做分式的混合运算.最后算加减.有括号的,先算括号里的. ”叫做二次根号,二次根号下的数要使二次根式a 有意义,则a ≥0.因数是整数,因式是整式,不含能开得尽方的因数或根式后,被开方数相同的几个二次根式,叫做同类二)0(≥a a ; (3(0)0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩;;(50,0)a b ≥>. 减运算中,把几个二次根式化为最简二次根式后,表示为:a c a cb b b±±=. 子表示为:a c a cb d b d⋅⋅=⋅. 正整数,0)b ≠.下的数叫做被开方数.因数或因式的二次根式,叫做最同类二次根式. ,若有同类二次根式,可把同(2)二次根式的乘除0,0)a b =≥≥0,0)a b ≥>. (3)二次根式的混合运算二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的. 在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用.经典例题 分式的有关概念1.若式子111x --在实数范围内有意义,则x 的取值范围是__________. 【答案】1x ≠【分析】由分式有意义的条件可得答案.【解析】解:由题意得:10,x -≠ 1,x ∴≠ 故答案为:1x ≠【点睛】本题考查的是分式有意义的条件,掌握分式有意义的条件是解题的关键. 2.若分式11x +的值不存在,则x =__________. 【答案】-1【分析】根据分式无意义的条件列出关于x 的方程,求出x 的值即可. 【解析】∵分式11x +的值不存在,∴x+1=0,解得:x=-1,故答案为:-1. 【点睛】本题考查的是分式无意义的条件,熟知分式无意义的条件是分母等于零是解答此题的关键. 3.分式52x x +-的值是零,则x 的值为( ) A .5 B .2 C .-2 D .-5【答案】D【分析】分式的值为零:分子等于零,且分母不等于零.【解析】解:依题意,得x+5=0,且x-2≠0,解得,x=-5,且x≠2,即答案为x=-5.故选:D .【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.1.要使分式11x -有意义,则x 的取值范围是( ) A .1x > B .1x ≠C .1x =D .0x ≠【答案】B【分析】根据分式有意义的条件即可解答.【解析】根据题意可知,10x -≠,即1x ≠.故选:B .【点睛】本题考查了分式有意义的条件,熟知分式有意义,分母不为0是解决问题的关键.2.当1x =时,下列分式没有意义的是( ) A .1x x+ B .1x x - C .1x x- D .1x x + 【答案】B【分析】由分式有意义的条件分母不能为零判断即可. 【解析】1xx -,当x=1时,分母为零,分式无意义.故选B. 【点睛】本题考查分式有意义的条件,关键在于牢记有意义条件. 3.方程3101x +=-的解为__________. 【答案】x=-2【分析】先用异分母分式加法法则运算,然后利用分式为零的条件解答即可.【解析】解:3101x +=- 31011x x x -+=-- 201x x +=- 则:2010x x +=⎧⎨-≠⎩,解得x=-2. 故答案为x=-2.【点睛】本题考查了异分母分式加法法则和分式为零的条件,掌握分式为零的条件是解答本题的关键.经典例题 分式的基本性质1.若a b ¹,则下列分式化简正确的是( )A .22a ab b+=+ B .22a a b b -=-C .22a a b b=D .1212aa b b = 【答案】D【分析】根据a ≠b ,可以判断各个选项中的式子是否正确,从而可以解答本题. 【解析】∵a ≠b ,∴22a a b b +≠+,选项A 错误;22a ab b-≠-,选项B 错误; 22a a b b ≠,选项C 错误;1212a ab b =,选项D 正确;故选:D . 【点睛】本题考查分式的性质,解答本题的关键是明确分式的性质.1.分式13-x可变形为( ) A .13x + B .-13x+ C .31-x D .1-3x - 【答案】D【分析】根据分式的基本性质逐项进行判断即可. 【解析】A.13x +≠13-x ,故A 选项错误;B. -13x +=13-x -≠13-x,故B 选项错误;C. 65x ==-13-x ,故C 选项错误;D. 1-3x -=1x-3)-(=13-x ,故D 选项正确,故选D. 【点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.经典例题 分式的约分与通分1. 关于分式的约分或通分,下列哪个说法正确 A .211x x +-约分的结果是1x B .分式211x -与11x -的最简公分母是x -1C .22x x 约分的结果是1D .化简221x x --211x -的结果是1【答案】D 【解析】A 、211x x +-=11x -,故本选项错误; B 、分式211x -与11x -的最简公分母是x 2-1,故本选项错误; C 、22x x =2x ,故本选项错误;D 、221x x --211x -=1,故本选项正确,故选D . 【点睛】本题主要考查分式的通分和约分,这是分式的重要知识点,应当熟练掌握.2.下列分式中,最简分式是( )A .2211x x -+B .211x x +-C .2222x xy y x xy-+- D .236212x x -+【答案】A【解析】选项A 为最简分式;选项B 化简可得原式==;选项C 化简可得原式==;选项D 化简可得原式==,故答案选A. 考点:最简分式.1.分式22x x -与282x x -的最简公分母是_______,方程228122-=--x x x x的解是____________. 【答案】()2x x - x=-4【分析】根据最简公分母的定义得出结果,再解分式方程,检验,得解. 【解析】解:∵()222x x x x -=-,∴分式22x x -与282x x-的最简公分母是()2x x -, 方程228122-=--x x x x,去分母得:()2282x x x -=-,去括号得:22282x x x -=-, 移项合并得:2280x x +-=,变形得:()()240x x -+=,解得:x=2或-4,∵当x=2时,()2x x -=0,当x=-4时,()2x x -≠0,∴x=2是增根,∴方程的解为:x=-4. 【点睛】本题考查了最简公分母和解分式方程,解题的关键是掌握分式方程的解法. 2.化简:2121x x x +++=_____. 【答案】11x + 【分析】先将分母因式分解,再根据分式的基本性质约分即可. 【解析】2121x x x +++=21(1)x x ++=11x +.故答案为:11x +. 【点睛】本题考查了分式的除法以及利用完全平方公式因式分解,解答本题的关键是掌握分式的基本性质以及因式分解的方法.经典例题 分式的运算1. 下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.229216926x x x x x -+-+++ 2(3)(3)21(3)2(3)x x x x x +-+=-++ 第一步32132(3)x x x x -+=-++ 第二步 2(3)212(3)2(3)x x x x -+=-++ 第三步26(21)2(3)x x x --+=+ 第四步26212(3)x x x --+=+ 第五步526x =-+ 第六步任务一:填空:①以上化简步骤中,第_____步是进行分式的通分,通分的依据是____________________或填为_____________________________;②第_____步开始出现错误,这一步错误的原因是_____________________________________; 任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议. 【答案】任务一:①三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;②五;括号前是“-”号,去掉括号后,括号里的第二项没有变号;任务二:726x -+;任务三:最后结果应化为最简分式或整式,答案不唯一,详见解析.【分析】先把能够分解因式的分子或分母分解因式,化简第一个分式,再通分化为同分母分式,按照同分母分式的加减法进行运算,注意最后的结果必为最简分式或整式.【解析】任务一:①三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;故答案为:三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变;②五;括号前是“-”号,去掉括号后,括号里的第二项没有变号;故答案为:五;括号前是“-”号,去掉括号后,括号里的第二项没有变号;任务二:解;229216926x x x x x -+-+++2(3)(3)21(3)2(3)x x x x x +-+=-++ 32132(3)x x x x -+=-++ 2(3)212(3)2(3)x x x x -+=-++26(21)2(3)x x x --+=+26212(3)x x x ---=+ 726x =-+.任务三:解:答案不唯一,如:最后结果应化为最简分式或整式;约分,通分时,应根据分式的基本性质进行变形;分式化简不能与解分式方程混淆,等.【点睛】本题考查的是有理数的混合运算,分式的化简,掌握以上两种以上是解题的关键.2.先化简,(22444x x x ++-﹣x ﹣2)÷22x x +-,然后从﹣2≤x ≤2范围内选取一个合适的整数作为x 的值代入求值.【答案】﹣x +3,2【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算可得.【解析】解:原式=()()()()2222-2x x x x ⎡⎤+-+⎢⎥+⎢⎥⎣⎦×22x x -+=2242222x x x x x x ⎛⎫+---⨯⎪--+⎝⎭ =26222x x x x x -++-⨯-+ =()()23222x x x x x +---⨯-+=﹣(x -3)=﹣x+3∵x ≠ ±2,∴可取x =1,则原式=﹣1+3=2.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.1.计算:212(111a aa a a +-+÷++ 【答案】2a a + 【分析】先把括号里通分,再把除法转化为乘法,然后约分化简即可.【解析】解:212(1)11a a a a a +-+÷++2(1)(1)1112a a a a a a -+++=⋅++211(2)a a a a a +=⋅++2a a =+. 【点睛】分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式. 2.先化简:2124244x x x x x x x -+-⎛⎫-÷⎪--+⎝⎭,然后选择一个合适的x 值代入求值. 【答案】化简结果是:2x x-,选择x =1时代入求值为-1. 【分析】先根据分式混合运算的法则把原式进行化简,再选出合适的x 的值代入进行计算即可【解析】解:原式2124244x x x x x x x -+-⎛⎫⎛⎫=-÷ ⎪ ⎪--+⎝⎭⎝⎭2(1)(2)(2)4(2)(2)(2)x x x x x x x x x x ⎡⎤-+--=-÷⎢⎥---⎣⎦ 2224(2)(2)4x x x x x x x --+-=⋅--24(2)(2)4x x x x x--=⋅--2x x -=. 当x=1时代入,原式=1211-==-.故答案为:化简结果是2x x-,选择x =1时代入求值为-1. 【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键,最后在选择合适的x 求值时要保证选取的x 不能使得分母为0.经典例题 二次根式的概念与性质1.在实数范围内有意义,则x 的取值范围是( ) A .2x ≠ B .2x ≥C .2x ≤D .2x ≠-【答案】C【分析】根据二次根式里面被开方数420x -≥即可求解.【解析】解:由题意知:被开方数420x -≥,解得:2x ≤,故选:C . 【点睛】本题考查了二次根式有意义的条件,必须保证被开方数大于等于0.2.已知3y =+-,则2xy 的值为( )A .15-B .15C .152-D .152【答案】A【解析】由3y =-,得250{520x x -≥-≥,解得 2.5{3x y ==-.2xy (=2×2.5×-)3=-,故选.15A 【点睛】本题考查的是二次根式有意义的条件,一元一次不等式组的解法,以及有理数的乘法运算,掌握以上知识是解题的关键.1.在实数范围内有意义,则x 的取值范围是( ) A .2x ≠ B .2x ≥C .2x ≤D .2x ≠-【答案】B【分析】根据二次根式里面被开方数240x -≥即可求解.【解析】解:由题意知:被开方数240x -≥,解得:2x ≥,故选:B . 【点睛】本题考查了二次根式有意义的条件,必须保证被开方数大于等于0.2.函数13y x =+-的自变量x 的取值范围是( ) A .2x ≥,且3x ≠ B .2x ≥ C .3x ≠D .2x >,且3x ≠【答案】A【分析】根据分式与二次根式的性质即可求解.【解析】依题意可得x-3≠0,x-2≥0解得2x ≥,且3x ≠故选A .【点睛】此题主要考查函数的自变量取值,解题的关键是熟知分式与二次根式的性质.经典例题1.下列各式是最简二次根式的是( )A BC D 【答案】A【分析】根据最简二次根式的定义即可求出答案.【解析】解:A B =C a =,不是最简二次根式,故选项错误;D =故选A.【点睛】本题考查最简二次根式,解题的关1.下列二次根式是最简二次根式的是AB【答案】D【分析】根据最简二次根式的概念逐一进行【解析】A.=,故A 选项不符合C.=,故C 选项不符合题意;【点睛】本题考查最简二次根式的识别,经典例题1.实数a 、b 在数轴上的位置如图所示A .2- B .0【答案】A【分析】根据实数a 和b 在数轴上的位置得【解析】由数轴可知-2<a <-1,1<b+-=【点睛】此题主要考查了实数与数轴之间的判断数的符号以及绝对值的大小,再根据运1.已知实数a 在数轴上的对应点位置如图A .32a -B .1-【答案】D【分析】根据数轴上a 点的位置,判断出【解析】解:由图知:1<a <2,∴a−1原式=a−1-2a -=a−1+(a−2)=题的关键是正确理解最简二次根式的定义,本题属于( ) CD一进行判断即可. 不符合题意;B. =,故B 选项不符合题意;D. 是最简二次根式,符合题意,故选D. ,熟练掌握二次根式的化简以及最简二次根式的概+-的结果是C .2a -D .2b位置得出其取值范围,再利用二次根式的性质和绝对<2,∴a+1<0,b-1>0,a-b <0, 11a b a b ++---=()()(11a b a b -++-+-之间的对应关系,以及二次根式的性质,要求学生正根据运算法则进行判断.置如图所示,则化简|1|a -的结果是(C .1D .23a -断出(a−1)和(a−2)的符号,再根据非负数的性质>0,a−2<0, 2a−3.故选D.题属于基础题型.合题意; 式的概念是解题的关键.结果是( ). 和绝对值的性质即可求出答案. )=-2故选A.学生正确根据数在数轴上的位置( )的性质进行化简.【点睛】此题主要考查了二次根式的性质与化简,正确得出a−1>0,a−2<0是解题关键. 经典例题 二次根式的运算1.下列计算中,正确的是( )A =B .2+=C =D .2= 【答案】C【分析】根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.【解析】解:A 不是同类二次根式,不能合并,此选项计算错误;B .2不是同类二次根式,不能合并,此选项错误;C ==,此选项计算正确;D .2不是同类二次根式,不能合并,此选项错误;故选:C .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的乘法法则与同类二次根式的概念.2. “分母有理化”7==+,设x =->,故0x >,由22332x ==-=,解得x =,即= )A .5+B .5+C .5D .5-【答案】D和2323+-进行化简,然后再进行合并即可.【解析】设x =<∴0x <,∴266x =--++,∴212236x =-⨯=,∴x =,5=-,∴原式5=-5=-D . 【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.1.计算:2+-=______.【分析】先将乘方展开,然后用平方差公式计算即可.【解析】解:2=+=22⎡⎤-⎢⎥⎣⎦.【点睛】本题考查了二次根式的混合运算以及平方差公式的应用,掌握二次根式混合运算的运算法则和平方差公式是解答本题的关键.2.下列等式成立的是( )A.3+=B=C= D3= 【答案】D【分析】根据二次根式的运算法则即可逐一判断.【解析】解:A 、3和A 错误;B=B 错误; C===,故C 错误;D3=,正确;故选:D . 【点睛】本题考查了二次根式的运算,解题的关键是掌握基本的运算法则.经典例题1.设2a =+,则( )A .23a <<B .34a <<C .45a <<D .56a << 【答案】C的范围,再得出a 的范围即可.【解析】解:∵4<7<9,∴23<<,∴425<<,即45a <<,故选C.【点睛】本题考查了无理数的估算,解题的关键是掌握无理数的估算方法.2-【答案】<【分析】利用分子有理化即可比较大小.【解析】=-+==-=++<故答案为:<.【点睛】此题考查的是实数的比较大小,掌握利用分子有理化比较大小是解决此题的关键.1.的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【答案】B【分析】因为224225<<在4到5之间,由此可得出答案.【解析】解:∵224225<<,∴45<<.故选:B【点睛】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.2. 下列各数中,比3大比4小的无理数是( )A.3.14 B.103CD【答案】C【分析】根据无理数的定义找出无理数,再估算无理数的范围即可求解.【解析】,而17>42,32<12<42>4,3<4∴选项中比3大比4.故选:C.【点睛】此题主要考查了无理数的定义和估算,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.。

