5.5. 吸收塔的计算

合集下载

吸收塔塔径计算公式

吸收塔塔径计算公式

吸收塔塔径计算公式吸收塔是化工、环保等领域中常见的设备,用于实现气体混合物中某些组分的吸收。

而吸收塔塔径的计算可是个关键环节,这直接关系到吸收塔的性能和工作效率。

要计算吸收塔的塔径,咱们得先弄清楚几个重要的参数和概念。

首先就是气体的流量,这就好比是一条河流的水流量,流量越大,需要的河道就得越宽。

还有气体的流速,它决定了气体在塔内流动的快慢。

另外,吸收塔的操作条件,比如温度、压力,也会对塔径产生影响。

那具体的计算公式是啥呢?一般来说,吸收塔塔径可以通过下面这个公式来计算:D = √(4Q / πv),这里的 D 就是塔径啦,Q 是气体的体积流量,v 是适宜的空塔气速,π 就是大家熟悉的圆周率。

举个例子吧,就说咱们在一家化工厂,要设计一个用于吸收二氧化硫的吸收塔。

经过前期的工艺计算和分析,已知气体的体积流量是1000 立方米每秒,通过实验和经验数据,确定适宜的空塔气速为 2 米每秒。

那咱们就可以这样来算塔径:先把数字代入公式,D = √(4×1000 / 3.14×2),经过计算,得出塔径大约是 31.8 米。

可别以为这就算完事儿了,实际情况可复杂得多。

比如说,气体的性质也得考虑进去。

如果气体中含有一些容易堵塞或者粘结的成分,那咱们在选择塔径的时候就得留有余地,稍微选大一点,免得后期出现堵塞影响生产。

还有啊,不同的吸收工艺对塔径的要求也不一样。

有的工艺需要气体和吸收液充分接触,那塔径就得适当大一些,以增加接触面积和时间。

在实际操作中,计算塔径还得考虑设备的成本、安装和维护的便利性等因素。

就像我之前参与过的一个项目,最初计算出的塔径从理论上来说是没问题的,但考虑到工厂的场地限制和后续的维护难度,我们不得不重新调整计算参数,经过多次的讨论和修改,最终确定了一个既能满足工艺要求,又能适应实际情况的塔径。

总之,吸收塔塔径的计算可不是个简单的数学问题,它需要综合考虑各种因素,还得结合实际经验,才能得出一个既合理又实用的结果。

第3章吸收5节填料吸收塔的计算

第3章吸收5节填料吸收塔的计算

当气速增大到 C点时,液体充满了整个空隙,气体 的压强降几乎是垂直上升。同时填料层顶部开始出 现泡沫层,进而充满整个塔,气体以气泡状通过液 体,这种现象称为液泛现象。把开始出现此现象的 点称为泛点。
泛点对应的气速称为液泛速度。要使塔的操作正常及 压强降不致过大,气速必须低于液泛速度,但要高于 载点气速。由于,从低持液量到载点的转变不十分明 显,无法目测,即载点及载点气速难以明确定出。而 液泛现象十分明显,可以目测,即液泛点及液泛气速 可明确定出。液泛速度较易确定,通常以液泛速度v f 为基础来确定操作的空塔气速 v 。 影响液泛速度 的因素很多——填料的形状、大 小,气、液相的物理性质,气、液相的相对流量等 常用的液泛速度关联式如下:
§5 填料吸收塔的计算
本节重点讨论气液逆流操作时填料 塔的有关计算。

Y 具体内容主要包括对于给定的生产任务( Y1 、 2
V 、 X 2 已知),计算吸收剂用量 L 、塔底完成 液浓度 X 1 、塔高、塔径。
5.1 吸收塔的物料衡算
在进行物料衡算时,以不变的惰性组分 流量和吸收剂流量作为计算基准,并用摩尔 比表示气相和液相的组成将很方便。


L 1.2 LM 1.2 0.74625 50 44. (Y1 Y2 ) 50 (0.0134 6.7 10 ) X1 0.0149 L 44.775
Y mX 1 0.75 0.0149 0.0112


N OG 只与体系的相平衡及气体进出口的浓度有关,它反
映了吸收过程的难易程度。分离要求高或吸收剂性 能差,过程的平均推动力小,则表明吸收过程难度 大,相应传质单元数就多。
H OG 与设备的型式及操作条件有关,是吸收设备效能 高低的反映。吸收过程的传质阻力大,填料层的 有效比表面积小,则一个传质单元所相当的填料 层高度就大。

吸收塔的计算

吸收塔的计算

吸收塔的计算1.全塔物料衡算与操作线方程1.全塔物料衡算对逆流操作的填料吸收塔,作全塔溶质组分的物料衡算,可得:吸收塔的分离效果,通常用溶质的回收率来衡量,回收率定义为:吸收过程中,回收率恒低于100%。

