高频淬火和中频淬火的区别
高频淬火
在汽车、机床等机械设备的制造和生产中,有许多传动机构的工件需要承受较大的载荷及频繁的启停,因此就需要其表面具有高的硬度、强度以及耐磨性,而心部又需要较好的韧性。
比如:齿轮,凸轮轴,气门杆,前进杆,汽车半轴,花键轴,链轮、光轴、导轨、仿形件等。
所以需要对这些工件进行表面热处理,传统的表面热处理有:表面渗碳、渗氮;碳氮共渗;表面淬火等,表面淬火相比于其他热处理工艺成本更低,效率更高,而且变形量小,操作更简单,优势十分明显,在工业生产中应用十分广泛。
感应加热是一项先进的金属加热技术,是国家倡导的节能减排技术之一。
它是利用金属导体在交变磁场作用下产生的感应电流引起自身发热,而到达加热金属的目的。
广泛应用于金属热处理、淬火、透热、熔炼、焊接、热套等众多领域。
感应加热具有非接触、速度快、效率高、工序简单、容易实现自动化等显著优点,并具有零排放、无污染和节能等优势,对国民经济发展具有重要意义。
表面淬火按照加热频率可分为:中频淬火(<10KHZ),超音频淬火(20-100KHZ),高频淬火(>100KHZ);按照加热部分又可分为:外表面淬火和内表面淬火(内孔);按照淬火方式又可分为:同时加热淬火法、连续扫描式淬火法。
2 表面淬火与普通淬火比具有如下优点1、工件表面硬度高,经高、中频感应加热表面淬火的工件,其表面硬度往往比普通淬火高2~3个单位(HRC)。
缺口敏感性小,冲击韧性、疲劳强度以及耐磨性等均有很大提高。
有利于发挥材料地潜力,节约材料消耗,提高零件使用寿命;2、工件因不是整体加热,变形小;3、工件加热时间短,表面氧化脱碳量少;4、热源在工件表层,加热速度快,热效率高;5、设备紧凑,使用方便,劳动条件好;6、便于机械化和自动化;感应表面淬火后的性能:1、表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普通淬火高2~3个单位(HRC)。
2、耐磨性:高频淬火后的工件耐磨性比普通淬火要高。
这主要是由于淬硬层马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果。
高频淬火、中频淬火和超音频淬火设备的区别
金属工件都需要进行淬火加热,感应淬火设备是现在厂家选择较多的方式,根据设备频率的不同可分为高频感应淬火设备、中频淬火设备和超音频淬火设备,在选购的时候,有人需要中频淬火设备,有人需要高频淬火设备,当然也有人需要超音频淬火设备,这要根据工件所需的淬火层厚度来决定。
虽然高频淬火设备、中频淬火设备和超音频淬火设备有很大不同,但它们的工作原理是一样的,都使用了感应电流的频率,从而使钢迅速的表面加热和冷却的这一方法。
即通过交流电的一定频率感应线圈,线圈内外会产生相同的交流磁场的频率,如果工件被放置在线圈,工件会诱发由交流电,并加热工件。
感应工件表面深度的当前渗透取决于当前频率(每秒的周期),较高的频率,电流穿透深度越浅,则硬化层较薄,因此,它是可以选择不同的频率,以达到不同的深度硬化层的,这也就是为什么有人选择中频淬火设备、有人选择高频淬火设备,而还有人选择超音频淬火设备。
郑州星川感应技术有限公司生产有高频淬火设备、中频淬火设备和超音频淬火设备,下面跟大家聊一下高频淬火、中频淬火和超音频淬火设备。
1、高频淬火设备为50-500KHz,硬化层(1.5-2mm),硬度高的频率,工件不易氧化,变形,淬火的质量,生产效率高,此类设备适用于摩擦的条件下,如一般的小齿轮,轴型(用于45号钢,40Cr钢的材料)。
2、超音频淬火设备30~36kHz,硬度层(1.5-3mm)。
淬硬层能沿工件轮廓分中小模数齿轮表面热处理是通过改变零件表层组织,以获得硬度很高的马氏体,而保留心部韧性和塑性(即表面淬火),或同时改变表层的化学成分,以获得耐蚀、耐酸、耐碱性,及表面硬度比前者更高(即化学热处理)的方法。
3、中频淬火设备为1-10KHz,硬化层深度(3-5mm)的频率,此类设备适用于轴承部件,如曲轴,大齿轮的压力负荷,磨床主轴等(在材料为45号钢,40Cr钢,9Mn2V和球墨铸铁)。
选择哪个频段的淬火设备由客户自己决定,选择哪家产品也由客户决定,某一频段的淬火设备由淬火工件决定,产品质量好坏客户需要认真辨别,选择信得过的,可靠的厂家,优质的产品才能使自己的工作效率更高。
表面淬火方法
表面淬火方法一:感应加热表面淬火定义:感应加热表面淬火是利用感应电流通过工件产生的热效应,使工件表面局部加热,继之快速冷却,以获得马氏体组织的工艺。
分类:分为高频淬火,中频淬火,和高频脉冲淬火即微感应淬火三类。
1:感应加热基本原理:(1)感应加热的物理基础;当工件放在通有交变电流的感应圈中,在交变电流所产生的交变磁场作用下将产生感应电动势。