专题01 二次根式重难点题型专训(原卷版)

专题01 二次根式重难点题型专训(原卷版)

【题型目录】题型一【经典例题一知识点(1)如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是【变式训练】【变式【经典例题二【解题技巧】掌握二次根式的加减乘除运算法则,是求二次根式的值的关键;【例2【变式训练】【变式【例3【变式训练】【变式【解题技巧】把二次根式中套叠着二次根式的情形叫做复合二次根式。

1、公式法2、配方法解出【变式训练】【变式【经典例题五如果一个二次根式符合下列两个条件:因数是整数,因式是整式。

那么,这个根式叫做最简二次根式。

【变式训练】【经典例题六几个次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。

【变式训练】【变式值为(【经典例题七【变式训练】【变式【经典例题八【变式训练】【变式正数解,方法为:如图,将四个长为A.-1B【变式3】(2021春·四川凉山2+---,x x x1(5),4(4)V的最长边的长度是(1)当2x=时,ABC【培优检测】1.(2022A .3154B .3152C .352D .3548.(2022·全国·八年级专题练习)设a 为3535+--的小数部分,b 为633633+--的小数部分,则21b a -的值为( )A .621+-B .621-+C .621--D .621++9.(2022春·浙江杭州·九年级专题练习)关于代数式12a a ++,有以下几种说法,①当3a =-时,则12a a ++的值为-4.②若12a a ++值为2,则3a =.③若2a >-,则12a a ++存在最小值且最小值为0.在上述说法中正确的是( )A .①B .①②C .①③D .①②③10.(2022春·湖北省直辖县级单位·八年级校联考阶段练习)化简二次根式 22a a a +-的结果是( )A .2a --B .-2a --C .2a -D .-2a -11.(2022秋·上海普陀·八年级校考期中)在实数范围内分解因式:2226x xy y --=_____________.12.(2022秋·山西临汾·九年级统考期中)已知223y x x =-+--,则()()20222023x y x y +-的值为_____.13.(2022秋·上海虹口·八年级上外附中校考阶段练习)已知120222021=-x ,则65432220212202222022x x x x x x --+-+-的值为___________.14.(2022秋·浙江温州·九年级统考阶段练习)温故知新:若满足不等式871513n n k <<+的整数k 只有一个,则正整数n 的最大值_____________.阅读理解:任意正整数a ,b ,∵()20a b-³,∴20a ab b -+³,∴2a b ab +³,只有当=a b 时,等号成立;结论:在2a b ab +³(a 、b 均为正实数)中,只有当=a b 时,+a b 有最小值2ab .若1m >,11m m +-有最小值为________.15.(2022秋·八年级课时练习)已知n 是正整数,182n -是整数,则满足条件的所有n 的值为__________.16.(2022秋·八年级单元测试)若20212022a a a -+-=,则22021a -的值为______.17.(2021春·安徽六安·九年级统考期中)阅读下面内容,并将问题解决过程补充完整.11(21)2121(21)(21)´-==-++-;11(32)3232(32)(32)´-==-++-;……11(10099)1009910099(10099)(10099)´-==-++-由此,我们可以解决下面这个问题:111123100S =+++×××+,求出S 的整数部分.解:1112222111231002233100100S =+++×××+=+++×××+++++222211122399100<+++×××+++++12(213210099)19=+-+-+-=L 1112222111231002233100100S =+++×××+=+++×××+++++……∴S 的整数部分是________.18.(2022·全国·八年级假期作业)形如726+的根式叫做复合二次根式,对726+可进行如下化简:726+=22(6)261(61)++=+=6+1,利用上述方法化简:102214231-+-+=_____.19.(2022秋·河北石家庄·八年级校考期中)阅读材料已知下面一列等式:111122´=-;11112323´=-;11113434´=-;11114545´=-¼¼(1)请用含n 的等式表示你发现的规律___________________;(2)证明一下你写的等式成立;(3)利用等式计算:1111(1)(1)(2)(2)(3)(3)(4)x x x x x x x x ++++++++++;(4)计算:1111122332310++++++++L .20.(2022秋·四川宜宾·九年级校考阶段练习)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如2322(12)+=+,善于思考的小明进行了以下探索:设22(2)a b m n +=+(其中a ,b ,m ,n 均为正整数),则有222222a b m n mn +=++.222a m n \=+,2b mn =.这样小明就找到了一种把部分2a b +的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a ,b ,m .n 均为正整数时,若23(3)a b m n +=+,用含m ,n 的式子分别表示a ,b ,得=a ,b = ;(2)利用所探索的结论,找一组正整数;a ,b ,m ,n 填空: + 3(= + 23);(3)若243(3)a m n +=+,且a ,m ,n 均为正整数,求a 的值.21.(2022秋·北京房山·八年级统考期末)将n 个0或2排列在一起组成一个数组,记为()12,,,n A t t t =L ,其中1t ,2t ,…,n t 取0或2,称A 是一个n 元完美数组(2n ³且n 为整数).例如:()0,2,()2,2都是2元完美数组,()2,0,0,0,()2,0,0,2都是4元完美数组.定义以下两个新运算:新运算1:对于()x y x y x y =+--*,新运算2:对于任意两个n 元完美数组()12,,,n M x x x =L 和()12,,,n N y y y =L ,()11221***2n n M N x y x y x y Å=+++L .例如:对于3元完美数组()2,2,2M =和()0,0,2N =,有1(0022)22M N Å=´++=.(1)①在()3,2,()2,0,()2,2,0中是2元完美数组的有______;②设()2,0,2A =,()2,0,0B =,则A B Å=______;(2)已知完美数组()2,2,2,0M =,求出所有4元完美数组N ,使得22M N Å=;(3)现有m 个不同的2022元完美数组,m 是正整数,且对于其中任意的两个完美数组C ,D 满足0C D Å=,则m 的最大可能值是______.22.(2022秋·四川资阳·九年级校考阶段练习)在日常生活中,有时并不要求某个量的准确值,而只需求出它的整数部分.如今天是星期一,还有55天中考,问中考前还有多少个星期一、容易知556777=,但答案并不是将小数部分四舍五入得到8,而是677的整数部分7,所以有7个星期一、为了解决某些实际问题,我们定义一种运算——取一个实数的整数部分,即取出不超过实数x 的最大整数.在数轴上就是取出实数x 对应的点左边最接近的整数点(包括x 本身),简称取整,记为[]x .这里[]x x a =-,[]x a x +=,其中[]x 是一个整数,01a £<,a 称为实数x 的小数部分,记作{}x Z ,所以有[]{}x x x Z =+.例如,[14.3]15-=-,2.45{}0.45Z =.关于取整运算有部分性质如下:①1[]x x x -<… ②若n 为整数,则[][]x n x n +=+请根据以上材料,解决问题:(1)[10]=___________;若[]m p =-,{}n Z p -=,则2m mn +=___________;(2)记111121322320222021M =++++++++L ,求[]M ;(3)解方程:3467[]93x x +-=.23.(2022秋·甘肃天水·九年级校考阶段练习)阅读下列材料,然后回答问题. ①在进行二次根式的化简与运算时,我们有时会碰上如231+一样的式子,其实我们还可以将其进一步化简:231=+2(31)(31)(31)-=+-22(31)(3)1-=-2(31)2-=31-以上这种化简的步骤叫做分母有理化.②学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知 a +b =2,ab = -3 ,求22a b +.我们可以把a +b 和ab 看成是一个整体,令 x =a +b , y = ab ,则2222224610()a b a b ab x y +=+-=-=+=.这样,我们不用求出a ,b ,就可以得到最后的结果.(1)计算:1+31+1+53+1+75+1 (20192017)++;(2)m 是正整数, a =11m m m m +-++,b =11m mm m+++-且222182322019a ab b ++=.求 m .(3)已知2215+261x x --=,求2215++26x x -的值.24.(2021秋·湖南长沙·八年级校考阶段练习)阅读下列三份材料:材料1:我们定义:在分式中对于只含有一个字母的分式当分子的次数大于或等于分母的次数时我们称之为“假分式”:当分子的次数小于分母的次数时我们称之为“真分式”如11x x -+,21x x -这样的分式就是假分式;再如31x +,221x x +这样的分式就是真分式;类似的,假分式也可以化为带分式.如:()12121111x x x x x +--==-+++;材料2:在学了乘法公式“()2222a b a ab b ±=±+”的应用后,王老师提出问题:求代数式245x x ++的最小值.要求同学们运用所学知识进行解答.同学们经过探索、交流和讨论,最后总结出如下解答方法:解:()2222245422521x x x x x ++=++-+=++,∵()220x +³,∴()2211x ++³.当()220x +=时,()221x ++的值最小,最小值是1.25311544x x =--++∴245x x ++的最小值是1.材料3:由()20a b -³得,222a b ab +³;如果两个正数a ,b ,即0a >,0b >,则有下面的不等式:2a b ab +³,当且仅当a =b 时取到等号.例如:已知0x >,求式子4x x+的最小值.解:令a =x ,4b x =,则由2a b ab +³,得4424x x x x+³×=,当且仅当4x x =时,即x =2时,式子有最小值,最小值为4.请你根据上述材料,解答下列各题:(1)已知0x >,填空:①把假分式12x x -+化为带分式的形式是________;②式子2815x x ++的最小值为________;③式子364+x x的最小值为________;(2)用篱笆围一个面积为32平方米的长方形花园,使这个长方形花园的一边靠墙(墙长20米),问这个长方形的长、宽各为多少时,所用的篱笆最短,最短的篱笆是多少?(3)已知0x >,分别求出分式223374x x x x -+-+和2234124x x x x -+-+的最值.(若有最大值,则求最大值,若有最小值,则求最小值).。

人教版初中数学二次根式难题汇编含答案

人教版初中数学二次根式难题汇编含答案
的因式即可. 【详解】
∵ 1 0 ,且 a 0 , a
∴a<0,
∴ a 1 >0, a
∴ a 1 = 1 (a)2 1 a2 = a ,
aa
a
故选:A.
【点睛】
此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于 0 得到
a 的取值范围是解题的关键.
6.若代数式 x 3 在实数范围内有意义,则实数 x 的取值范围是( ) x 1
故选:B 【点睛】 本题考查了无理数大小的估算,用有理数逼近无理数,求无理数的近似值.考查了二次根 式的混合运算顺序,先乘方、再乘除、最后加减,有括号的先算括号里面的.
3.已知 x 3 5 x 2,则化简 1 x2 5 x2 的结果是( )
A.4 【答案】A 【解析】
B. 6 2x
C. 4
D. 2x 6
x 3 0
由 x 3 5 x 2可得{
,∴3≤x≤5,∴
5 x 0
1 x2
5 x2 =x-1+5-x=4,故选
A.
4.计算 (3)2 的结果为( )
A.±3 【答案】C 【解析】 【分析】
B.-3
C.3
根据 a2 =|a|进行计算即可.
【详解】
(3)2 =|-3|=3,
14.实数 a, b 在数轴上对应的点位置如图所示,则化简 a2 | a b | b2 的结果是( )
A. 2a
【答案】A 【解析】 【分析】
B. 2b
C. 2a b
D. 2a b
利用 a2 a , 再根据去绝对值的法则去掉绝对值,合并同类项即可.
【详解】
解: a<0<b, a >b , a b<0,

(完整)二次根式经典难题(含答案),推荐文档

(完整)二次根式经典难题(含答案),推荐文档

x + 2 (1- x )2- 1a a + 2b + 4 -73 2ma 2 +1(a - 3)2 (a 2 + 4)4A x x - 2 1- 2x -m (x - 2)2(x -1)2(x +1)(x -1) x 2 (2 - a )2x - 2 二次根式经典难题1. 当时, + 有意义。

2. 若 + 1有意义,则m 的取值范围是 。

m +13. 当 x时, 是二次根式。

4. 在实数范围内分解因式: x 4 - 9 =, x 2 - 2 2x + 2 =。

5.6. 已知7. 化简: = 2x ,则x 的取值范围是 。

= 2 - x ,则 x 的取值范围是。

x 2 - 2x +1 (x 1)的结果是。

8. 当1 ≤ x 5 时,+ x - 5 = 。

9. 把a 的根号外的因式移到根号内等于 。

10. 使等式 = x -1 成立的条件是 。

11. 若 a - b +1 与 互为相反数,则(a - b )2005=。

12. 在式子 (x 0), y +1(y = -2)x 0), 3 3, x 2 +1, x + y 中,二次根式有()A. 2 个B. 3 个C. 4 个D. 5 个 14. 下列各式一定是二次根式的是()A.B.C.15. 若2 a 3,则 - 等于()A. 5 -2aB. 1- 2aC. 2a - 5D. 2a -116. 若 A =,则 = () A. a 2 + 4B. a 2 + 2C. (a 2 + 2)2D. (a 2 + 4)218. 能使等式= 成立的 x 的取值范围是( )A. x ≠ 2B. x ≥ 0C. x 2D. x ≥ 2x +1 2, -2x 4x 2 a b(2a -1)2 3 22 ⨯ 3 3 3 x 2 + 1- 2 x 22m +n -2 33m -2n +2 3 3 3 (1- 2a )2(-2)2 ⨯ 3 x - y 2 y3xx -1x 5 (x +1)1+ a ab 3 19. 计算: + 的值是( )A. 0B. 4a - 2C. 2 - 4aD. 2 - 4a 或4a - 2 20. 下面的推导中开始出错的步骤是()2 = = 12 ⋅⋅⋅⋅⋅⋅(1) -2 == 12 (2)∴ 2 = -2 3 (3) ∴2 = -2 (4) A. (1)B. (2)C. (3)D. (4)21. 若 + y 2 - 4 y + 4 = 0 ,求 xy 的值。

