惯性矩总结含常用惯性矩公式
常用截面惯性矩计算公式
常用截面惯性矩计算公式截面的惯性矩是描述截面抵抗弯曲的特性之一,也称为截面二阶矩。
它是通过计算截面各点到其中一轴线的距离的二次方与其对应的面积乘积之和来获得。
常用的截面惯性矩计算公式如下:1.矩形截面的惯性矩公式:对于矩形截面,惯性矩可以通过以下公式进行计算:I=(b*h^3)/12其中,I为惯性矩,b为矩形宽度,h为矩形高度。
2.圆形截面的惯性矩公式:对于圆形截面,惯性矩可以通过以下公式进行计算:I=(π*R^4)/4其中,I为惯性矩,R为圆的半径。
3.I型截面的惯性矩公式:对于I型截面(又称为双T型截面或工字型截面),惯性矩可以通过以下公式进行计算:I = bw * hw^3 / 12 + hf * tf^3 / 12 + 2 * tf * hf * (hw / 2 + tf / 2)^2其中,I为惯性矩,bw为上翼板的宽度,hw为上翼板的高度,hf为下翼板的高度,tf为翼板的厚度。
4.H型截面的惯性矩公式:对于H型截面,惯性矩可以通过以下公式进行计算:I = [bw * (hw^3 - tw1 ^3) / 12] + [hf * (tf^3 - tw2^3) / 12] + 2 * tw1 * hw^3 / 12 + 2 * tw2 * tf^3 / 12 + 2 * hf * (hw / 2 + tf / 2)^2其中,I为惯性矩,bw为上翼板的宽度,hw为上翼板的高度,hf为下翼板的高度,tf为翼板的厚度,tw1为上翼板的厚度,tw2为下翼板的厚度。
5.T型截面的惯性矩公式:对于T型截面,惯性矩可以通过以下公式进行计算:I = [bw * hw^3 / 12] + [tf * hf^3 / 12] + tw * hw * (hw / 2 + tf)^2其中,I为惯性矩,bw为翼板的宽度,hw为翼板的高度,hf为梁的高度,tf为梁的厚度,tw为翼板的厚度。
这些公式是根据不同截面形状和尺寸推导出来的,可以用于计算截面的惯性矩。
材料力学笔记(惯性矩)汇总
材料力学笔记一、截面对形心轴的轴惯性矩矩形、实心圆、空心圆、薄壁圆截面的轴惯性矩分别为(B.3-4)(B.3-5)(B.3-6)式中,d—实心圆直径和空心圆内径,D—空心圆外径,R—薄壁圆平均半径。
t—薄壁圆壁厚。
惯性矩I量纲为长度的四次方(mm4),恒为正。
二、截面抗弯刚度EI z和抗弯截面模量Wz(a)上式代表距中性层为y处的任一纵向“纤维”的正应变,式中的ρ对同一横截面来说是个常数,所以正应变ε与y成正比(上缩下伸),与z无关。
式(a)即为横截面保持平面,只绕中性轴旋转的数学表达式,通常称为几何方面的关系式。
(b)式(b)表示横截面上正应力沿梁高度的变化规律,即物理方面的关系式。
由于式中ρ对同一横截面来说是个常数,均匀材料的弹性模量E也是常数,所以横截面上任一点处的正应力与y成正比(上压下拉)。
显然中性轴上的正应力为零,而距中性轴愈远,正应力愈大,最大正应力σmax发生在距中性轴最远的上下边缘(图7.2-4)。
图7.2-4 弯曲正应力分布微内力对中性轴z之矩组成弯矩M,即(e)代入式(b ),并将常数从积分号中提出,得。
令,称为横截面对z轴的惯性矩,它只取决于横截面的形状和尺寸,其量纲是长度的四次方,此值很容易通过积分求出。
于是得出(7.2-1)上式确定了曲率的大小。
式中EIz称为截面抗弯刚度(stiffness in bending)。
到此为止,式(a)中的y和ρ已经确定。
联合式(b)及式(7.2-1),得出(7.2-2)上式即为对称弯曲正应力公式。
当y=ymax时,得出最大正应力公式,即(7.2-3)式中称为抗弯截面模量(section modulus in bending),其量纲是长度的三次方。
表7.2-I列出了简单截面的Iz和Wz计算公式。
表中 =d/D,R为薄壁圆平均半径。
三、平行轴间惯性矩的移轴公式图B.3-3如图B.3-3所示,设y0、z为截面的一对形心轴,如果截面对形心轴的惯性矩为和,则截面对任一平行于它的轴y和z的惯性矩为:,(B.3-7)上式称为惯性轴的移轴公式或称平行轴定理(Parallel axis theorem)。
惯性矩的定义和计算公式
惯性矩的定义和计算公式惯性矩的定义●区域惯性矩-典型截面I●区域惯性矩,一个区域的惯性矩或典型截面轮廓的第二个区域惯性矩●面积惯性矩或面积惯性矩-也称为面积二阶矩-I,是用于预测梁的挠度、弯曲和应力的形状特性。