电流透人深度随着工件材料的电阻串的增加而增加,随工件材料的导磁串及电流频率的增加而减小。
钢的电阻率随着加热温度的升高而增大,在800-900?时,各类钢的电阻率基本相等,通常把20?时的电流透人深度称为"冷态电流透人深度",而把800?时的电流透入深度。
称为热态电流透人深度。
(2)感应加热的物理过程感应加热开始时,工件处于室温,电流透入深度很小,仅在此薄层内进行加热。
表面温度升高,薄层有-定深度,且温度超过磁性转变点(或转变成奥氏体)时,此薄层变为顺磁体,交变电流产生的磁力线移向与之毗连的内侧铁磁体处,涡流移向内侧铁磁体处,由于表面电流密度下降,而在紧靠顺磁体层的铁磁体处,电流密度剧增,此处迅速被加热,温度也很快升高。
此时工件截面内最大密度的涡流由表面向心部逐渐推移,同时自表面向心部依次加热。
这种加热方式称为透人式加热、当变成顺磁体的高温层的厚度超过热态电流进入的深度后,涡流不再向内部推移,而按着热态特性分布,继续加热时,电能只在热态电流透人层范围内变成热量,此层的温度继续升高。
与此同时,由于热传导的作用,热量向工件内部传递,加热层厚度增厚,这时工件内部的加热和普通加热相同,称为传导式加热。
透入式加热较传导式加热有如下特点:(a)表面的温度超过A2点以后,最大密度的涡流移向内层,表层加热速度开始变慢,不易过热,而传导式加热随着加热时间的延长,表面继续加热容易过热;(b)加热迅速,热损失小,热效率高;(c)热量分布较陡,淬火后过渡层较窄,使表面压应力提高,2.感应加热表面淬火工艺(1)根据零件尺寸及硬化层深度的要求,合理选择设备。
高频淬火与中频淬火
高频淬火与中频淬火
高频淬火的频率高,淬火层浅。
如齿轮的轮齿表面淬火。
中频淬火频率低一些,淬火层要厚一些。
主要适用于轴类零件。
基本原理:工件放入感应器(线圈)内,当感应器中通入一定频率的交变电流时,周围即产生交变磁场。
交变磁场的电磁感应作用使工件内产生封闭的感应电流──涡流。
感应电流在工件截面上的分布很不均匀,工件表层电流密度很高,向内逐渐减小, 这种现象称为集肤效应。
工件表层高密度电流的电能转变为热能,使表层的温度升高,即实现表面加热。
电流频率越高,工件表层与内部的电流密度差则越大,加热层越薄。
在加热层温度超过钢的临界点温度后迅速冷却,即可实现表面淬火。
三维网技术论坛0 {# r* ?* b# d; ^
根据交变电流的频率高低,可将感应加热热处理分为超高频、高频、超音频、中频、工频5类。
①超高频感应加热热处理所用的电流频率高达27兆赫,加热层极薄,仅约0.15毫米,可用于圆盘锯等形状复杂工件的薄层表面淬火。
②高频感应加热热处理所用的电流频率通常为200~300千赫,加热层深度为0.5~2毫米,可用于齿轮、汽缸套、凸轮、轴等零件的表面淬火。
③超音频感应加热热处理所用的电流频率一般为20~30千赫,用超音频感应电流对小模数齿轮加热,加热层大致沿齿廓分布,粹火后使用性能较好。
④中频感应加热热处理所用的电流频率一般为2.5~10千赫,加热层深度为2~8毫米,多用于大模数齿轮、直径较大的轴类和冷轧辊等工件的表面淬火。
⑤工频感应加热热处理所用的电流频率为50~60赫,加热层深度为10~15毫米,可用于大型工件的表面淬火。
高频感应加热和中频感应加热有什么区别
感应加热分为:低频感应加热,中频感应加热,超音频感应加热,高频感应加热和超高频感应加热。
其中,中频感应加热方式多用于较大工件,大直径轴类,大直径厚壁管材,大模数齿轮等工件的加热、退火、回火、调质和表面淬火及较小直径的棒材红冲、煅压等。
高频感应加热方式多用于小型工件的深层加热、红冲、煅压、退火、回火、调质,表面淬火,中等直径的管材加热和焊接、热装配,小齿轮淬火等。
高频感应加热和中频感应加热的具体区别是:
1)高频适用于淬火或焊接,频率高,从外面加热到里面,应用于表面热处理设备。
2)中频适用于锻造透热用,频率低,从里面往外加热的,透热的更均匀。
3)选择中频加热或者高频加热方式应根据产品设计要求,温度控制是由合理的工艺参数决定,不存在那个更好,关键是能否满足产品要求。
中频:频率范围一般在1kHz至20kHz左右,典型值是8kHz左右。
加热厚度约3-10mm。
多用于较大工件,大直径轴类,大直径厚壁管材,大模数齿轮等工件的加热、退火、回火、调质和表面淬火及较小直径的棒材红冲、锻压等。
高频:频率范围为一般40kHz至200kHz左右,常用40kHz至80kHz。
加热深度或厚度约1-2mm。
多用于小型工件的深层加热、钎焊、红冲、锻压、退火、回火、调质,表面淬火,中等直径的管材加热和焊接、热装配,小齿轮淬火等。