二次根式经典难题(含答案)

二次根式经典难题(含答案)

二次根式经典难题(含答案)1.当x满足x+2+1-2x有意义时。

2.若-m+1/(m+1)有意义,则m的取值范围是什么。

3.当x满足1-x为二次根式时。

4.在实数范围内分解因式:x^4-9=(x^2+3)(x^2-3),x^2-22x+2=(x-11+3√3)(x-11-3√3)。

5.若4x^2=2x,则x的取值范围是0和1/2.6.已知(x-2)^2=2-x,则x的取值范围是{x|x≤2+√2或x≥2-√2}。

7.化简:x^2-2x+1(x+1)的结果是(x-1)^2.8.当1≤x≤5时,(x-1)^2+x-5=x^2-2x+5.9.把a-1/a的根号外的因式移到根号内等于|a-1|。

10.使等式(x+1)(x-1)=x-1/x+1成立的条件是x不等于1.11.若a-b+1与a+2b+4互为相反数,则(a-b)^2005=1.12.在式子x^2(x,2,y+1)(y=-2),-2x(x,3,3),x^2+1,x+y中,二次根式有2个。

14.下列各式一定是二次根式的是a2+1.15.若2a=3,则(2-a)^2-(a-3)^2等于5-2a。

16.若A=(a^2+4)^4,则A=(a^2+2)^2.18.能使等式x/(x-2)=x-2成立的x的取值范围是{x|x≠2且x≥2}。

19.计算:(2a-1)^2+(1-2a)^2的值是4a^2-4a+2.20.下面的推导中开始出错的步骤是(2)。

21.当a≤0,b≤0时,ab^3=-a^2b。

23.去掉下列各根式内的分母:(1) 2y/3x(x)。

(2) (x-1)/(x^5(x+1))(x-1)。

24.已知x^2-3x+1=0,求x^2+1/x^2-2的值为-1/3.25.已知a,b为实数,且1+a-(b-1)/(1-b)=0,求a^2005-b^2006的值为a^2005-b^2005.2.若 $2m+n-2$ 和 $33m-2n+2$ 都是最简二次根式,则$m=11,n=24$。

二次根式难题类型及解题方法

二次根式难题类型及解题方法

二次根式难题类型及解题方法(老师用)一. 利用非负性解题()0(≥a a )例题 1. 若y=x x -+-55+2009,则x+y=2.若0|3|24=-+-y x ,则2xy= 。

3. 若1a b -+与24a b ++互为相反数,则()2005_____________a b -=。

4.当a 取什么值时,代数式211a ++取值最小,并求出这个最小值。

解题方法 :以上题目只要利用好二次根式的非负性,便可以很好的求出结果二.利用二次根式的性质化简例题 1. 已知2x <,则化简244x x -+的结果是 ( )A 、2x -B 、2x +C 、2x --D 、2x -2.如果表示a ,b 两个实数的点在数轴上的位置如图所示,那么化简│a -b │+2()a b + 的结果等于( )A .-2bB .2bC .-2aD .2a3.如果11a 2a a 2=+-+,那么a 的取值范围是( )A. a=0B. a=1C. a=0或a=1D. a ≤1解题方法:1.充分利用二次根式的性质2.利用配方的知识三.利用同类二次根式的概念解题例题1.若最简根式343a b a b -+与根式23226ab b b -+是同类二次根式,求a 、b 的值. 2若最简二次根式22323m -与212410n m --是同类二次根式,求m 、n 的值.四.二次根式的求值题(一)给值求值类型(1)给一个值求值型例题 1 .、.12121,321222的值求已知a a a a a a a a -+--+--=2、的值求已知:22,1232++-=x x x3、.10217283,625234的值求已知-+---=x x x x x4、.)199419974(,21994120013的值求时当--+=x x x 解题方法归纳:一种是直接代入,另外先对条件作出变形之后再作整体代入(后者更好)(2)给出两个字母的值求代数式的值类型1、已知的值求22353,23,23y xy x y x +--=+=2、已知.,13,132222的值求xyy x y x y x +--=+= 3.当x=15+7,y=15-7,求x 2-xy+y 2的值为4.已知a=3+22,b=3-22,则a 2b-ab 2=_________.解题方法:以上题目给出的两个数均为两个有理化因式,它们的和与积都是很简单的数,因此可以先把各与积求出来,再对代数式作出变形后代入(二)给(代数)式的值求另外代数式的值类型例题 1.的值求已知x y y x xy y x +=-=+,2,32.已知.,,4,6的值求且b a ba b a ab b a +->==+3.已知2310x x -+=,求2212x x +-的值。

(专题精选)初中数学二次根式难题汇编附答案

(专题精选)初中数学二次根式难题汇编附答案

(专题精选)初中数学二次根式难题汇编附答案一、选择题1.若代数式1y x =-有意义,则实数x 的取值范围是( ) A .0x ≥B .0x ≥且1x ≠C .0x >D .0x >且1x ≠ 【答案】B【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】根据题意得:010x x ≥⎧⎨-≠⎩ , 解得:x≥0且x≠1.故选:B .【点睛】此题考查分式有意义的条件,二次根式有意义的条件,解题关键在于掌握分母不为0;二次根式的被开方数是非负数.2.下列式子正确的是( )A 6=±B C 3=- D 5=- 【答案】C【解析】【分析】根据算术平方根、立方根的定义和性质求解即可.【详解】解:6=,故A 错误.B 错误.3=-,故C 正确.D. 5=,故D 错误.故选:C【点睛】此题主要考查算术平方根和立方根的定义及性质,熟练掌握概念是解题的关键.3.把(a b-根号外的因式移到根号内的结果为().A B C.D.【答案】C【解析】【分析】先判断出a-b的符号,然后解答即可.【详解】∵被开方数1b a≥-,分母0b a-≠,∴0b a->,∴0a b-<,∴原式(b a=--==故选C.【点睛】=|a|.也考查了二次根式的成立的条件以及二次根式的乘法.4.a的值为()A.2 B.3 C.4 D.5【答案】D【解析】【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【详解】根据题意得,3a-8=17-2a,移项合并,得5a=25,系数化为1,得a=5.故选:D.【点睛】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.5.已知n是整数,则n的最小值是().A.3 B.5 C.15 D.25【答案】C【解析】【分析】【详解】Q也是整数,解:=∴n的最小正整数值是15,故选C.6.在下列算式中:=②=;==;=,其中正确的是()③42A.①③B.②④C.③④D.①④【答案】B【解析】【分析】根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案.【详解】①错误;=②正确;==,故③错误;222==④正确;故选:B.【点睛】本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.7.下列各式计算正确的是( )A.2+b=2b B=C.(2a2)3=8a5D.a6÷ a4=a2【答案】D【解析】解:A.2与b不是同类项,不能合并,故错误;B不是同类二次根式,不能合并,故错误;C.(2a2)3=8a6,故错误;D.正确.故选D.8.)A.±3 B.-3 C.3 D.9【答案】C【解析】【分析】进行计算即可.【详解】,故选:C.【点睛】此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.9.(的结果在( )之间.A .1和2B .2和3C .3和4D .4和5 【答案】B【解析】【分析】的范围,再求出答案即可.【详解】 (22==∵45<∴223<<(的结果在2和3之间故选:B【点睛】本题考查了无理数大小的估算,用有理数逼近无理数,求无理数的近似值.考查了二次根式的混合运算顺序,先乘方、再乘除、最后加减,有括号的先算括号里面的.10.1x -在实数范围内有意义,则实数x 的取值范围是( ) A .1x ≠B .3x >-且1x ≠C .3x ≥-D .3x ≥-且1x ≠ 【答案】D【解析】【分析】根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.【详解】在有意义, ∴x+3≥0,x-1≠0,解得:x≥-3且x≠1,故选D .【点睛】本题主要考查了分式和二次根式有意义的条件,关键是掌握:①分式有意义,分母不为0;②二次根式的被开方数是非负数.11.如果m 2+m =0,那么代数式(221m m ++1)31m m +÷的值是( )AB .C + 1D + 2 【答案】A【解析】【分析】先进行分式化简,再把m 2+m =. 【详解】 解:(221m m ++1)31m m +÷ 223211m m m m m+++=÷ 232(1)1m m m m +=⋅+ =m 2+m ,∵m 2+m =0,∴m 2+m =∴原式=故选:A .【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.12.下列运算正确的是( )A B .1)2=3-1 C D 5-3 【答案】C【解析】【分析】根据二次根式的加减及乘除的法则分别计算各选项,然后与所给结果进行比较,从而可得出结果.【详解】解:≠,故本选项错误;1)2=3-C. 3×2=6,故本选项正确;D.2253-=25916-= =4,故本选项错误.故选C.【点睛】本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.13.如果代数式m mn -+有意义,那么直角坐标系中 P(m,n)的位置在( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n 的取值,即可判断P 点所在的象限.【详解】依题意的-m≥0,mn >0,解得m <0,n <0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.14.使代数式a a +-有意义的a 的取值范围为()n nA .0a >B .0a <C .0a =D .不存在【答案】C【解析】试题解析:根据二次根式的性质,被开方数大于等于0,可知:a≥0,且-a≥0. 所以a=0.故选C .15.如果,则a 的取值范围是( ) A . B . C . D .【答案】B【解析】试题分析:根据二次根式的性质1可知:,即故答案为B.. 考点:二次根式的性质.16.下列计算错误的是( )A .BCD 【答案】A【解析】【分析】【详解】选项A ,不是同类二次根式,不能够合并;选项B ,原式=2÷=选项C ,原式=选项D ,原式==. 故选A.17.下列二次根式中,属于最简二次根式的是( )A B C D【答案】C【解析】【分析】根据二次根式的定义即可求解.【详解】=2,故不是最简二次根式;故选C.【点睛】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.18.在实数范围内有意义,则x 的取值范围是( )A .3x >B .3x ≠C .3x ≥D .0x ≥【答案】C【解析】【分析】先根据二次根式有意义的条件是被开方式大于等于0,列出关于x 的不等式,求出x 的取值范围即可.【详解】 解:∵二次根式3x -在实数范围内有意义,∴x-3≥0,解得x≥3.故选:C .【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0.19.实数,a b 在数轴上对应的点位置如图所示,则化简22||a a b b +++的结果是( )A .2a -B .2b -C .2a b +D .2a b -【答案】A 【解析】 【分析】 2,a a = 再根据去绝对值的法则去掉绝对值,合并同类项即可.【详解】解:0,,a b a b Q <<> 0,a b ∴+<22||a a b b a a b b ∴++=+++()a a b b =--++a ab b =---+2.a =-故选A .【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.20.把1a --( ) A a -B .aC .a --D a 【答案】A【解析】【分析】由二次根式-a是负数,根据平方根的定义将a移到根号内是2a,再化简根号内的因式即可.【详解】∵1a-≥,且0a≠,∴a<0,∴-,∴-=故选:A.【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a的取值范围是解题的关键.。

新初中数学二次根式难题汇编含解析(1)

新初中数学二次根式难题汇编含解析(1)