●面积惯性矩-英制单位●inches4●面积惯性矩-公制单位●mm4●cm4●m4●单位转换● 1 cm4 = 10-8 m4 = 104 mm4● 1 in4 = 4.16x105 mm4 = 41.6 cm4●示例-惯性单位面积矩之间的转换●9240 cm4 can be converted to mm4 by multiplying with 104●(9240 cm4) 104 = 9.24 107 mm4●区域惯性矩(一个区域或第二个区域的惯性矩)●●绕x轴弯曲可表示为●I x = ∫ y2 dA (1)●其中●I x =与x轴相关的惯性矩面积(m4, mm4, inches4)●y =从x轴到元件dA的垂直距离(m, mm, inches)●dA =基元面积(m2, mm2, inches2)●绕y轴弯曲的惯性矩可以表示为●I y = ∫ x2 dA (2)●其中●I x =与y轴相关的惯性矩面积(m4, mm4, inches4)●x =从轴y 到元件dA的垂直距离(m, mm, inches)●典型截面I的面积惯性矩●典型截面II的面积惯性矩●实心方形截面●●实心方形截面的面积惯性矩可计算为●I x = a4 / 12 (2)●其中● a = 边长(mm, m, in..)●I y = a4 / 12 (2b)●实心矩形截面●●矩形截面惯性矩的面积可计算为●I x = b h3 / 12 (3)●其中● b = 宽●h = 高●I y = b3 h / 12 (3b)●实心圆形截面●●实心圆柱截面的面积惯性矩可计算为●I x = π r4 / 4●= π d4 / 64 (4)●其中●r =半径● d = 直径●I y = π r4 / 4●= π d4 / 64 (4b)●中空圆柱截面●空心圆柱截面的面积惯性矩可计算为●I x = π (d o4 - d i4) / 64 (5)●其中●d o = 外圆直径●d i = 内圆直径●I y = π (d o4 - d i4) / 64 (5b)●方形截面-对角力矩●●矩形截面的对角线面积惯性矩可计算为●I x = I y = a4 / 12 (6)●矩形截面-通过重心的任何线上的面积力矩●●通过重心在线计算的矩形截面和力矩面积可计算为●I x = (b h / 12) (h2 cos2 a + b2 sin2 a) (7)●对称形状●●对称形状截面的面积惯性矩可计算为●I x = (a h3 / 12) + (b / 12) (H3 - h3) (8)●I y = (a3 h / 12) + (b3 / 12) (H - h) (8b)●不对称形状●●非对称形状截面的面积惯性矩可计算为●I x = (1 / 3) (B y b3 - B1 h b3 + b y t3 - b1 h t3) (9)●典型截面II的面积惯性矩●区域惯性矩vs.极惯性矩vs.惯性矩●“面积惯性矩”是一种形状特性,用于预测梁的挠度、弯曲和应力●“极惯性矩”是衡量梁抗扭能力的一个指标,计算受扭矩作用的梁的扭曲度时需要用到它●“转动惯量”是测量物体在旋转方向上变化的阻力。
惯性矩总结(含常用惯性矩公式)
惯性矩就是一个物理量,通常被用作描述一个物体抵抗扭动,扭转得能力。
惯性矩得国际单位为(m^4)。
工程构件典型截面几何性质得计算2、1面积矩1.面积矩得定义图2-2、1任意截面得几何图形如图2-31所示为一任意截面得几何图形(以下简称图形)。
定义:积分与分别定义为该图形对z轴与y轴得面积矩或静矩,用符号S z与S y,来表示,如式(2—2、1)(2—2、1)面积矩得数值可正、可负,也可为零。
面积矩得量纲就是长度得三次方,其常用单位为m3或mm3。
2.面积矩与形心平面图形得形心坐标公式如式(2—2、2)(2—2、2)或改写成,如式(2—2、3)(2—2、3)面积矩得几何意义:图形得形心相对于指定得坐标轴之间距离得远近程度。
图形形心相对于某一坐标距离愈远,对该轴得面积矩绝对值愈大。
图形对通过其形心得轴得面积矩等于零;反之,图形对某一轴得面积矩等于零,该轴一定通过图形形心。
3.组合截面面积矩与形心得计算组合截面对某一轴得面积矩等于其各简单图形对该轴面积矩得代数与。
如式(2—2、4)(2—2、4)式中,A与y i、z i分别代表各简单图形得面积与形心坐标。
组合平面图形得形心位置由式(2—2、5)确定。
(2—2、5)2、2极惯性矩、惯性矩与惯性积1.极惯性矩任意平面图形如图2-31所示,其面积为A。
定义:积分称为图形对O点得极惯性矩,用符号I P,表示,如式(2—2、6)(2—2、6)极惯性矩就是相对于指定得点而言得,即同一图形对不同得点得极惯性矩一般就是不同得。
极惯性矩恒为正,其量纲就是长度得4次方,常用单位为m4或mm4。