一般情况下,进塔混合气的组成和流量是已知的,如果吸收剂的组成和流量已经确定,则V、Y1、L 和X2皆为已知数,又根据吸收任务所规定的回收率,可得知气体出塔时应有的浓度Y2,如此,通过全塔物料衡算便可求得塔底排除的吸收液的浓度X1,于是,在填料层底部和顶部两个端面上液气组成都为已知。

2 吸收操作线方程和操作线在塔底或塔顶与踏中任意截面间列溶质的物料衡算,可整理得:或上两式是等效的,皆称为吸收塔操作线。

该方程在X-Y图上为一直线,称为吸收塔操作线。

操作线位置仅决定于塔顶、塔底两端的气、液相组成,该直线的斜率为液气比L/V。

操作线上任何一点代表塔内任一截面上的气、液相组成已被确定。

吸收过程操作线总是位于平衡曲线的上方,两线相距愈远,表示吸收推动力愈大,有利于吸收过程。

应注意,操作线是由物料衡算决定的,仅与V、L及二相组成有关,而与塔型及压强、温度等无关。

对并流操作的填料吸收塔,或其它组合操作的吸收塔,读者应能依据上述原则作出它们的操作线。

3-2.吸收剂最小用量和适宜用量在极限情况下,操作线和平衡线相交(有特殊平衡线时为相切),此点推动力为零,所需填料层为无限高,对应的吸收剂用量即为最小用量。

该操作线斜率为最小液气比(等)。

因此最小吸,因此最小吸收剂用量可用下式求得:若气液平衡关系服从亨利定律,则式中可由亨利定律算出,否则可由平衡曲线读出。

适宜的吸收剂用量应通过经济衡算确定,但一般在设计中可取经验值,即:应注意,对填料塔选定吸收剂用量时,还应保证能充分润湿填料,一般喷淋密度不应低于5m3/(m2·h)。

可见待设计确定塔径后,还应校验喷淋密度。

3.塔径的计算计算塔径的关键在于确定适宜的空塔气速,其选定方法见“塔设备”章。

吸收塔的计算

吸收塔的计算

V,Y2
L,X2
V,Y1
L,X1
——A被吸收的百分率,称为吸收率(回收率)
4
Y2=Y1(1-)
VB,Y2
LS,X2
二、操作线方程式及操作线 (1)逆流吸收
VY+LX2=VY2+LX
VB,Y VB,Y1
LS,X LS,X1
——逆流吸收操作线方程式
5
同理:
逆流吸收操作线具有如下特点:
Y
Y1
B
Y2 A
22
(2)传质单元高度
• 定义:
气相总传质单元高度,m
• 意义: 完成一个传质单元分离效果所需的填料层高度;
HOG反映了吸收设备效能的高低
• 影响因素: 填料性能、流动状况,塔结构
23
• 体积总传质系数与传质单元高度的关系 均能反映设备的分离效能,但单位不同,且受流体流量影 响程度不同
气膜控制
HOG变化范围:0.15~1.5m
(1)平衡曲线一般情况 (直或凹线)
与Y1达平衡的液相组成
12
(2)平衡曲线为凸形曲线情况
13
二、操作液气比
总费用最小
喷淋密度>5m3/(m2.h)
塔截面
思考:当填料塔操作L/V<(L/V)min,塔是否能操作?
14
例5-5-1 在填料吸收塔中,用清水吸收含有溶质A的气体混合 物,两相逆流流动。进塔气体初始浓度为5%(体积%),在 操作条件下相平衡关系为Y*=3X,试分别计算液气比为4和2时 的出塔气体的极限浓度及液体出口浓度。
5)平衡线与操作线共同决定吸收推动力 操作线离平衡线愈远吸收的推动力愈大
B
Y
.K
Y* A