以上就是为大家介绍的关于高频感应加热和中频感应加热有什么区别的相关内容,希望对大家有所帮助!大家可以根据自己的需求进行购买哦。
普通淬火和高频淬火有什么区别
在一些工件的加工行业中会经常用到淬火这种工艺,由于加热设备的不同可以分为普通淬火和高频淬火,这两者是一样的工作原理,但是在很多方面还是有一些区别的。
一、处理工艺不同
1、普通淬火:将金属工件加热到合适的温度一段时间,随即浸入淬冷介质中快速冷却的金属热处理工艺。
2、高频淬火通过快速加热,待加工钢件的表面达到淬火温度,不均匀的热量传递到中心,然后快速冷却。
只有表面硬化为马氏体,中心仍为退火结构。
二、应用领域不同
1、高频淬火:受扭转、弯曲等交变载荷作用的工件,其表面的应力或耐磨性比芯部高,对工件表面的强化要求也高,适于含碳量在0.40~0.50%钢材。
2、普通淬火:几乎所有重要的机械零件,特别是汽车、飞机和火箭用的钢制零件,都经过淬火处理。
以上就是关于普通和高频淬火的区别之处了,相信大家应该有一定的了解了。
高频淬火和中频淬火的区别
高频淬火绝大多数是用于工业金属零件表面淬火,是使工件表面产生一定的感应电流,迅速加热零件表面,然后迅速淬火的一种金属热处理方法。
中频淬火是将金属件放在一个感应线圈内,感应线圈通交流电,产生交变电磁场,在金属件内感应出交变电流,由于趋肤效应,电流主要集中在金属件表面,所以表面的温度最高,在感应线圈下面紧跟着喷水冷却或其他冷却,由于加热及冷却主要集中在表面,所以表面改性很明显,而内部改性基本没有,可以有很特殊的热处理效果。
高频淬火和中频淬火的区别:高频淬火和中频淬火都属于表面热处理技术的一种,都是利用高频率(或中频率、工频)的感应电流,使钢件表面迅速加热,随后立即冷却的一种方法。
高频淬火和中频淬火的工作原理一样,都是感应加热原理:即工件放到感应器内,感应器一般是输入中频或高频交流电(1000-300000Hz或更高)的空心铜管。
产生交变磁场在工件中产生出同频率的感应电流,这种感应电流在工件的分布是不均匀的,在表面强,而在内部很弱,到心部接近于0,利用这个集肤效应,可使工件表面迅速加热,在几秒钟内表面温度上升到800-1000℃,而心部温度升高很小不过加热过程中,感应电流在工件中的分布是不均匀的,不同的电流频率产生的加热效果也是不同的:1、高频淬火电流频率在100~500 kHz淬硬层浅(1.5~2mm),硬度高,工件不易氧化,变形小,淬火质量好,生产效率高,适用于摩擦条件下工作的零件,如一般较小的齿轮、轴类(所用材料为45号钢、40Cr)2、中频淬火电流频率在500~10000 Hz淬硬层较深(3~5mm),适用于承受扭曲、压力负荷的零件,如曲轴、大齿轮、磨床主轴等(所用材料为45号钢、40Cr、9Mn2V 和球墨简而言之,高频淬火和中频淬火的最大区别就是加热厚度的不同,高频淬火可以短时间的表层淬硬,晶体组织很细,结构变形小,而中频表面应力比高频的要小。
金属热处理工艺学-表面淬火
钢表面淬火后的残余应力
图12. 不同钢材硬化层深度与残余压应力的关系 1----45号钢;2----18Cr2Ni4W; 3----40CrMnMo;4----40CrNiMo
钢表面淬火强化层应与工件负载匹配
x
o
图13. 表面强化与承载应力匹配示意图 1.截面为圆形的工件负载时的应力分布情况 2.表面淬火较浅时,沿表面向内部的应力承载能力曲线 3.表面淬火较深时,沿表面向内部的应力承载能力曲线
特点3.提高加热速度可显著细化奥氏体晶粒。
形核处增加:铁素体与碳化物相界、铁素体亚晶界; 形核时间短、晶粒来不及长大。
特点4.快速加热对过冷奥氏体的转变及马氏体回火有明显影响。
奥氏体成分不均及晶粒细化,减小了过冷奥氏体稳定性,C曲线左移; 成分不均使马氏体转变点和形态都不相同,出现低碳、高碳马氏体。
知识回顾
图 Fe-C相图及其平衡组织
钢表面淬火的金相组织
钢经过表面淬火后的金相组织与钢的成分、淬火前的原始组织以及淬火 加热时截面的温度梯度分布有关。
图3. 共析钢表面淬火沿截面温度分布(a) 及淬火后金相组织(b)
原始材料:退火态共析钢
钢表面淬火的金相组织
图4. 45钢表面淬火沿截面温度分布(a) 及淬火后金相组织(b)
图 感应加热原理示意图
感应加热基本原理
感应电势的瞬时值:
d e d
e
-感应电势的瞬时值,V;
-感应线圈电流回路包围面积内的总磁通,Wb,随交变电流强度 和零件磁导率增加而增加,并于零件与感应器之间的间隙有关;
感应电流(涡流)值: Z
I
e e Z R X
2
2
X
-自感电抗,Ω; -零件材料的电阻,Ω;
中频淬火与高频淬火的淬火不同有哪些?
中频淬火与高频淬火的淬火不同有哪些?