(1)圆截面对其圆心得极惯性矩,如式(2—7)(2—2、7)(2)对于外径为D、内径为d得空心圆截面对圆心得极惯性矩,如式(2—2、8)(2—2、8)式中,d/D为空心圆截面内、外径得比值。
2.惯性矩在如图6-1所示中,定义积分,如式(2—2、9)(2—2、9)称为图形对z轴与y轴得惯性矩。
常用截面惯性矩计算公式_百度文库
常用截面惯性矩计算公式_百度文库截面惯性矩是描述截面形状对于抗弯刚度的影响的一个物理量,常用截面惯性矩计算公式有以下几种:
1.矩形截面惯性矩计算公式:
矩形截面的惯性矩计算公式为I=b*h^3/12,其中b为矩形截面的宽度,h为矩形截面的高度。
2.圆形截面惯性矩计算公式:
圆形截面的惯性矩计算公式为I=π*d^4/64,其中d为圆形截面的直径。
3.正方形截面惯性矩计算公式:
正方形截面的惯性矩计算公式为I=a^4/12,其中a为正方形截面的边长。
4.等边三角形截面惯性矩计算公式:
等边三角形截面的惯性矩计算公式为I=a^4/80.9,其中a为等边三角形截面的边长。
5.环形截面惯性矩计算公式:
环形截面的惯性矩计算公式为I=π*(D^4-d^4)/64,其中D为大圆直径,d为小圆直径。
6.T形截面惯性矩计算公式:
T形截面的惯性矩计算公式稍复杂,可以分解为矩形和矩形之和。
可以分别计算底座和翼板的惯性矩,然后相加。
7.I形截面惯性矩计算公式:
I形截面的惯性矩计算公式也稍复杂,可以分解为矩形和矩形之和,也可以通过几何分解法计算。
以上是常见的几种截面形状的惯性矩计算公式,不同形状的截面有不同的计算方法。
通过计算截面惯性矩,可以评估截面的抗弯刚度性能,并在设计工程结构时进行应用。
惯性矩总结含常用惯性矩公式
2.圆形截面
由对称性
3.环形截面
常用图形的惯性矩:
惯 性 矩——对某一轴而言
极 惯 性 矩——对某一点而言
特别指出:
——图形对 x 轴的惯性半径
单位:m
三、惯性半径
在力学计算中,有时把惯性矩写成
即:
——图形对 y 轴的惯性半径
注意:
试问:
即:
三、惯性半径
四、平行移轴Байду номын сангаас式
一、定理推导
二、应用
一、定理推导
即:
§A.3 平行轴定理
显然:
性质4:在平面图形对所有相互平行的坐标轴的惯性矩
中,以对形心轴的惯性矩为最小。
同理
——惯性矩和惯性积的平行轴定理
一、定理推导
解:
而
二、应用
解:
教学目的和要求
惯性矩 惯性半径
一、惯性矩
二、惯性矩与极惯性矩的关系
三、惯性半径
四、平行移轴公式
1、惯性矩、极惯性矩的概念和计算方法;2、平行移轴公式。
教学重点
平行移轴公式的应用。
教学难点
一、惯性矩
整个图形 A 对x 轴的惯性矩
整个图形 A 对 y 轴的惯性矩
y2dA——微面积dA对 x 轴的惯性矩
x2dA——微面积dA对 y 轴的惯性矩
定义:
其值:+
单位:m4
1.惯性矩
二、惯性矩与极惯性矩的关系
即:
平面图形对任意一点的极惯性矩等于该图形对通过
该点的任意一对相互垂直的坐标轴的惯性矩之和
性质 :
若 x 、 y 轴为一对正交坐标轴
§A.2 惯性矩 惯性积 惯性半径
惯性矩
分类
截面极
截面
主
截面惯性矩(I=截面面积X截面轴向长度的二次方) 截面惯性矩:the area moment of inertia characterized an object's ability to resist bending and is required to calculate displacement. 截面各微元面积与各微元至截面某一指定轴线距离二次方乘积的积分Ix= y^2dF.
定义
面积元素dA与其至z轴或y轴距离平方的乘积y2dA或z2dA的积分,分别称为该面积元素对于z轴或y轴的惯性矩 或截面二次轴矩。惯性矩的数值恒大于零
对Z轴的惯性矩: 对Y轴的惯性矩: 截面对任意一对互相垂直轴的惯性矩之和,等于截面对该二轴交点的极惯性矩。 极惯性矩常用计算公式: 矩形对于中线(垂直于h边的中轴线)的惯性矩: 三角形: 圆形对于坐标轴的惯性矩: 圆形对于圆心的惯性矩: 环形对于圆心的惯性矩:,
截面极惯性矩(Ip=面积X垂直轴二次)。 扭转惯性矩Ip: the torsional moment of inertia 极惯性矩:the polar moment of inertia 截面各微元面积与各微元至某一指定截面距离二次方乘积的积分Iρ= ρ^2dF。 a quantity to predict an object's ability to resist torsion, to calculate the angular displacement of an object subjected to a torque.