吸收塔 设计计算

吸收塔 设计计算

吸收塔设计计算吸收塔是工业生产中常用的设备,用于气体洗涤、脱硫、脱硝、除尘等工艺过程。

其设计计算是确保设备正常运行的重要步骤之一。

下文将从吸收塔的应用、结构分类、设计参数以及计算方法等方面探讨吸收塔的设计计算。

一、吸收塔的应用吸收塔是工业生产中常用的设备,广泛应用于化工、石化、钢铁、电力、印刷、制药等领域,用于将气体中的污染物分离除去。

具体应用包括:1、脱硫:吸收塔可用于烟气中的二氧化硫的脱除。

2、脱硝:吸收塔可用于烟气中的氮氧化物的脱除。

3、除尘:吸收塔可用于烟气中的粉尘颗粒的分离除去。

4、洗涤:吸收塔可用于气体中的酸气、碱气的洗涤处理。

二、吸收塔的结构分类根据结构形式可将吸收塔分为以下几种类型:1、板式吸收塔板式吸收塔是一种以板作为填料的吸收塔,分为横流型、纵流型和斜流型。

吸收塔内置有很多平行的垂直板,气体垂直流过板间空隙,与液体进行旋转接触混合,实现气体进液接触吸收的目的。

板式吸收塔简单易制,可耐受高浓度废气,且维护简单。

2、喷雾吸收塔喷雾吸收塔又称喷淋吸收塔,主要由塔体、喷头等组成。

塔体内装有填料液槽和底部雾化器。

气体经过填料液槽,液体被填料吸附,接触后管道中的液体被喷头雾化,形成雾滴与废气充分接触,从而达到吸附效果。

喷雾吸收塔结构简单,投资少,可以广泛应用。

3、吸附塔吸附塔是一种以吸附剂为填充物的吸收塔。

分为干法吸收和湿法吸收。

吸附塔可用于汽车尾气和工业废气的处理。

吸附塔结构简单,吸附盘式塔种类多样,能够高效地处理各类废气污染物。

三、吸收塔的设计参数1、气体流量气体流量是吸收塔的基本参数之一。

气体流量决定了吸收塔的尺寸和填料数量,它是吸收塔设计的起点。

2、液体流量液体流量是衡量吸收塔性能的重要指标之一。

液体流量要求经过塔体和填料液槽时能够喷淋到填料和气体中,从而实现吸收的目的。

3、气体温度气体温度是影响吸收塔工作效果的因素之一。

高温会导致液体蒸发速度减慢,吸收效果不佳,因此需要保持适宜的气体温度。

吸收塔的计算

吸收塔的计算

(7-40)便可求出塔底排出的吸收液的组成X1,即
吸收塔的计算
2. 吸收塔的操作线方程式
在稳态操作的情况下,操作线方程可通过对吸收塔 内任一横截面M-N与塔底端面之间进行对溶质A作物料衡 算获得,即
VY+LX1=VY1+LX
吸收塔的计算
式(7-43)和式(7-44)称为逆流吸收塔的操作线方程,两式 可相互转化。它们表明了在吸收塔内任一截面上气相组成Y与液相组 成X的关系。
吸收塔的计算
1. 物料衡算
图7-7所示为一处于稳定操作状态下,逆流操作吸收塔 内气、液两相流量与组成的变化情况。混合气体通过吸收塔 的过程中,可溶组分不断被吸收,故气体的总量沿塔高而变, 液体也因其中不断溶入可溶组分,其量也沿塔高而变。但是, 通过吸收塔的惰性气体量和吸收剂量是不变的。因此,在进 行物料衡算时,以不变的惰性气体流量V和吸收剂量L作为计 算基准。现对全塔作物料衡算,可得
(2)坐标X、Y代表吸收塔内某一截面的液相和气相组成。 (3)当进行吸收操作时,因塔内任一截面处的 Y > Y*或X* > X, 故吸收操作线位于平衡线的上方。反之,如果操作线位于平衡线的下方, 则为解吸操作。 (4)操作线上的任一点A与平衡线之间的垂直距离和水平距离,表 示塔内某一截面的气相和液相传质推动力。操作线离平衡线愈远,吸收 的推动力愈大。
吸收塔的计算
通常,进塔混合气的组成与流量是由吸收任务规定了的,如
果吸收剂的进塔组成和流量确定。同时又规定了吸收率η,则气体
出塔时的组成Y2为
Y2=Y1(1-η)
(7-42)
式中,η为混合气体中被吸收的溶质量V(Y1-Y2)占总的溶质量
VY1的百分率,称为吸收率或回收率。

吸收塔的计算

吸收塔的计算

m,一般取Hb=1.2~1.5m;
Hb
n——填料层分层数
2020/10/22
【填料塔高度的近似计算】
【说明】由于液体再分布器、喷淋装置、支承装置、捕沫器等的结构不同时其高 度不同,当一时无法准确确定时,也可采用下式近似计算塔高:
H=1.2Z+Hd+Hb
Hd——塔顶空间高(不包括封头部分),m; Hb——塔底空间高(不包括封头部分),m。

G 1000 273 (1-0.09)=37.85(mol / s)
22.4 293
故吸收用水量为: L=35.5G=35.5×37.85=1343(mol/s)=1.343(kmol/s)
2020/10/22
三、吸收塔填料层高度的计算
1、填料塔的高度
【说明】填料塔的高度 主要决定于填料层高度。
(2) HOG愈小,吸收设备的传质阻力愈小,传质效能愈高,完成一定分离任务所 需填料层高度愈小。
2020/10/22
【体积传质系数( KY a )——参数归并法】
(1)有效比表面积(a)与填料的类型、形状、尺寸、填充情况有关,还随流体 物性、流动状况而变化,其数值不易直接测定; (2)通常将a与传质系数(KY)的乘积合并为一个物理量KY a ( 单位kmol/m3·s), 称为体积传质系数,通过实验测定其数值; (3)在低浓度吸收的情况下,体积传质系数在全塔范围内为常数,或可取平均值。
2020/10/22
【解】已知 y1=0.09 η=95%=0.95

Y1
y1 1 y1
0.09 1 0.09
0.099
Y2=(1-η)Y1=(1-0.95)×0.099=0.00495 据 Y*=31.13X 知: m=31.13

