空间向量数量积运算律(分配律)的说明

合集下载

空间向量及其加减、数乘和数量积运算

空间向量及其加减、数乘和数量积运算

8. 6 空间向量及其加减、数乘和数量积运算1.空间向量的有关概念(1) ___________________________________ 空间向量:在空间,我们把具有和的量叫做空间向量.(2) _________________________ 零向量:规定的向量叫做零向量.(3) __________________ 单位向量:的向量称为单位向量.(4) ___________________________________ 相反向量:与向量a 的向量,称为a 的相反向量,记为-a.(5) _________________________ 相等向量:的向量称为相等向量.(6) 空间向量的加法运算满足交换律及结合律:a+ b=__________ ;(a + b) + c = _______________ .2.空间向量的数乘运算⑴向量的数乘:实数入与空间向量a的乘积?a仍然是一个向量,称为向量的数乘.①当X _ 0时,入a与向量a方向相同;当X __ 0时,入a与向量a方向相反.②入a的长度是向量a的长度的________ 倍.(2) 空间向量的数乘运算满足分配律及结合律:①分配律:X(a+b)= __________ .②结合律:X宙)= _________ .(3) 共线向量:如果表示空间向量的有向线段所在的直线_____________________ ,则这些向量叫做共线向量或平行向量.⑷共线向量定理:对空间任意两个向量a, b(b z 0), a // b的充要条件是______________________ .⑸空间直线I的方向向量:和直线I _________ 的非零向量a叫做直线I的方向向量.⑹空间直线的向量表示:I为经过已知点A且平行于已知非零向量a的直线,对空间任意一点0,点P在直线I上的充要条件是___________________________________ ,特别地,如果 a = AB,则上式可以化为OP = 0A + tAB,或_________________ ,这也是空间三点A, B, P共线的充要条件.(7) 共面向量: _______________ 的向量叫做共面向量.(8) 空间共面向量定理:如果两个向量a, b 不共线,那么向量p 与向量a, b 共面的充要条件是推论:对空间任意一点0和不共线的三点A, B, C,满足向量关系式 _______________________________ ,其中__________ ,则点P 与点A, B, C 共面.3.空间向量的数量积运算(1) 空间向量的数量积:已知两个非零向量a, b,则 ___________________ 叫做a, b的数量积,记作a b,通常规定,0w〈a, b〉w n对于两个非零向量a, b, a丄b? ____________ .(2) 空间零向量与任何向量的数量积为.(3) a a = |a||a|cos〈 a, a>= ______ .(4) 空间向量的数量积满足如下的运算律:①(X) • b= __________ ;②ab= __________ (交换律);③ a (b+ c) = ________________ (分配律).自查自纠1. (1)大小方向⑵长度为0 (3)模为1⑷长度相等而方向相反⑸方向相同且模相等(6)b+ a a + (b+ c)2. (1)①〉v ②|入| (2)① 扫+?b ②(入卩)a(3) 互相平行或重合(4)存在实数入使a= ^bO)P= (i-t)oA+to)B (7)平行于同一个平面3. (1)|a||b|cos〈a, b> a b= 0 (2)0⑶|a|1 2 3 (4)① «a b) ② b a ③a b+ a cO 在长方体ABCD-A1BQ1D1 中,BA + Be + D D1=( )A. D1B1B.D1BD.B D1~--> —> —> —> —> —>解:BA+ BC+ DD1=CD + BC + DD1 =BD + DD1=BD1,故选D.电平行六面体ABCD-A1B1C1D1中,M为AC和BD的交点,若A B = a, AD = b, A A1 =等的是()11 11A . - 2a + 2b+ c B. 2a + ?b—c1 1 1 1C. —?a+ ?b—cD. —2 a—? b+ c解:BlM = B?B + BM = —c+ 1BD = —c+ 2(b—a) = —*a + 2b—c,故选C.nOB = OC,且/ AOB = Z AOC =三贝U cos〈3⑸平行⑹存在实数t,使齐=O +1aC.(8)存在惟一的有序实数对—> —> —> —>OP = xOA + yOB +(x, y),使p= x a + y bx+ y+ z= 1C.DB1c,则下列式子中与B1M相©如图所示,已知空间四边形OABC, ,BC >的值为()o解:设0A = a , OB = b , OC = c ,由已知条件〈a , b 〉=〈 a , c 〉= n 且 |b |= |c |, OA • BC = a (c — b )= a c — a b 3 11 f f=2|a ||c |— 2|a ||b |= 0,所以 cos 〈OA , BC 〉= 0•故选 A.已知空间四边形 OABC ,点M , N 分别是OA , BC 的中点,且OA = a , OB = b , OC = c ,用a , b , c 表示向 量 MN = ________ .解:如图所示,MN = *(MB + MC)= *[(OB — OM)+ (OC — OM)] = ^(OB + OC — 2O)M)= g(OB + OC — OA)=g(b + c —a ).故填 2(b + c — a ).(2017鞍山市育英中学月考)已知在正方体 ABCD-A i B i C i D i 中,侧面CCQ i D 的中心是F ,若A F = A D + mAB + nAA r ,贝H m = ________ , n = ________ .解:因为A F = A D + D F = A D + ^(D C + D D i )=A D +2(AB + A ^i ) = A D + ~A B + ^A X I ,所以 m = n =*.故填2; 4 5.类型一空间向量的运算GE (20i7枣阳市鹿头中学月考)如图所示,在空间几何体 ABCD-A i B i C i D i 中,各面为平行四边形, 设AA i = a , AB = b , AD = c , M , N , P 分别是AA i , BC , CQ i 的中点,试用 a , b , c 表示以下各向量:4 AP ;5 MP + NC i .解:(i)因为 P 是 C i D i 的中点,所以 AP = AA i + A i D i + D i P = a + AD + 2D i C i = a + c +?AB = a + c +^b. ⑵因为M 是AA i 的中点, 所以 IMP = MA + A P =苏》+A P =—a + a + c + 丁 b = 2a + ;b + c .-f f f i -f f i -f f又 NG = NC + CC i =尹c + AA i = 2AD + AA i方类解析1=2。