在热处理行业中的淬火领域中,一般采用高频感应加热设备或中频感应加热电源对
工件进行淬火,简称高频淬火或中频淬火。
那么在淬火方面二者的区别有哪些呢?了解二者区别,有助于对感应加热设备进行选择及具体的选型,简单概括有一下几点:
高频淬火与中频淬火的相同点:
二者都是应用于对金属材料的热加工、透热、淬火热处理、热装配及焊接、熔炼。
高频淬火与中频淬火的不同点:
二者除了有设备频率不同,谐振输出方式不同,变频器件不同外,在对工件进行淬
火时,最主要的是淬火深度不同,由于频率越低,透热性越好,淬火层越深,高频感应加热淬火层在:0.5~2mm 主要用于要求淬硬层较薄的中、小型零件,如小模数齿轮、中小型轴等小金属工件的加热。
淬火,焊接等。
中频感应加热淬火层在3~6mm主要用于要求淬
硬层要求较深的零件,如中大模数的齿轮、直径较大的轴等。
中频用于大金属工件的加热、透热、淬火等。
实际生产中要根据技术要求和工件的几何特征(形状)及整体或局部特点选择适宜的
频率或淬火深度的感应加热设备,以达到最好的效果。
高频淬火该如何选择频率
高频淬火该如何选择频率感应淬火时频率选择很重要。
不同的电流频率,将在零件中产生不同的透入深度,在随后的淬火中可得到不同深度的硬化层。
高频(中频)电流有个重要特性叫表面效应,即随电流频率提高,感应电流更趋向零件表面。
频率越高,表面电流密度越大,电流透入深度越小。
频率越低,电流透入深度越大。
感应加热表面淬火的使用频率不同,一般感应淬火设备按频率分为:超音频范围15-35KHZ ,高频为200-250KHZ ,超高频为300-500KHZ,中频为500-10000HZ。
超音频的频率为15-35KHZ 淬火轴之类的产品层深在1.8-3mm高频频率多为200-250KHZ之间,适合小型轴类淬火,因为频率高,淬硬层比较浅,加热速度较快。
超高频频率在300-500KHZ,适合较为精密细小的部件加热,如钢针,铁丝,钢丝等直径在1mm左右的金属物品加热,因为频率比较高,磁场分布也较为密集。
由于电流频率不同,加热时感应电流透入深度不同。
使用高频时,要了解产品的加热工艺要求,大概来说有几种情况:1、工件透热,例如:紧固件、标准间、汽配、五金工具、麻花钻的热镦热轧等,工件直径越大,频率应越低。
Φ4mm-16mm以下适用高频(50-100KHz)Φ16-40mm适用超音频(10-50KHz)Φ40mm以上适用中频(0.5-10KHz)2热处理,轴类、齿轮、淬火及不锈钢制品退火等等,以淬火为例,工件要求淬火层越浅,频率应越高,淬火层越深,频率应越低。
1.5-2mm适用20-25KHz超音频2.0-3.0mm适用8-20KHz超音频、中频3.0-5.0mm用4-8KHz中频5.0-8.0mm适用2.5-4KHz中频。
中频感应加热设备和高频感应加热设备的区别
在使用感应加热设备的时候,很多朋友都会问中频感应加热设备和高频感应加热设备到底有哪些区别?两者的相同之处,即是在对工件进行热处理时,都是采用的感应加热原理,接下来就来给大家说一说这两者的区别具体体现在哪些方面。
中频感应加热设备和高频感应加热设备的区别:
1、使用频率不同:我们通常把频率在1-10Khz的感应加热设备,称之为中频感应加热设备,把频率在50Khz以上的感应加热设备,称为高频感应加热设备。
2、受感应加热设备频率的影响,两者的淬火深度也有所不同,中频感应加热设备的淬火深度,一般为3.5-6mm,而高频感应加热设备则为1.2-1.5mm。
3、透热直径不同:中频感应加热设备,在工件的透热方面具有很大的优势,主要是用来对工件进行透热热处理的,它可以对直径45-90mm的工件进行透热热处理,而高频感应加热设备,则只能透热那些又细又小的工件。
综上所述,中频感应加热设备和高频感应加热设备,它们的加热方式是一样的,只是频率有所不同而已,其使用频率的不同,所以它们在价格、处理的工件等方面也不同,因此我们在工件加热时,要选择适合自己的感应加热设备。
钢的常用退火工艺的分类及应用
时效的目的是使淬火后的工件进一步消除内应力,稳定工件尺寸常用来处理要求形状不再发生变形的精密工件,例如精密轴承、精密丝杠、床身、箱体等低温时效实际就是低温补充回火
低温时效
将工件加热到100一150 ℃,保温较长时间约5—20h
冷处理
淬透层深度一般为2—6mm,过深往往引起零件表面严重过热,易产生淬火裂纹;表面硬度钢可达65HRC,灰铸铁为40一48HRC,合金铸铁为43—52HRC;这种方法简便,无需特殊设备,但易过热,淬火效果不稳定,因而限制了它的应用
适用于单件或小批生产的大型零件和需要局部淬火的工具或零件,加大型轴类、大模数齿轮等
1.表层硬度比普通淬火高2—3HRC,并具有较低的脆性2.疲劳强度、冲击韧度都有所提高,一般工件可提高20%一30%3.变形小4.淬火层深度易于控制5.淬火时不易氧化和脱碳6.可采用较便宜的低淬透性钢7.操作易于实现机械化和自动化,生产率高8.电流频率愈高,淬透层愈薄;例如高频淬火一般1—2mm,中频淬火一般3—5mm,工频淬火能到>l0—l 5mm缺点:处理复杂零件比渗碳困难
常用钢材为中碳钢,如35、45钢及中碳合金钢合金元素<3%,如40Cr、65Mn等,还可用于灰铸铁件、合金铸铁件;含碳量过低,淬火后硬度低,而碳和合金元素含量过高,则易碎裂,因此,以含碳量质量分数在%一%之间的碳素钢最适宜
电接触加热表面淬火
采用两电极铜滚轮或碳棒向工件表面通低电压大电流,在电极与工件表面接触处产生接触电阻,产生的热使工件表面温度达到临界点以上,电极移去后冷却淬火
1.设备简单,操作方便
2.工件变形极小,不需回火
3.淬硬层薄,仅为一4.工件淬硬层金相组织,硬度不均匀
表面淬火的目的是什么?常用的淬火方法有哪些?比较它们的优缺点及应用范围?