惯性矩
几何量
01 定义
目录
02 静矩
ห้องสมุดไป่ตู้
03 分类
惯性矩及相关总结(画重点)-20200408整理
前引360知识:惯性矩是一个物理量,通常被用作描述一个物体抵抗弯曲的能力。
惯性矩的国际单位为(m^4)。
百度知识:惯性矩(moment of inertia of an area)是一个几何量,通常被用作描述截面抵抗弯曲的性质。
惯性矩的国际单位为(m4)。
即面积二次矩,也称面积惯性矩,而这个概念与质量惯性矩(即转动惯量)是不同概念。
截面惯性矩(I=截面面积X截面轴向长度的二次方)结构构件惯性矩I x结构设计和计算过程中,构件惯性矩I x为截面各微元面积与各微元至与X轴线平行或重合的中和轴距离二次方乘积的积分。
主要用来计算弯矩作用下绕X轴的截面抗弯刚度。
结构构件惯性矩I y结构设计和计算过程中,构件惯性矩I y为截面各微元面积与各微元至与Y轴线平行或重合的中和轴距离二次方乘积的积分。
主要用来计算弯矩作用下绕Y轴的截面抗弯刚度。
工程构件典型截面几何性质的计算2.1面积矩1.面积矩的定义图2-2.1任意截面的几何图形如图2-2.1所示为一任意截面的几何图形(以下简称图形)。
定义:积分和分别定义为该图形对z轴和y轴的面积矩或静矩,用符号S z和S y,来表示,如式(2—2.1)(2—2.1)面积矩的数值可正、可负,也可为零。
面积矩的量纲是长度的三次方,其常用单位为m3或mm3。
2.面积矩与形心平面图形的形心坐标公式如式(2—2.2)(2—2.2)或改写成,如式(2—2.3)(2—2.3)面积矩的几何意义:图形的形心相对于指定的坐标轴之间距离的远近程度。
图形形心相对于某一坐标距离愈远,对该轴的静距(面积矩)绝对值愈大。
图形对通过其形心的轴的静距(面积矩)等于零;反之,图形对某一轴的面积矩等于零,该轴一定通过图形形心。
形心确定的规律:(a)图形有对称轴时,形心必在此对称轴上。
(b)图形有两个对称轴时,形心必在此两对称轴的交点处。
3.组合截面面积矩和形心的计算组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。
惯性矩计算方法及常用截面惯性矩计算公式
惯性矩的计算方法及常用截面惯性矩计算公式截面图形的几何性质一.重点及难点:(一).截面静矩和形心1.静矩的定义式如图1所示任意有限平面图形,取其单元如面积dA ,定义它对任意轴的一次矩为它对该轴的静矩,即 yydAdSx xdA dS y == x dA 整个图形对y 、z 轴的静矩分别为⎰⎰==A Ay ydA Sx xdA S (I-1) 0 A y 2.形心与静矩关系 图I-1设平面图形形心C 的坐标为C C z y , 则 0A S y x = , AS x y = (I-2) 推论1 如果y 轴通过形心(即0=x ),则静矩0=y S ;同理,如果x 轴通过形心(即0=y ),则静矩0=Sx ;反之也成立。
推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果y 轴为图形对称轴,则图形形心必在此轴上。
3.组合图形的静矩和形心设截面图形由几个面积分别为n A A A A ⋯⋯321,,的简单图形组成,且一直各族图形的形心坐标分别为⋯⋯332211,,,y x y x y x ;;,则图形对y 轴和x 轴的静矩分别为∑∑∑∑========n i n i ii xi x n i ii n i yi y y A S S x A S 1111S (I-3)截面图形的形心坐标为∑∑===n i i n i i iAx A x 11, ∑∑===n i in i i i A y A y 11 (I-4) 4.静矩的特征(1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。
(2) 静矩有的单位为3m 。
(3) 静矩的数值可正可负,也可为零。
图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。
(4) 若已知图形的形心坐标。
则可由式(I-1)求图形对坐标轴的静矩。
若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。
组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。
惯性矩、截面(极)惯性矩
1.1[编辑本段]1.2惯性矩惯性矩(J=质量X垂直轴二次)the moment of inertia 或rotational inertiacharacterize an object's angular acceleration due to torque.惯性矩也叫转动惯量,是物体相对与一个点而言的(围绕旋转的点)质量M*质心到该点的距离L(角动惯量=惯性矩*角速度)生活举例;滑冰运动员胳膊伸开,旋转比较慢,把胳膊缩回就转快了.因为在M不变的情况下,缩胳膊减小L,惯性矩就减小.角动惯量守恒,角速度就会增加1.3[编辑本段]1.4静矩静矩(面积X面内轴一次)把微元面积与各微元至截面上指定轴线距离乘积的积分称为截面的对指定轴的静矩Sx=ydF。
