BP人工神经网络及matlab实现

合集下载

基于遗传算法的BP神经网络MATLAB代码

基于遗传算法的BP神经网络MATLAB代码

基于遗传算法的BP神经网络MATLAB代码以下是基于遗传算法的BP神经网络的MATLAB代码,包括网络初始化、适应度计算、交叉运算、突变操作和迭代训练等。

1.网络初始化:```matlabfunction net = initialize_network(input_size, hidden_size, output_size)net.input_size = input_size;net.hidden_size = hidden_size;net.output_size = output_size;net.hidden_weights = rand(hidden_size, input_size);net.output_weights = rand(output_size, hidden_size);net.hidden_biases = rand(hidden_size, 1);net.output_biases = rand(output_size, 1);end```2.适应度计算:```matlabfunction fitness = calculate_fitness(net, data, labels)output = forward_propagation(net, data);fitness = sum(sum(abs(output - labels)));end```3.前向传播:```matlabfunction output = forward_propagation(net, data)hidden_input = net.hidden_weights * data + net.hidden_biases;hidden_output = sigmoid(hidden_input);output_input = net.output_weights * hidden_output +net.output_biases;output = sigmoid(output_input);endfunction result = sigmoid(x)result = 1 ./ (1 + exp(-x));end```4.交叉运算:```matlabfunction offspring = crossover(parent1, parent2)point = randi([1 numel(parent1)]);offspring = [parent1(1:point) parent2((point + 1):end)]; end```5.突变操作:```matlabfunction mutated = mutation(individual, mutation_rate) for i = 1:numel(individual)if rand < mutation_ratemutated(i) = rand;elsemutated(i) = individual(i);endendend```6.迭代训练:```matlabfunction [best_individual, best_fitness] =train_network(data, labels, population_size, generations, mutation_rate)input_size = size(data, 1);hidden_size = round((input_size + size(labels, 1)) / 2);output_size = size(labels, 1);population = cell(population_size, 1);for i = 1:population_sizepopulation{i} = initialize_network(input_size, hidden_size, output_size);endbest_individual = population{1};best_fitness = calculate_fitness(best_individual, data, labels);for i = 1:generationsfor j = 1:population_sizefitness = calculate_fitness(population{j}, data, labels);if fitness < best_fitnessbest_individual = population{j};best_fitness = fitness;endendselected = selection(population, data, labels);for j = 1:population_sizeparent1 = selected{randi([1 numel(selected)])};parent2 = selected{randi([1 numel(selected)])};offspring = crossover(parent1, parent2);mutated_offspring = mutation(offspring, mutation_rate);population{j} = mutated_offspring;endendendfunction selected = selection(population, data, labels) fitnesses = zeros(length(population), 1);for i = 1:length(population)fitnesses(i) = calculate_fitness(population{i}, data, labels);end[~, indices] = sort(fitnesses);selected = population(indices(1:floor(length(population) / 2)));end```这是一个基于遗传算法的简化版BP神经网络的MATLAB代码,使用该代码可以初始化神经网络并进行迭代训练,以获得最佳适应度的网络参数。

(完整版)BP神经网络matlab实例(简单而经典).doc

(完整版)BP神经网络matlab实例(简单而经典).doc

p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); % 原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx'); %设置网络,建立相应的BP 网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM 算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn);anew=postmnmx(anewn,mint,maxt); %对 BP 网络进行仿真%还原数据y=anew';1、 BP 网络构建(1)生成 BP 网络net newff ( PR,[ S1 S2...SNl],{ TF1 TF 2...TFNl }, BTF , BLF , PF ) PR :由R 维的输入样本最小最大值构成的R 2 维矩阵。

[ S1 S2...SNl] :各层的神经元个数。

{TF 1 TF 2...TFNl } :各层的神经元传递函数。

BTF :训练用函数的名称。

(2)网络训练[ net,tr ,Y, E, Pf , Af ] train (net, P, T , Pi , Ai ,VV , TV )(3)网络仿真[Y, Pf , Af , E, perf ] sim(net, P, Pi , Ai ,T ){'tansig','purelin'},'trainrp'BP 网络的训练函数训练方法梯度下降法有动量的梯度下降法自适应 lr 梯度下降法自适应 lr 动量梯度下降法弹性梯度下降法训练函数traingd traingdm traingda traingdx trainrpFletcher-Reeves 共轭梯度法traincgf Ploak-Ribiere 共轭梯度法traincgpPowell-Beale 共轭梯度法traincgb 量化共轭梯度法trainscg 拟牛顿算法trainbfg 一步正割算法trainoss Levenberg-Marquardt trainlmBP 网络训练参数训练参数net.trainParam.epochsnet.trainParam.goal net.trainParam.lrnet.trainParam.max_fail net.trainParam.min_grad net.trainParam.show net.trainParam.timenet.trainParam.mc net.trainParam.lr_inc 参数介绍最大训练次数(缺省为10)训练要求精度(缺省为0)学习率(缺省为0.01 )最大失败次数(缺省为5)最小梯度要求(缺省为1e-10)显示训练迭代过程( NaN 表示不显示,缺省为 25)最大训练时间(缺省为inf )动量因子(缺省0.9)学习率lr增长比(缺省为1.05)训练函数traingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingdm 、 traingdx traingda 、traingdxnet.trainParam.lr_dec 学习率 lr 下降比(缺省为 0.7) traingda 、 traingdxnet.trainParam.max_perf_inc 表现函数增加最大比(缺省traingda 、 traingdx为 1.04)net.trainParam.delt_inc 权值变化增加量(缺省为trainrp1.2)net.trainParam.delt_dec 权值变化减小量(缺省为trainrp0.5)net.trainParam.delt0 初始权值变化(缺省为 0.07) trainrpnet.trainParam.deltamax 权值变化最大值(缺省为trainrp50.0)net.trainParam.searchFcn 一维线性搜索方法(缺省为traincgf 、traincgp 、traincgb 、srchcha)trainbfg 、 trainossnet.trainParam.sigma 因为二次求导对权值调整的trainscg影响参数(缺省值 5.0e-5)mbda Hessian 矩阵不确定性调节trainscg参数(缺省为 5.0e-7)net.trainParam.men_reduc 控制计算机内存/ 速度的参trainlm量,内存较大设为1,否则设为 2(缺省为 1)net.trainParam.mu 的初始值(缺省为0.001) trainlmnet.trainParam.mu_dec 的减小率(缺省为0.1)trainlmnet.trainParam.mu_inc 的增长率(缺省为10)trainlmnet.trainParam.mu_max 的最大值(缺省为1e10)trainlm2、 BP 网络举例举例 1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用 minmax函数求输入样本范围net = newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)BP 神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。

(完整版)BP神经网络matlab实例(简单而经典)

(完整版)BP神经网络matlab实例(简单而经典)

p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn); %对BP网络进行仿真anew=postmnmx(anewn,mint,maxt); %还原数据y=anew';1、BP网络构建(1)生成BP网络=net newff PR S S SNl TF TF TFNl BTF BLF PF(,[1 2...],{ 1 2...},,,)PR:由R维的输入样本最小最大值构成的2R⨯维矩阵。

S S SNl:各层的神经元个数。

[ 1 2...]{ 1 2...}TF TF TFNl:各层的神经元传递函数。

BTF:训练用函数的名称。

(2)网络训练[,,,,,] (,,,,,,)=net tr Y E Pf Af train net P T Pi Ai VV TV(3)网络仿真=[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai T{'tansig','purelin'},'trainrp'2、BP网络举例举例1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用minmax函数求输入样本范围net = newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)举例2、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。

BP神经网络原理及其MATLAB应用

BP神经网络原理及其MATLAB应用

BP神经网络原理及其MATLAB应用BP神经网络(Back Propagation Neural Network)是一种基于梯度下降算法的人工神经网络模型,具有较广泛的应用。