新初中数学二次根式难题汇编含解析(1)一、选择题1.式子2a +有意义,则实数a 的取值范围是( ) A .a≥-1B .a≤1且a≠-2C .a≥1且a≠2D .a>2【答案】B【解析】【分析】直接利用二次根式有意义的条件分析得出答案.【详解】式子2a +有意义,则1-a≥0且a+2≠0, 解得:a≤1且a≠-2.故选:B .【点睛】 此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.2.下列各式中计算正确的是()A +=B .2+=C =D .22= 【答案】C【解析】【分析】结合选项,分别进行二次根式的乘法运算、加法运算、二次根式的化简、二次根式的除法运算,选出正确答案.【详解】解:不是同类二次根式,不能合并,故本选项错误;B.2=D.2=1,原式计算错误,故本选项错误. 故选:C.【点睛】本题考查二次根式的加减法和乘除法,在进行此类运算时,掌握运算法则是解题的关键.3.下列式子为最简二次根式的是( )A .B .C .D .【答案】A【解析】【分析】【详解】解:选项A ,被开方数不含分母;被开方数不含能开得尽方的因数或因式, A 符合题意; 选项B ,被开方数含能开得尽方的因数或因式,B 不符合题意;选项C ,被开方数含能开得尽方的因数或因式, C 不符合题意;选项D ,被开方数含分母, D 不符合题意,故选A .4.1x -x 的取值范围是( )A .x <1B .x ≥1C .x ≤﹣1D .x <﹣1【答案】B【解析】【分析】根据二次根式有意义的条件判断即可.【详解】解:由题意得,x ﹣1≥0,解得,x ≥1,故选:B .【点睛】本题主要考查二次根式有意义的条件,熟悉掌握是关键.5.67x -x 的取值范围是( ) A .x≥76 B .x >76 C .x≤76 D . x <76【答案】B【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】∵67x -是被开方数,∴670x -≥,又∵分母不能为零,∴670x ->,解得,x >76; 故答案为:B.本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,解题的关键是熟练掌握其意义的条件.6.把-( )AB .C .D 【答案】A【解析】【分析】由二次根式-a 是负数,根据平方根的定义将a 移到根号内是2a ,再化简根号内的因式即可.【详解】 ∵10a-≥,且0a ≠, ∴a<0,∴-,∴-= 故选:A.【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a 的取值范围是解题的关键.7.若代数式y =有意义,则实数x 的取值范围是( ) A .0x ≥B .0x ≥且1x ≠C .0x >D .0x >且1x ≠【答案】B【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】 根据题意得:010x x ≥⎧⎨-≠⎩, 解得:x≥0且x≠1.【点睛】此题考查分式有意义的条件,二次根式有意义的条件,解题关键在于掌握分母不为0;二次根式的被开方数是非负数.8.下列运算正确的是()A B.1)2=3-1 C D5-3【答案】C【解析】【分析】根据二次根式的加减及乘除的法则分别计算各选项,然后与所给结果进行比较,从而可得出结果.【详解】解:≠,故本选项错误;1)2=3-,故本选项正确;= =4,故本选项错误.故选C.【点睛】本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.9.在实数范围内有意义,则a的取值范围是()A.a≤﹣2 B.a≥﹣2 C.a<﹣2 D.a>﹣2【答案】B【解析】【分析】在实数范围内有意义,则其被开方数大于等于0;易得a+2≥0,解不等式a+2≥0,即得答案.【详解】在实数范围内有意义,∴a+2≥0,解得a≥-2.故选B.【点睛】本题是一道关于二次根式定义的题目,应熟练掌握二次根式有意义的条件;10.如果一个三角形的三边长分别为12、k 、72|2k ﹣5|的结果是( )A .﹣k ﹣1B .k +1C .3k ﹣11D .11﹣3k【答案】D【解析】【分析】 求出k 的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】 ∵一个三角形的三边长分别为12、k 、72, ∴72-12<k <12+72, ∴3<k <4,,=-|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k ,故选D .【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.11.估计值应在( ) A .3到4之间B .4到5之间C .5到6之间D .6到7之间 【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】解:=∵91216<<<<∴34<<∴估计值应在3到4之间. 故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.12.a =-成立,那么a 的取值范围是( )A .0a ≤B .0a ≥C .0a <D .0a >【答案】A【解析】【分析】由根号可知等号左边的式子为正,所以右边的式子也为正,所以可得答案.【详解】得-a≥0,所以a≤0,所以答案选择A 项.【点睛】本题考查了求解数的取值范围,等号两边的值相等是解答本题的关键.13.下列计算错误的是( )A .BCD 【答案】A【解析】【分析】【详解】选项A ,不是同类二次根式,不能够合并;选项B ,原式=2÷=选项C ,原式=选项D ,原式==. 故选A.14.有意义时,a 的取值范围是( ) A .a ≥2B .a >2C .a ≠2D .a ≠-2【答案】B【解析】解:根据二次根式的意义,被开方数a ﹣2≥0,解得:a ≥2,根据分式有意义的条件:a ﹣2≠0,解得:a≠2,∴a>2.故选B.15.计算÷的结果是()A B C.23D.34【答案】A【解析】【分析】根据二次根式的运算法则,按照运算顺序进行计算即可.【详解】解:÷1(24=⨯÷=16=⨯=.故选:A.【点睛】此题主要考查二次根式的运算,根据运算顺序准确求解是解题的关键.16.下列计算正确的是()A.=B=C.=D-=【答案】B【解析】【分析】根据二次根式的加减乘除运算法则逐一计算可得.【详解】A、-B、,此选项正确;C 、() 75153-÷=(53-15)÷3=5-5,此选项错误;D 、 1818339-=2222-=-,此选项错误; 故选B【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.17.已知1212a b ==+-,,则,a b 的关系是( ) A .a b =B .1ab =-C .1a b =D .=-a b 【答案】D【解析】【分析】根据a 和b 的值去计算各式是否正确即可.【详解】A. 1122212121212a b -+-+-=--==---,错误; B. 12112ab +=≠--,错误; C. 12112ab +=≠-,错误; D. 112221201212a b +-+-+=++==--,正确; 故答案为:D .【点睛】本题考查了实数的运算问题,掌握实数运算法则是解题的关键.18.如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为( )A .2B 6C .236223D .23225【答案】D【解析】【分析】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,可得两个阴影部分的图形的长和宽,计算可得答案.【详解】将面积为2和3的正方形向下平移至下方边长和长方形的长边重合,如下图所示:则阴影面积=()()222323⨯-+⨯-=222233-+-=23225+-故选:D【点睛】本题考查算术平方根,解答本题的关键是明确题意,求出大小正方形的边长,利用数形结合的思想解答.19.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D . 【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】2x +∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.20.已知实数a 、b 在数轴上的位置如图所示,化简|a +b 2()b a - )A .2a -B .2aC .2bD .2b - 【答案】A【解析】【分析】 2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】 2a .。

专题03 分式与二次根式(题型归纳)(解析版)

专题03 分式与二次根式(题型归纳)(解析版)