吸收塔的计算

吸收塔的计算

最小液气比的求法
图解法 •正常的平衡线
(L V
)min
Y1 Y2 X1* X 2
Lmin
V
Y1 Y2
X
* 1
X
2
•平衡线为上凸形时
(L V
)
min
Y1 Y2
X
1
X
2
Lmin
V
Y1 Y2
X
1
X
2
计算法
适用条件:平衡线符合亨利定律,可用 Y * mX 表示
(L V
) m in
Y1 Y2
1、填料层高度的基本计算式
对组分A作物料衡算 单位时间内由气相转入液相的 A的物质量为:
dGA VdY LdX
dGA NAdA N A (adZ)
微元填料层内的吸收速率方程式为:
N A KY (Y Y * )及N A K X ( X * X )
dGA KY (Y Y * )adz dGA K X ( X * X )adz
试写出用膜系数及相应的推动力表示的填料层高度的计算式。
Z HG NG
HG
V k y a
—气膜传质单元高度,m
NG
Y1
Y2
Y
dY Yi
—气膜传质单元数
Z HL NL
HL
L k x a
—液膜传质单元高度,m
NL
X1
X2
dX Xi X
—液膜传质单元数
2)传质单元高度的物理意义
NOG
Y1
Y2
Lmin
V (Y1 Y2 )
Y1 m
X
2
34.5(0.0133 0.000133) 0.0133 0
0.757

化工原理吸收塔的计算

化工原理吸收塔的计算

填料层高度=传质单元高度×传质单元数
(1)传质单元数(以NOG为例)
•定义:NOG
Y1 dY Y2 Y Y *
气相总传质单元数
NOG

Y1 dY Y2 Y Y *

Y1 Y2 (Y Y *)m
气相组成变化 平均传质推动力
• 传质单元数的意义:
反映了取得一定吸收效果的难易程度。
当所要求的(Y1-Y2)为一定值时,平均吸收推动力(YY*)m越大,NOG就越小,所需的填料层高度就越小。
(2)传质单元高度
•定义:
H OG

G Kya
气相总传质单元高度,m。
•传质单元高度的意义:
完成一个传质单元分离效果所需的填料层高度,
反映了吸收设备效能的高低。
•传质单元高度影响因素:
填料性能、流动状况
四、吸收塔的操作计算 1.吸收过程的强化
Y1
Y*1
Y2
T △Y2
Y*2
O X2
B △Y1
X1
吸收推动力 NA 吸收阻力
目标:提高吸收过程的推动力; 降低吸收过程的阻力。
从L、G、m、X2、Y1、Y2着手。
其它因素: 1)降低吸收剂入口温度; 2)提高吸收的压力; 3)提高流体流动的湍动程度; 4)改善填料的性能。
Y1 dY Y2 Y
NOG

Y1 Y1
Y2 Y2
ln
Y1 Y2
X1
NOG

Y1 Y2 Ym
Ym (Y1 Y2)/ ln Y1 / Y2
注意: •平均推动力法适用于平衡线为直线,逆流、并流 吸收皆可。 •平衡线与操作线平行时,
Ym Y1 Y2 X m X1 X 2

化工原理第五章吸收塔的计算

化工原理第五章吸收塔的计算
【吸收塔的计算内容 】 1、设计型计算
(1)吸收塔的塔径;
(2)吸收塔的塔高等。 2、操作型计算
(1)吸收剂的用量;
(2)吸收液的浓度;
(3)在物系、塔设备一定的情况下,对指定的生产
任务,核算塔设备是否合用。
2018/10/17
一、物料衡算和操作线方程
1、物料衡算 G——单位时间通过任一塔截
G, Y2 L, X2
G, Y2 L, X2
(1)【作用】表明了塔内任
一截面上气相组成Y与液相组
成X之间的关系。 【问题】与Y*=mX有何不同?
G,
Y
m
L, X
n
G,Y1
2018/10/17
L, X1
逆流吸收操作线推导示意图
L L L L Y X (Y1 X 1 ) Y X (Y2 X 2 ) G G G G
过程中L、G为常数)。以单位时间为基准,在全塔
范围内,对溶质A作物料衡算得:
G , Y2
L, X2
GY1 LX 2 GY2 LX1
(进入量=引出量) 或
G(Y1 Y2 ) L( X1 X 2 )
——全塔的物料衡算式
G, Y1 L, X1
物料衡算示意图
2018/10/17
【有关计算】 (1)吸收液的浓度 据
Y Y1 Y Y2
【说明 L L L 】(1)塔内的气液相组成沿操作线连续改变; L Y X (Y1 X 1 ) Y X (Y2 X 2 ) G 某一截面 G G G (2)操作线上的 任一点代表塔内 的气液两相
组成。 塔底
G, Y
Y=f(X)
G, Y2
L, X2
m