它具有模拟人类神经系统的记忆能力和学习能力,可以用来解决函数逼近、分类和模式识别等问题。

本文将介绍BP神经网络的原理及其在MATLAB中的应用。

BP神经网络的原理基于神经元间的权值和偏置进行计算。

一个标准的BP神经网络通常包含三层:输入层、隐藏层和输出层。

输入层负责接收输入信息,其节点数与输入维度相同;隐藏层用于提取输入信息的特征,其节点数可以根据具体问题进行设定;输出层负责输出最终的结果,其节点数根据问题的要求决定。

BP神经网络的训练过程可以分为前向传播和反向传播两个阶段。

前向传播过程中,输入信息逐层传递至输出层,通过对神经元的激活函数进行计算,得到神经网络的输出值。

反向传播过程中,通过最小化损失函数的梯度下降算法,不断调整神经元间的权值和偏置,以减小网络输出与实际输出之间的误差,达到训练网络的目的。

在MATLAB中,可以使用Neural Network Toolbox工具箱来实现BP神经网络。

以下是BP神经网络在MATLAB中的应用示例:首先,需导入BP神经网络所需的样本数据。

可以使用MATLAB中的load函数读取数据文件,并将其分为训练集和测试集:```data = load('dataset.mat');inputs = data(:, 1:end-1);targets = data(:, end);[trainInd, valInd, testInd] = dividerand(size(inputs, 1), 0.6, 0.2, 0.2);trainInputs = inputs(trainInd, :);trainTargets = targets(trainInd, :);valInputs = inputs(valInd, :);valTargets = targets(valInd, :);testInputs = inputs(testInd, :);testTargets = targets(testInd, :);```接下来,可以使用MATLAB的feedforwardnet函数构建BP神经网络模型,并进行网络训练和测试:```hiddenLayerSize = 10;net = feedforwardnet(hiddenLayerSize);net = train(net, trainInputs', trainTargets');outputs = net(testInputs');```最后,可以使用MATLAB提供的performance函数计算网络的性能指标,如均方误差、相关系数等:```performance = perform(net, testTargets', outputs);```通过逐步调整网络模型的参数和拓扑结构,如隐藏层节点数、学习率等,可以进一步优化BP神经网络的性能。

MATLAB程序代码 bp神经网络通用代码

MATLAB程序代码 bp神经网络通用代码

实用标准文案MATLAB程序代码--bp神经网络通用代码matlab通用神经网络代码学习了一段时间的神经网络,总结了一些经验,在这愿意和大家分享一下,希望对大家有帮助,也希望大家可以把其他神经网络的通用代码在这一起分享感应器神经网络、线性网络、BP神经网络、径向基函数网络%通用感应器神经网络。

P=[-0.5 -0.5 0.3 -0.1 -40;-0.5 0.5 -0.5 1 50];%输入向量T=[1 1 0 0 1];%期望输出plotpv(P,T);%描绘输入点图像net=newp([-40 1;-1 50],1);%生成网络,其中参数分别为输入向量的范围和神经元感应器数量hold onlinehandle=plotpc(net.iw{1},net.b{1});net.adaptparam.passes=3;for a=1:25%训练次数[net,Y,E]=adapt(net,P,T);linehandle=plotpc(net.iw{1},net.b{1},linehandle);drawnow;end%通用newlin程序%通用线性网络进行预测time=0:0.025:5;T=sin(time*4*pi);Q=length(T);P=zeros(5,Q);%P中存储信号T的前5(可变,根据需要而定)次值,作为网络输入。