向量运算律

向量运算律

向量运算律摘要:一、向量运算律概述二、向量加法运算律三、向量数乘运算律四、向量数量积运算律五、向量向量积运算律六、应用实例及练习正文:向量运算律是向量计算中的基本规律,掌握这些运算律有助于更好地理解和处理向量问题。

以下将介绍向量的几种主要运算律及其应用。

一、向量运算律概述向量运算律主要包括向量加法运算律、向量数乘运算律、向量数量积运算律、向量向量积运算律等。

这些运算律为向量计算提供了简洁、高效的方法。

二、向量加法运算律向量加法运算律表示两个向量相加的结果与它们的顺序无关,即:(a + b) + c = a + (b + c)三、向量数乘运算律向量数乘运算律表示向量与实数的乘积满足分配律,即:k(a + b) = k * a + k * b四、向量数量积运算律向量数量积运算律表示两个向量的数量积满足交换律和结合律,即:a · (b · c) = (a · b) · c五、向量向量积运算律向量向量积运算律表示两个向量的向量积满足交换律和结合律,即:(a × b) × c = a × (b × c)六、应用实例及练习1.实例:三个向量a、b、c,满足a + b = c,求向量a、b、c。

解:设a = (1, 2), b = (3, 4),则c = a + b = (1 + 3, 2 + 4) = (4, 6)。

2.实例:向量a = (1, 2),求k 使得k * a = (3, 4)。

解:k * a = (k, 2k),根据向量数乘运算律,(3, 4) = (k, 2k),解得k = 2。

3.实例:向量a = (1, 2),向量b = (3, 4),求向量a、b 的数量积。

解:a · b = 1 × 3 + 2 × 4 = 3 + 8 = 11。

4.实例:向量a = (1, 2),向量b = (3, 4),求向量a、b 的向量积。

向量积分配律的证明(精选多篇)

向量积分配律的证明(精选多篇)

向量积分配律的证明(精选多篇)第一篇:向量积分配律的证明向量积分配律的证明三维向量外积(即矢积、叉积)可以用几何方法证明;也可以借用外积的反对称性、内积的分配律和混合积性质,以代数方法证明。

下面把向量外积定义为:a×b=|a|·|b|·sin.分配律的几何证明方法很繁琐,大意是用作图的方法验证。

有兴趣的话请自己参阅参考文献中的证明。

下面给出代数方法。

我们假定已经知道了:1)外积的反对称性:a×b=-b×a.这由外积的定义是显然的。

2)内积(即数积、点积)的分配律:a·(b+c)=a·b+a·c,(a+b)·c=a·c+b·c.这由内积的定义a·b=|a|·|b|·cos,用投影的方法不难得到证明。

3)混合积的性质:定义(a×b)·c为矢量a,b,c的混合积,容易证明:i)(a×b)·c的绝对值正是以a,b,c为三条邻棱的平行六面体的体积,其正负号由a,b,c的定向决定(右手系为正,左手系为负)。

从而就推出:ii)(a×b)·c=a·(b×c)所以我们可以记a,b,c的混合积为(a,b,c).由i)还可以推出:iii)(a,b,c)=(b,c,a)=(c,a,b)我们还有下面的一条显然的结论:iv)若一个矢量a同时垂直于三个不共面矢a1,a2,a3,则a必为零矢量。

下面我们就用上面的1)2)3)来证明外积的分配律。

设r为空间任意矢量,在r·(a×(b+c))里,交替两次利用3)的ii)、iii)和数积分配律2),就有r·(a×(b+c))=(r×a)·(b+c)=(r×a)·b+(r×a)·c=r·(a×b)+r·(a×c)=r·(a×b+a×c)移项,再利用数积分配律,得r·(a×(b+c)-(a×b+a×c))=0这说明矢量a×(b+c)-(a×b+a×c)垂直于任意一个矢量。