表面淬火的目的是什么?常用的淬火方法有哪些?比较它们的优缺点及应用范围?表面淬火的目的是什么?常用的淬火方法有哪些?比较它们的优缺点及应用范围?淬火的目的是使材料获得高硬度,常用的方法油淬,水淬,盐浴等方法,前两者容易获得材料,使用范围也比较广,但对于薄材料容易开裂,后者对于开裂的机率较小,详细还要你自己找资料才能解决自身的问题,在此不方便详述!敬谅!表面淬火的目的是什么?常用的表面淬火方法有哪几种增加强度,硬度,提高耐磨性,增长零件的使用寿命。
常用的表面淬火方法按不同零件可分为高频淬火,中频淬火,工频淬火,埋油淬火,火焰淬火,镭射淬火等哪些零件适于进行表面淬火?表面淬火的目的是什么钢铁零件的表面淬火多用于机床传动齿轮、机床主轴、内燃机曲轴、凸轮轴以及其他的零件,其使用的材料为中碳钢或中碳低合金钢等,在进行正火或调质处理后,进行表面的淬火+低温回火处理。
这些零件在工作过程中,其服役条件为弯曲交变载荷或扭转交变载荷作用,既要求表面耐磨性好,同时又能承受冲击作用,可以长期安全可靠地执行。
根据上述要求,零件经过表面淬火后,表层组织为回火马氏体组织,硬度在50HRC以上,故具有良好的耐磨性,由于回火马氏体的比容比原始组织比容小,因此零件淬火后的表层存在压应力的作用,可使零件的弯曲抗力和疲劳抗力显著提高。
而心部组织为细片状珠光体或回火索氏体组织,可确保具有良好的综合力学效能。
另外冷轧辊一类对耐磨以及接触疲劳抗力有一定要求的工件,多用高碳钢制造,进行表面淬火后可较好满足其力学效能的需要。
灰铸铁表面淬火的目的和淬火的方法是什么?很急热处理炉之灰铸铁表面淬火和表面化学热处理热处理工艺:火焰淬火加热:适合采用火焰淬火的灰铸铁的化合碳在0.5%~0.7%(质量分数)范围内,化合碳较少,淬火后硬度偏低;化合碳大于0.8%(质量分数),淬裂敏感性高,不适合采用火焰淬火工艺方法。
淬火加热温度为850~950C 回火:在150~205C消除应力回火,将减小变形和开裂,也增加硬化层韧性其他:可获得硬度高、耐磨性好的马氏体外层和软的心部组织的复合结构热处理工艺:感应淬火加热:适合于感应淬火的铸铁的化合碳含量推荐为0.4%~0.5%(质量分数)。
工频、中频与高频感应炉的区别
比较高频炉、中频炉、工频炉的区别 【中频炉与高频炉的区别】感应炉按照所使用交流电的频率可以分为:工频电炉、中频电炉及高频电炉三种。
中频炉与高频炉的区别为:1、所使用交流电的频率不同:中频炉是一种将工频50HZ交流电转变为中频(300HZ以上至10000HZ)的电源装置;高频炉通常清况下电流频率在一百到五百千赫之间;2、频率越高,透热能力越低;3、中频炉有效淬硬深度为2到10毫米,主要的应用范围是要求淬硬层要求较深的零件;高频炉有效淬硬深度为零点五到两毫米之间。
4、可以用中频炉熔炼五千克到六十吨的各种金属;高频感应加热适宜熔炼一到五千克的贵重金属。
5、中频炉体积较大,技术成熟;高频炉体积小,运作快,价格便宜。
【中频炉与工频炉的区别】(主要炼铸铁用)的最大区别在于以下几方面:1、使用灵活、适应性强中频炉在冶炼时,每炉都可以清洗干净而且在更换时也比较方便。
但是工频炉在冶炼时,每炉都不能清洗干净,还会保留一些钢液在炉内以便下次启动,而且更换起来也不方便。
因此可以确定工频炉的适应性是比较差的。
2、启动操作方便由于中频电流的集肤效应远大于工频电流,因此中频感应炉在启动时,对炉料没有特殊要求,装料后即可迅速加热升温;而工频感应炉则要求有专门制作的开炉料块才能启动加热,而且升温速度很慢。
因此,在周期作业的条件下大多使用中频感应炉。
3、电磁搅拌效果好中频电源的搅拌效果比较好。
工频电源过大的搅拌力使钢液对炉衬的冲刷力增大,不仅降低精炼效果而且会降低坩埚寿命。
4、熔化速度快、生产效率高中频炉配置的功率密度大,是工频炉的1.4~1.6倍。
在相同条件下中频炉的熔化速度比工频炉快。
中频炉热量损失小、电热效率高,其热效率比工频炉高8%,吨铸铁耗电量下降10%。
5、钢液被炉渣覆盖、减少大气对钢液的污染工频炉内钢液“驼峰”现象比中频炉严重,很难造渣覆盖液面。
中频炉冶炼时炉渣具有良好的流动性和覆盖能力,同时通过炉渣还可以进行脱氧和脱硫等精炼过程。
高频淬火和中频淬火的区别