精彩文档.实用标准文案P(1,2:Q)=T(1,1:(Q-1));P(2,3:Q)=T(1,1:(Q-2));P(3,4:Q)=T(1,1:(Q-3));P(4,5:Q)=T(1,1:(Q-4));P(5,6:Q)=T(1,1:(Q-5));plot(time,T)%绘制信号T曲线xlabel('时间');ylabel('目标信号');title('待预测信号');net=newlind(P,T);%根据输入和期望输出直接生成线性网络a=sim(net,P);%网络测试figure(2)plot(time,a,time,T,'+')xlabel('时间');ylabel('输出-目标+');title('输出信号和目标信号');e=T-a;figure(3)plot(time,e)hold onplot([min(time) max(time)],[0 0],'r:')%可用plot(x,zeros(size(x)),'r:')代替hold offxlabel('时间');ylabel('误差');精彩文档.实用标准文案title('误差信号');%通用BP神经网络P=[-1 -1 2 2;0 5 0 5];t=[-1 -1 1 1];net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingd');%输入参数依次为:'样本P范围',[各层神经元数目],{各层传递函数},'训练函数'%训练函数traingd--梯度下降法,有7个训练参数.%训练函数traingdm--有动量的梯度下降法,附加1个训练参数mc(动量因子,缺省为0.9)%训练函数traingda--有自适应lr的梯度下降法,附加3个训练参数:lr_inc(学习率增长比,缺省为1.05;% lr_dec(学习率下降比,缺省为0.7);max_perf_inc(表现函数增加最大比,缺省为1.04)%训练函数traingdx--有动量的梯度下降法中赋以自适应lr的方法,附加traingdm和traingda的4个附加参数%训练函数trainrp--弹性梯度下降法,可以消除输入数值很大或很小时的误差,附加4个训练参数:% delt_inc(权值变化增加量,缺省为1.2);delt_dec(权值变化减小量,缺省为0.5);% delta0(初始权值变化,缺省为0.07);deltamax(权值变化最大值,缺省为50.0)% 适合大型网络%训练函数traincgf--Fletcher-Reeves共轭梯度法;训练函数traincgp--Polak-Ribiere共轭梯度法;%训练函数traincgb--Powell-Beale共轭梯度法%共轭梯度法占用存储空间小,附加1训练参数searchFcn(一维线性搜索方法,缺省为srchcha);缺少1个训练参数lr %训练函数trainscg--量化共轭梯度法,与其他共轭梯度法相比,节约时间.适合大型网络% 附加2个训练参数:sigma(因为二次求导对权值调整的影响参数,缺省为5.0e-5);% lambda(Hessian阵不确定性调节参数,缺省为5.0e-7)% 缺少1个训练参数:lr精彩文档.实用标准文案%训练函数trainbfg--BFGS拟牛顿回退法,收敛速度快,但需要更多内存,与共轭梯度法训练参数相同,适合小网络%训练函数trainoss--一步正割的BP训练法,解决了BFGS消耗内存的问题,与共轭梯度法训练参数相同%训练函数trainlm--Levenberg-Marquardt训练法,用于内存充足的中小型网络net=init(net);net.trainparam.epochs=300; %最大训练次数(前缺省为10,自trainrp后,缺省为100)net.trainparam.lr=0.05; %学习率(缺省为0.01)net.trainparam.show=50; %限时训练迭代过程(NaN表示不显示,缺省为25)net.trainparam.goal=1e-5; %训练要求精度(缺省为0)%net.trainparam.max_fail 最大失败次数(缺省为5)%net.trainparam.min_grad 最小梯度要求(前缺省为1e-10,自trainrp后,缺省为1e-6)%net.trainparam.time 最大训练时间(缺省为inf)[net,tr]=train(net,P,t); %网络训练a=sim(net,P) %网络仿真%通用径向基函数网络——%其在逼近能力,分类能力,学习速度方面均优于BP神经网络%在径向基网络中,径向基层的散步常数是spread的选取是关键%spread越大,需要的神经元越少,但精度会相应下降,spread的缺省值为1%可以通过net=newrbe(P,T,spread)生成网络,且误差为0%可以通过net=newrb(P,T,goal,spread)生成网络,神经元由1开始增加,直到达到训练精度或神经元数目最多为止%GRNN网络,迅速生成广义回归神经网络(GRNN)P=[4 5 6];T=[1.5 3.6 6.7];精彩文档.实用标准文案net=newgrnn(P,T);%仿真验证p=4.5;v=sim(net,p)%PNN网络,概率神经网络P=[0 0 ;1 1;0 3;1 4;3 1;4 1;4 3]';Tc=[1 1 2 2 3 3 3];%将期望输出通过ind2vec()转换,并设计、验证网络T=ind2vec(Tc);net=newpnn(P,T);Y=sim(net,P);Yc=vec2ind(Y)%尝试用其他的输入向量验证网络P2=[1 4;0 1;5 2]';Y=sim(net,P2);Yc=vec2ind(Y)%应用newrb()函数构建径向基网络,对一系列数据点进行函数逼近P=-1:0.1:1;T=[-0.9602 -0.5770 -0.0729 0.3771 0.6405 0.6600 0.4609...0.1336 -0.2013 -0.4344 -0.500 -0.3930 -0.1647 -0.0988...0.3072 0.3960 0.3449 0.1816 -0.0312 -0.2189 -0.3201];%绘制训练用样本的数据点plot(P,T,'r*');title('训练样本');精彩文档.实用标准文案xlabel('输入向量P');ylabel('目标向量T');%设计一个径向基函数网络,网络有两层,隐层为径向基神经元,输出层为线性神经元%绘制隐层神经元径向基传递函数的曲线p=-3:.1:3;a=radbas(p);plot(p,a)title('径向基传递函数')xlabel('输入向量p')%隐层神经元的权值、阈值与径向基函数的位置和宽度有关,只要隐层神经元数目、权值、阈值正确,可逼近任意函数%例如a2=radbas(p-1.5);a3=radbas(p+2);a4=a+a2*1.5+a3*0.5;plot(p,a,'b',p,a2,'g',p,a3,'r',p,a4,'m--')title('径向基传递函数权值之和')xlabel('输入p');ylabel('输出a');%应用newrb()函数构建径向基网络的时候,可以预先设定均方差精度eg以及散布常数sceg=0.02;sc=1; %其值的选取与最终网络的效果有很大关系,过小造成过适性,过大造成重叠性net=newrb(P,T,eg,sc);%网络测试精彩文档.实用标准文案plot(P,T,'*')xlabel('输入');X=-1:.01:1;Y=sim(net,X);hold onplot(X,Y);hold offlegend('目标','输出')%应用grnn进行函数逼近P=[1 2 3 4 5 6 7 8];T=[0 1 2 3 2 1 2 1];plot(P,T,'.','markersize',30)axis([0 9 -1 4])title('待逼近函数')xlabel('P')ylabel('T')%网络设计%对于离散数据点,散布常数spread选取比输入向量之间的距离稍小一些spread=0.7;net=newgrnn(P,T,spread);%网络测试A=sim(net,P);hold onoutputline=plot(P,A,'o','markersize',10,'color',[1 0 0]);精彩文档.实用标准文案title('检测网络')xlabel('P')ylabel('T和A')%应用pnn进行变量的分类P=[1 2;2 2;1 1]; %输入向量Tc=[1 2 3]; %P对应的三个期望输出%绘制出输入向量及其相对应的类别plot(P(1,:),P(2,:),'.','markersize',30)for i=1:3text(P(1,i)+0.1,P(2,i),sprintf('class %g',Tc(i)))endaxis([0 3 0 3]);title('三向量及其类别')xlabel('P(1,:)')ylabel('P(2,:)')%网络设计T=ind2vec(Tc);spread=1;net=newgrnn(P,T,speard);%网络测试A=sim(net,P);Ac=vec2ind(A);%绘制输入向量及其相应的网络输出plot(P(1,:),P(2,:),'.','markersize',30)精彩文档.实用标准文案for i=1:3text(P(1,i)+0.1,P(2,i),sprintf('class %g',Ac(i)))endaxis([0 3 0 3]);title('网络测试结果')xlabel('P(1,:)')ylabel('P(2,:)')P=[13, 0, 1.119, 1, 26.3;22, 0, 1.135, 1, 26.3;-15, 0, 0.9017, 1, 20.4;-30, 0, 0.9172, 1, 26.7;24,0,1.238,0.9704,28.2;3,24,1.119,1,26.3;0,52,1.089,1,26.3;0,-73,1.0889,1,26.3;1,28,0.8748,1,2 6.3;-1,-39,1.1168,1,26.7;-2, 0, 1.495, 1, 26.3;0, -1, 1.438, 1, 26.3;4, 1,0.4964,0.9021, 26.3;3, -1, 0.5533, 1.2357, 26.7;-5, 0, 1.7368, 1, 26.7;1, 0, 1.1045, 0.0202,26.3;-2, 0, 1.1168, 1.3764, 26.7;-3, -1, 1.1655, 1.4418,27.5;3, 2, 1.0875, 0.748, 27.5;-3, 0, 1.1068, 2.2092, 26.3;4, 1, 0.9017, 1, 13.7;3, 2, 0.9017, 1, 14.9;-3, 1, 0.9172, 1, 13.7;-2, 0, 1.0198, 1.0809, 16.1;0, 1, 0.9172, 1, 13.7]T=[1, 0, 0, 0, 0 ;1, 0, 0, 0, 0 ;1, 0, 0, 0, 0 ;1, 0, 0, 0, 0 ;1, 0, 0, 0, 0;0, 1, 0, 0, 0;0, 1, 0, 0, 0;0, 1, 0, 0, 0;0, 1, 0, 0, 0;0, 1, 0, 0, 0;0, 0, 1, 0, 0;0, 0, 1, 0, 0;0, 0, 1, 0, 0;0, 0, 1, 0, 0;0, 0, 1, 0, 0;0, 0, 0, 1, 0 ;0, 0, 0, 1, 0 ;0, 0, 0, 1, 0 ;0, 0, 0, 1, 0 ;0, 0, 0, 1, 0 ;0, 0, 0, 0, 1;0, 0, 0, 0, 1;0, 0, 0, 0, 1;0, 0, 0, 0, 1;0, 0, 0, 0, 1 ];%期望输出plotpv(P,T);%描绘输入点图像精彩文档.。

BP神经网络MATLAB编程代码

BP神经网络MATLAB编程代码

BP神经网络的设计MATLAB编程例1 采用动量梯度下降算法训练 BP 网络。

训练样本定义如下:输入矢量为p =[-1 -2 3 1-1 1 5 -3]目标矢量为 t = [-1 -1 1 1]解:本例的 MATLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对 BP 神经网络进行训练% SIM——对 BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本% P 为输入矢量P=[-1, -2, 3, 1; -1, 1, 5, -3];% T 为目标矢量T=[-1, -1, 1, 1];pause;clc% 创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm')% 当前输入层权值和阈值inputWeights=net.IW{1,1}inputbias=net.b{1}% 当前网络层权值和阈值layerWeights=net.LW{2,1}layerbias=net.b{2}pauseclc% 设置训练参数net.trainParam.show = 50;net.trainParam.lr = 0.05;net.trainParam.mc = 0.9;net.trainParam.epochs = 1000;net.trainParam.goal = 1e-3;pauseclc% 调用 TRAINGDM 算法训练 BP 网络[net,tr]=train(net,P,T);pauseclc% 对 BP 网络进行仿真A = sim(net,P)% 计算仿真误差E = T - AMSE=mse(E)pauseclcecho off例2 采用贝叶斯正则化算法提高 BP 网络的推广能力。

bp神经网络及matlab实现

bp神经网络及matlab实现

bp神经网络及matlab实现分类:算法学习2012-06-20 20:56 66399人阅读评论(28) 收藏举报网络matlab算法functionnetworkinput本文主要内容包括: (1) 介绍神经网络基本原理,(2) 实现前向神经网络的方法,(3) Matlab实现前向神经网络的方法。

第0节、引例本文以Fisher的Iris数据集作为神经网络程序的测试数据集。

Iris数据集可以在找到。

这里简要介绍一下Iris数据集:有一批Iris花,已知这批Iris花可分为3个品种,现需要对其进行分类。

不同品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度会有差异。

我们现有一批已知品种的Iris花的花萼长度、花萼宽度、花瓣长度、花瓣宽度的数据。

一种解决方法是用已有的数据训练一个神经网络用作分类器。

如果你只想用C#或Matlab快速实现神经网络来解决你手头上的问题,或者已经了解神经网络基本原理,请直接跳到第二节——神经网络实现。

第一节、神经网络基本原理1. 人工神经元( Artificial Neuron )模型人工神经元是神经网络的基本元素,其原理可以用下图表示:图1. 人工神经元模型图中x1~xn是从其他神经元传来的输入信号,wij表示表示从神经元j到神经元i的连接权值,θ表示一个阈值 ( threshold ),或称为偏置( bias )。