专题03 分式与二次根式1.(2021·浙江·温州市第二中学三模)使分式34x x --有意义的字母x 的取值范围是( ) A .x ≠0 B .x ≠3 C .x ≠4 D .x ≠3且x ≠4【答案】C【分析】根据分式有意义的条件即可作出判断. 【详解】解:根据题意得x ﹣4≠0,则x ≠4. 故选:C .2.(2022·甘肃定西·模拟预测)函数32y x=-中,自变量x 的取值范围是( ) A .2x ≠- B .2x ≠C .0x ≠D .2x <【答案】B【分析】根据分母不能为0求解即可. 【详解】解:∵分母不能等于0 ∴20x -≠题型一 分式有意义、无意义的条件题型演练题型归纳∴2x ≠ 故选B .3.(2022·江苏淮安·一模)若分式2xx +有意义,则x 的取值范围是( ) A .0x ≠ B .2x ≠- C .2x >- D .2x ≥-【答案】B【分析】根据分式有意义的条件:分母不为0即可得到. 【详解】要分式2xx +有意义,则20x +≠, 解得:2x ≠-. 故选:B4.(2022·贵州遵义·模拟预测)函数1x y +=x 的取值范围是( ) A .1x ≠- B .2x ≠C .1x ≥或2x ≠D .1x ≥-且2x ≠【答案】D【分析】根据分式有意义的条件和二次根式有意义的条件,列出不等式,即可求解. 【详解】根据题意,得:10x +≥,20x -≠, 解得1x ≥-且2x ≠, 故选:D .5.(2022·浙江·三模)若要使得分式211x -有意义,则x 的取值范围为_______.【答案】x ≠±1【分析】根据分式有意义的条件即可求出答案. 【详解】解:由题意可知:|x 2-1|≠0, ∴x 2-1≠0, ∴x ≠±1, 故答案为:x ≠±1.6.(2022·江苏·南通市海门区东洲国际学校模拟预测)当x =_____时,分式225x x -+无意义.【答案】52-【分析】根据分式无意义的条件:分母为零,列出方程,解方程得到答案. 【详解】解:由题意得,2x +5=0,25,x ∴=-5,2x ∴=-故答案为:5.2-7.(2022·江苏南京·二模)下列代数式的值总不为0的是( ) A .2x + B .22x - C .12x + D .()22x +【答案】C【分析】根据题目给出的整式和分式,列举x 的值即可判断. 【详解】解:A .当x =-2时,x +2=0,故本选项不合题意; B .当x =±2时,x 2-2=0,故本选项不合题意; C .在分式12x +中,因为x +2≠0,所以分式12x +≠0,故本选项符合题意; D .当x =-2时,(x +2)2=0,故本选项不合题意; 故选:C .8.(2022·贵州毕节·一模)关于分式254x x x a--+,有下列说法,错误的有( )个:(1)当x 取1时,这个分式有意义,则a ≠3; (2)当x =5时,分式的值一定为零; (3)若这个分式的值为零,则a ≠﹣5;(4)当x 取任何值时,这个分式一定有意义,则二次函数y =x 2﹣4x +a 与x 轴没有交点. A .0 B .1C .2D .3【答案】B【分析】根据分式值为零的条件是分子等于零且分母不等于零,分式有意义的条件是分母不等于零进行分析即可.【详解】解:(1)当x 取1时,24143x x a a a -+=-+=-,要使分式有意义即30a -≠,解得3a ≠, 故说法正确;(2)当5x =时,2425205x x a a a -+=-+=+,若5a =-,则分式无意义, 故说法错误;(3)由题意得25040x x x a -=⎧⎨-+≠⎩,解得55x a =⎧⎨≠-⎩,故说法正确;(4)当x 取任何值时,分式一定有意义,即240x x a -+≠,则y =x 2﹣4x +a 与x 轴没有交点,题型二 分式的值为零的条件故说法正确;综上所述:错误的说法有1个,故选:B.9.(2022·浙江温州·一模)若分式23xx--的值为0,则x的值为()A.3-B.2-C.0 D.2【答案】D【分析】根据分式的值为零的条件:分子等于0且分母不等于0即可得出答案.【详解】解:∵分式23xx--的值为0∴x﹣2=0,x﹣3≠0,∴x=2,故选:D.10.(2021·浙江温州·三模)分式31xx+-的值为0,则x的值是()A.﹣3 B.0 C.1 D.3【答案】A【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】解:∵分式31xx+-的值为0,∴x+3=0且x﹣1≠0,解得:x=﹣3,故选:A.11.(2022·浙江丽水·一模)若分式12xx+-的值为0,则x=_____.【答案】-1【分析】若分式12xx+-的值为0,则1x+为0而20x-≠即可.【详解】解:{1020x x+=-≠解得1x=-故填:-112.(2022·江苏盐城·二模)当x为_______时,分式245xx+-的值为0.【答案】2-【分析】根据分式值为0的条件,可知分子为0,分母不为0,即可求解.【详解】解:∵分式245x x +-的值为0, ∴240,50x x +=-≠, 解得2x =-. 故答案为:2-.13.(2022·四川·眉山市东坡区苏洵初级中学模拟预测)下列各式x 、2x 、1x 、22x +、2x +中,值一定是正数的有( ) A .1个 B .2个C .3个D .4个【答案】B【分析】根据有理数的乘方、绝对值的性质进行解答即可. 【详解】解:x 不一定是正数;2x 是非负数,不一定是正数; 1x一定是正数; 22x +一定是正数;2x +是非负数,不一定是正数;所以值一定是正数的有2个. 故选:B14.(2021·浙江温州·三模)若a b=12,则a b b +的值是( )A .3B .23C .32D .2【答案】C【分析】根据a b =12得2b a =,将2b a =代入a b b +中即可得出答案.【详解】解:∵a b=12,∴2b a =, 将2b a =代入a bb+中, 得2322a a a +=, 故选:C .题型三 分式的求值15.(2022·江苏宿迁·三模)已知两个不等于0的实数a 、b 满足0a b +=,则b aa b+等于( )A .2-B .1-C .1D .2【答案】A【分析】先化简式子,再利用配方法变形即可得出结果.【详解】解:∵22=b a b a a b ab++,∴()2222==a b ab b a b a a b ab ab+-++, ∵两个不等于0的实数a 、b 满足0a b +=,∴()22-2===-2a b ab b a ab a b ab ab +-+, 故选:A .16.(2021·安徽安庆·一模)已知2x y=,则+-x yx y 的值为( )A .﹣3B .3C .13D .13-【答案】B【分析】直接利用已知得出x =2y ,进而代入计算得出答案. 【详解】解:∵2xy=, ∴x =2y ,∴232x y y yx y y y ++==--. 故选:B .17.(2022·江苏镇江·二模)已知:a 与b 互为相反数,且12a b -=,则21a ab b a ab -+=++______. 【答案】116【分析】利用a 与b 互为相反数,12a b -=,求解10,,16a b ab 再整体代入求值即可. 【详解】解: a 与b 互为相反数,0,a b ∴+=,b a12a b -= 12,2a1,4a当1,4a = 则1,4b当1,4a =- 则1,4b1,16ab∴()21.1116a ab b ab ab a ab a a b -+-==-=++++ 故答案为:11618.(2022·黑龙江大庆·二模)已知非零实数x ,y 满足1xy x =+,则2x xy y xy --=__________. 【答案】-1【分析】将条件式整理可得xy x y =-,代入代数式即可求解. 【详解】解:∵1xy x =+, ∴xy x y =-, ∴2x xy y xy --=21xy xy xyxy xy--==-, 故答案为:1-.19.若分式2231xx -+的值是负数,则x 的取值范围是( ) A .x >32B .x >23C .x <32D .x <23【答案】B【分析】根据题意列出不等式即可求出x 的取值范围. 【详解】解:由题意可知:2﹣3x <0,且x 2+1>0恒成立, ∴x >23, 故选:B . 20.下列关于分式2x x+的说法,错误的是( ) A .当x>-2时,分式的值一定为负数 B .当x=0时,分式没有意义 C .当x<-2时,分式的值一定为正数题型四 分式的值为正或负时未知数的取值范围D .当x=-2时,分式的值为0 【答案】A【分析】根据“分式的分子分母同号时,分式的值为正数,当分式的分子分母异号时,分式的值为负数”判断A ,C 选项;根据“分式的分母为0时,分式没有意义”判断B 选项;根据“当分式的分母不为0,且分子为0时,分式的值为0”判断D 选项.【详解】解:A 项:当x=1时,分式的值为正数,故此选项错误,符合题意; B 项:当x=0时,分式没有意义,正确,故此选项不合题意; C 项:当x<-2时,分式的值一定为正数,正确,故此选项不合题意; D 项:当x=-2时,分式的值为0,正确,故此选项不合题意. 故选A . 21.已知分式24x x +的值是正数,那么x 的取值范围是( ) A .x >0 B .x >-4 C .x ≠0 D .x >-4且x ≠0【答案】D 【分析】若24x x +的值是正数,只有在分子分母同号下才能成立,即x +4>0,且x≠0,因而能求出x 的取值范围. 【详解】解:∵24x x +>0, ∴x +4>0,x≠0, ∴x >−4且x≠0. 故选:D . 22.若分式2213x x -+的值为正数,则x 需满足的条件是( ) A .x 为任意实数 B .12x <C .12x >D .12x >-【答案】C【分析】因为分母不可能是负数,所以分子的值是正数就可以了,据此可得解. 【详解】∵230x +>, ∴分式2213x x -+的值为正数时,210x ->, 解得:12x >.故选:C. 23.若分式32xx -的值为正数,x 的取值范围是__.【答案】23x >或0x <; 【分析】根据分式的值为正数可列不等式组,解不等式组可求解x 的取值范围. 【详解】由题:∵ 分式32xx -的值为正数, ∴0320x x >⎧⎨->⎩或0320x x <⎧⎨-<⎩ 解得:23x >或0x <; 故填:23x >或0x <. 24.若分式22xx +的值为正,则实数x 的取值范围是__________________. 【答案】x >0【分析】分式值为正,则分子与分母同号,据此进行讨论即可得. 【详解】∵分式2xx 2+的值为正, ∴x 与x 2+2的符号同号, ∵x 2+2>0, ∴x>0, 故答案为x>0.25.(2022·河北·一模)如果要使分式23aa b-的值保持不变,那么分式应( ) A .a 扩大2倍,b 扩大3倍 B .a ,b 同时扩大3倍 C .a 扩大2倍,b 缩小3倍 D .a 缩小2倍,b 缩小3倍【答案】B【分析】先根据题意列出算式,再根据分式的基本性质进行化简,最后得出答案即可. 【详解】A. a 扩大2倍,b 扩大3倍, 2242233293a a aa b a b a b⨯=≠-⨯--,故该选项不正确,不符合题意;B. a ,b 同时扩大3倍,2362333393a a aa b a b a b⨯==-⨯--,故该选项正确,符合题意;C. a 扩大2倍,b 缩小3倍,2242123233a a aa b a b a b ⨯=≠---⨯,故该选项不正确,不符合题意;题型五 分式的基本性质D. a 缩小2倍,b 缩小3倍1222123233aa a ab a b a b⨯=≠---⨯,故该选项不正确,不符合题意; 故选B26.(2022·山东临沂·二模)下列运算正确的是( ) A 623= B .33a ab b-=- C .221a a -=D .(a ﹣12)2=a 2﹣a -14【答案】C【分析】利用二次根式除法运算、分式的约分、负整数指数幂的性质、完全平方公式计算即可.【详解】解:A 623,故选项A 错误; B 、33a b --不能约分化简,故选项B 错误; C 、221a a -=,计算正确,符合题意; D 、(a ﹣12)2=a 2﹣a +14,故选项D 错误,故选C .27.(2022·湖南永州·二模)如果分式xyx y+中的x ,y 都扩大为原来的2倍,那么所得分式的值( ) A .不变B .缩小为原来的12 C .扩大为原来的2倍 D .不确定【答案】C【分析】直接利用分式的基本性质化简得出答案. 【详解】解:把分式xyx y+中的x 和y 都扩大为原来的2倍, 则原式可变为:2222x y x y⋅+=2×xyx y +,故分式的值扩大为原来的2倍. 故选:C .28.(2022·河北保定·一模)不改变分式的值,将分式0.020.50.004x yx y++中的分子、分母的系数化为整数,其结果为( )A .2050010004x yx y++B .205001004x yx y++C .25010004x yx y++D .254x yx y++ 【答案】A【分析】利用分式的基本性质,分子分母同时扩大相同的倍数即可求解. 【详解】解:0.020.50.004x yx y++()()10000.020.510000.004x y x y ⨯+⨯+= 2050010004x yx y++=,故选:A.29.(2022·湖北襄阳·一模)已知114y x-=,则分式2322x xy y x xy y +---的值为______.【答案】112【分析】先根据题意得出x-y=4xy ,然后代入所求的式子,进行约分就可求出结果. 【详解】∵114y x-=, ∴x-y=4xy , ∴原式=2()383112422x y xy xy xy x y xy xy xy -++==---,故答案为:112. 30.(2020·宁夏·银川市第九中学二模)若0234x y z==≠,则x y z 2y +-=_______. 【答案】16【分析】首先设恒等式等于某一常数,然后得到x 、y 、z 与这一常数的关系式,将各关系式代入求职【详解】解:x2=y3=z4=k (k≠0),则2,3,4x k y k z k ===2341=22366+-+-==⨯x y z k k k k y k k 31.(2020·河北·模拟预测)下列分式中,属于最简分式的是 ( ) A .42xB .211x x -- C .221xx + D .11xx -- 题型六 最简分式【答案】C【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分. 【详解】解:A 、原式2x=,不是最简分式,故本选项不符合题意; B 、原式11x =+,不是最简分式,故本选项不符合题意; C 、该式子是最简分式,故本选项符合题意; D 、原式1=-,不是最简分式,故本选项不符合题意; 故选:C .32.(2022·四川绵阳·二模)下列分式属于最简分式的是( ) A .265xy xB .x y y x--C .22x y x y ++D .2293x y x y-+【答案】C【分析】利用最简分式的定义:分式分子分母没有公因式,判断即可. 【详解】A 、265xy x =65yx,不符合题意; B 、原式=-1,不符合题意; C 、符合题意;D 、2293x y x y-+=x -3y ,不符合题意;故选:C .33.(2021·江西·一模)下列运算正确的是( ) A 235B .33xy xy -= C .22a b a b a b+=++ D .()3263a b a b =【答案】D【分析】根据同类二次根式的定义、合并同类项法则、分式的运算和积的乘方逐一判断即可. 【详解】解:23 B.32xy xy xy -=,故本选项错误;C.22a b a b a b+≠++,故本选项错误; D.()3263a b a b =,故本选项正确.故选D .34.(2022·广东·九年级专题练习)分式22a b a b ++,22a ba b +-,312x y ,2a b a b++中,最简分式有( )A .1个B .2个C .3个D .4个【答案】B【分析】根据最简分式的定义,即分子与分母没有公因式的分式是最简分式,即可求解. 【详解】解:()()221a b a b a b a b a b a b ++==-+--,不是最简分式,3124x xy y=,不是最简分式, 22a b a b ++,2a b a b++是最简分式,有2个.故选:B35.(2022·江苏连云港·九年级期末)已知23a b =,则a a b +的值为 _____.【答案】25【分析】根据比例性质和分式的基本性质求解即可. 【详解】解:设23a bk ==, ∴2a k =,3b k =, ∴a ab +=2222355k k k k k ==+, 故答案为:25.36.在分式22222223,,,,332+-++-+-+--b a b m n x xy a b ca ab m n xc a b中,最简分式有______. 【答案】2222a b a b +- 【分析】根据最简分式的意义对每项进行检验判断. 【详解】解:由33333(1)b ba a =++=1ba+,得到此分式不是最简分式; 由22()()m n m n m n m n m n -+-=++=m ﹣n ,得到此分式不是最简分式;由2()22x xy x x y x x ++==2x y+,得到此分式不是最简分式; 由()a b c a b cc a b a b c +-+-=---+-=﹣1,得到此分式不是最简分式;而2222a b a b +-分子分母没有公因式,是最简分式. 故答案为:2222a b a b +- . 37.(2022·广西梧州·二模)下列计算正确的是( ) A .5a -3a =2 B .3624233a b a b ab = C .()222a b a b +=+ D .256323-÷⨯=【答案】B【分析】根据合并同类项,分式的约分,完全平方公式,有理数的混合运算逐项分析判断即可求解.【详解】解:A. 5a -3a =2a ,故该选项不正确,不符合题意;B. 3624233a b a b ab=,故该选项正确,符合题意; C. ()2222a b a b ab +=++,故该选项不正确,不符合题意;D. 235635635272232-÷⨯=-⨯⨯=-=-,故该选项不正确,不符合题意;故选B38.(2022·山西吕梁·一模)解分式方程3732124x x x-=+-时,去分母这一步方程两边不能同时乘以( ) A .()()2124x x +- B .()()22121x x +- C .()()22121x x -+- D .22(21)x -【答案】D【分析】利用解分式方程中的去分母求解即可. 【详解】解:将3732124x x x-=+-转化成()37321221x x x -=+--, ∴A.()()2124x x +-,能同时乘以,故不符合题意; B.()()22121x x +-,能同时乘以,故不符合题意; C.()()22121x x -+-,能同时乘以,故不符合题意; D.22(21)x -,不能同时乘以,符合题意; 故选:D .题型七 约分与通分39.(2022·云南昆明·模拟预测)若20m n =≠,则222m n mn m --的值为______. 【答案】32-【分析】分式约分后,把m =2n 代入即可.【详解】222()()23()22m n m n m n m n n n mn m m m n m n -+-++==-=-=----,故答案为:32-.40.(2022·上海·位育中学模拟预测)化简:2132x x x -=-+________.【答案】12x - 【分析】对分母进行因式分解后约分即可. 【详解】解:2132x x x --+()()112x x x -=--12x =-. 故答案为:12x -. 41.(2021·内蒙古呼和浩特·二模)分式2211,1a a a-++的最简公分母是________,22111a a a+-++ =__________【答案】 ()()11a a a +-()()111a a a +-【分析】先把两个分式分解因式,然后通分,即可得到答案;然后进行计算求值即可. 【详解】解:∵()()211111a a a =-+-+,()2111a a a a =++ ∴()()()()21111111a a a a a a a ==-+-+-+,()()21111aa a a a a -=++- ∴211a -+,21a a+的最简公分母为:()()11a a a +- ∴()()()()2221111111111a a a a a a a a a a a a a +-+===-++++-+- 故答案为:()()11a a a +-,()()111a a a +- 42.(2021·江苏·宜兴市实验中学二模)分式22m m n -和3nm n-的最简公分母为_____.【答案】2(m ﹣n )【分析】利用最简公分母的定义求解,分式22m m n -和3nm n-的分母分别是2(m ﹣n )、(m﹣n ),故最简公分母是2(m ﹣n )即是本题答案. 【详解】解:∵分式22m m n -和3nm n-的分母分别是2(m ﹣n )、(m ﹣n ).∴它们的最简公分母是2(m ﹣n ). 故答案为:2(m ﹣n ).43.(2022·辽宁沈阳·二模)化简:()224xx x ⋅+=-( ) A .2x x- B .x C .2x x - D .2x -【答案】C【分析】先把分母因式分解,再计算,即可求解. 【详解】解:()224xx x ⋅+- ()()()222xx x x =⋅++-2x x =- 故选:C44.(2022·山东滨州·二模)下列运算正确的是( ) A .()333a b a b +=+ B .()21303xy xy y y÷=≠ C 382-= D .3a -4a =-a【答案】D【分析】根据多项式乘多项式的法则、单项式除单项式、立方根、合并同类项的法则分别进行计算,即可得出答案.