1、高频淬火淬硬层浅(1.5~2mm)、硬度高、工件不易氧化、变形小、淬火质量好、生产效率高,适用于摩擦条件下工作的零件,如一般较小的齿轮、轴类(所用材料为45号钢、40Cr);2、中频淬火淬硬层较深(3~5mm),适用于承受扭曲、压力负荷的零件,如曲轴、大齿轮、磨床主轴等(所用材料为45号钢、40Cr、9Mn2V和球墨高频的淬火,可以短时间的表层淬硬!晶体组织很细!结构变形小。
中频表面应力比高频的要小。
50HZ叫工频,加热深度5-10,1000-10000HZ叫中频,10000HZ以上叫高频。
“高频淬火”与“中频淬火”在原理上是一样的。
利用高频率(或中频率、工频)的感应电流,使钢件表面迅速加热,随后立即冷却的一种方法。
其原理是:当在一个导体线圈中通过一定频率的交流电时,线圈内外将会产生一个频率相同的交流磁场,如果把工件放在线圈内,工件就会感应出交变电流,并使工件加热。
感应电流在工件中的分布是不均匀的,电流密度在表面最大,这种现象成为“表面效应”。
感应电流透入工件表面的深度主要取决于电流频率(周/秒),频率愈高,电流透入深度愈浅,则淬硬层愈薄,所以,可选用不同的频率来达到不同深度的淬硬层。
根据所用电流频率不同,感应加热可分为:高频感应加热(20000~1000000周/秒)、中频感应加热(5000~10000周/秒)和工频感应加热(50周/秒)。
感应加热表面淬火,是利用电磁感应、集肤效应、涡流和电阻热等电磁原理,使工件表层快速加热,并快速冷却的热处理工艺。
感应加热表面淬火时,将工件放在铜管制成的感应器内,当一定频率的交流电通过感应器时,处于交变磁场中的工件产生感应电流,由于集肤效应和涡流的作用,工件表层的高密度交流电产生的电阻热,迅速加热工件表层,很快达到淬火温度,随即喷水冷却,工件表层被淬硬感应加热时,工件截面上感应电流的分布状态与电流频率有关。
电流频率愈高,集肤效应愈强,感应电流集中的表层就愈薄,这样加热层深度与淬硬层深度也就愈薄。
高频淬火该如何选择频率
感应淬火时频率选择很重要。
不同的电流频率,将在零件中产生不同的透入深度,在随后的淬火中可得到不同深度的硬化层。
高频(中频)电流有个重要特性叫表面效应,即随电流频率提高,感应电流更趋向零件表面。
频率越高,表面电流密度越大,电流透入深度越小。
频率越低,电流透入深度越大。
感应加热表面淬火的使用频率不同,一般感应淬火设备按频率分为:超音频范围15-35KHZ ,高频为200-250KHZ ,超高频为300-500KHZ,中频为500-10000HZ。
超音频的频率为15-35KHZ 淬火轴之类的产品层深在1.8-3mm高频频率多为200-250KHZ之间,适合小型轴类淬火,因为频率高,淬硬层比较浅,加热速度较快。
超高频频率在300-500KHZ,适合较为精密细小的部件加热,如钢针,铁丝,钢丝等直径在1mm左右的金属物品加热,因为频率比较高,磁场分布也较为密集。
由于电流频率不同,加热时感应电流透入深度不同。
使用高频时,要了解产品的加热工艺要求,大概来说有几种情况:1、工件透热,例如:紧固件、标准间、汽配、五金工具、麻花钻的热镦热轧等,工件直径越大,频率应越低。
Φ4mm-16mm以下适用高频(50-100KHz)Φ16-40mm适用超音频(10-50KHz)Φ40mm以上适用中频(0.5-10KHz)2热处理,轴类、齿轮、淬火及不锈钢制品退火等等,以淬火为例,工件要求淬火层越浅,频率应越高,淬火层越深,频率应越低。
1.5-2mm适用20-25KHz超音频2.0-3.0mm适用8-20KHz超音频、中频3.0-5.0mm用4-8KHz中频5.0-8.0mm适用2.5-4KHz中频。
中频炉与淬火机床区别
中频炉与淬火机床区别1、中频炉与淬火机床原理不同淬火机床原理淬火机床是利用精确的感应器或是感应圈和可控的电流电压和频率,能准确的控制淬火深度,一般用于表面淬火。
主要由淬火机床、中频电源(高频电源、超音频电源、超高频电源)、冷却装置三大部分组成。
其中高频淬火机床由床身、上下装夹机构、夹紧旋转机构、淬火变压器及谐振槽路、冷却系统、淬火液循环系统、电气控制系统等组成,中频炉原理中频炉是一种将工频50HZ交流电转变为中频(300HZ以上至1000HZ)的电源装置,把三相工频交流电,整流后变成直流电,再把直流电变为可调节的中频电流,供给由电容和感应线圈里流过的中频交变电流,在感应圈中产生高密度的磁力线,并切割感应圈里盛放的金属材料,在金属材料中产生很大的涡流。