静矩就是面积矩,是构件的一个重要的截面特性,是截面或截面上某一部分的面积乘以此面积的型心到整个截面的型心轴之间的距离得来的,是用来计算应力的。
注意:惯性矩是乘以距离的二次方,惯性矩和面积矩(静矩)是有区别的。
1.5[编辑本段]1.6截面惯性矩截面惯性矩(I=面积X面内轴二次)截面惯性矩:the area moment of inertiacharacterized an object's ability to resist bending and is required to calculate displacement.截面各微元面积与各微元至截面某一指定轴线距离二次方乘积的积分Ix=y↑2dF。
1.7[编辑本段]1.8截面极惯性矩截面极惯性矩(Ip=面积X垂直轴二次)。
扭转惯性矩Ip: the torsional moment of inertia极惯性矩:the polar moment of inertia截面各微元面积与各微元至某一指定截面距离二次方乘积的积分Ip=P↑2dF。
a quantity to predict an object's ability to resist torsion, to calculate the angular displacement of an object subjected to a torque.1.9[编辑本段]1.10相互关系截面惯性矩和极惯性矩的关系截面对任意一对互相垂直轴的惯性矩之和,等于截面对该二轴交点的极惯性矩Ip=Iy+Iz。
惯性矩计算方法及常用截面惯性矩计算公式
惯性矩的计算方法及常用截面惯性矩计算公式 截面图形的几何性质一.重点及难点:(一).截面静矩和形心1•静矩的定义式如图1所示任意有限平面图形,取其单元如面积 dA ,定义它对任意轴的 一次矩为它对该轴的静矩,即dS y =xdA dSx 二 ydA整个图形对y 、z 轴的静矩分别为S y = AXdA(I )Sx ydA、A2. 形心与静矩关系设平面图形形心C 的坐标为y C , z CS xSyy - , x( I-2)AA推论1如果y 轴通过形心(即x = 0),则静矩S y =0 ;同理,如果x 轴 通过形心(即y = 0),则静矩Sx=o ;反之也成立。
推论2如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果 y 轴为图形对称轴,贝昭形形心必在此轴上。
3. 组合图形的静矩和形心设截面图形由几个面积分别为 A,A 2,A3……A n 的简单图形组成,且一直 各族图形的形心坐标分别为 丘局乂2*2;壬3,『3"…=,则图形对y 轴和x 轴 的静矩分别为图I-1则 0S y = " S yi = 'Ai Xii 4 i 4nnS x = ' S xi = 'A i y ii 4i 4截面图形的形心坐标为、' A i X i4. 静矩的特征(1)界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。
(2)静矩有的单位为m 3(3)静矩的数值可正可负,也可为零。
图形对任意形心轴的静矩必定 为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。
⑷ 若已知图形的形心坐标。
则可由式(1-1)求图形对坐标轴的静矩。
若已知图形对坐标轴的静矩,则可由式(1-2)求图形的形心坐标。
组 合图形的形心位置,通常是先由式(1-3)求出图形对某一坐标系的静 矩,然后由式(1-4)求出其形心坐标。
(二)■惯性矩惯性积惯性半径1. 惯性矩定义 设任意形状的截面图形的面积为 A (图I-3),则图形对0点的极 惯性矩定义为 I p = A'2dA(1-5)图形对y 轴和x 轴的光性矩分别定义为 I y 「A X 2dA , I x 「A y 2dA ( I-6)惯性矩的特征(1)界面图形的极惯性矩是对某一极点定义的; 轴惯性矩是对某一坐 标轴定义的。
惯性矩总结(含常用惯性矩公式).docx
惯性矩是一个物理量,通常被用作描述一个物体抵抗扭动,扭转的能力惯性矩的国际单位为(m^4) O工程构件典型截面几何性质的计算2.1面积矩1.面积矩的定义别定义为该图形对Z轴和y轴的面积矩或静矩,用符号S Z和S y,来表示,如式(2 —2.1)面积矩的数值可正、可负,也可为零。
面积矩的量纲是长度的三次方,其常用单3 3位为m或mm>2.面积矩与形心平面图形的形心坐标公式如式(2 —2.2)乩(2 — 2.2)或改写成,如式(2 —2.3)S2= A-y i(2 —2.3)面积矩的几何意义:图形的形心相对于指定的坐标轴之间距离的远近程度。
图形如图2-31所示为一任意截面的几何图形(以下简称图形)。
定义:积分川和J 分(2 —2.1)图2-2.1任意截面的几何图形S Z= I Z ydA形心相对于某一坐标距离愈远,对该轴的面积矩绝对值愈大。
图形对通过其形心的轴的面积矩等于零;反之,图形对某一轴的面积矩等于零, 该轴一定通过图形形心。