吸收塔的计算

吸收塔的计算

NOG
(Y Y ) m Y1 Y2
气体流经一段填料层前后的浓度变化恰等于此段填料层内 以气相浓度差表示的总推动力的的平均值时,那么,这段 填料层的高度就是一个气相总传质单元高度。
吸收过程的传质阻力越大,填料层的有效比面积越小, 每个传质单元所相当的填料层高度越大。 传质单元数反映吸收过程的难度,任务所要求的气体浓 度变化越大,过程的平均推动力越小,则意味着过程难度越
NOG
1 Y1 Y2 ln[( 1 S ) S] * 1 S Y2 Y2
*
mV ——脱吸因数。平衡线斜率和操作线斜率的比值 S L
无因次。S愈大,脱吸愈易进行。
1 L A ——吸收因数 S mV
分析 :
•横坐标 Y1 Y2
* *
Y2 Y2
值的大小,反映了溶质吸收率的高低。
* * (Y1 Y1 ) (Y2 Y2 ) * Y1 Y1 ln * Y2 Y2
——塔顶与塔底两截面上吸收推动力的对数平均,称为对 数平均推动力。
1 Y1 当 相应的对数平均推动力可用算术平均 2 时, 2 Y2
推动力代替。
写出NOL、NG、NL的表达式。
N OL
X1 X 2 X m
dY KY a dZ * V Y Y KY a Z Y1 dY Y2 0 dZ * V Y Y
K X a dX dZ * L X X
X1 X 2
K X a Z dX 0 dZ * L X X
低浓度气体吸收时填料层的基本关系式为
L dX X1 V Y1 dY 及Z X 2 * Z Y2 K X a X X KY a Y Y *
在气液进出口浓度一定的情况下,吸收率愈高,Y2愈小, 横坐标的数值愈大,对应于同一S值的NOG愈大。 •S反映吸收推动力的大小 在气液进出口浓度及溶质吸收率已知的条件下,若增大S

化工原理课件5.5吸收塔的计算

化工原理课件5.5吸收塔的计算
统的平衡关系、塔型及操作条件T、p无关。
返回
北京化工大学化工原理电子课件
4)吸收操作线在平衡线的上方,解吸操作线在平 衡线OE下方。
5)平衡线与操作线共同决定吸收推动力。操作线 离平衡线愈远吸收的推动力愈大;
Y
Y
. B Y* f (X)
K
Y* A
X
X* X
返回
北京化工大学化工原理电子课件
(2)并流吸收
L Y1 Y2 V min X1,max X 2
返回
2.操作液气比
北京化工大学化工原理电子课件
L Y , Z , 设 备 费
V
L Y , Z , 设 备 费 , 并 不 总 有 效
V
L , 再 生 费
L (1.1 2.0) V
L V min
返回
北京化工大学化工原理电子课件
L
Y1 mX 2 Y2 mX 2
返回
北京化工大学化工原理电子课件
注意:图的适用范围为 Y1 mX2 Y2 mX 2
>20及S<0.75。
讨论:

Y1 mX 2 Y2 mX 2
的意义:反映了A吸收率的高低。
m、Y1、X2、S一定时:
Y2
Y1 Y2
mX 2 mX 2
NOG
返回
北京化工大学化工原理电子课件
B Y* f (X)
L
V
Y2 A
X2
X1
X 返回
北京化工大学化工原理电子课件
1)定态,L、V、Y1、X2恒定,操作线在X~Y
坐标上为一直线,斜率为L/V 。 L/V为吸收 操作的液气比;
2)操作线通过塔顶(稀端) A (X2,Y2)及塔底 (浓端) B (X1, Y1);

5.5. 吸收塔的计算解析

5.5. 吸收塔的计算解析

L V min
2、确定操作液气比的分析: 若增大吸收剂用量,操作线的B点将沿水 平线Y=Y1向左移动,如图5-24所示的B、C点。 在此情况下,操作线远离平衡线,吸收的 推动力增大,若欲达到一定吸收效果,则所需 的塔高将减小,设备投资也减少。 液气比增加到一定程度后,塔高减小的幅 度就不显著,而吸收剂消耗量却过大,造成输 送及吸收剂再生等操作费用剧增。
解: 按题意进行组成换算: 进塔气体中SO2的组成为:
y1 0.09 Y1 0.099 1 y1 1 0.09
出塔气体中SO2的组成为:
Y2 Y1 (1 ) 0.099 (1 0.09) 0.0099
进吸收塔惰性气体的摩尔流量为
1000 273 V (1 0.09) 37.8kmol/h 22.4 273 20
根据吸收速率定义,dZ段内吸收溶质的量为:
dGA N A dA N A (aΩdZ )
(5-87)
式中:
GA——单位时间吸收溶质的量,kmol/s; NA ——为微元填料层内溶质的传质速率, kmol/m2· s; 将吸收速率方程
N A KY (Y Y )
*
代入式(5-87)得:
dGA KY (Y Y )aΩdZ
1、重点掌握的内容:
吸收剂用量的确定、传质单元数的计算(平 均推动力、吸收因数法); 2、了解的内容: 传质单元数的计算(图解法)、理论级的 计算;
3、熟悉的内容:
吸收操作线、吸收操作线的特点、、传质推 动力、最小液气比及计算、体积传质系数、传质 单元数的定义及物理意义、传质单元高度的定义 及物理意义、吸收因数及物理意义、解吸因数、 吸收过程的设计(吸收条件的确定)及计算(吸 收剂用量、填料层高度的计算、塔径的计算、塔 核算)、吸收过程的强化措施;解吸的特点、解 吸的计算;