高中数学空间向量的数量积运算

高中数学空间向量的数量积运算

三垂线定理的逆定理 在平面内的一条直线,如果和这个平面的一条斜线 垂直,那么它也和这条斜线在平面内的射影垂直.
例2. 如图,m, n 是平面 内的两条相交直线, 如果l m, l n,求证:l .
分析:根据直线和平面垂直的定义可知, 要证明l ,只需证明l 垂直平面
的任意一条直线.
例1 在平面内的一条直线,如果和这个平面的一 条斜线的射影垂直,那么它也和这条斜线垂直.
已知:PO, PA分别是平面 的垂线 和斜线,AO是PA在平面 内 的射影,l , 且 l OA , 求证:l PA .
分析:设直线l 的方向向量为a,
只需证明 a PA=0,
PA=PO OA,
解:由题设可得AC AB,
D b b a D'
CA , BD 120,
CD CA AB BD,

A
B
| CD |2 | CA |2 | AB |2 | BD |2 2CA AB 2CA BD 2 AB BD
b2 a2 b2 2b2 cos120 a2 b2
性质3)是求向量的长度(模)的依据.
空间向量的数量积满足如下运算律
1) ( a) b (a b)
2) a b b a (交换律)
3) a (b c) a b a c (分配律)
思考题:课本第90页 注意:
数量积不满足结合律
(a b) c a (b c)
②零向量与任意向量的数量积等于零.
2
空间向量的数量积性质 对非零向量a , b 有:
1) a e a cos a, e (e为单位向量)
2) a b a b 0

空间向量的数量积运算【新教材】人教A版高中数学选择性必修第一册课件

空间向量的数量积运算【新教材】人教A版高中数学选择性必修第一册课件
空 间 向 量 的 数量积 运算【 新教材 】人教 A版高中 数学选 择性必 修第一 册课件
空 间 向 量 的 数量积 运算【 新教材 】人教 A版高中 数学选 择性必 修第一 册课件
【解析】 由底面 ABCD 为平行四边形,∠DAB=60°,AB=2AD 知, DA⊥BD,则B→D·D→A=0.
答案:A
4.已知|a|=3,|b|=2,a·b=-3,则〈a,b〉=________.
解析:因为|a|=3,|b|=2,a·b=-3, 所以 cos〈a,b〉=|aa|·|bb|=3-×32=-21, 又因为〈a,b〉∈[0,π],所以〈a,b〉=23π. 答案:23π
知识点四、投影
思考 :在平面向量的学习中,我们学习了向量的投影。类似地,向量
a·b θ为 a,b 的夹角,则 cos θ=____|a_|_|b_|_____________
对点练习:
2.已知两异面直线的方向向量分别为a,b,且|a|=|b| =1,a·b=-1 ,则两直线的夹角为( )
2
A.30° B.60° C.120° D.150°
解析:设向量 a,b 的夹角为 θ,则 cosθ=|aa|·|bb|=-12,所以 θ=120°,则两个方向向量对应的直线的夹角为 180°-120°=60°.
(1)B→C·E→D1=B→C·(E→A1+A→1D1)=b·12(c-a)
+b=|b|2=42=16.
(2)B→F·A→B1=(B→A1+A→1F)·(A→B+A→A1)=(c-
a
+21b)·(a+c)=|c|2-|a|2=22-22=0.
(3)E→F·F→C1=(E→A1+A→1F)·(F→D1+D→1C1)=12(c-a)+12b·21b+a=12(-a+

3.1.3 空间向量的数量积运算

3.1.3 空间向量的数量积运算

数乘向量与向量数量积的结合律
交换律
λ( a · b) (λa)· b=______
b· a a· b=____
a· b+a· c a· (b+c)=________
分配律
知识点2:空间向量数量积的性质 a· b=0 ①若a,b是非零向量,则a⊥b⇔______ |a|· |b| ;若反向,则a· -|a|· |b| . ②若 a 与 b 同向,则 a · b = b = 两个向量 2 | a | 特别地,a· a= 或|a|= a· a 数量积的 a· b 性质 |a||b| ③若θ为a,b的夹角,则cos θ=_____
(1)空间向量的夹角
→ → ①定义:已知两个非零向量 a,b,在空间任取一点 O,作OA=a,OB= b,则 ∠AOB 叫做向量 a,b 的夹角,记作〈a,b〉. π ②范围:〈a,b〉∈ [0,π] .特别地:当〈a,b〉= 2 时,a⊥b.
知识点1:空间向量数量积的概念 (2)定义:已知两个非零向量a,b,则|a||b|cos〈a,b〉叫做a,b的数量积, 记作a· b. (3)数量积的运算律
=12+22+12+2×(1×2×cos 120°+0+2×1×cos 120°)=2,
→ ∴|EF|= 2,∴EF 的长为 2.
1
2
3
4
5
课堂小结
空间向量数量积的性质可以看成定义的引申和拓展,空间向量数量积与向
量的模和夹角有关,更多的是以它为工具,解决立体几何中与夹角和距离
相关的问题:
①求空间两点间的距离或线段的长度的问题可以转化为求相应向量的模的
问题;
②求空间两条直线所成的角的问题可以转化为求两条直线对应向量的夹角
的问题,但要注意空间两条直线所成的角与对应向量的夹角的取值范围;

2.3.2、2.3.3向量积的运算公式及度量公式概述.

2.3.2、2.3.3向量积的运算公式及度量公式概述.