3 •组合截面面积矩和形心的计算组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。
如式 (2 — 2.4)Σ¾ =Σj ⅛z J (2 — 2.4)式中,A 和y i 、Z i 分别代表各简单图形的面积和形心坐标。
组合平面图形的形心位 置由式(2 — 2.5)确定2.2极惯性矩、惯性矩和惯性积1 •极惯性矩任意平面图形如图2-31所示,其面积为A 。
定义:积分丨「’川称为图形对O 点的 极惯性矩,用符号I P ,表示,如式(2 — 2.6)'[ 」(2 — 2.6)极惯性矩是相对于指定的点而言的,即同一图形对不同的点的极惯性矩一般是不同的。
极惯性矩恒为正,其量纲是长度的4次方,常用单位为m 4或mr ⅛(1)圆截面对其圆心的极惯性矩,如式(2 — 7)IP- 32 (2 — 2.7)(2)对于外径为D 内径为d 的空心圆截面对圆心的极惯性矩,如式(2 — 2.8)_(1 —況)P 32(2 — 2.8)式中,:二d/D 为空心圆截面内、外径的比值。
惯性矩计算方法及常用截面惯性矩计算公式
惯性矩计算方法及常用截面惯性矩计算公式惯性矩(也称为惯性矩、二阶矩)是描述物体抵抗绕轴旋转的特性的物理量。
在工程中,惯性矩常用于计算和设计梁、轴等结构的强度和稳定性。
本文将介绍惯性矩的计算方法以及常用的截面惯性矩计算公式。
惯性矩的计算方法主要有几何法、积分法和转动倾斜坐标等方法。
1.几何法:几何法是一种通用的计算惯性矩的方法,适用于简单的几何形状,如矩形、圆形等。
几何法的思想是将复杂的截面分解为简单的几何形状,并使用其相关的公式计算每个部分的惯性矩,然后将它们相加。
2.积分法:积分法是一种基于微积分的方法,适用于复杂的截面形状。
该方法基于将截面分割为无穷小的面积元,然后使用积分计算每个面积元的惯性矩,并将它们相加得到整个截面的惯性矩。
3.转动倾斜坐标:转动倾斜坐标是一种特殊的坐标系选择方法,适用于具有对称轴的截面。
在该方法中,坐标轴被选择为与截面的对称轴对齐,这样会使得部分惯性矩相消,从而简化惯性矩的计算。
下面介绍几个常见截面形状的惯性矩计算公式:1.矩形截面:- 矩形的惯性矩计算公式:I = (bh^3)/12,其中b为矩形的宽度,h为矩形的高度。
2.圆形截面:-圆形的惯性矩计算公式:I=πr^4/4,其中r为圆的半径。
3.圆环截面:-圆环的惯性矩计算公式:I=π(R^4-r^4)/4,其中R为外圆半径,r 为内圆半径。
4.T形截面:-T形的惯性矩计算公式:I=(b1h1^3)/12+b1h1(y1-y)^2+(b2h2^3)/12,其中b1和b2为宽度,h1和h2为高度,y为距离底边的垂直距离。
这些是一些常见的截面形状的惯性矩计算公式,对于其他复杂的截面形状,可以使用几何法、积分法或转动倾斜坐标方法来计算惯性矩。
总结起来,惯性矩是描述物体抵抗绕轴旋转的特性的物理量。
惯性矩的计算方法主要有几何法、积分法和转动倾斜坐标等方法。
常见截面的惯性矩计算公式包括矩形截面、圆形截面、圆环截面和T形截面。
这些公式在结构工程中广泛应用,可以帮助工程师设计和计算各种结构的强度和稳定性。
惯性矩总结(含常用惯性矩公式)
惯性矩总结(含常用惯性矩公式)惯性矩总结(含常用惯性矩公式)惯性矩是描述物体对旋转运动惯性性质的物理量。
它们在工程、物理学和机械设计等领域中起着非常重要的作用。
本文将对惯性矩进行总结,并介绍一些常用的惯性矩公式。
一、惯性矩的定义惯性矩又称为转动惯量或转动惯性矩,用符号I表示。
惯性矩描述了物体对于绕特定轴线旋转的难易程度。
它与物体的质量分布和轴线的位置有关。
对于一个质量分布均匀的物体,其惯性矩可以通过对质量元素的微小体积进行积分来计算。
二、常用惯性矩公式1. 刚体绕轴线旋转的惯性矩对于一个刚体绕轴线旋转,其惯性矩可以表示为:I = ∫r^2dm其中,r是质量元素到轴线的距离,dm是质量元素的微小质量。
2. 常见几何形状的惯性矩公式常见几何形状的惯性矩公式如下:- 环状物体绕其对称轴的惯性矩公式:I = (mR^2)/2其中,m是环状物体的质量,R是环的半径。
- 圆盘绕其对称轴的惯性矩公式:I = (mR^2)/4其中,m是圆盘的质量,R是圆盘的半径。
- 长棒绕其一端垂直轴的惯性矩公式:I = (mL^2)/3其中,m是长棒的质量,L是长棒的长度。
- 长方体绕通过其质心轴的惯性矩公式:I = (m(a^2 + b^2))/12其中,m是长方体的质量,a和b分别是长方体的两个相邻边的长度。
3. 复杂形状的惯性矩公式对于一些复杂的形状,可以利用积分来计算其惯性矩。
例如,对于一个半径为R的圆柱体,其绕通过其质心轴的惯性矩可以表示为:I = (mR^2)/2 + ∫(r^2 - R^2)dm其中,r是圆柱体内任意一点到轴线的距离。
三、应用举例惯性矩广泛应用于工程和物理学中的各种问题。
例如,在机械设计中,惯性矩用于计算旋转部件的稳定性和旋转惯量。
在物理学中,惯性矩用于描述刚体的转动运动和角动量。
以机械工程为例,当设计一个旋转的零件时,需要计算其惯性矩,以确定所需要的力矩和加速度。