由于中频感应加热的原理为电磁感应,其热量在工件内自身产生,普通工人用中频电炉上班后十分钟即可进行锻造任务的连续工作,不需烧炉专业工人提前进行烧炉和封炉工作。
淬火机床一般都是单工位(小直径工件时可以采用双工位淬火机床);淬火机床从结构上有立式和卧式两大类,用户可根据淬火工艺选择淬火机床,对于特殊零件或特殊工艺,可根据加热工艺要求设计制造专用淬火机床。
2、中频炉与淬火机床用途不同淬火机床淬火机床是有由淬火机床与中频电源(高频电源、超音频电源、超高频电源)配合,实现由PLC程序控制的感应淬火工艺,常用于齿轮、轴承、轴类零部件、气门、缸套及各类机械零件的淬火及热处理。
中频炉中频炉广泛用于有色金属的熔炼[主要用在熔炼钢、合金钢、特种钢、铸铁等黑色金属材料以及不锈钢、锌等有色金属材料的熔炼,也可用于铜、铝等有色金属的熔炼和升温,保温,并能和高炉进行双联运行。
]、锻造加热[用于棒料、圆钢,方钢,钢板的透热,补温,兰淬下料在线加热,局部加热,金属材料在线锻造(如齿轮、半轴连杆、轴承等精锻)、挤压、热轧、剪切前的加热、喷涂加热、热装配以及金属材料整体的调质、退火、回火等。
中频淬火频率与深度的关系
中频淬火频率与深度的关系(原创实用版)目录1.中频淬火简介2.中频淬火频率与深度的关系3.影响中频淬火深度的因素4.中频淬火的应用5.结论正文一、中频淬火简介中频淬火是一种通过高频电流对金属进行加热和冷却的表面硬化处理方法。
这种方法可以提高金属表面的硬度和耐磨性,同时保持内部的韧性和塑性。
中频淬火适用于各种金属材料,如钢、铸铁、铝合金等。
二、中频淬火频率与深度的关系中频淬火频率与淬硬层深度有着密切的关系。
频率越高,淬硬层深度越浅;频率越低,淬硬层深度越深。
这是因为高频电流会在金属表面产生大量的热量,使表面迅速加热并膨胀。
随着热量向内部传导,表面开始冷却并收缩。
如果频率太高,热量传导太快,表面冷却速度跟不上,就不能形成足够的淬硬层。
相反,如果频率太低,热量传导太慢,表面冷却时间过长,就会形成过深的淬硬层。
三、影响中频淬火深度的因素影响中频淬火深度的因素主要有以下几个:1.频率:如前所述,频率越高,淬硬层深度越浅;频率越低,淬硬层深度越深。
2.电流:电流越大,淬硬层深度越深;电流越小,淬硬层深度越浅。
3.金属材料:不同金属材料的热导率、比热容和膨胀系数不同,会影响淬硬层深度。
4.淬火时间:淬火时间越长,淬硬层深度越深;淬火时间越短,淬硬层深度越浅。
四、中频淬火的应用中频淬火广泛应用于各种金属制品的表面硬化处理,如轴承、齿轮、刀具、模具等。
它可以提高金属表面的硬度和耐磨性,提高产品的使用寿命和质量。
五、结论总之,中频淬火频率与深度有着密切的关系,频率越高,淬硬层深度越浅;频率越低,淬硬层深度越深。
影响中频淬火深度的因素有频率、电流、金属材料和淬火时间等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频淬火和中频淬火的区别
1、高频淬火淬硬层浅(1.5~2mm)、硬度高、工件不易氧化、变形小、淬火质量好、生产效率高,适用于摩擦条件下工作的零件,如一般较小的齿轮、轴类(所用材料为45号钢、40Cr);
2、中频淬火淬硬层较深(3~5mm),适用于承受扭曲、压力负荷的零件,如曲轴、大齿轮、磨床主轴等(所用材料为45号钢、40Cr、9Mn2V和球墨铸铁)。
感应加热表面淬火,是利用电磁感应、集肤效应、涡流和电阻热等电磁原理,使工件表层快速加热,并快速冷却的热处理工艺
感应加热表面淬火时,将工件放在铜管制成的感应器内,当一定频率的交流电通过感应器时,处于交变磁场中的工件产生感应电流,由于集肤效应和涡流的作用,工件表层的高密度交流电产生的电阻热,迅速加热工件表层,很快达到淬火温度,随即喷水冷却,工件表层被淬硬
感应加热时,工件截面上感应电流的分布状态与电流频率有关。
电流频率愈高,集肤效应愈强,感应电流集中的表层就愈薄,这样加热层深度与淬硬层深度也就愈薄
因此,可通过调节电流频率来获得不同的淬硬层深度。
常用感应加热种类及应用见表5-3
感应加热速度极快,只需几秒或十几秒。
淬火层马氏体组织细小,机械性能好。
工件表面不易氧化脱碳,变形也小,而且淬硬层深度易控