张喜林制2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式考点知识清单1.向量数量积的运算律: (1)交换律: (2)分配律:(3)数乘向量结合律: 2.常用结论:=+2))(1(b a =-2))(2(b a=-⋅+)())(3(b a b a3.两个向量的数量积等于它们对应坐标乘积的和,即若=a ),,(21a a ),,(21b b b =则=⋅b a 4.设).,(),,(2121b b b a a a == 如果,b a ⊥则 如果,02211=+b a b a 则对于任意实数k ,向量),(12b b k -与向量),(21b b 垂直.5.向量),,(),,(2121b b b a a a ==则=||a ,cos a <>=b6.若),,(),,(2211y x B y x A 则),,(1212y y x x AB --=所以=||AB要点核心解读1.向量数量积的运算律 a b b a ⋅=⋅)1((交换律); )()())(2(b a b a b a λλλ⋅=⋅=⋅(结合律); c b c a c b a ⋅+⋅=⋅+))(3((分配律). 2.向量数量积的运算律的证明a b b a ⋅=⋅)1((交换律)证明:,,cos ||||,cos ||||a b a b a b b a b a b a ⋅>=<>=<=⋅.a b b a ⋅=⋅∴)()()()2(b a b a b a λλλ⋅=⋅=⋅(结合律)证明:.,cos ||||)(><=⋅b a b a b a λλ①.,cos ||||)(><=⋅b a b a b a λλλ②当0>λ时,a λ与a 同向,),,(,b a b a >=<λ.,cos ||||)(><=⋅∴b a b a b a λλ当0=λ时,,00)0()(=⋅=⋅=⋅b b a b a λ,0,cos ||||>=<b a b a λ.,cos ||||)(><=⋅∴b a b a b a λλ,0时当<λb a 与λ反向,),,,(b a b a <->=πλ],cos[||||)()(><--=⋅∴b a b a b a πλλ],cos [||||><--=b a b a λ .,cos ||||><=b a b a综合以上可得.,cos ||||)(><=⋅b a b a b a λλ ③由②同理可证得:.,cos ||||)(><=b a b a b a λλ综合以上可得:.||||)()()(b a b a b a b a λλλλ=⋅=⋅=⋅.,cos ><b ac b c a c b a ⋅+⋅=⋅+))(3((分配律)证明:作轴L 与向量c 的单位向量0c 平行. 如图2-3 -2 -1,作==a ,,b 则.b a +=设点0、A 、B 在轴L 上的射影为、O ,//B A 、跟据向量的数量积的定义有,00/c a c OA ⋅=⋅= ,00//c b c AB B A ⋅=⋅== ,)(00/c b a c OB OB ⋅+=⋅=但对轴上任意三点,//B A O 、、都有,0////B A A OB += 即,)(000c b c a c b a ⋅+⋅=⋅+ 上式两边同乘以|,|c 由c c c =0||得:.)(c b c a c b a ⋅+⋅=⋅+∴ 得证.3.关于向量数量积的运算律需要注意的几点(1)数量积是由向量的长度和夹角来确定的,它对于这两个向量是对称的,即与次序无关,因而有交换律..a b b a ⋅=⋅(2)从力做功情况来看,若力增大几倍,则功也增大几倍,而当力反转方向时,功要变号,于是有).()(b a b a ⋅=⋅λλ(3)两个力在同一物体上所做的功等于合力所做的功,于是有分配律.)(2121b a b a b a a ⋅+⋅=⋅+(4)值得注意的是,平面向量的数量积不满足结合律,.a C b a c b ⋅⋅=⋅)()(是错误的,这是因为c b b a ⋅⋅与都是数量,所以c b a c b a ⋅⋅⋅⋅)()(与分别表示a 的共线向量和c 的共线向量,当然就不能相等.(5)由,)()(d b c b d a c a d c b a ⋅+⋅+⋅+⋅=+⋅+可得向量的三个运算公式:,||||)()(22b a b a b a -=-⋅+,||2||)(222b b a a b a +⋅+=+ .||2||)(222b b a a b a +⋅-=-4.向量内积的坐标运算建立正交基底}.,{21e e 已知),(),,(2121b b b a a a ==,则.)()(121111122112211e b a e e b a e b e b e a e a b a +⋅=+⋅+=⋅.2122e b a e +⋅⋅+22221e e b a e因为,0,112212211=⋅=⋅=⋅=⋅e e e e e e e e 所以我们得到数量积的坐标表达式:5.用向量的坐标表示两个向量垂直的条件 设),,(),,(2121b b b a a a == 则.02211=+⇔⊥b a b a b a 6.向量的长度、距离和夹角公式(1)如图2-3 -2 -2,已知,1a a (=),2a 则=⋅=⋅=),(),(||21212a a a a a a a .2221a a +因此①这就是根据向量的坐标求向量长度的计算公式, 这个公式用语言可以表述为:向量的长度等于它的坐标平方和的算术平方根.