同时,惯性矩也可以用来评估旋转零件的稳定性。
惯性矩公式
惯性矩(moment of inertia of an area)是一个几何量,通常被用作描述截面抵抗弯曲的性质。
惯性矩的国际单位为(m4)。
即面积二次矩,也称面积惯性矩,而这个概念与质量惯性矩(即转动惯量)是不同概念。
面积元素dA与其至z轴或y轴距离平方的乘积y2dA或z2dA的积分,分别称为该面积元素对于z轴或y轴的惯性矩或截面二次轴矩。
惯性矩的数值恒大于零对Z轴的惯性矩:对Y轴的惯性矩:截面对任意一对互相垂直轴的惯性矩之和,等于截面对该二轴交点的极惯性矩。
极惯性矩常用计算公式:矩形对于中线(垂直于h边的中轴线)的惯性矩:三角形:圆形对于坐标轴的惯性矩:圆形对于圆心的惯性矩:环形对于圆心的惯性矩:,需要明确因为坐标系不同计算公式也不尽相同。
结构构件惯性矩Ix结构设计和计算过程中,构件惯性矩Ix为截面各微元面积与各微元至与X 轴线平行或重合的中和轴距离二次方乘积的积分。
主要用来计算弯矩作用下绕X 轴的截面抗弯刚度。
结构构件惯性矩Iy结构设计和计算过程中,构件惯性矩Iy为截面各微元面积与各微元至与Y 轴线平行或重合的中和轴距离二次方乘积的积分。
主要用来计算弯矩作用下绕Y 轴的截面抗弯刚度。
静矩静矩(面积X面内轴一次)把微元面积与各微元至截面上指定轴线距离乘积的积分称为截面的对指定轴的静矩Sx=∫ydA。
静矩就是面积矩,是构件的一个重要的截面特性,是截面或截面上某一部分的面积乘以此面积的形心到整个截面的型心轴之间的距离得来的,是用来计算应力的。
注意:惯性矩是乘以距离的二次方,静矩是乘以距离的一次方,惯性矩和面积矩(静矩)是有区别的。
分类截面惯性矩截面惯性矩(I=截面面积X截面轴向长度的二次方)截面惯性矩:the area moment of inertiacharacterized an object's ability to resist bending and is required to calculate displacement.截面各微元面积与各微元至截面某一指定轴线距离二次方乘积的积分Ix= y^2dF.截面极惯性矩截面极惯性矩(Ip=面积X垂直轴二次)。
惯性矩总结(含常用惯性矩公式)
惯性矩总结(含常用惯性矩公式) 惯性矩,这是一个听起来有点高深莫测的词汇,但是它其实跟我们的生活息息相关。
今天,我就来给大家讲讲惯性矩这个家伙,看看它到底是个什么玩意儿,以及它在我们日常生活中有哪些应用。
咱们来简单了解一下惯性矩的概念。
惯性矩,就是一个物体在受到外力作用时,能够保持静止或者匀速运动的性质。
换句话说,惯性矩就是一个物体的“稳定系数”。
有了惯性矩,我们就可以更好地了解一个物体在受到外力作用时的稳定性了。
那么,惯性矩又是如何计算出来的呢?这里就涉及到了一些常用的惯性矩公式。
咱们先来看看第一个公式:1.1 绕轴旋转的惯性矩公式假设有一个物体,它绕着一个轴旋转。
那么,这个物体的绕轴旋转惯性矩就是它的质心到轴的距离的平方乘以密度。
用数学公式表示就是:Ix = 0.5 * m * r^2 * ρ其中,Ix表示绕轴旋转的惯性矩,m表示物体的质量,r表示物体的半径,ρ表示物体的密度。
这个公式告诉我们,一个物体绕着一个轴旋转时的惯性矩,与其质量、半径和密度有关。
这个公式只适用于绕轴旋转的情况。
如果物体是其他方式运动的,我们还需要考虑其他因素。
接下来,我们来看看另一个常用的惯性矩公式:2.1 平行于面的惯性矩公式假设有一个物体,它在一个平面上滑动。
那么,这个物体在这个平面上的平行滑动惯性矩就是它的宽度乘以高度乘以密度。
用数学公式表示就是:Iy = w * h * ρ其中,Iy表示平行于面的惯性矩,w表示物体的宽度,h表示物体的高度,ρ表示物体的密度。
这个公式告诉我们,一个物体在一个平面上滑动时的惯性矩,与其宽度、高度和密度有关。
这个公式只适用于平行于面的情况。
如果物体是其他方式运动的,我们还需要考虑其他因素。
我们来看看第三个常用的惯性矩公式:3.1 沿着轴线的惯性矩公式假设有一个物体,它沿着一个轴线方向受到力的作用。
那么,这个物体沿着轴线的惯性矩就是它的质量乘以长度的平方除以2。
用数学公式表示就是:Iz = m * L^2 / 2其中,Iz表示沿着轴线的惯性矩,m表示物体的质量,L表示物体的长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
惯性矩总结含常用惯性矩
公式
The Standardization Office was revised on the afternoon of December 13, 2020
惯性矩是一个物理量,通常被用作描述一个物体抵抗扭动,扭转的能力。
惯性矩的国际单位为(m^4)。
工程构件典型截面几何性质的计算
2.1面积矩
1.面积矩的定义
图2-2.1任意截面的几何图形
如图2-31所示为一任意截面的几何图形(以下简称图形)。
定义:积分和
分别定义为该图形对z轴和y轴的面积矩或静矩,用符号S z和S y,来表示,如式(2—2.1)
(2—2.1)面积矩的数值可正、可负,也可为零。