【详解】解:A 、应为(a +b )3=a 3+3a 2b +3ab 2+b 3,故本选项错误;B 、应为()22313303xy xy y xy y y⋅÷==≠,故本选项错误; C 382--,故本选项错误;D 、3a -4a =-a ,正确,故本选项符合题意; 故选:D .45.(2022·山东· 模拟预测)计算225x xy y xy y x-⋅-的结果是( ) 题型八 分式的乘除法A .31y B .31y -C .41y D .41y -【答案】B【分析】根据分式的运算法则化简即可求解. 【详解】解:225x xy y xy y x -⋅- 25()x x y y xy y x-=⋅-31y =-. 故选:B .46.(2022·湖北武汉·二模)计算:221688164x x x x -÷=+++_____.【答案】48x - 【分析】把被除式的分子分母分别因式分解,然后除变乘颠倒除式的分子分母进行约分,即可得到答案.【详解】解:22168816+4x x x x -÷++ =2(4)(4)(4)48x x x x +-⋅++=48x - 故答案为:48x -. 47.(2022·山西晋中·二模)计算:()2222aa aba ba b +÷=--______. 【答案】1a b- 【分析】根据分式的运算法则计算. 【详解】解:原式=()()()()2a ab aa b a b a b +÷+--=()2a ab a a b -⨯-=1a b- 故答案为1a b-.48.(2022·甘肃陇南·模拟预测)计算:21211x x x +÷--=________. 【答案】12【分析】先将除法转化为乘法运算,再结合平方差公式分解因式,约分化简即可解答. 【详解】解:21211x x x +÷--21=(()11)1x x x x +⨯-+-12=.49.(2022·广东·珠海市文园中学三模)化简111x x x --+的结果是( ) A .1 B .1x + C .1x -D .2211x x +-【答案】D【分析】首先通分,然后利用同分母的分式相加减的运算法则求解即可,注意运算结果需化为最简形式. 【详解】解:111x x x --+()()()()()()1111111x x x x x x x +⨯-=-+-+-()()()()1111x x x x x +--=+-()()2111x x x x x +-+=+-2211x x +=-.故选:D .50.(2022·贵州贵阳·三模)计算222m m m ---的结果是( ) A .2 B .-2C .1D .-1【答案】C【分析】根据分式减法运算法则进行运算,化简即可. 【详解】解:221222m m m m m --==---, 故选:C .51.(2021·湖南·长沙市华益中学三模)计算222164a a a ---的结果是 _____. 【答案】2816a -【分析】利用异分母分式的加减法法则计算. 【详解】原式()()22444a a a a =-+--()()()()()2424444a aa a a a +=-+-+-题型九 分式的加减法222816a a a --=-2816a =-,故答案为:2816a -.52.(2022·湖南怀化·模拟预测)计算52x x ++﹣32x +=_____. 【答案】1【分析】根据同分母分式相加减,分母不变,把分子相加减计算即可. 【详解】解:52x x ++﹣32x +=532122x x x x +-+==++ 故答案为:1.53.(2022·陕西·交大附中分校模拟预测)化简:(113m +-)÷2269m m m --+ 【答案】3m -【分析】利用通分,约分,因式分解等方法化简即可. 【详解】(113m +-)÷2269m m m --+ =(22(3)32m m m m --⨯-- =3m -.54.(2022·安徽·模拟预测)先化简,再求值:22321242a a a a a-+++---,其中1a =-. 【答案】2aa -+,1 【分析】原式先通分并利用同分母分式的加法法则计算,再约分即可得到结果,再将字母的值代入求解即可. 【详解】原式2(2)32(1)(2)(2)(2)(2)(2)(2)(2)a a a a a a a a a a +-++=+--+-+-+()2243232(2)(2)a a a a a a ++--++=-+(2)(2)(2)a a a a -=--+2aa =-+. 当1a =-时,原式1112-=-=-+55.(2022·上海普陀·二模)先化简,再求值:223112-⎛⎫-÷ ⎪++⎝⎭a a a a,其中3a = 【答案】2aa+,33 【分析】根据分式的加减乘除法则进行化简,然后代入数值计算即可. 【详解】解:原式1(1)2(1)(1)-+=⨯++-a a a a a a 2=+aa当3a =323=+233=.56.(2022·甘肃嘉峪关·三模)先化简,再求值:2222222a b a b a ab b b a a ab ⎛⎫-+÷ ⎪-+--⎝⎭,其中a ,b 130a b +=. 【答案】3,a b 【分析】先利用非负数的性质求得a ,b 的值,然后代入化简后的代数式求值即可. 【详解】∵a ,b 130a b +=. ∴a +1=0,b 30,解得a =﹣1,b 32222222a b a b a ab b b a a ab ⎛⎫-+÷ ⎪-+--⎝⎭()()()22()a a b a a b a b a b b b a ⎡⎤-=-⋅⎢⎥--⎣+-⎦()2a a b a a b b ba ab -⎡⎤=-⋅⎢⎥--⎣⎦+ ()2a ab a b bb -=⋅-ab = 当a =﹣1,b 3 ∴原式33a b === 57.(2022·广东·东莞市光明中学一模)下列实数中等于2的是( ) A .02 B 4C 2D .1(2)--【答案】B【分析】根据零指数幂的运算法则,算术平方根的定义,负整数指数幂的运算法则解答即可. 【详解】解:A 、021=,故此选项不符合题意; B 42=,故此选项符合题意; C 22≠,故此选项不符合题意;题型十 零指数幂与负整数指数幂D 、11(2)2--=-,故此选项不符合题意.故选:B .58.(2022·上海杨浦·二模)下列各式中,运算结果是分数的是( ) A .sin30︒ B .02π⎛⎫⎪⎝⎭C .112-⎛⎫ ⎪⎝⎭D 34【答案】A【分析】分别计算出各选项的值,然后再判断即可. 【详解】解:A. sin30︒=12,是分数,故该选项符合题意;B. 02π⎛⎫⎪⎝⎭=1,是整数,故该选项不符合题意;C. 112-⎛⎫ ⎪⎝⎭=2,是整数,故该选项不符合题意;D.343 59.(2022·黑龙江牡丹江·模拟预测)下列计算正确的是( ) A .2a a a += B .23a a a ⋅=C .()426a a =D .312a a a -÷=【答案】B【分析】根据合并同类项法则、同底数幂的乘除法、负整数指数幂、幂的乘方法则逐项判断即可得.【详解】解:A 、2a a a +=,则此项错误,不符题意; B 、23a a a ⋅=,则此项正确,符合题意; C 、()428=a a ,则此项错误,不符题意;D 、313(1)4a a a a ---÷==,则此项错误,不符题意; 故选:B .60.(2021·重庆市綦江区赶水中学三模)101()(1)3π---=______.【答案】2【分析】根据负整数指数幂和零指数幂即可得出答案. 【详解】解:原式31=-2=. 故答案为:2.61.(2022·重庆·模拟预测)计算011(22)()3-+-=________ .【答案】-2【分析】根据零指数幂、负整数指数幂的计算法则计算即可. 【详解】)11221323-⎛⎫+-=-=- ⎪⎝⎭,故答案为:-2.62.(2022·湖南娄底·2a +有意义,则a 的取值范围是( ) A .a ≠0 B .a >﹣2且 a ≠0 C .a >﹣2或 a ≠0 D .a ≥﹣2且 a ≠0【答案】D【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可. 【详解】解:由题意得,a +2≥0,a ≠0, 解得,a ≥﹣2且 a ≠0, 故选:D .63.(2022·浙江杭州·2x -x 的取值范围是( ) A .2x > B .2x ≥ C .2x < D .2x ≤【答案】B【分析】根据二次根式有意义,被开方数大于等于0,列不等式求解. 【详解】解:根据题意,得 20x -≥,解得2x ≥. 故选:B .64.(2022·黑龙江牡丹江·模拟预测)函数2y x =-x 的取值范围是( ) A .2x -≤ B .2x ≥-C .2x ≤D .2x ≥【答案】D【分析】根据二次根式的被开方数的非负性即可得. 【详解】解:由二次根式的被开方数的非负性得:20x -≥, 解得2x ≥, 故选:D .65.(2022·安徽合肥·2x -x 的取值范围是___________. 【答案】2x ≤a a ≥0)进行解答即可. 【详解】解:由题意得:2-x ≥0.题型十一 二次根式有意义的条件解得:2x≤,故答案为:x≤2.66.(2022·贵州黔东南·一模)函数y121xx--中自变量x的取值范围是_____.【答案】x≤2且x≠1【分析】根据二次根式的被开方数的取值大于等于零,以及分式的分母不等于零列式计算可得.【详解】解:由题意得,2﹣x≥0且x﹣1≠0,解得x≤2且x≠1.故答案为:x≤2且x≠1.67.(2022·河北·顺平县腰山镇第一初级中学一模)下列各式正确的是()A16±4 B2(3)- 3 C64-8 D.343【答案】B【分析】根据二次根式的性质、二次根式的加减法分别化简计算并判断.【详解】解:A16,故该项不正确;B2(3)-,故该项正确;C64-D、33,故该项不正确;故选:B.68.(2022·广东·()23-)A.3 B.﹣3 C.±3 D.9【答案】A2a a直接求解即可.()2333-=-=,故选:A .69.(2022·湖南怀化·模拟预测)下列计算正确的是()A.(2a2)3=6a6B.a8÷a2=a4C2(2)- 2 D.(x﹣y)2=x2﹣y2【答案】C【分析】根据积的乘方、同底数幂的除法、二次根式的化简、完全平方公式求解即可;题型十二利用二次根式的性质化简【详解】解:A.(2a 2)3=8a 6≠6a 6,故错误; B.a 8÷a 2=a 6≠a 4,故错误; 2(2)-,故正确;D.(x ﹣y )2=x 2﹣2xy +y 2≠x 2﹣y 2,故错误; 故选:C .70.(2021·四川乐山·8______. 【答案】22【分析】根据二次根式的性质化简即可. 8422=⨯= 故答案为:2271.(2022·山西·113=_______.233【分析】现将带分数化为假分数,在进行分母有理化即可得出结果. 【详解】解:原式43=233=23372.下列运算正确的是( ) A .()4312x x -= B .23644x x x --⋅= C 61218 D 50210=【答案】D【分析】直接利用幂的运算,二次根式的加法运算和乘法运算逐一计算即可. 【详解】A 、()4312x x --=,故选项A 错误;B 、()23235444x x x x -+----=⋅=,故选项B 错误;C 212366=C 错误;D 50250210010=⨯,故选项D 正确; 故选:D .73.(2022·河南·平顶山市第十六中学模拟预测)下列计算正确的是( )题型十三 二次根式的乘除A 236=B .326236a a a ⋅=C .235a a a +=D .3223=【答案】A【分析】由二次根式的乘法、单项式乘以单项式、合并同类项,分别进行判断,即可得到答案【详解】解:A 23236=⨯A 选项符合题意; B 、原式56a =,所以B 选项不符合题意; C 、2a 与3a 不能合并,所以C 选项不符合题意; D 、32222=D 选项不符合题意. 故选:D .74.(2022·河北·石家庄市第四十一中学模拟预测)下列等式不成立的是( ) A 272733=B 273333=C 272733= D 279333⨯【答案】C【分析】根据二次根式的除法法则和二次根式的性质判断即可. 【详解】解:A 272733B 273333= C 27279333=≠,原等式不成立,符合题意;D 279333⨯=,等式成立,不符合题意; 故选:C .75.(2022·广西贺州·二模)下列计算正确的是( ) A .2222B 532C .233D 933=【答案】C【分析】直接利用二次根式的加、减、乘、除运算逐项计算即可求解. 【详解】A 、22A 错误;B 5353B 错误;C 、233D 9393=3=÷D 错误, 故选C76.(2022·安徽宿州·模拟预测)计算:212623-⎛⎫⎪⎝⎭_______.【答案】2【分析】先化简各项,再相减即可.【详解】解:2126646422 23-⎛⎫==-=⎪⎝⎭,故答案为:2.77.(2022·山东青岛·453×35___.【答案】1【分析】按照二次根式乘除运算法则和运算顺序进行计算即可.1535=1315 35⨯=19 3=1.故答案为:1.78.(2022·上海虹口·二模)下列二次根式中,属于最简二次根式的是()A 12B0.4C6D8【答案】C【分析】先将各选项化简,再根据最简二次根式的概念进行判断即可.【详解】A. 122=,不是最简二次根式,不符合题意;B.10 0.4=C. 6是最简二次根式,符合题意;D. 82=故选:C.79.(2022·上海金山·二模)在下列二次根式中,最简二次根式的是()A0.1B12C10D27题型十四最简二次根式【答案】C【详解】解:A 10.11010B 123423=⨯=C 10D 273933=⨯= 故答案选C .80.(2022·湖南·长沙市南雅中学二模)下列二次根式中,属于最简二次根式的是 ( ) A 12B 22a b -C 4a D 3x【答案】B【分析】根据最简二次根式的定义依次判断即可. 【详解】选项A 1223 选项B 22a b - 选项C 42a a ,不是最简二次根式; 选项D 33x x=. 故选:B.81.(2022·河南南阳·二模)写出一个实数x ,3x -则x 可以是______. 【答案】5(答案不唯一)【分析】本题主要考查了最简二次根式的定义.【详解】解:5x =3532x --2 ∴x 的值可以是5.故答案为:5.(答案不唯一)82.(2022·湖北襄阳·1a +8a =______. 【答案】1【分析】根据同类二次根式的定义计算求值即可; 【详解】解:82, 根据题意得:a +1=2, 解得a =1, 故答案为:1.83.(2022·上海奉贤·123 ) A .2 B .3C 3D .33【答案】C【分析】根据二次根式的减法法则可进行求解. 【详解】解:原式=2333 故选:C .84.(2022·青海西宁·一模)下列各式中,正确的是( ) A 9=3± B ()26- C 37=10D 62=3【答案】D【分析】利用二次根式的性质和加减乘除运算法则依次判断即可. 【详解】A 93=,故此选项错误; B ()266-=,故此选项错误;C 37D 623= 故选:D .85.(2022·黑龙江·哈尔滨市风华中学校三模)计算32542______. 【答案】26-【分析】先根据二次根式的性质化简,再合并,即可求解. 【详解】解:35426236= 26=-.故答案为:6-86.(2022·江苏南京·二模)计算()(271832的结果是______.【答案】3【分析】根据二次根式的混合运算可直接进行求解. 【详解】解:原式=(()3332323323⨯=⨯-=;故答案为3.题型十五 二次根式的加减87.(2021·四川泸州·二模)先化简,再求值:(22211x x x +++-)÷1x x -,其中x 31. 【答案】331x + 【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:原式=2(1)2(1)(1)(1)(1)1x x xx x x x x ⎡⎤-++÷⎢⎥+-+--⎣⎦ =2221(1)(1)x x x x x x -++-⋅+-=31(1)(1)x x x x x-⋅+-=31x + 当x 31311-+3388.(2022·上海松江·二模)计算:111812221-⎛⎫- ⎪+⎝⎭【答案】24-【分析】先计算乘方,化简二次根式,化简绝对值,再合并同类二次根式即可. 【详解】解:原式2322121=--24=89.(2022·安徽·二模)2( ) A .23B .2C .3D .32【答案】D【分析】乘积是1的两数互为倒数,依此即可得出答案. 【详解】解:∵2232((12==,∴232, 故选:D .90.(2022·广西河池·三模)下列选项错误..的是( ) 题型十六 分母有理化A ()222-=± B 33C .()362328a b a b =D .34a a a ÷=【答案】A【分析】根据二次根式性质化简即可判定A ;根据分母有理化化简即可判定B ;根据积的乘方和幂的乘方法则计算并判定C ;根据同底数幂相除法则计算并判定D . 【详解】解:A ()2242-=,故此选项符合题意;B 133333⨯==⨯C 、()362328a b a b =,故此选项不符合题意; D 、34a a a ÷=,故此选项不符合题意; 故选:A .91.(2022·黑龙江·哈尔滨市萧红中学校模拟预测)计算233____________.【答案】3-【分析】首先分母有理化,然后再进行减法运算即可. 【详解】解:939323232323333333⨯⨯===-⨯故答案为:3-92.(2022·黑龙江·哈尔滨工业大学附属中学校模拟预测)化简:9233=______. 【答案】3-【分析】先分母有理化,然后进行计算即可.【详解】解:933=3333=故答案为:3-93.(2022·浙江宁波·一模)计算: (1)221(5)(3)182-(2)(23)(32)23-【答案】(1)5;(2)33【分析】(1)直接利用二次根式的性质以及二次根式的乘法运算法则进行化简,再利用有理数的运算法则计算可得出答案;(2)直接利用乘法公式、分母有理化及二次根式的性质进行化简,再合并可得出答案.【详解】(1)解:原式539=+533=+-5=;(2)原式()()2234(3)2323+=--+(2234(3)43+=--2343+=-123=+33=+94.(2021·山东淄博·一模)已知:m 2,n 21223m n mn ++=( ) A .±3B .﹣3C .3D 5【答案】C【分析】先根据题意得出m n -和mn 的值,再把式子化成含m n -与mn 的形式,最后代入求值即可.【详解】由题得:2m n -=、1mn = 22223()525193m n mn m n mn ++-+=+⨯=故选:C. 95.(2021·河南省淮滨县第一中学一模)已知44220,24,180x y x y x y x y >+=+=、.则xy=( )A .8B .9C .10D .11【答案】D 【分析】利用完全平方公式、平方差公式化简第二个等式即可. 【详解】44()()180x y x y += 配方得22222()()2()()180x y x y x y x y ⎡⎤-+⋅=⎣⎦ 22()()2()()180x y x y x y x y x y x y ⎡⎤⎡⎤+=⎣⎦⎣⎦ 22(22)2()180x y x y +-=22162(2)180xy x xy y +-+= 题型十七 二次根式的化简求值22122()180xy x y ++=将2224x y +=代入得:12224180xy +⨯=计算得:11xy =故选:D.96.(2022·广东番禺中学三模)已知x 2=2x +15,则代数式22(2)(2)x x -=__________.【答案】202122-【分析】直接将原式分解因式,再把x 的值代入进而计算得出答案. 【详解】解:22(2)(2)x x +-- =(22)(22)x x x x =2x ×2=42x .∵2215x x +=,∴22150x x ﹣﹣=,(x ﹣5)(x +3)=0,∴x =5或x =﹣3.当x =5时,原式=25202=当x =﹣3时,原式=42(3)122-=-97.(2022·江苏·江阴市敔山湾实验学校一模)设53x -=,则代数式x (x +1)(x +2)(x +3)的值为__________.【答案】-1【分析】根据已知条件得出x +1、x +2和x +3的值,再代入代数式中计算即可得出答案. 【详解】解:∵53x -=∴x +151-=x +251+=x +353+= ∴53515153--++ 53535151-+-+=⨯⎝⎭⎝⎭595144--=⨯ 11=-⨯=−1.故答案为:-1. 98.(2022·四川广元·一模)先化简,再求值:222a ab b a b a b a b ab⎛⎫---÷ ⎪--⎝⎭,其中32a =32b =【答案】ab ;7【分析】根据分式的混合运算法则化简,再代入32a =32b =【详解】解:原式222a ab b a b a b ab-+-=÷- ()2a b ab ab a b a b-=⋅=--. 当32a =32b = 原式(3232927==-=.99.(2021·江西赣州·模拟预测)先化简,再求值:a 2﹣b (a ﹣b )﹣(a ﹣b )2,其中a =﹣23b 32.【答案】ab ,1【分析】先对整式进行化简,然后代值进行求解即可.【详解】解:原式=22222a ab b a ab b ab -+-+-=, 把23,32a b =-=代入得:原式=()23321-=. 100.(2021·辽宁锦州·一模)先化简,再求值:21111x x x ⎛⎫+÷ ⎪--⎝⎭,其中323x =. 【答案】1x +,322.【分析】先把括号内通分和除法运算化为乘法运算,再约分得到原式= x+1,然后把代入计算即可.【详解】原式()()11111x x x x x-+-+=⋅-, ()()111x x x x x-+=⋅-, 1x =+,当323x =时, 原式13231322x =+=+=,故化简后得原式1x =+,求得1322x +=.。