(2)如果),,(),,(2211y x B y x A 则),,(1212y y x x AB --=从而②AB 的长就是A 、B 两点之间的距离,因此②式也是求两点的距离公式.这与我们在解析几何初步中得到的两点距离公式完全一样.(3)设),,(),,(2121b b b a a a == 则两个向量夹角余弦的坐标表达式7.如何运用坐标来解决垂直问题(1)设两非零向量),,(),,(2211y x b y x a ==则⇔⊥b a .02121=+y y x x利用向量垂直的坐标的条件,可使向量垂直问题代数他,从而有利于问题的解决.例如:已知: <<<<==βαββαα0)sin ,(cos ),sin ,(cos b a ),π则b a +与b a -是否互相垂直?并说明理由.解:由已知),sin ,(cos ),sin ,(cos ββαα==b a 有=+b a ),sin sin ,cos (cos βαβα++),sin sin ,cos (cos βαβα--=-b a又++-+=-<+αβαβα(sin )cos )(cos cos (cos )).(b a b a ).sin β)sin (sin βα-.0sin sin cos cos 2222=-+-=βαβα所以).()(b a b a -⊥+(2)平面向量数量积的坐标形式,一定要注意a 与b 的数量积等于两个向量对应坐标乘积之和.在用坐标形式判断两个向量垂直时,要与判断两个向量平行的坐标条件相区别:.0//;012212121=-⇔=+⇔⊥y x y x b a y y x x b a8.利用数量积求两个向量的夹角一定要注意两个向量的数量积为正不能得到它们的夹角一定为锐角,同样,两个向量的数量积为负也不能得到它们的夹角一定为钝角.设a ,b 为非零向量,如果,0>⋅b a 那么a ,b 的夹角为锐角或a ,b 同向,反之也成立;如果,0<⋅b a 那么a ,b 的夹角为钝角或a ,b 反向,反之也成立,典例分类剖析考点1 判断向量运算的正误[例1] 给出下列命题:①设a 、b 、c 是非零向量,则c b a ⋅⋅)(与c 共线;②若=a λ,R b ∈<λλ 且),0=/λ则0;=⋅=b a b a ③与a ⊥b 是等价命题;④若,.c b c a =⋅则;b a =⑤若a 与b 共线,则.||a b a =⋅ |;|b ⑥若.0<⋅b a 则),(b a 是钝角.其中真命题为 (填序号).[解析] 向量的加、减、数乘、数量积运算及运算律要理解透彻;注意有些命题在特殊情况下是否成立.①因为a ×b 是一个实数,不妨记作λ,故.)(λ=⋅⋅c b a ,//c c C λ=所以①正确.,0)(0=-⇔=-⇔=b a b a b a λλλλλ②因为,0=/λ所以,0=-b a 所以,b a =故②正确.③因为,c o s ||||,0θb a b a b a =⋅=⋅所以0||0||==b a 或或,0cos =θ所以0=a 或0=b 或.90 =θ又因为规定O 与任意向量垂直,所以.b a ⊥反之,.0cos 90,a b a b a ⇔=⇔>=⇔<⊥θ ,090cos ||||== b a b 故③正确.c b c a ⋅=⋅④不一定有.b a =例如,,C b c a ⊥⊥且,2b a =此时,0=⋅=⋅c b C a 但.b a =/故④错.⑤a 与b 共线b a 与⇒方向相同或方向相反0,>=⇒<b a 或.||||),(b a b a b a ±=⋅⇒=π故⑤错, ⑥因为,cos ||||,0θb a ab b a ⋅=<⋅所以,0cos <θ所以),,2(ππθ∈所以θ为钝角或平角,故⑥错.[答案] ①②③[点拨] 此例题为概念综合题,其中③是重要结论,注意深刻理解,灵活应用;⑤⑥的完整形式应用也较广泛,注意特殊情况1.已知a 、b 、c 是三个非零向量,则下列命题中真命题的个数为( ).;//||||||b a b a b a ⇔⋅=⋅①②a 、b 反向.||a b a -=⋅⇔|;|b |;|||b a b a b a -=+⇔⊥③④=a;c b c a b ⋅=⋅⇔⑤.000==⇔=⋅b a b a 或 1.A 2.B 3.C 4.D考点2 向量的混合运算[例2] (1)已知,2||,4||,120==>=⋅<b a b a则+a |=+⋅-+)()2(|b a b a b(2)若向量a 、b 、c 满足,0=++c b a 且,1||,3||==b a .4||=c 则=⋅+⋅+⋅a c c b b a [解析] (1))()2(b a b a b a +⋅-++2222)(b a b b a a b a -⋅-⋅+++= 2222b b a a b b a a -⋅-++⋅+=222120cos 24164120cos 24216⨯-⨯⨯-++⨯⨯+= .1232+=(2)根据已知条件,可知a 与b 同向,c 与a+b 反向.解法一:由已知得.|,|||||b a c b a c --=+=可知向量a 与b 同向,而向量c 与它们反向,-=++=⋅+⋅+⋅∴3180cos 12180cos 40cos 3 o a c c b b a .13124-=-解法二: ),(2)(2222a c cb b ac b a c b a ⋅+⋅+⋅+++=++a c cb b a ⋅+⋅+⋅∴2)()(2222c b a c b a ++-++=2)413(0222++-=.13-=[答案] 2132)1( + 13)2(- [点拨] ①利用公式2||a a a =⋅和向量数量积的运算性质计算.