第三节吸收塔的计算简

第三节吸收塔的计算简

或:
被吸收的溶质量 n A进 n A出 进塔气体的溶质量 n A进
即:Ya=Yb(1-η)
n A进 n A出 Yb Ya nB nB n A进 Yb nB
9.5 Mass Balance of Absorption Tower
四.低浓度气体吸收 低浓度的吸收,通常是指混合气中溶质组成 yb<10%的吸收过程。 因为:溶质含量很低, 1)气液相流率G,L约等于惰性组分流率:
GB(Yb-Ya)= LS( Xb –Xa )
9.5 Mass Balance of Absorption Tower
4.任一截面FF’物料衡算 1)塔顶a与FF’之间: 由 GB(Yb-Ya )=LS(Xb –Xa ) 得 GB(Y -Ya )=LS(X –Xa ) Y = LS X/GB+ (Ya - LS Xa /GB) -----(11) 2)塔底b与FF’之间: 同法得 GB(Yb-Y )=LS(Xb –X ) Y = LS X/GB+ (Yb - LS Xb /GB) -----(12)
G≈ GS , L≈ LS
2)摩尔比Y,X约等于摩尔分率:
Y≈ y , X≈ x
9.5 Mass BalanceLeabharlann of Absorption Tower
则全塔物料衡算式:GB(Yb-Ya) = LS(Xb –Xa ) 可以变为: G(yb-ya) = L(yb –ya ) 塔顶a与任意截面衡算式变为: GB(Y -Ya )=LS(X –Xa ) G(y-ya ) = L(y –ya ) 相应的: L L y x (ya - x a ) G G yb ya L ( ) min * G xb xa
9.5 Mass Balance of Absorption Tower

第二讲 吸收塔的计算

第二讲 吸收塔的计算
mV 1 L Y dY mV Y2 (mX 2 b) L
Y1
Y2
Y1
Y2
mV 令S L
NOG
Y2
dY 1 S Y SY2 Y2*) (
N OG
* ( ] 1 Y1 d[1 S Y SY2 Y2 ) 1 S Y2 1 S Y SY2 Y2*) (
NOG
Y1 Y2* 1 ln[1 S S] * 1 S Y2 Y2
2. 对数平均推动力法
塔顶推动力:Y2 Y2 -Y2* 塔底推动力:Y1 Y1 -Y1*
塔内任一截面推动力:Y Y -Y * V Y (mX b) Y m[ (Y Y2 ) X 2 ] b L mV mV (1 )Y ( Y2 mX 2 b) L L
X2
X1*
X
(2) 平衡线为凸形
Y Y1 C
(L/V)min B
X2
Y*=f(X)
Y2
o
X1,max X1*
X
?吸收剂用量的确定
L L 1.1 ~ 2.0 V V min
L 1.1~ 2.0 Lmin
在常压填料吸收塔中,用清水逆流吸收混合气中的氨气。已 知入塔混合气体中含有氨气为1%(体积%),要求氨气的回收
高度为 dZ 的微元填料层
dGA VdY LdX
NA取为定值
dGA =NAdA=NA (adZ )
NA=KY(Y-Y*) NA=KX(X*-X)
dGA VdY K Y Y Y * adZ
dGA LdX K X X * X adZ
填料层高度的基本计算式