则神经元i的输出与输入的关系表示为:图中 yi表示神经元i的输出,函数f称为激活函数 ( Activation Function )或转移函数 ( Transfer Function ) ,net称为净激活(net activation)。

若将阈值看成是神经元i的一个输入x0的权重wi0,则上面的式子可以简化为:若用X表示输入向量,用W表示权重向量,即:X = [ x0 , x1 , x2 , ....... , xn ]则神经元的输出可以表示为向量相乘的形式:若神经元的净激活net为正,称该神经元处于激活状态或兴奋状态(fire),若净激活net为负,则称神经元处于抑制状态。

BP神经网络实验详解(MATLAB实现)

BP神经网络实验详解(MATLAB实现)

BP神经网络实验详解(MATLAB实现)BP(Back Propagation)神经网络是一种常用的人工神经网络结构,用于解决分类和回归问题。

在本文中,将详细介绍如何使用MATLAB实现BP神经网络的实验。

首先,需要准备一个数据集来训练和测试BP神经网络。

数据集可以是一个CSV文件,每一行代表一个样本,每一列代表一个特征。

一般来说,数据集应该被分成训练集和测试集,用于训练和测试模型的性能。

在MATLAB中,可以使用`csvread`函数来读取CSV文件,并将数据集划分为输入和输出。

假设数据集的前几列是输入特征,最后一列是输出。

可以使用以下代码来实现:```matlabdata = csvread('dataset.csv');input = data(:, 1:end-1);output = data(:, end);```然后,需要创建一个BP神经网络模型。

可以使用MATLAB的`patternnet`函数来创建一个全连接的神经网络模型。

该函数的输入参数为每个隐藏层的神经元数量。

下面的代码创建了一个具有10个隐藏神经元的单隐藏层BP神经网络:```matlabhidden_neurons = 10;net = patternnet(hidden_neurons);```接下来,需要对BP神经网络进行训练。

可以使用`train`函数来训练模型。

该函数的输入参数包括训练集的输入和输出,以及其他可选参数,如最大训练次数和停止条件。

下面的代码展示了如何使用`train`函数来训练模型:```matlabnet = train(net, input_train, output_train);```训练完成后,可以使用训练好的BP神经网络进行预测。

可以使用`net`模型的`sim`函数来进行预测。

下面的代码展示了如何使用`sim`函数预测测试集的输出:```matlaboutput_pred = sim(net, input_test);```最后,可以使用各种性能指标来评估预测的准确性。

基于MATLAB的BP人工神经网络设计

基于MATLAB的BP人工神经网络设计

基于MATLAB的BP人工神经网络设计目录
一、介绍1
1.1研究背景1
1.2BP神经网络1
二、BP神经网络的设计3
2.1BP神经网络模型原理3
2.2BP神经网络模型参数5
2.3权重偏置矩阵更新方法6
三、MATLAB实现BP神经网络8
3.1MATLAB软件环境8
3.2代码实现8
3.3实验结果10
四、结论及展望12
一、介绍
1.1研究背景
人工神经网络(ANNs)被归类为一种模拟生物神经网络的模型,具有高度学习能力和自适应性,用于解决有关模式识别、拟合曲线、识别图像、辨识声音、推理、预测等问题。

在这些任务中,Backpropagation (BP)神
经网络是应用最广泛的神经网络结构。

BP神经网络是一种反向传播的多
层前馈神经网络,它的结构简单、计算方法有效,可以学习训练集的特征,在测试集上取得较好的精度。

1.2BP神经网络
BP神经网络(或叫反向传播网络,BP网络)是一种多层前馈神经网络,它是由对神经网络训练的单步算法“反向传播算法”δ开发的。

BP神经
网络由输入层、隐层和输出层构成,它将被调节的参数及权值分配给每个
网络层,以调整网络性能的训练过程。

人工神经网络Matlab实现代码

人工神经网络Matlab实现代码

以下是用Matlab中的m语言编写的BP神经网络代码,实现的是一个正弦函数的拟合过程,包括了初始化、BP算法、绘制曲线等过程,可以将代码放到一个M文件中运行,以下是代码:defaultpoints=20; %%%%%%%%%隐含层节点数inputpoints=1; %%%%%%%%%输入层节点数outputpoints=1; %%%%%%%%%输出层节点数Testerror=zeros(1,100);%%%%每个测试点的误差记录a=zeros(1,inputpoints);%%%%输入层节点值y=zeros(1,outputpoints);%%%样本节点输出值w=zeros(inputpoints,defaultpoints);%%%%%输入层和隐含层权值%初始化权重很重要,比如用rand函数初始化则效果非常不确定,不如用zeros初始化v=zeros(defaultpoints,outputpoints);%%%%隐含层和输出层权值bin=rand(1,defaultpoints);%%%%%隐含层输入bout=rand(1,defaultpoints);%%%%隐含层输出base1=0*ones(1,defaultpoints);%隐含层阈值,初始化为0cin=rand(1,outputpoints);%%%%%%输出层输入cout=rand(1,outputpoints);%%%%%输出层输出base2=0*rand(1,outputpoints);%%输出层阈值error=zeros(1,outputpoints);%%%拟合误差errors=0;error_sum=0; %%%误差累加和error_rate_cin=rand(defaultpoints,outputpoints);%%误差对输出层节点权值的导数error_rate_bin=rand(inputpoints,defaultpoints);%%%误差对输入层节点权值的导数alfa=0.5; %%%% alfa 是隐含层和输出层权值-误差变化率的系数,影响很大belt=0.5; %%%% belt 是隐含层和输入层权值-误差变化率的系数,影响较小gama=5; %%%% gama 是误差放大倍数,可以影响跟随速度和拟合精度,当gama大于2时误差变大,容易震荡%%%%规律100个隐含节点,当alfa *gama =1.5时,效果好,其他值误差变大,belt基本不影响效果%%%%规律200个隐含节点,当alfa *gama =0.7时,效果好,其他值误差变大,belt基本不影响效果,最小误差和100个隐含点一样%%%%规律50个隐含节点,当alfa *gama =3时,效果好,其他值误差变大,belt基本不影响效果,最小误差和100个隐含点一样trainingROUND=200;% 训练次数,有时训练几十次比训练几百次上千次效果要好很多sampleNUM=361; % 样本点数x1=zeros(sampleNUM,inputpoints); %样本输入矩阵y1=zeros(sampleNUM,outputpoints); %样本输出矩阵x2=zeros(sampleNUM,inputpoints); %测试输入矩阵y2=zeros(sampleNUM,outputpoints); %测试输出矩阵observeOUT=zeros(sampleNUM,outputpoints); %%拟合输出监测点矩阵i=0;j=0;k=0; %%%%其中j是在一个训练周期中的样本点序号,不可引用i=0;h=0;o=0; %%%%输入层序号,隐含层序号,输出层序号x=0:0.2*pi:2*pi; %%%%步长for j=1:9 %%%%%%这里给样本输入和输出赋值,应根据具体应用来设定x1(j,1)=x(j);y1(j,1)=sin(x1(j,1));endx=0:2*pi/361:2*pi;for j=1:361x2(j,1)=x(j);y2(j,1)=sin(x2(j,1));endfor o=1:outputpointsy1(:,o)=(y1(:,o)-min(y1(:,o)))/(max(y1(:,o))-min(y1(:,o)));%归一化,使得输出范围落到[0,1]区间上,当激活函数为对数S型时适用y2(:,o)=(y2(:,o)-min(y2(:,o)))/(max(y2(:,o))-min(y2(:,o)));endfor i=1:inputpointsx1(:,i)=(x1(:,i)-min(x1(:,i)))/(max(x1(:,i))-min(x1(:,i)));%输入数据归一化范围要和输出数据的范围相同,[0,1]x2(:,i)=(x2(:,i)-min(x2(:,i)))/(max(x2(:,i))-min(x2(:,i)));endsampleNUM=9;for mmm=1:trainingROUND %训练开始,100次error_sum=0;if mmm==trainingROUNDsampleNUM=361;endfor j=1:sampleNUM %%%%%每次训练一个样本点for i=1:inputpoints %%%%%样本输入层赋值a(i)=x1(j,i);endfor o=1:outputpoints %%%%%样本输出层赋值y(o)=y1(j,o);endif mmm==trainingROUNDfor i=1:inputpoints %%%%%样本输入层赋值a(i)=x2(j,i);endfor o=1:outputpoints %%%%%样本输出层赋值y(o)=y2(j,o);endendfor h=1:defaultpointsbin(h)=0;for i=1:inputpointsbin(h)=bin(h)+a(i)*w(i,h);endbin(h)=bin(h)-base1(h);bout(h)=1/(1+exp(-bin(h)));%%%%%%隐含层激励函数为对数激励endtemp_error=0;for o=1:outputpointscin(o)=0;for h=1:defaultpointscin(o)=cin(o)+bout(h)*v(h,o);endcin(o)=cin(o)-base2(o);cout(o)=1/(1+exp(-cin(o))); %%%%%%输出层激励函数为对数激励observeOUT(j,o)=cout(o);error(o)=y(o)-cout(o);temp_error=temp_error+error(o)*error(o);%%%%%记录实际误差,不应该乘伽玛系数error(o)=gama*error(o);endTesterror(j)=temp_error;error_sum=error_sum+Testerror(j);for o=1:outputpointserror_rate_cin(o)=error(o)*cout(o)*(1-cout(o));endfor h=1:defaultpointserror_rate_bin(h)=0;for o=1:outputpointserror_rate_bin(h)= error_rate_bin(h)+error_rate_cin(o)*v(h,o);enderror_rate_bin(h)=error_rate_bin(h)*bout(h)*(1-bout(h));endfor h=1:defaultpointsbase1(h)=base1(h)-5*error_rate_bin(h)*bin(h);%%%%base1变化不影响最小误差,但是可以抑制由于过多训练产生的发散效果for o=1:outputpointsv(h,o)=v(h,o)+alfa*error_rate_cin(o)*bout(h); % 可能要改,正负号?% base1(i)=base1(i)+0.01*alfa*error(i);endfor i=1:inputpointsw(i,h)=w(i,h)+belt*error_rate_bin(h)*a(i); % 可能要改,正负号?%base2=base2+0.01*belt*out_error;endendend%%%%%%%%一轮训练结束if(error_sum<0.01)%%%%error_sum中记录一轮训练中所有样本的所有输出和拟合输出值差值平方和break;endend %//训练结束figureplot(x(1:sampleNUM),Testerror(1:sampleNUM),'r+')hold onplot(x(1:sampleNUM),y2(1:sampleNUM,1),'*')hold onplot(x(1:sampleNUM),observeOUT(1:sampleNUM,1),'o')hold onylabel(num2str(mmm));xlabel(num2str(error_sum));。