②(2)问解法二是利用2222)(b b a a b a +⋅+=+推广到=++2)(C b a +++222C b a)(2a c c b b a ⋅+⋅+⋅予以解答的.2.已知,21||,5||,4||=+==b a b a 求:;)1(b a ⋅)2()2)(2(b a b a -⋅+的值,考点3 利用数量积及运算律求横[例3] 已知向量a 、b 满足,1||||==b a 且,3|23|=-b a 求|3|b a +的值.[解析] 通过数量积a ×b 来探求已知条件3|23|=-b a 与目标式|3|b a +之间的关系..1||||,1||||22==∴==b a b a又,9)23(,3|23|2=-∴=-b a b a,9||412||922=+⋅-∴b b a a 将,1||||22==b a 代入有,31=⋅b a而 ,1213169||6||9)3(222=+⨯+=+⋅+=+b b a a b a.32|3|=+∴b a[点拨] 解题过程中要注意模与数量积之间的转换.3.已知向量a 、b 、c 满足:.0a c b a ,(=++:)(:)c b b ⋅=⋅)(a c ),23(:3:1-当1||=a 时;求||b 及||c 的值.考点4 向量夹角问题[例4] 已知a ,b 是两个非零向量,且|,|||||b a b a +==求向量b 与b a -的夹角.[解析] 我们可以利用向量减法的平行四边形法则,画出以a 、b 为邻边的平行四边形.如图2-3 -2 -3所示,若,,b a ==则=,,b a D b a -=+由+==a b a ||||||,b 可知,60oABC =∠b 与D所成角是.150我们还可以利用数量积的运算,得出b 与a-b 的央角,为了巩固数量积的有关知识,我们采用第二种方法解题,由||||)(,cos b a b b a b b a b --⋅>=-<作为切入点,.)(|,||||,|||22b a b a b b a b +=∴=+=.||21||)(2||||2222b b a b b a a b -=⋅+⋅+=∴ 而.||23||||21)(2222b b b b a b b a b -=--=-⋅=-⋅ ①由+-⨯-=+⋅-=-22222||)21(2||)(2)(b b b b a a b a ,|31||22b b =而.||3||,||3)(||222b b a b b a b a =-∴=-=- ②,||||)(,cos b a b b a b b a b --⋅>=-<代入①②得⋅-=⋅->=-<23||3||||23,cos 2b b b b a b 又 ⋅=-∴>∈-<65),(],,0[,ππb a b b a b 4.已知.3||,4||==b a(1)若a 与b 的夹角为,600求+-⋅+a b a b a |),3()2(|;3||,2b a b -(2)若,61)2()32(=+⋅-b a b a 求a 与b 的夹角. 考点5 垂直问题[例5] 已知,4||,5||==b a 且a 与b 的夹角为,60问:当且仅当k 为何值时,向量b ka -与b a 2+垂直?[解析] 利用,0=⋅⇔⊥b a b a 得到关于k 的方程,通过解此方程得到k 的值.于是,4||,5||==b a且a 与b 的夹角为,60o.10214560cos ||||=⨯⨯==⋅∴ b a b a 又向量b ka -与b a 2+垂直,.0)2()(=+⋅-∴b a b ka 则有k ,0||2)12(||22=-⋅-+b b a k a 即,042)12(10252=⨯--+k k解得⋅=1514k [点拨] 非零向量a ,b 若满足,0=⋅b a 则,b a ⊥反之也成立.根据这一结论我们可以解决两类问题:(1)由垂直条件求参数的值;(2)利用题谩条件证明向量垂直或直线垂直.5.已知a 、b 都是非零向量,且b a 3+与b a 57-垂直,b a 4-与b a 27-垂直,求a 与b 的夹角. 考点6 向量线性运算与数量积的综合问题[例6] △ABC 三边的长分别为a 、b 、c ,以A 为圆心,r 为半径作圆,如图2 -3 -2 -4,PQ 为直径,试判断P 、Q 在什么位置时,C ⋅有最大值?[解析] 由三角形法则构造P B 及Q C 的数量积转化为实数范围内求最大值,,.Q ,B B CA QA C A AP P =+-=即,--=--=A A C---=⋅∴AC AB C B ().AP (.Q P ⋅+⋅-=B A AC AP AP .)()22.r AC AB AP AB AP AC -⋅=⋅+- =-+)(=⋅+-⋅r AC ..2..cos ||.||2r A AB +-.cos 2+-=r A bc ⋅当与同向时,⋅最大为.||.||ra AP =即当QP 与共线且同方向时,C BP ⋅有最大值+A bc cos .2r ar -[点拨] 利用||||b a b a ⋅≤⋅求最值,但必须先构造出..C B ⋅6.如图2 -3 -2 -5,在Rt△ABC 中,已知,a BC =若长为2a 的线段PQ 以点A 为中心,问:Q B P 与 的夹角θ为何值时,.CQ BP ⋅的值最大?