吸收塔的计算2010

吸收塔的计算2010

所以,有效相际传质面积a总是小于填料的比表面积,a
与填料性质及设备有关,又受流体物性和流动状态影响, 难以测定。 把Ky(或Kx)与a结合在一起处理,称气(液)相体 积传质总系数,kmol/m3· s
2.传质单元数和传质单元高度 y1 气相总传质单元数 N OG
y2
x1
dy y y*
dx 液相总传质单元数 N OL x2 x * x G 气相总传质单元高度 H OG K ya
平衡关系
填料层高度
H H OG N OG H OL N OL
传质量Gdy
物料衡算
a——填料的有效相际传质面积, m2/m3
A——塔截面积
1. 基本计算式
y2 L,x2
定态连续逆流 吸收操作
0
y m y+dy x+dx H G,y1 x1 x dh n
H
吸收操作示意图
在塔内任一截面处,取一微元高度dh,作物料衡算 溶质吸收量 GAdy LAdx N AaAdh 由速率方程
第四节 填料吸收塔的计算
吸收塔分板式塔和填料塔,本章
主要讨论填料塔。
主要计算任务:
(1) 吸收剂用量的计算 (2) 塔底排除液浓度的计算 (3) 塔高度的计算 (4) 塔径的计算
低浓度气体(贫气)吸收
低浓度气体(贫气)吸收—当进塔气浓度<510%,通常称为贫气吸收。
贫气吸收特点:
1.经全塔的混合气量和液体量变化不大,传质系数可 视为常量; 2.吸收过程可视为等温过程。
K y ( y y*)adh K x ( x * x ) adh
Gdy K y ( y y *)adh Ldx K x ( x * x ) adh
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)因吸收操作时,Y >Y*或X*>X,故吸收 操作线在平衡线的上方,操作线离平衡线愈 远吸收的推动力愈大;解吸操作时,Y<Y*或 X*<X,故解吸操作线在平衡线的下方。
3、并流吸收操作线
V,Y2 L,X2
L Y Y2 ( X X 2 ) V
Y Y2 Y1
A B
斜率= -L/V
V,Y L,X
dGA K Y (Y Y )aΩ dZ
*
(5-88)
将式(5-86)与(5-88)联立得:
V dY dZ * K Y aΩ Y Y
(5-89)
当吸收塔定态操作时,V、L、Ω 、a皆不 随时间而变化,也不随截面位置变化。对于低 浓度吸收,在全塔范围内气液相的物性变化都 较小,通常KY、KX可视为常数,将式(5-89)积 分得:
逆流吸收操作线具有如下特点:
L L Y X (Y2 X 2 ) V V
图5-21 逆流吸收操作线
L L Y X (Y1 X1 ) V V
图5-22 吸收操作线推动力示意
(1)当定态连续吸收时,若L、V一定,Y1、 X2恒定,则该吸收操作线在X~Y直角坐标图 上为一直线,通过塔顶A(X2,Y2)及塔底B (X1, Y1),其斜率为L/V,见图5-21。L/V 称为吸收操作的液气比; (2)吸收操作线仅与液气比、塔底及塔顶溶 质组成有关,与系统的平衡关系、塔型及操 作条件T、P无关。
设计型和操作型计算的依据: 气液平衡关系 吸收速率方程 物料恒算
5.5.1.物料衡算和操作线方程
1.物料衡算 定态逆流吸收塔的气液流率和组成如图5-19所 示,图中符号定义如下:
V, Y2 L, X2
V——单位时间通过任一塔截面 惰性气体的量,kmol/s;
L——单位时间通过任一塔截面 的纯吸收剂的量,kmol/s;
VY1 LX VY LX 1