面积矩的量纲是长度的三次方,其常用单位为m3或mm3。
2.面积矩与形心
平面图形的形心坐标公式如式(2—2.2)
(2—2.2)
或改写成,如式(2—2.3)
(2—2.3)
面积矩的几何意义:图形的形心相对于指定的坐标轴之间距离的远近程度。
图形形心相对于某一坐标距离愈远,对该轴的面积矩绝对值愈大。
图形对通过其形心的轴的面积矩等于零;反之,图形对某一轴的面积矩等于零,该轴一定通过图形形心。
3.组合截面面积矩和形心的计算
组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。
如式(2—2.4)
(2—2.4)
式中,A和y i、z i分别代表各简单图形的面积和形心坐标。
组合平面图形的形心位置由式(2—2.5)确定。
(2—2.5)
2.2极惯性矩、惯性矩和惯性积
1.极惯性矩
任意平面图形如图2-31所示,其面积为A。
定义:积分称为图形对O点的极惯性矩,用符号I P,表示,如式(2—2.6)
(2—2.6)
极惯性矩是相对于指定的点而言的,即同一图形对不同的点的极惯性矩一般是不同的。
极惯性矩恒为正,其量纲是长度的4次方,常用单位为m4或mm4。
(1)圆截面对其圆心的极惯性矩,如式(2—7)
(2—2.7)
(2)对于外径为D、内径为d的空心圆截面对圆心的极惯性矩,如式(2—2.8)
(2—2.8)
式中,d/D为空心圆截面内、外径的比值。
2.惯性矩
在如图6-1所示中,定义积分,如式(2—2.9)
(2—2.9)
称为图形对z轴和y轴的惯性矩。
惯性矩是对一定的轴而言的,同一图形对不同的轴的惯性矩一般不同。
惯性矩恒为正值,其量纲和单位与极惯性矩相同。
同一图形对一对正交轴的惯性矩和对坐标原点的极惯性矩存在着一定的关系。
如式2—2.10)
I P=I z+I y (2—2.10)
上式表明,图形对任一点的极惯性矩,等于图形对通过此点且在其平面内的任一对正交轴惯性矩之和。
表6-1给出了一些常见截面图形的面积、形心和惯性矩计算公式,以便查用。
工程中使用的型钢截面,如工字钢、槽钢、角钢等,这些截面的几何性质可从附录的型钢表中查取。
3.惯性积
如图2—32所示,积分定义为图形对y,、z轴的惯性积,用符号I yz表示,如式(2—11)
图2-2.2具有轴对称的图形
(2—11)惯性积是对于一定的一对正交坐标轴而言的,即同一图形对不同的正交坐标轴的惯性积不同,惯性积的数值可正、可负、可为零,其量纲和单位与惯性矩相同。
由惯性积的定义可以得出如下结论:若图形具有对称轴,则图形对包含此对称轴在内的一对正交坐标抽的惯性积为零。
如图2-32所示,y为图形的对称轴.则整个图形对y、z轴的惯,性积等于零。
常见图形的面积、形心和惯性矩表2—2.1序
图形面积形心位置惯性矩(形心轴)
号
1
2
3
4
5
6
2.3组合截面的惯性矩
1.惯性矩和惯性积的平行移轴公式
任意平面图形如图2-2.3所示。
z、y为一对正交的形心轴,z1、y1为与形心轴平行的另一对正交轴,平行轴间的距离分别为a和b。
已知图形对形心轴的惯性矩I z、I y和
惯性积I zy,现求图形对z1、y1轴的惯性矩I z1、I y1和惯性积I z1y1。
有惯性矩和惯性积的平行移轴公式如式(2—2.12)和式(2—2.13)
(2—2.12)
I z1y1=I zy+abA (2—2.13)
可见,图形对于形心轴的惯性矩是对所有平行轴的惯性矩中最小的一个。
在应用平行移轴公式(2—2.12)时,要注意应用条件,即y、z轴必须是通过形心的轴,且
z
、y1轴必须分别与z、y轴平行。
在应用式(2—2.13)计算惯性积时,还须注意a、b 1
的正负号,它们是截面形心c在z1oy1坐标系中的坐标值。
2.组合截合惯性矩计算
组合图形对某一轴的惯性矩,等于其各组成部分简单图形对该轴惯性矩之和,如式(2—2.14)
(2—2.14)
在计算组合图形对z、y轴的惯性矩时,应先将组合图形分成若干个简单图形,并计算出每一简单图形对平行于z、y轴的自身形心轴的惯性矩,然后利用平行移轴公式(2—2.12)计算出各简单图形对z、y轴的惯性矩,最后利用式(2—2.14)求总和。
2.4主惯性轴和主惯性矩
过图形上任一点都可得到一对主轴,通过截面图形形心的主惯性轴,称为形心主轴,图形对形心主轴的惯性矩称为形心主惯性矩。
在对构件进行强度、刚度和稳定计算中,常常需要确定形心主轴和计算形心主惯性矩。
因此,确定形心主轴的位置是十分重要的。
由于图形对包括其对称轴在内的一对正交坐标轴的惯性积为零,所以对于
如图6-4所示具有对称轴的截面图形,可根据图形具有对称轴的情况,观察确定形心主轴的位置。
(1)如果图形有一根对称轴,则此轴必定是形心主轴、而另一根形心主轴通过形心,并与对称轴垂直,如图2-34 b)、d)所示。
(2)如果图形有两根对称轴,则该两轴都为形心主轴,如图6-4 a)、c)所示。
(3)如果图形具有3根或更多根对称轴,过图形形心的任何轴都是形心主、轴,且图形对其任一形心主轴的惯性矩都相等,如图6-4 e)、f)所示。
图2-2.4具有对称轴的截面图形
常用惯性矩公式:。