(整理)BP神经网络matlab实现和matlab工具箱使用实例.

(整理)BP神经网络matlab实现和matlab工具箱使用实例.

(整理)BP神经网络matlab实现和matlab工具箱使用实例.BP神经网络matlab实现和matlab工具箱使用实例经过最近一段时间的神经网络学习,终于能初步使用matlab实现BP网络仿真试验。

这里特别感谢研友sistor2004的帖子《自己编的BP算法(工具:matlab)》和研友wangleisxcc的帖子《用C++,Matlab,Fortran实现的BP算法》前者帮助我对BP算法有了更明确的认识,后者让我对matlab下BP函数的使用有了初步了解。

因为他们发的帖子都没有加注释,对我等新手阅读时有一定困难,所以我把sistor2004发的程序稍加修改后加注了详细解释,方便新手阅读。

%严格按照BP网络计算公式来设计的一个matlab程序,对BP网络进行了优化设计%yyy,即在o(k)计算公式时,当网络进入平坦区时(<0.0001)学习率加大,出来后学习率又还原%v(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j); 动量项clear allclcinputNums=3; %输入层节点outputNums=3; %输出层节点hideNums=10; %隐层节点数maxcount=20000; %最大迭代次数samplenum=3; %一个计数器,无意义precision=0.001; %预设精度yyy=1.3; %yyy是帮助网络加速走出平坦区alpha=0.01; %学习率设定值a=0.5; %BP优化算法的一个设定值,对上组训练的调整值按比例修改字串9error=zeros(1,maxcount+1); %error数组初始化;目的是预分配内存空间errorp=zeros(1,samplenum); %同上v=rand(inputNums,hideNums); %3*10;v初始化为一个3*10的随机归一矩阵; v表输入层到隐层的权值deltv=zeros(inputNums,hideNums); %3*10;内存空间预分配dv=zeros(inputNums,hideNums); %3*10;w=rand(hideNums,outputNums); %10*3;同Vdeltw=zeros(hideNums,outputNums);%10*3dw=zeros(hideNums,outputNums); %10*3samplelist=[0.1323,0.323,-0.132;0.321,0.2434,0.456;-0.6546,-0.3242,0.3255]; %3*3;指定输入值3*3(实为3个向量)expectlist=[0.5435,0.422,-0.642;0.1,0.562,0.5675;-0.6464,-0.756,0.11]; %3*3;期望输出值3*3(实为3个向量),有导师的监督学习count=1;while (count<=maxcount) %结束条件1迭代20000次c=1;while (c<=samplenum)for k=1:outputNumsd(k)=expectlist(c,k); %获得期望输出的向量,d(1:3)表示一个期望向量内的值endfor i=1:inputNumsx(i)=samplelist(c,i); %获得输入的向量(数据),x(1:3)表一个训练向量字串4end%Forward();for j=1:hideNumsnet=0.0;for i=1:inputNumsnet=net+x(i)*v(i,j);%输入层到隐层的加权和∑X(i)V(i)endy(j)=1/(1+exp(-net)); %输出层处理f(x)=1/(1+exp(-x))单极性sigmiod函数endfor k=1:outputNumsnet=0.0;for j=1:hideNumsnet=net+y(j)*w(j,k);endif count>=2&&error(count)-error(count+1)<=0.0001o(k)=1/(1+exp(-net)/yyy); %平坦区加大学习率else o(k)=1/(1+exp(-net)); %同上endend%BpError(c)反馈/修改;errortmp=0.0;for k=1:outputNumserrortmp=errortmp+(d(k)-o(k))^2; %第一组训练后的误差计算enderrorp(c)=0.5*errortmp; %误差E=∑(d(k)-o(k))^2 * 1/2%end%Backward();for k=1:outputNumsyitao(k)=(d(k)-o(k))*o(k)*(1-o(k)); %输入层误差偏导字串5endfor j=1:hideNumstem=0.0;for k=1:outputNumstem=tem+yitao(k)*w(j,k); %为了求隐层偏导,而计算的∑endyitay(j)=tem*y(j)*(1-y(j)); %隐层偏导end%调整各层权值for j=1:hideNumsfor k=1:outputNumsdeltw(j,k)=alpha*yitao(k)*y(j); %权值w的调整量deltw(已乘学习率)w(j,k)=w(j,k)+deltw(j,k)+a*dw(j,k);%权值调整,这里的dw=dletw(t-1),实际是对BP算法的一个dw(j,k)=deltw(j,k); %改进措施--增加动量项目的是提高训练速度endendfor i=1:inputNumsfor j=1:hideNumsdeltv(i,j)=alpha*yitay(j)*x(i); %同上deltwv(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j);dv(i,j)=deltv(i,j);endendc=c+1;end%第二个while结束;表示一次BP训练结束double tmp;tmp=0.0; 字串8for i=1:samplenumtmp=tmp+errorp(i)*errorp(i);%误差求和endtmp=tmp/c;error(count)=sqrt(tmp);%误差求均方根,即精度if (error(count)<precision)%另一个结束条件< p="">break;endcount=count+1;%训练次数加1end%第一个while结束error(maxcount+1)=error(maxcount);p=1:count;pp=p/50;plot(pp,error(p),"-"); %显示误差然后下面是研友wangleisxcc的程序基础上,我把初始化网络,训练网络,和网络使用三个稍微集成后的一个新函数bpnet %简单的BP神经网络集成,使用时直接调用bpnet就行%输入的是p-作为训练值的输入% t-也是网络的期望输出结果% ynum-设定隐层点数一般取3~20;% maxnum-如果训练一直达不到期望误差之内,那么BP迭代的次数一般设为5000% ex-期望误差,也就是训练一小于这个误差后结束迭代一般设为0.01% lr-学习率一般设为0.01% pp-使用p-t虚拟蓝好的BP网络来分类计算的向量,也就是嵌入二值水印的大组系数进行训练然后得到二值序列% ww-输出结果% 注明:ynum,maxnum,ex,lr均是一个值;而p,t,pp,ww均可以为向量字串1% 比如p是m*n的n维行向量,t那么为m*k的k维行向量,pp为o*i的i维行向量,ww为o* k的k维行向量%p,t作为网络训练输入,pp作为训练好的网络输入计算,最后的ww作为pp经过训练好的BP训练后的输出function ww=bpnet(p,t,ynum,maxnum,ex,lr,pp)plot(p,t,"+");title("训练向量");xlabel("P");ylabel("t");[w1,b1,w2,b2]=initff(p,ynum,"tansig",t,"purelin"); %初始化含一个隐层的BP网络zhen=25; %每迭代多少次更新显示biglr=1.1; %学习慢时学习率(用于跳出平坦区)litlr=0.7; %学习快时学习率(梯度下降过快时)a=0.7 %动量项a大小(△W(t)=lr*X*ん+a*△W(t-1))tp=[zhen maxnum ex lr biglr litlr a 1.04]; %trainbpx[w1,b1,w2,b2,ep,tr]=trainbpx(w1,b1,"tansig",w2,b2,"purelin", p,t,tp);ww=simuff(pp,w1,b1,"tansig",w2,b2,"purelin"); %ww就是调用结果下面是bpnet使用简例:%bpnet举例,因为BP网络的权值初始化都是随即生成,所以每次运行的状态可能不一样。