L L Y X (Y1 X 1 ) V V
(5-82)
由全塔物料衡算知,方程(5-81)与(5-82) 等价。
操作关系:
塔内任一截面上气相组成Y与液相组成 X之间的关系。
逆流吸收操作线方程:
方程(5-81)与(5-82)称为逆流吸收 操作线方程式。
解: 按题意进行组成换算: 进塔气体中SO2的组成为:
y1 0.09 Y1 0.099 1 y1 1 0.09
出塔气体中SO2的组成为:
Y2 Y1 (1 ) 0.099 (1 0.09) 0.0099
进吸收塔惰性气体的摩尔流量为
1000 273 V (1 0.09) 37.8kmol/h 22.4 273 20
G GB
L LS
Yy
X x
kL、kG 近似为常数
表5-1
SO2气液平衡组成表 SO2溶液 浓度X 0.00084 0.0014 0.00197 0.0028 0.0042 气相中SO2 平衡浓度Y 0.019 0.035 0.054 0.084 0.138
SO2溶液 气相中SO2平 浓度X 衡浓度Y 0.0000562 0.00066 0.00014 0.00158 0.00028 0.0042 0.00042 0.0077 0.00056 0.0113
V,Y1
L,X1
X2
X1
X
图5-23 并流吸收操作线
4、逆流与并流的比较: 1)逆流推动力均匀,且
Ym逆流 Ym并流
2) Y1大,逆流时Y1与X1在塔底相迂有利于提高X1; X2小,逆流时Y2与X2在塔顶相迂有利于降低Y2。
5.5.2.吸收剂用量与最小液气比 1.最小液气比: 针对一定的分离任务,操作条件和吸收物系, 当塔内某截面吸收推动力为零,达到分离程度所 需塔高无穷大时的液气比。 表示为:
Y1 Y2 L V min X 1,max X 2
(5-85)
Y
Y
X
图5-24 逆流吸收最小回 流比
X
图5-25 最小回流比计算示意图
例、某矿石焙烧炉排出含SO2的混合气体,除SO2外
其余组分可看作惰性气体。冷却后送入填料吸收塔
中,用清水洗涤以除去其中的SO2。吸收塔的操作温 度为20℃,压力为101.3kPa。混合气的流量为 1000m3/h,其中含SO2体积百分数为9%,要求SO2 的回收率为90%。若吸收剂用量为理论最小用量的
体积传质系数的物理意义:
在单位推动力下,单位时间,单位体积 填料层内吸收的溶质量。 注意:
根据吸收速率定义,dZ段内吸收溶质的量为:
dGA N A dA N A (aΩdZ )
(5-87)
式中:
GA——单位时间吸收溶质的量,kmol/s; NA ——为微元填料层内溶质的传质速率, kmol/m2· s; 将吸收速率方程
N A K Y (Y Y )
*
代入式(5-87)得:
实际吸收剂用量
L=1.2Lmin =1.2 1161=1394kmol/h
塔底吸收液的组成X1由全塔物料衡算求得:
X 1 X 2 V (Y1 Y2 ) / L 37.8(0.099 0.0099) 0.0003 0.0027 1394
由该题计算结果可见,当保持溶质回收率不变, 吸收剂所含溶质溶解度越低,所需溶剂量越小, 塔底吸收液浓度越低。
塔底吸收液的组成X1由全塔物料衡算求得:
X 1 X 2 V (Y1 Y2 ) / L 37.8(0.099 0.0099) 0 0.00267 1263
(2)吸收率不变,即出塔气体中SO2的组成Y2 不变,
Y2 0.0099
所以
X 2 0.0003
Lmin
Y1 Y2 37.8(0.099 0.0099 ) V * 1161kmol/h 0.0032 0.0003 X1 X 2
1、重点掌握的内容:
吸收剂用量的确定、传质单元数的计算(平 均推动力、吸收因数法); 2、了解的内容: 传质单元数的计算(图解法)、理论级的 计算;
3、熟悉的内容:
吸收操作线、吸收操作线的特点、、传质推 动力、最小液气比及计算、体积传质系数、传质 单元数的定义及物理意义、传质单元高度的定义 及物理意义、吸收因数及物理意义、解吸因数、 吸收过程的设计(吸收条件的确定)及计算(吸 收剂用量、填料层高度的计算、塔径的计算、塔 核算)、吸收过程的强化措施;解吸的特点、解 吸的计算;
4、难点:吸收过程的操作分析与计算。
工业上通常在塔设备中实现气液传质。 逐级接触式 塔设备一般分为 连续接触式
本章以连续接触操作的填料塔为例,介绍 吸收塔的设计型和操作型计算。
吸收塔的计算内容:
1、设计型: 流向、流程、吸收剂用量、 吸收剂浓度、 塔高和塔径的设计计算; 2、操作型: (1)在物系、塔设备一定的情况下,对指定的 生产任务,核算塔设备是否合用; (2)操作条件发生变化,吸收结果将怎样变化 等问题。
5.5.3. 填料层高度的计算
填料层高度的计算通常采用传质单元数法, 它又称传质速率模型法,该法依据传质速率、物 料衡算和相平衡关系来计算填料层高度。 1、塔高计算基本关系式
在填料塔内任一截面上的气液两相组成和 吸收的推动力均沿塔高连续变化,所以不同截 面上的传质速率各不相同。
进行填料层高度的计算时,传质速率方程 和物料衡算式应对填料层的微分高度列出,然 后积分得到填料层总高度。 在图5-26所示的填料层内,厚度为dZ微元的 传质面积为:
由表5-8中X~Y数据,采用内差法得到与气 相进口组成Y1相平衡的液相组成
X 0.0032
* 1
(1)
Lmin
Y1 Y2 37.8(0.099 0.0099 ) V * 1052 kmol/h 0.0032 X1 X 2
实际吸收剂用量
L=1.2Lmin =1.2 1052=1263kmol/h
注意: L值必须保证操作时,填料表面被液体 充分润湿,即保证单位塔截面上单位时间内 流下的液体量不得小于某一最低允许值。
4、最小液气比的计算: (1)图解法: 最小液气比可根据物料衡算采用图解法求 得,当平衡曲线符合图5-24所示的情况时,
Y1 Y2 L * V min X 1 X 2
Z
Y1 Y2
VdY * KY aΩ (Y Y )
Y1 V dY Y2 Y Y * KY aΩ
(5-90)
——低浓度定态吸收填料层高度计算基本公式
体积传质系数: a值与填料的类型、形状、尺寸、填充 情况有关,还随流体物性、流动状况而变化。 其数值不易直接测定,通常将它与传质系数 的乘积作为一个物理量,称为体积传质系数。 如KYa为气相总体积传质系数, 单位为 kmol/(m3· s)。
5.5. 吸收塔的计算
5.5.1. 物料衡算与操作线方程 5.5.2. 吸收剂用量与最小液气比 5.5.3. 吸收塔填料层高度的计算 5.5.4. 吸收塔理论级数的计算 5.5.5. 吸收塔塔径的计算 5.5.6. 吸收塔的设计型计算
5.5.7. 吸收塔的操作型计算
5.5.8. 强化吸收过程的措施
本节教学要求
考虑吸收剂用量对设备费和操作费两方面 的综合影响。应选择适宜的液气比,使设备费 和操作费之和最小。 根据生产实践经验,通常吸收剂用量为最 小用量的1.1~2.0倍,即:
L L (1.1 2.0) V V min
3、吸收剂用量的确定:
L (1.1 2.0) Lmin
(5-83)
(2)解析法:
若平衡关系符合亨利定律,则采用下列 解析式计算最小液气比
Y1 Y2 L V min Y1 X 2 m
(5-84)
相关文档
最新文档