制,质量稳定,操作简单,特别适合大批量生产
常用于中碳钢或中碳低合金钢工件,例如45、40Cr、40MnB等。
也可用于高碳工具钢或铸铁件,一般零件淬硬层深度约为半径的1/10时,即可得到强度、耐疲劳性和韧性的良好配合。
感应加热表面淬火不宜用于形状复杂的工件,因感应器制作困难
表5-3 感应加热种类及应用范围
感应加热类型常用频率一般淬硬层深度/m m 应用范围
高频感应加热 200~1000kHz 0.5~2.5 中小模数齿轮及中小尺寸的轴类零件
中频感应加热 2500~8000Hz 2~10 较大尺寸的轴和大中模数齿轮
工频感应加热火 50Hz 10~20 较大直径零件穿透加热,大直径
零件如轧辊、火车车轮的表面淬超音频感应加热 30~36kHz 淬硬层能沿工件轮廓分中小模数齿轮
表面热处理是通过改变零件表层组织,以获得硬度很高的马氏体,而保留心部韧性和塑性(即表面淬火),
或同时改变表层的化学成分,以获得耐蚀、耐酸、耐碱性,及表面硬度比前者更高(即化学热处理)的方法。
火焰表面淬火
用乙炔-氧或煤气-氧的混合气体燃烧的火焰,喷射到零件表面上,快速加热,当达到淬火温度后,立即喷水或用乳化液进行冷却
淬透层深度一般为2-6mm,过深往往引起零件表面严重过热,易产生淬火裂纹。
表面硬度:钢可达HRC65,灰铸铁为HRC40-48,合金铸铁为HRC43-52
这种方法简便,无需特殊设备,但易过热,淬火效果不稳定,因而限制了它的应用
适用于单件或小批生产的大型零件和需要局部淬火的工具或零件,如大型轴类、大模数齿轮等
常用钢材为中碳钢,如35、45及中碳合金结构钢(合金元素<3%),如40Cr,65Mn等,还可用于灰铸铁、合金铸铁件。
碳含量过低,淬火后硬度低,而碳和合金元素过高,则易碎裂,因此,以含碳量右0.35-0.5%之间的碳素钢最适宜。
感应加热表面淬火;将工件放入感应器中,使工件表层产生感应电流,在极短的时间内加热到淬火温度后,立即喷水冷却,使工件表层淬火,从而获得非常细小的针状马氏体组织。
根据电流频率,感应加热表面淬火,可以分为:
高频淬火;100-1000kHz. 中频淬火;1-10kHz. 工频淬火;50Hz
1表层硬度比普通淬火高2-3HRC,并具有较低的脆性:
2疲劳强度,冲击韧性都有所提高,一般工件可提高20-30%:
3变形小:
4淬火层深度易于控制:
5淬火时不易氧化和脱碳:
6可采用较便宜的低淬透性钢:
7操作易于实现机械化和自动化,生产率高
8电流频率愈高,淬透层愈薄。
高频淬火一般1-2mm,中频淬火一般3-5mm,工频淬火能到>=10-15mm
高频感应加热:电流频率在100~500 kHz(千赫),有效淬硬深度为0.5~2 mm(毫米),主要用于要求淬硬层较薄的中、小型零件,如小模数齿轮、中小型轴等。
中频感应加热:电流频率在500~10000 Hz(赫),有效淬硬深度为2~10 mm(毫米),主要用于要求淬硬层要求较深的零件,如中等模数的齿轮、大模数齿轮、直径较大的轴等。
表面淬火零件的中间热处理是调质
表面淬火缺点:处理复杂零件比渗碳困难
常用中碳钢(0.4-0.5%C)和中碳合金结构钢,也可用高碳工具钢和低合金结构钢,以及铸铁。
一般零件淬透层深度为半径的1/10左右时,可得到强度、耐疲劳性和韧性的最好配合。
对于小直径10-20mm的零件,建议用较深的淬透层深度,即可达半径的1/5;
对于截面较大的零件可取较浅的淬透层深度,即小于半径1/10以下。
1,工作于摩擦条件下的零件,如一般小齿轮、轴
45、40Cr、42MnVB;高频淬火,淬深1.5-2mm
2,承受扭曲、压力负荷的零件,如曲轴、大齿轮、磨床主轴等
45、40Cr、65Mn、9Mn2V、球墨铸铁;中频淬火,淬深3-5mm
3承受扭曲、压力负荷的大型零件,如冷轧辊等
9Cr2Mo、9Cr2W;工频淬火,淬深>=10-15mm
表面淬火、普通淬火后碳钢的疲劳强度比较含碳量% 热处理方法扭转弯曲疲劳强度
0.33 高频表面淬火 600
0.33 火焰表面淬火 350
0.33 电炉内整体加热淬火 90
0.41 高频表面淬火 600
0.41 电炉内整体加热淬火 110
0.41 正火 130
0.63 高频表面淬火 360
0.63 火焰表面淬火 390
0.63 电炉内整体加热淬火150。