二次根式练习题(较难)

二次根式练习题(较难)

二次根式练习题(较难)1.下列等式不成立的是( )A .66326=⋅B .824÷=C .3331=D .228=- 【答案】B【解析】分析:根据二次根式的混合运算依次计算,再进行选择即可. 解答:解:A 、66326=⋅,故本选项成立;B 、824÷==2,故本选项不成立;C 、3331=,故本选项成立; D 、228=-,故本选项成立.故选B .2.(11·贺州)下列计算正确的是【答案】C【解析】考点:二次根式的混合运算.分析:根据二次根式的性质进行计算,找出计算正确的即可. 解答:解:A 、2)3(-=3,此选项错误; B 、(3)2=3,此选项正确; C 、9=3,此选项错误;D 、3+2=3+2,此选项错误.故选B .点评:本题考查了二次根式的混合运算.解题的关键是注意开方的结果是≥0的数.34 )A.2B. -2C. 2±D. 不存在 【答案】A【解析】分析:直接根据算术平方根的定义求解. 解答:解:因为4的算术平方根是24=2. 故选A .4.下列二次根式中,最简二次根式是( ).(A)(B) (C) (D) .【答案】C【解析】分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:AB 2,被开方数为小数,不是最简二次根式;故此选项错误C,被开方数,含能开得尽方的因数或因式,故此选项错误 故选C .5.若x y 、为实数,且10x +=,则2011()xy的值是 ( )A .0B .1C .1-D .2011-【答案】C【解析】分析:先根据非负数的性质求出x 、y 的值,再代入2011()x y进行计算即可.解答:解:∵10x +=∴x+1=0,解得x=-1;y-1=0,解得y=1. ∴2011()x y=(-1)2011=-1.故选C .6.函数y =2-x 中自变量x 的取值范围为 ( )A. x >2B. x ≥2C. x ≤2D. x ≠2 【答案】B 【解析】考点:函数自变量的取值范围.专题:函数思想.分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数即可求解. 解答:解:根据题意,得x-2≥0, 解得x ≥2. 故选B .点评:考查了函数自变量的范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.7.若x、y()22y10-=,则x y+的值等于()A.1B.32C.2D.52【答案】B.【解析】()22y10-=,∴()212x10x22y10y1⎧-=⎧=⎪⎪⇒⎨⎨-=⎪⎪⎩=⎩.∴13x y122+=+=.故选B.考点:1.二次根式被开方数和偶次幂的非负性质;2.求代数式的值.8.函数y3=中自变量x的取值范围是A.x>1 B.x ≥1 C.x≤1 D.x≠1【答案】B【解析】分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数3在实数范围内有意义,必须x10x1-≥⇒≥。

2020年中考数学考点一遍过 考点03 分式与二次根式(含解析)

2020年中考数学考点一遍过 考点03 分式与二次根式(含解析)