BP神经网络实验-Matlab

BP神经网络实验-Matlab

BP神经网络实验-MatlabBP神经网络是一种常见的人工神经网络模型。

在实际应用中,BP神经网络广泛用于分类、预测、优化等任务中。

本文将介绍如何在Matlab中实现BP神经网络,并通过一个简单的分类问题进行实验验证。

1. 数据准备首先,我们需要准备数据。

本文采用的数据是一个二分类问题,即在一个二维平面中,将数据点分为两类。

为了方便起见,我们可以手动生成一些数据点,或者使用Matlab自带的数据集如“fisheriris”。

2. BP神经网络模型的构建在Matlab中,我们可以使用“newff”函数来构建BP神经网络模型。

该函数可以接受多个参数,包括输入层、隐含层和输出层的节点数量,以及激活函数、学习算法等参数。

以下是构建一个包含1个输入层、1个隐含层和1个输出层的BP神经网络的示例代码:4. BP神经网络模型的测试在训练完成后,我们可以使用BP神经网络模型对测试数据进行分类预测。

在Matlab 中,我们可以使用“sim”函数来预测分类结果。

以下是对测试数据进行分类预测的示例代码:output=round(sim(net,test_data));其中,“output”是分类预测结果;“test_data”是测试数据。

5. 性能评估最后,我们需要对BP神经网络模型的分类性能进行评估。

在Matlab中,我们可以使用“confusionmat”函数来计算分类矩阵,进而计算分类准确率等性能指标。

以下是计算分类准确率的示例代码:[C,order]=confusionmat(test_label,output);accuracy=(C(1,1)+C(2,2))/sum(sum(C));其中,“C”是分类矩阵;“order”是分类标签;“accuracy”是分类准确率。

BP神经网络(原理及MATLAB实现)

BP神经网络(原理及MATLAB实现)

BP神经⽹络(原理及MATLAB实现)⼈⼯神经⽹络概述:⼈⼯神经元模型:神经⽹络的分类:按照连接⽅式,可以分为:前向神经⽹络 vs. 反馈(递归)神经⽹络;按照学习⽅式,可以分为:有导师学习神经⽹络 vs. ⽆导师学习神经⽹络;按照实现功能,可以分为:拟合(回归)神经⽹络 vs. 分类神经⽹络。

数据归⼀化:将数据映射到[0, 1]或[-1, 1]区间或其他的区间。

数据归⼀化的原因:1.输⼊数据的单位不⼀样,有些数据的范围可能特别⼤,导致的结果是神经⽹络收敛慢、训练时间长。

2.数据范围⼤的输⼊在模式分类中的作⽤可能会偏⼤,⽽数据范围⼩的输⼊作⽤就可能会偏⼩。

3.由于神经⽹络输出层的激活函数的值域是有限制的,因此需要将⽹络训练的⽬标数据映射到激活函数的值域。

例如神经⽹络的输出层若采⽤S形激活函数,由于S形函数的值域限制在(0,1),也就是说神经⽹络的输出只能限制在(0,1),所以训练数据的输出就要归⼀化到[0,1]区间。

4.S形激活函数在(0,1)区间以外区域很平缓,区分度太⼩。

例如S形函数f(X)在参数a=1时,f(100)与f(5)只相差0.0067。

归⼀化算法:1.y = ( x - min )/( max - min );2.y = 2 * ( x - min ) / ( max - min ) - 1。

部分函数:参数对BP神经⽹络性能的影响:隐含层神经元节点个数激活函数类型的选择学习率初始权值与阈值交叉验证训练集测试集验证集留⼀法MATLAB实现程序:1 %% I. 清空环境变量2 clear all3 clc45 %% II. 训练集/测试集产⽣6 %%7 % 1. 导⼊数据8 load spectra_data.mat910 %%11 % 2. 随机产⽣训练集和测试集12 temp = randperm(size(NIR,1));13 % 训练集——50个样本14 P_train = NIR(temp(1:50),:)';15 T_train = octane(temp(1:50),:)';16 % 测试集——10个样本17 P_test = NIR(temp(51:end),:)';18 T_test = octane(temp(51:end),:)';19 N = size(P_test,2);2021 %% III. 数据归⼀化22 [p_train, ps_input] = mapminmax(P_train,0,1);23 p_test = mapminmax('apply',P_test,ps_input);2425 [t_train, ps_output] = mapminmax(T_train,0,1);2627 %% IV. BP神经⽹络创建、训练及仿真测试28 %%29 % 1. 创建⽹络30 net = newff(p_train,t_train,9);3132 %%33 % 2. 设置训练参数34 net.trainParam.epochs = 1000;35 net.trainParam.goal = 1e-3;36 net.trainParam.lr = 0.01;3738 %%39 % 3. 训练⽹络40 net = train(net,p_train,t_train);4142 %%43 % 4. 仿真测试44 t_sim = sim(net,p_test);4546 %%47 % 5. 数据反归⼀化48 T_sim = mapminmax('reverse',t_sim,ps_output);4950 %% V. 性能评价51 %%52 % 1. 相对误差error53 error = abs(T_sim - T_test)./T_test;5455 %%56 % 2. 决定系数R^257 R2 = (N * sum(T_sim .* T_test) - sum(T_sim) * sum(T_test))^2 / ((N * sum((T_sim).^2) - (sum(T_sim))^2) * (N * sum((T_test).^2) - (sum(T_test))^2)); 5859 %%60 % 3. 结果对⽐61 result = [T_test' T_sim' error']6263 %% VI. 绘图64 figure65 plot(1:N,T_test,'b:*',1:N,T_sim,'r-o')66 legend('真实值','预测值')67 xlabel('预测样本')68 ylabel('⾟烷值')69 string = {'测试集⾟烷值含量预测结果对⽐';['R^2=' num2str(R2)]};70 title(string)运⾏效果截图:。