并求出这个最大值,考点7 向量内积的坐标运算[例7] 已知),3,1(),1,2(-==b a 若存在向量c ,使得:.9,4-=⋅=⋅C b c a 试求向量c 的坐标. [解析] 设),,(y x c =则由4=⋅c a 可得;42=+y x 又由9-=⋅c b 可得.93-=+-y x于是有⎩⎨⎧-=+-=+,93,42y x y x 解得⎩⎨⎧-==⋅.2,3y x⋅-=∴)2,3(c[点拨] 已知两向量a 、b ,可以求出它们的数量积a ×b ,但是反过来,若已知向量a 及数量积a ×b ,却不能确定b .需要像本例一样,已知两向量,及这两个向量与第三个向量的擞量积,则我们可利用数量积的坐标表示,通过解方程组的方法,确定第三个向量.7.巳知,1),4,2(),3,2(-=-==(c b a ),2-求.)()(),)((,2b a C b a b a b a b a +⋅+⋅-+⋅ 考点8 运用坐标运算处理垂直问题[例8] 在△ABC 中,),,1(),3,2(k ==且△ABC 的一个内角为直角,求k 的值. [解析] 题目没有明确哪一个角是直角,要对三个角分别进行讨论,当90=A 时,;32,0312,0.-=∴=⨯+⨯∴=⋅k k A A当90=B =--=-==)3,21(,0k A B ),3,1(--k,0)3(3)1(2=-⨯+-⨯∴k;311=∴k 当oC 90=时,,0)3(1,0C C =-+-∴=⋅k k B A⋅±=∴2133k 32-=∴k 或⋅±2133311或8.(1)已知点A(1,2)和B(4,一1),问在y 轴上是否存在一点C ,使得.90=∠ACB 若不存在,请说明理由;若存在,求出点C 的坐标.(2)已知),2,4(=a 求与a 垂直的单位向量的坐标,考点9 运用坐标运算求向量的夹角[例9] 已知a 、b 是两个非零向量,同时满足==b a |||,|b a -求a 与b a +的夹角.[解析] 解法一:根据,|||||,|||22b a b a ==有又由|,|||b a b -=得,||.2||||222b b a a b +-=.||212a b a =⋅∴ 而,||3||2||||2222a b b a a b a =+⋅+=+.||3||a b a =+∴设a 与b a +的夹角为θ,则,23||3||||21||||.||)(cos 22=⋅+=++=a a a a b a a b a a θ .30,1800o o =∴≤≤θθ解法二:设向量),,(),,(2211y x b y x a ==.|,|||22222121y x y x b a +=+∴=由|,|||b a b -= 得),(2121212121y x y y x x +=+即⋅+=⋅)(212121y x b a 由),(3)(212)(2||2121212121212y x y x y x b a +=+⨯++=+ 得.3||211y x b a +=+设a 与b a +的夹角为θ,则⋅=+⋅⋅++++=+⋅+=233)(21)(||||)(cos 212121212121212y x y x y x y x b a a b a a t θ .30,1800 =∴≤≤θθ解法三:根据向量加法的几何意义,作图(如图2 -3 -2 -6).在平面内任取一点O .作B b a 0,,以==为邻边作平行四边形OACB.|,|||b a = 即|,|||=∴ 四边形OACB 为菱形,OC 平分,AOB ∠这时,,0b a BA b a C -=+=而|,|||||b a b a -==即 .||||||==∴ △AOB 为正三角形,则,60 =∠AOB 于是,30 =∠AOC即a 与b a +的夹角为.30[点拨] 基于平面向量的表示上的差异,也就是表示方法的不同,才产生了以上三种不同的解法.9.(1)已知),1,1(),432,2(=-=b a 求a 与b 的夹角.(2)已知),1,1(),2,1(==b a 且a 与b a λ+的夹角为锐角,求实数A 的取值范围,考点10 向量坐标运算的综合应用[例10] 已知),23,21(),1,3(=-=b a 且存在实数k 和t ,使得,)3(2b t a x -+=,tb ka y +-=且 ,y x ⊥试求t t k 2+的最小值.[解析] 由题意可得,2)1()3(||22=-+=a,1)23()21(||22=+=b ,0231213=⨯-⨯=⋅b a 故有.b a ⊥ 由,y x ⊥知,0)(])3([2=+-⋅-+tb ka b t a即,0)3()3(2232=⋅+-+-+-b a k k t t b t t ka.00)3(1)3(22232=⋅+-+⋅-+⋅-∴k k t t t t k∴ 可得 433t t k -=故 ,47)2(41)34(41222-+=-+=+t t t t t k 即当2-=t 时,t t k 2+有最小值为⋅-47 [点拨] 向量与函数知识相结合的综合问题,关键是正确应用向量数量积的坐标形式,将其转化为函数问题,然后利用函数的相关知识来解决,10.已知向量,sin 2(),1,sin 3x b x a ==(],32,6[),1ππ∈x 记函数,)(b a x f ⋅Λ求函数)(x f 的值域.学业水平测试1.若),5,3(),2,(-==b a λ且a 与b 的夹角为钝角,则A 的取值范围是( ).),310.(+∞A ),310[+∞⋅B )310,.(-∞C )310,.(-∞D2.已知A 、B 、C 是坐标平面上的三点,其坐标分别为、)2,1(A ),1,0()1,4(-C B 、则△ABC 的形状为( ).A .