考点03 分式与二次根式一、分式 1.分式的定义(1)一般地,整式A 除以整式B ,可以表示成A B 的形式,如果除式B 中含有字母,那么称A B为分式.(2)分式AB中,A 叫做分子,B 叫做分母. 【注意】①若B ≠0,则AB有意义;②若B =0,则AB无意义;③若A =0且B ≠0,则AB=0.2.分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示为(0)A A C C B B C ⋅=≠⋅或(0)A A C C B B C÷=≠÷,其中A ,B ,C 均为整式. 3.约分及约分法则 (1)约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分. (2)约分法则把一个分式约分,如果分子和分母都是几个因式乘积的形式,约去分子和分母中相同因式的最低次幂;分子与分母的系数,约去它们的最大公约数.如果分式的分子、分母是多项式,先分解因式,然后约分.【注意】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因式. 4.最简分式分子、分母没有公因式的分式叫做最简分式.【注意】约分一般是将一个分式化为最简分式,分式约分所得的结果有时可能成为整式. 5.通分及通分法则 (1)通分根据分式的基本性质,把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这一过程称为分式的通分.(2)通分法则把两个或者几个分式通分:①先求各个分式的最简公分母(即各分母系数的最小公倍数、相同因式的最高次幂和所有不同因式的积);②再用分式的基本性质,用最简公分母除以原来各分母所得的商分别去乘原来分式的分子、分母,使每个分式变为与原分式的值相等,而且以最简公分母为分母的分式;③若分母是多项式,则先分解因式,再通分.【注意】通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母.6.最简公分母几个分式通分时,通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的分母叫做最简公分母.7.分式的运算(1)分式的加减①同分母的分式相加减法则:分母不变,分子相加减.用式子表示为:a c a cb b b±±=.②异分母的分式相加减法则:先通分,变为同分母的分式,然后再加减.用式子表示为:a c ad bc ad bcb d bd bd bd±±=±=.(2)分式的乘法乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为:a c a cb d b d⋅⋅=⋅.(3)分式的除法除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.用式子表示为:a c a d a db d bc b c⋅÷=⋅=⋅.(4)分式的乘方乘方法则:分式的乘方,把分子、分母分别乘方.用式子表示为:()(nn n a a n b b=为正整数,0)b ≠.(5)分式的混合运算含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的. 二、二次根式1.二次根式的有关概念 (1)二次根式的概念形如)0(≥a a的式子叫做二次根式.其中符号“”叫做二次根号,二次根号下的数叫做被开方数.【注意】被开方数a 只能是非负数.即要使二次根式a 有意义,则a ≥0. (2)最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式. (3)同类二次根式化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式. 2.二次根式的性质 (1)a ≥ 0(a ≥0); (2))0()(2≥=a a a ;(3)2(0)0(0)(0)a a a a a a a >⎧⎪===⎨⎪-<⎩;(4)(0,0)ab a b a b =⋅≥≥;(5)(0,0)a aa b b b=≥>. 3.二次根式的运算 (1)二次根式的加减合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式.(2)二次根式的乘除 乘法法则:(0,0)a b ab a b ⋅=≥≥;除法法则:(0,0)a aa b b b=≥>. (3)二次根式的混合运算二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的.在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用.考向一 分式的有关概念1.分式的三要素: (1)形如AB的式子; (2),A B 均为整式; (3)分母B 中含有字母. 2.分式的意义:(1)有意义的条件是分式中的字母取值不能使分母等于零,即0B ≠. (2)无意义的条件是分母为0.(3)分式值为0要满足两个条件,分子为0,分母不为0.典例1 使得式子4xx-有意义的x 的取值范围是 A .x ≥4B .x >4C .x ≤4D .x <4【答案】D 【解析】使得式子4xx-有意义,则:4-x >0,解得:x <4, 即x 的取值范围是:x <4,故选D.【名师点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.1.若分式21xx-在实数范围内无意义,则x的取值范围是A.x≠1 B.x=1C.x=0 D.x>1考向二分式的基本性质分式基本性质的应用主要反映在以下两个方面:(1)不改变分式的值,把分式的分子、分母中各项的系数化为整数;(2)分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.典例2 分式233x yxy+中的x、y的值都扩大到原来的2倍,则分式的值为A.扩大为原来2倍B.缩小为原来的12倍C.不变D.缩小为原来的14倍【答案】B【解析】∵若x、y的值都扩大到原来的2倍,则为()()()2234623123 12432323x yx y x y x y xy xy xy xy++++===⋅∴把分式233x yxy+中的x、y的值都扩大到原来的2倍,则分式的值为原来的12,故选B.【名师点睛】本题考查了分式的基本概念和性质的相关知识.这类题目的一个易错点是:在没有充分理解题意的情况下简单地通过分式的基本性质得出分式值不变的结论.对照分式的基本性质和本题的条件不难发现,本题不符合分式基本性质所描述的情况,不能直接利用其结论.因此,在解决这类问题时,要注意认真理解题意.2.下列变形正确的是 A .a b =22a b ++ B .0.220.1a b a bb b++=C .a b –1=1a b-D .a b =22(1)(1)a mb m ++ 考向三 分式的约分与通分约分与通分的区别与联系:1.约分与通分都是根据分式的基本性质,对分式进行恒等变形,即每个分式变形之后都不改变原分式的值;2.约分是针对一个分式而言,约分可使分式变得简单;3.通分是针对两个或两个以上的分式来说的,通分可使异分母分式化为同分母分式.典例3 关于分式的约分或通分,下列哪个说法正确 A .211x x +-约分的结果是1xB .分式211x -与11x -的最简公分母是x -1 C .22xx约分的结果是1 D .化简221x x --211x -的结果是1【答案】D 【解析】A 、211x x +-=11x -,故本选项错误; B 、分式211x -与11x -的最简公分母是x 2-1,故本选项错误; C 、22x x =2x ,故本选项错误;D 、221x x --211x -=1,故本选项正确,故选D . 【名师点睛】本题主要考查分式的通分和约分,这是分式的重要知识点,应当熟练掌握.3.下列分式中,是最简分式的是 A .2xyxB .222x y-C .22x y x y+- D .22xx + 考向四 分式的运算(1)分式的加减运算:异分母分式通分的依据是分式的基本性质,通分时应确定几个分式的最简公分母.(2)分式的乘除运算:分式乘除法的运算与因式分解密切相关,分式乘除法的本质是化成乘法后,约去分式的分子分母中的公因式,因此往往要对分子或分母进行因式分解(在分解因式时注意不要出现符号错误),然后找出其中的公因式,并把公因式约去.(3)分式的乘方运算,先确定幂的符号,遵守“正数的任何次幂都是正数,负数的偶数次幂是正数,负数的奇数次幂是负数”的原则.(4)分式的混合运算有乘方,先算乘方,再算乘除,有时灵活运用运算律,运算结果必须是最简分式或整式.注意运算顺序,计算准确.典例4 化简:2291(1)362m m m m -÷---. 【解析】2291(1)362m m m m -÷--- ()()()333322m m m m m m +--=÷--()()()332323m m m m m m +--=⋅-- 33m m+=. 【名师点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.4.先化简,再求值:2221()211x xx x x x+÷--+-,其中x=4.考向五二次根式的概念与性质1.二次根式的意义:首先考虑被开方数为非负数,其次还要考虑其他限制条件,这样就转化为解不等式或不等式组问题,如有分母时还要注意分式的分母不为0.2.利用二次根式性质时,如果题目中对根号内的字母给出了取值范围,那么应在这个范围内对根式进行化简,如果题目中没有给出明确的取值范围,那么应注意对题目条件的挖掘,把隐含在题目条件中所限定的取值范围显现出来,在允许的取值范围内进行化简.典例5 函数y=121x-的自变量的取值范围是A.x>0且x≠0B.x≥0且x≠12C.x≥0D.x≠12【答案】B【解析】根据题意得,x≥0且210x-≠,∴x≥0且x≠12.故选B.【名师点睛】本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足被开方数是非负数且分母不为零.5.已知:x >4,化简2(4)4x x -=-__________.典例6 下列二次根式是最简二次根式的是 A .12B .8C .10D .16【答案】C 【解析】A ,1222=,故原选项不是最简二次根式; B ,822=,故原选项不是最简二次根式; C ,10是最简二次根式;D ,16=4,故原选项不是最简二次根式, 故选C .6.下列二次根式 1.2;5x y +;43a;24x -;15;28.其中是最简二次根式的有 A .2个 B .3个 C .4个D .5个考向六 二次根式的运算1.二次根式的运算(1)二次根式的加减法就是把同类二次根式进行合并.(2)二次根式的乘除法要注意运算的准确性;要熟练掌握被开方数是非负数.(3)二次根式混合运算先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号). 2.比较分式与二次根式的大小(1)分式:对于同分母分式,直接比较分子即可,异分母分式通常运用约分或通分法后作比较; (2)二次根式:可以直接比较被开方数的大小,也可以运用平方法来比较.典例7 下列计算正确的是A.1233-=B.326⨯= C.325+=D.824÷=【答案】A【解析】A、原式=23-3=3,正确;B、原式=32⨯=6,错误;C、32+为最简结果,错误;D、原式=82÷=2,错误,故选A.7.计算:(1)3–212÷613;(2)(32–18)÷1122.典例8 比较大小:27__________5(填“>” “<”或“=”).【答案】>【解析】因为22(27)28,525==,28>25,所以27>5.故答案为:>.【名师点睛】比较二次根式的大小,可以转化为比较被开方数的大小,也可以将两个数平方,计算出结果,再比较大小.8.设a =6-2,b =3-1,c =231+,则a ,b ,c 之间的大小关系是 A .c >b >a B .a >c >b C .b >a >cD .a >b >c1.式子1(2)a a +÷-有意义,则实数a 的取值范围是 A .1a ≥B .2a ≠C .1a ≥-且2a ≠D .a >22.若分式293x x -+的值为零,则x 值为A .x =±3B .x =0C .x =-3D .x =33.下列式子是最简二次根式的是 A .8B .36C .21D .317- 4.在化简分式23311x x x-+--的过程中,开始出现错误的步骤是 A .33(1)(1)(1)(1)(1)x x x x x x -+-+-+-B .331(1)(1)x x x x --++-C .22(1)(1)x x x --+-D .21x -- 5.下列关于分式的判断,正确的是 A .当x =2时,12x x +-的值为零B .当x ≠3时,3x x-有意义 C .无论x 为何值,31x +不可能得整数值D .无论x 为何值,231x +的值总为正数6.计算33a a a +-的结果是 A .6a a + B .6a a-C .1aD .17.若最简二次根式14a a +-与的被开方数相同,则a 的值为 A .1 B .2 C .23D .328.化简2211x a x ÷--的结果是21x +,则a 的值是 A .1B .-1C .2D .-29.已知 1x <,则 221x x -+ 化简的结果是A .1x -B .1x -C .1x --D .1x +10.下列运算中错误的是A .2×3=6B .22+33=55C .12=22D .2(4)-=411.若分式11x x -+的值为0,则x 的值为 A .1 B .−1 C .±1D .无解12.化简:211()(3)31x x x x +-⋅---的结果是 A .2B .21x - C .23x -D .41x x --13.若x 、y 满足()221210x y -+-=,则x y +的值等于A .1B .32 C .2D .5214.已知1x a x +=,则1x x+的值为 A .22a - B .2a C .24a -D .不确定15.计算:23⨯=_____________. 16.与数字17最接近的整数是__________.17.比较大小:23____________32.(填“>、<、或=”) 18.计算(-25-2)(25-2)的结果是__________.19.已知a ,b 互为倒数,代数式222a ab b a b+++÷11()a b +的值为_____________.20.若1112a b -=,则a b abab a b--=-__________. 21.计算:(1)328(0)a a a ⋅≥;(2)16(233)3⨯-.22.先化简,再求值:22(1)a b a b a b -÷--,其中31a =+,31b =-.23.先化简:22144(1)1m m m m m-+-÷--,再从-1≤m ≤2中选取合适的整数代入求值.24.先化简,再求值:22121(1)1121m m m m m --÷-+--+,其中m 为一元二次方程230x x +-=的根.25.先化简,再求代数式21211a aa a a -÷-+-的值,其中a =2cos30°.1.(2019•常州)若代数式13x x +-有意义,则实数x 的取值范围是 A .x =-1 B .x =3 C .x ≠-1D .x ≠32.(2019•武汉)式子1x -在实数范围内有意义,则x 的取值范围是 A .x >0B .x ≥-1C .x ≥1D .x ≤13.(2019•黄石)若式子12x x --在实数范围内有意义,则x 的取值范围是 A .x ≥1且x ≠2B .x ≤1C .x >1且x ≠2D .x <14.(2019•山西)下列二次根式是最简二次根式的是 A .12B .127C .8D .35.(2019•贵港)若分式211x x -+的值等于0,则x 的值为A .±1B .0C .-1D .16.(2019•株洲)28⨯= A .42 B .4 C .10D .22 7.(2019•扬州)分式13x-可变形为 A .13x + B .13x -+ C .13x -D .13x --8.(2019•江西)计算1a ÷(21a-)的结果为 A .a B .-aC .31a-D .31a9.(2019·天津)计算2211a a a +++的结果是 A .2B .22a +C .1D .41aa + 10.(2019•临沂)计算21a a --a -1的正确结果是A .11a -- B .11a -C .211a a --- D .211a a -- 11.(2019•北京)如果m +n =1,那么代数式22221()()m n m n m mn m++⋅--的值为 A .-3B .-1C .1D .312.(2019•河北)如图,若x 为正整数,则表示22(2)1441x x x x +-+++的值的点落在A .段①B .段②C .段③D .段④13.(2019·重庆A 卷)估计1(2362)3+⨯的值应在 A .4和5之间 B .5和6之间 C .6和7之间D .7和8之间14.(2019•广州)代数式18x -有意义时,x 应满足的条件是__________.15.(2019·安徽)计算182÷的结果是__________. 16.(2019•衡阳)273-=__________.17.(2019•吉林)计算:22yx·x y =__________.18.(2019·天津)计算(31)(31)+-的结果等于__________.19.(2019·南充)计算:2111x x x+=--__________.20.(2019•武汉)计算221164a a a ---的结果是__________. 21.(2019•大连)计算:(3-2)212++613.22.(2019•益阳)化简:2244 (4)2x xx x+--÷.23.(2019•深圳)先化简(132x-+)2144xx x-÷++,再将x=-1代入求值.24.(2019•河南)先化简,再求值:2212(1)244x x xx x x+--÷--+,其中x=3.25.(2019•烟台)先化简(x+373x--)2283x xx-÷-,再从0≤x≤4中选一个适合的整数代入求值.26.(2019•安顺)先化简2221(1)369xx x x-+÷--+,再从不等式组24324xx x-<⎧⎨<+⎩的整数解中选一个合适的x的值代入求值.1.【答案】B 【解析】∵分式21xx-在实数范围内无意义, ∴1-x =0,即x =1, 故选B . 2.【答案】D【解析】A .a b ≠22a b ++,故A 错误; B .0.20.1a b b +=210a b b +,故B 错误;C .a b -1=a b b-,故C 错误,故选D . 3.【答案】D 【解析】A 、2xy x =yx,错误; B 、222x y -=1x y -,错误;C 、22x y x y +-=1x y-,错误;D 、22xx +是最简分式,正确. 故选D .4.【解析】2221()211x x x x x x+÷--+-变式拓展=2(+1)2(111)()()x x x x x x x --÷--=2()(+1)111)(x x x x x x -⋅-+ =21x x -, 当x =4时,原式=2416413=-.5.【答案】B【解析】根据二次根式被开方数必须是非负数的条件知,要使1x -在实数范围内有意义,必须101x x -≥⇒≥.故选B .6.【答案】B 【解析】301.25=, 41233a a=, 2827=,∴5x y +、24x -、15是最简二次根式, 故选B .7.【解析】(1)原式=3–2×16×123⨯ =3–2.(2)原式=(32–24)÷1122=1124÷1122=12. 8.【答案】D【解析】a =6-2=2(3−1),b =3−1,c =231+=()()2313131-+-()=22×(3−1), ∵2>1>22,∴a >b >c .故选D .1.【答案】C【解析】由题意得:a +1≥0,且a –2≠0, 解得,1a ≥-且2a ≠. 故选C . 2.【答案】D【解析】∵分式293x x -+的值为零,∴x 2-9=0且x +3≠0. 解得:x =3. 故选D . 3.【答案】C【解析】A 、822=,不是最简二次根式,故本选项不符合题意; B 、36=6,不是最简二次根式,故本选项不符合题意; C 、21是最简二次根式,故本选项符合题意; D 、370177-=-,不是最简二次根式,故本选项不符合题意, 故选C . 4.【答案】B【解析】∵正确的解题步骤是:23311x x x -+--33(1)(1)(1)(1)(1)x x x x x x -+=-+-+-333(1)(1)x x x x ---=+-,∴开始出现错误的步骤是331(1)(1)x x x x --++-.去括号是漏乘了.故选B .考点冲关5.【答案】1【解析】∵x >4,∴x -4>0, ∴原式=44x x --=1, 故答案为:1.【名师点睛】本题考查了二次根式的性质,熟练掌握二次根式的性质是解题的关键. 6.【答案】D 【解析】33331a a a a a++--==,故选D . 7.【答案】D【解析】1+4a a =-,解得32a =,故选D . 8.【答案】A 【解析】22122111111x x a x x x x +=÷==--+--,∴a =1,故选A . 9.【答案】B【解析】∵x <1,∴x -1<0,∴221x x -+=|x -1|=1-x .故选:B . 10.【答案】B【解析】A .原式=2×3=6,所以A 选项的计算正确; B .22和33不能合并,所以B 选项的计算错误 C .原式=12=22,所以C 选项的计算正确; D .原式=2(4)-=4,所以D 选项的计算正确. 故选B . 11.【答案】A【解析】∵分式11x x -+的值为0,∴|x |−1=0,且x +1≠0,解得:x =1.故选A .12.【答案】B【解析】211()(3)31x x x x +-⋅---=(13x -−11x -)•(x −3)=13x -•(x −3)−11x -•(x −3)=1−31x x --=21x -.故选B . 13.【答案】B【解析】∵()221210x y -+-=,∴()2121022101x x y y ⎧-=⎧=⎪⎪⇒⎨⎨-=⎪⎪⎩=⎩.∴13122x y +=+=.故选B . 14.【答案】A【解析】∵1x a x +=,∴22)1(x a x +=,即x +2+1x =a ²,∴x +1x=a ²−2,故选A . 15.【答案】6【解析】根据二次根式的乘法法则进行计算可得:23236⨯=⨯=,故答案为6.16.【答案】4【解析】∵161725<<,∴17最接近的整数是16,16=4,故答案为:4. 17.【答案】<【解析】将两式进行平方可得:2(23)=12,2(32)=18,因为12<18,所以23<32. 18.【答案】-16【解析】原式=-(25+2)(25-2)=-(20-4)=-16. 故答案为:-16. 19.【答案】1【解析】对待求值的代数式进行化简,得22211()a ab b a b a b ++÷++()2()a b a b a b ab++=÷+()ab a b a b =+⋅+ab =,∵a ,b 互为倒数,∴ab =1,∴原式=1.故答案为:1. 20.【答案】–32【解析】∵1112a b -=, ∴a −b =−2ab .∴原式=−22ab ab ab ab --=−2+12=−32. 故答案为:−32.21.【解析】(1)原式=328a a ⋅=416a =4a 2.(2)原式=6(233)⨯- =63⨯ =32. 22.【解析】22(1)a b a b a b-÷-- ()()a b a b a a b a b b +--+=⋅- ()()a b a b b a b b+-=⋅- a b =+,当31a =+,31b =-时,原式=313123++-=.23.【解析】原式=2-2(1)1(2)m m m m m -⋅-- =2mm -, 根据分式有意义的条件可知:m =-1, ∴原式=13. 24.【解析】原式=()()()22122111111m m m m m m m --+--÷++--=()()()()21121112m m m m m m m ---⋅++-- =()1111m m m m --++ =()()11m m m m --+=()11m m + =21m m+. 由m 是方程230x x +-=的根,得到23m m +=, 所以原式=13. 25.【解析】原式=2111(1)1a a a a --+÷-- =211(1)a a a a --⨯-,=1a. ∵a =2332⨯=, ∴原式=1333=.1.【答案】D 【解析】∵代数式13x x +-有意义,∴x -3≠0,∴x ≠3.故选D . 2.【答案】C【解析】由题意,得x -1≥0,解得x ≥1,故选C . 3.【答案】A【解析】依题意,得x -1≥0且x -200,解得x ≥1且x ≠2.故选A .直通中考4.【答案】D 【解析】A 、1222=,故A 不符合题意; B 、1222177=,故B 不符合题意; C 、822=,故C 不符合题意;D 、3是最简二次根式,故D 符合题意.故选D . 5.【答案】D【解析】21(1)(1)11x x x x x -+-==++x -1=0,∴x =1,经检验:x =1是原分式方程的解,故选D .6.【答案】B【解析】28164⨯==.故选B . 7.【答案】D 【解析】分式13x-可变形为:13x --.故选D .8.【答案】B 【解析】原式1a=·(-a 2)=-a ,故选B . 9.【答案】A 【解析】原式=222(1)211a a a a ++==++,故选A . 10.【答案】B【解析】原式()211a a a =-+-22111a a a a -=---11a =-.故选B . 11.【答案】D【解析】原式=2()m n m n m m n ++--·(m +n )(m -n )=3()mm m n -·(m +n )(m -n )=3(m +n ),当m +n =1时,原式=3.故选D . 12.【答案】B【解析】∵2222(2)1(2)111441(2)111x x xx x x x x x x ++-=-=-=+++++++,又∵x 为正整数,∴12≤x <1,故表示22(2)1441x x x x +-+++的值的点落在②,故选B . 13.【答案】C【解析】1(2362)3+⨯=2+623=2+24,又因为4<24<5,所以6<2+24<7,故选C . 14.【答案】x >8【解析】代数式18x -有意义时,x -8>0,解得x >8.故答案为:x >8. 15.【答案】3【解析】182=9=3÷,故答案为:3. 16.【答案】23【解析】原式=33323-=.故答案为:23. 17.【答案】12x【解析】22y x ·12x y x =,故答案为:12x. 18.【答案】2【解析】原式=3-1=2.故答案为:2. 19.【答案】x +1【解析】2111x x x +--=2111x x x ---211x x -=-()()111x x x +-=-1x =+,故答案为:x +1. 20.【答案】14a + 【解析】原式()()()()244444a a a a a a +=-+-+-()()2444a a a a --=+-()()444a a a -=+-14a =+.故答案为:14a +. 21.【解析】原式=3+4-43+23+633⨯=3+4-43+23+23=7.22.【解析】原式=2(2)2(2)(2)x xx x x -⋅+- =242x x -+. 23.【解析】原式21(2)21x x x x -+=⨯+- =x +2,将x =-1代入得: 原式=x +2=1. 24.【解析】原式=212(2)()22(2)x x x x x x x +---÷--- =322x x x -⋅- =3x, 当x =3时,原式=33=3. 25.【解析】(x +373x --)2283x xx -÷- =(29733x x x ----)2283x xx -÷- (4)(4)3x x x +-=-·32(4)x x x -- 42x x+=, 当x =1时,原式145212+==⨯. 26.【解析】原式232(3)3(1)(1)x x x x x -+-=⨯-+-=31x x -+, 解不等式组24324x x x -<⎧⎨<+⎩①②得-2<x <4,∴其整数解为-1,0,1,2,3,∵要使原分式有意义,∴x可取0,2.∴当x=0时,原式=-3,(或当x=2时,原式=13 ).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档