基于bp神经网络的数字识别的Matlab实现

基于bp神经网络的数字识别的Matlab实现

1.1.数字识别的发展现状
模式识别 (Pattern Recognition)是对表征事物或现象的 各种形式的(数值的、文字的和逻辑关系的)信息进行处理 和分析,以对事物或现象进行描述、辨认、分类和解释 的过程。它是信息科学和人工智能的重要组成部分。而 数字识别作为模式识别的一个分支。在日常生活和科研 中具有十分重要的作用。数字识别的算法一般是采用以 知识、神经网络、人工智能为基础的模板匹配法、轮廓 多边形相关、傅立叶系数法等方法来进行识别的。以上 方法识别效率高,但是实现较为复杂。
梯度下降(gradient decent)法
BP 算法
准则函数: sum squared error, SSE
J sse 1 2S
S j
(t j
a j )2
1 2S
(t
a)T (t
a)
权值修正: 梯度下降法
w j
J
w j
J
n j
n j w j
J a(k 1)
n j
Case 1: 输出层权值修正
2.图像预处理
• (1)彩色图像的灰度化,图像输入后一般都是256色彩色图像,灰度化后灰度图像的RGB值是相等的,灰 度值为255的像素为白色,灰度值为0的像素为黑色。
• (2)灰度图像的二值化,彩色图像灰度化后每像素只有一个值,即灰度值,二值化就是根据一定标准将 图像分成黑白二色。
• (3)梯度锐化,梯度锐化同时对噪声也起一定的去除作用,采取Roberts算子对图像锐化,可以让模糊的 边缘变清楚,同时选用合适阈值可以减弱和消除细小的噪声。
– 正向过程:从输入层经隐层逐层正向计算各单元的输出。 – 反向过程:由输出层误差逐层反向计算隐层各单元的误差,

BP神经网络的MATLAB语法介绍

BP神经网络的MATLAB语法介绍

BP神经网络的MATLAB语法介绍BP神经网络(Back Propagation Neural Network)是一种常用的人工神经网络算法,其目的是通过反向传播算法来训练网络模型,实现模式识别和函数逼近等任务。

在MATLAB中,可以使用Neural Network Toolbox来实现BP神经网络模型的构建和训练。

本文将介绍BP神经网络的MATLAB语法,包括网络的构建、训练、预测和模型评估等方面。

一、网络构建1.网络结构定义在MATLAB中,可以使用feedforwardnet函数来定义BP神经网络的结构。

该函数有两个参数,第一个参数是一个向量,表示每一层的节点数;第二个参数是一个向量,表示每一层的传输函数。

例如,下面的代码定义了一个具有2个输入节点、10个隐藏节点和1个输出节点的BP神经网络:```net = feedforwardnet([2, 10, 1]);```2.网络参数初始化网络参数初始化可以使用init函数,其参数是一个BP神经网络对象。

例如,下面的代码将使用init函数来初始化上一步中定义的网络对象:```net = init(net);```二、训练网络1.数据准备在训练BP神经网络之前,需要将数据集划分为输入和输出,然后进行数据归一化处理。

在MATLAB中,可以使用mat2cell函数将数据集划分为输入和输出集合,使用mapminmax函数来归一化数据。

例如,下面的代码将数据集划分为输入集合和输出集合,并进行数据归一化处理:```inputs = mat2cell(data(:, 1:end-1)', size(data, 2)-1,ones(size(data, 1), 1));outputs = mat2cell(data(:, end)', ones(size(data, 1), 1), 1);[input, inputPS] = mapminmax(cat(2, inputs{:}));[output, outputPS] = mapminmax(cat(2, outputs{:}));```2.训练参数设置在训练BP神经网络之前,需要设置一些训练参数,例如训练算法和最大训练次数。

BP人工神经网络及matlab实现

BP人工神经网络及matlab实现

d 期望输出向量;
o=d1,d2,L,dq
5-2 BP网络的学习算法
5-2-2 BP学习算法的描述
输入层与中间层的连接权值: w i h 隐含层与输出层的连接权值: w h o 隐含层各神经元的阈值: b h 输出层各神经元的阈值: b o 样本数据个数: k=1,2, m 激活函数: f ( )
误差函数:e=1 2oq=1(do(k)-yoo(k))2
5-2 BP网络的学习算法
5-2-2 BP学习算法的描述
第一步,网络初始化
给各连接权值分别赋一个区间(-1,1)内的随机
数,设定误差函数e,给定计算精度值 和最大学
习次数M。
第二步,随机选取第 k 个输入样本及对应期望 输出
x(k )= x 1 (k ),x 2 (k ), ,x n (k )
d o( k )= d 1 ( k ) ,d 2 ( k ) , ,d q ( k )
5-2 BP网络的学习算法
5-2-2 BP学习算法的描述 第三步,计算隐含层各神经元的输入和输出
n
hih(k)= w ihxi(k)-b h h=1 ,2, ,p i= 1
w eho= ye io w yiho o=-o(k)hoh(k)
e = e hih(k) wih hih(k) wih
n
hih (k)
wih
=
(
i=1
wihxi (k) wih
- bh )
=
xi
(k)
5-2 BP网络的学习算法
5-2-2 BP学习算法的描述
将误差分摊给各层的所有 单元---各层单元的误 差信号
学习的过程:

BP人工神经网络算法的MATLAB实现

BP人工神经网络算法的MATLAB实现

%% 清空环境变量clcclear%% 训练数据预测数据提取及归一化%下载四类语音信号load data1 c1load data2 c2load data3 c3load data4 c4%四个特征信号矩阵合成一个矩阵data(1:500,:)=c1(1:500,:);data(501:1000,:)=c2(1:500,:);data(1001:1500,:)=c3(1:500,:);data(1501:2000,:)=c4(1:500,:);%从1到2000间随机排序k=rand(1,2000);[m,n]=sort(k);%输入输出数据input=data(:,2:25);output1 =data(:,1);%把输出从1维变成4维for i=1:2000switch output1(i)case 1output(i,:)=[1 0 0 0];case 2output(i,:)=[0 1 0 0];case 3output(i,:)=[0 0 1 0];case 4output(i,:)=[0 0 0 1];endend%随机提取1500个样本为训练样本,500个样本为预测样本input_train=input(n(1:1500),:)';output_train=output(n(1:1500),:)';input_test=input(n(1501:2000),:)';output_test=output(n(1501:2000),:)';%输入数据归一化[inputn,inputps]=mapminmax(input_train);%% 网络结构初始化innum=24;midnum=25;outnum=4;%权值初始化w1=rands(midnum,innum);b1=rands(midnum,1);w2=rands(midnum,outnum);b2=rands(outnum,1);w2_1=w2;w2_2=w2_1;w1_1=w1;w1_2=w1_1;b1_1=b1;b1_2=b1_1;b2_1=b2;b2_2=b2_1;%学习率xite=0.1alfa=0.01;%% 网络训练for ii=1:10E(ii)=0;for i=1:1:1500%% 网络预测输出x=inputn(:,i);% 隐含层输出for j=1:1:midnumI(j)=inputn(:,i)'*w1(j,:)'+b1(j); Iout(j)=1/(1+exp(-I(j)));end% 输出层输出yn=w2'*Iout'+b2;%% 权值阀值修正%计算误差e=output_train(:,i)-yn;E(ii)=E(ii)+sum(abs(e));%计算权值变化率dw2=e*Iout;db2=e';for j=1:1:midnumS=1/(1+exp(-I(j)));FI(j)=S*(1-S);endfor k=1:1:innumfor j=1:1:midnumdw1(k,j)=FI(j)*x(k)*(e(1)*w2(j,1)+e(2)*w2(j,2)+e(3)*w2(j,3)+e(4)*w2(j,4));db1(j)=FI(j)*(e(1)*w2(j,1)+e(2)*w2(j,2)+e(3)*w2(j,3)+e(4)*w2(j,4));endendw1=w1_1+xite*dw1';b1=b1_1+xite*db1';w2=w2_1+xite*dw2';b2=b2_1+xite*db2';w1_2=w1_1;w1_1=w1;w2_2=w2_1;w2_1=w2;b1_2=b1_1;b1_1=b1;b2_2=b2_1;b2_1=b2;endend%% 语音特征信号分类inputn_test=mapminmax('apply',input_test,inputps);for ii=1:1for i=1:500%1500%隐含层输出for j=1:1:midnumI(j)=inputn_test(:,i)'*w1(j,:)'+b1(j);Iout(j)=1/(1+exp(-I(j)));endfore(:,i)=w2'*Iout'+b2;endend%% 结果分析%根据网络输出找出数据属于哪类for i=1:500output_fore(i)=find(fore(:,i)==max(fore(:,i))); end%BP网络预测误差error=output_fore-output1(n(1501:2000))';%画出预测语音种类和实际语音种类的分类图figure(1)plot(output_fore,'r')hold onplot(output1(n(1501:2000))','b')legend('预测语音类别','实际语音类别')%画出误差图figure(2)plot(error)title('BP网络分类误差','fontsize',12)xlabel('语音信号','fontsize',12)ylabel('分类误差','fontsize',12)%print -dtiff -r600 1-4k=zeros(1,4);%找出判断错误的分类属于哪一类for i=1:500if error(i)~=0[b,c]=max(output_test(:,i));switch ccase 1k(1)=k(1)+1;case 2k(2)=k(2)+1;case 3k(3)=k(3)+1;case 4k(4)=k(4)+1;endendend%找出每类的个体和kk=zeros(1,4);for i=1:500[b,c]=max(output_test(:,i)); switch ccase 1kk(1)=kk(1)+1;case 2kk(2)=kk(2)+1;case 3kk(3)=kk(3)+1;case 4kk(4)=kk(4)+1;endend%正确率rightridio=(kk-k)./kk。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
wih
=
(
i=1
wih xi (k) wih
- bh )
=
xi
(k)
5-2 BP网络的学习算法
5-2-2 BP学习算法的描述
e
=
(1 2
q o =1
(do (k)
-
yoo (k ))2 )
hoh (k )
hih (k )
hoh (k )
hih (k )
=
(1 2
q o =1
(do (k)
-
f( yio (k )))2 )
David Rumelhart
J. McClelland
BP算法基本原理
利用输出后的误差来估计输出层的直接前导层的误差, 再用这个误差估计更前一层的误差,如此一层一层的 反传下去,就获得了所有其他各层的误差估计。
5-1 网络结构和模型
BP网络是一种前向映射网络。网络的结构见 下一页的图形。其中:u是网络的输入向量,y是 网络的输出向量。神经元用节点表示,网络由输 入层、隐层和输出层节点组成,隐层可一层,也 可多层(图中是单隐层)。前层节点至后层节点通 过权联接。
由于这种网络常常用BP学习算法后的网络权 值,所以常称BP人工神经网络。
5-1 网络结构和模型
u
y
5-1 网络结构与模型
u
y
5-1 网络结构和模型
BP网络的神经元模型是
改进了感知器神经元模型得 u1 w1
到的。 输入层:
x
wij 1, f(x)=x
隐层:
f (x)
=
1 1+ e-x
uj
误差反传
误差以某种形式在各层表示----修正各层单元的权值
网络输出的误差减少到可接受的程度 或者进行到预先设定的学习次数为止
5-2 BP网络的学习算法
5-2-2 BP学习算法的描述
网络结构
输入层有n个神经元,隐含层有p个神经元,输出
层有q个神经元。
变量定义
输入向量;
x=x1,x2, ,xn
5-2-2 BP学习算法的描述
第五步,利用隐含层到输出层的连接权值、输 出层的 o ( 和k ) 隐含层的输出计算误差函数对隐含
层各神经元的偏导数 。h ( k )
w eho=yeio w yihoo=-o(k)hoh(k)
e = e hih (k) wih hih (k) wih
n
hih (k)
BP人工神经网络
本章的基本内容
• BP网络结构与模型 • BP网络的学习算法 • BP神经网络的重要函数和基本功能 • 一个简单的例子 • BP网络的几个问题 • 改进的BP网络的学习算法 • BP网络的应用示例
概述
Rumelhart,McClelland于1985年提出了BP网络的误差 反向后传BP(Back Propagation)学习算法
p
yio(k)= w hohoh(k)- bo o=1 ,2, q h= 1
y o o (k )= f(y io (k )) o = 1 ,2 , q
5-2 BP网络的学习算法
5-2-2 BP学习算法的描述
第四步,利用网络期望输出和实际输出,计算 误差函数对输出层的各神经元的偏导数 o (。k )
5-2 BP网络的学习算法
5-2-2 BP学习算法的描述
第一步,网络初始化
给各连接权值分别赋一个区间(-1,1)内的随机
数,设定误差函数e,给定计算精度值 和最大学
习次数M。
第二步,随机选取第 k 个输入样本及对应期望
输出
x(k )= x 1 (k ),x 2 (k ), ,x n (k )
d o(k )=d 1 (k ),d 2 (k ), ,d q (k )
5-2 BP网络的学习算法
5-2-2 BP学习算法的描述 第三步,计算隐含层各神经元的输入和输出
n
hih(k)= w ihxi(k)-bh h=1,2, ,p i=1
h o h ( k )= f ( h ih ( k ) ) h = 1 ,2 , ,p
e = e yio who yio who
p
(
yio(k)= who
h
whohoh(k)-bo)
who
=hoh(k)
e
yio
=(12oq=1(do(k)-yoo(k)))2 yio
=-(do(k)-yoo(k))yoo
(k)
=-(do(k)-yoo(k))f(yio(k)) -o(k)
5-2 BP网络的学习算法
y f (x)
f
(x)
=
1 1
+
e-x e-x
un
wn
输出层:f
(x)
=
1 1
+
e-x e-x
f3; e-x
f (x) =kx
5-2 BP网络的学习算法
5-2-1 BP学习算法概述
多层前馈网络的反向传播 (BP)学习算法, 简称BP学习算法,这是一种有导师的学习算法, 是梯度下降法在多层前馈网中的应用。
将误差分摊给各层的所有 单元---各层单元的误 差信号
学习的过程:
信号的正向传播
修正各单元权 值
误差的反向传播
5-2 BP网络的学习算法
5-2-1 BP学习算法概述
正向传播:
输入样本---输入层---各隐层---输出层
判断是否转入反向传播阶段:
若输出层的实际输出与期望的输出(教师信号)不符
5-2-2 BP学习算法的描述
输入层与中间层的连接权值: w i h 隐含层与输出层的连接权值: w h o 隐含层各神经元的阈值: b h 输出层各神经元的阈值: b o 样本数据个数: k=1,2, m 激活函数: f ( )
误差函数:e=12oq=1(do(k)-yoo(k))2
隐含层输入向量; hi=h i1,h i2, ,h ip
隐含层输出向量; 输出层输入向量;
ho yi=h o 1,h o 2, ,h op =yi1,yi2, ,yiq
输出层输出向量; yo=yo 1,yo2, ,yoq
期望输出向量;
do=d1,d2, ,dq
5-2 BP网络的学习算法
hoh (k )
hoh (k )
hih (k )
=
(1 2
q o =1
((do (k )
-
p
f(
BP学习算法可以看成是线性自适应神经元学 习算法的进一步推广。
BP学习算法=前向计算过程+误差反向传播过程
前向计算过程:也是网络应用时的实现过程。 误差反向传播过程:是BP网络权值的学习和
训练过程。
5-2 BP网络的学习算法
5-2-1 BP学习算法概述
学习的类型:有导师学习 核心思想:
将输出误差以某种形式通过隐层向输入层逐层反传
相关文档
最新文档