直角三角形B .等腰三角形C .等腰直角三角形D .以上均不对3.给定两个向量),1,2(),4,3(-==b a 且),()(b a xb a -⊥+则x 等于( ).23.A 223.B 323.C 423.D 4.已知),1,1(),2,3(--B A 若点)21,(-x P 在线段AB 的中垂线上,则=x 5.已知,,21),1,0(),0,1(mj i b j a j i +=-===给出下列命题:①若a 与b 的夹角为锐角,则;21<m ②当且仅当21=m 时,a 与b 互相垂直;③a 与b 不可能是方向相反的向量;④若|,|||b a =则.2-=m 其中正确的命题的序号是6.求与向量)1,2(),2,1(==b a 夹角相等的单位向量c 的坐标高考能力测试(测试时间:45分钟测试满分:100分)一、选择题(5分×8 =40分)1.(2007年湖北高考题)设b a a 在),3,4(=上的投影为,225b 在x 轴上的投影为2,且,14||≤b 则b 为( ). )14,2(⋅A )72,2.(-B )72,2.(-C )8,2(⋅D 2.(2009年辽宁高考题)平面向量a 与b 的夹角为,2,60(=a=+=|2|,1||),0b a b 则( ). 3.A 32.B 4.C 12.D3.与)4,3(=a 垂直的单位向量是( ).)53,54.(A )53,54.(--B )53,54.(-C 或)53,54(- )53,54.(D 或)53,54(-- 4.若O 为△ABC 所在平面内一点,且满足+-OB O ().OC B (,0)2=-则△ABC 的形状为( ).A .正三角形B .等腰三角形C .直角三角形 D.A 、B 、C 均不正确5.(2011年辽宁理)若a ,b ,c 均为单位向量,且-=⋅a b a (,0,0)()≤-⋅c b c 则||c b a -+的最大值为( ).12.-A 1.B 2.C 2.D6.(2007年重庆高考题)已知向量),5,3(),6,4(==O 且,//,0⊥则向量=0( ))72,73.(-A )214,72.(-B )72,73.(-C )214,72.(-D 7.(2010年安徽高考题)设向量),21,21(),0,1(==b a 则下列结论中正确的是( ). ||||.b a A = 22.=⋅b a B b a C -.与b 垂直 b a D //. 8.(2009年陕西高考题)在△ABC 中,M 是BC 的中点,,1A =M 点P 在AM 上且满足⋅=PA PM AP 则,2)(PC PB +等于( ).94.-A 34.-B 34.C 94.D 二、填空题f5分x4 =20分)9.(2008年江西高考题)直角坐标平面上三点,3()2,1(B A 、),7,9()2C 、-若E 、F 为线段BC 的三等分点,则=⋅F E A A10.(2008年宁夏高考题)已知平面向量,4(),3,1(=-=b a b a +-λ),2与a 垂直,则=λ11.(2010年广东高考题)若向量===c b x a ),1,2,1(),,1,1(),1,1,1(满足条件,2)2()(-=⋅-b a c 则=x12.(2011年安徽理)已知向量a ,b 满足=-⋅+)()2(b a b a ,6-且,2||,1||==b a三、解答题(10分×4 =40分)13.(1)已知,120,,1||,1||ob a b a >=<==计算向量b a -2在向里b a +方向上的投影.(2)已知,4||,6||==b a a 与b 的夹角为,60 求).2(b a +)3(b a -的值.14.已知向量.),1,3(),1,2(),2,3(R t c b a ∈-==-=(1)求||tb a +的最小值及相应的t 值;(2)若tb a -与c 共线,求实数t 的值.15.如图2-3 -2 -7,四边形ABCD 是正方形,P 是对角线BD 上的一点,PECF 是矩形,用向量法证明: ;)1(EF PA =.)2(EF PA ⊥16.平面内有向量)1,2(),1,5(B ),7,1(===OP O OA 点X 为直线OP 上的一个动点.(1)当≡⋅X 取最小值时,求O 的坐标;(2)当点X 满足(I)的条件和结论时,求AXB ∠cos 的值,。

向量积分配律的证明(完整版)

向量积分配律的证明(完整版)

向量积分配律的证明向量积分配律的证明·sin.分配律的几何证明方法很繁琐,大意是用作图的方法验证。

有兴趣的话请自己参阅参考文献中的证明。

下面给出代数方法。

我们假定已经知道了:1)外积的反对称性:a×b=-b×a.这由外积的定义是显然的。

2)内积的分配律:a·=a·b+a·,·=a·+b·.这由内积的定义a·b=s|osθ,并揭示这个物理模型的实质,即:力与位移的数量积。

其次,具体分析平面向量的夹角,向量的数量积、重要性质等概念,并巩固练习。

再者,基本概念均简明有效的给出,为之后学生深入学习、探究提供了时间上的保证,从定义出发推导运算律也变得简单易行。

随后,从特殊到一般,得出数量积的几何表示。

在教师为主导、学生为主体的教学模式中,学习活动进展顺利,学生们都显得游刃有余。

在教学过程中,学生对平面向量数量积的定义及运算律的理解有些难度,总的感觉是:在核心问题上的处理不太容易把握,学生需要较多的时间去探究和体验。

结合多年教学发现学生对数量积的结果是数量重视不够,解题中往往忽略,?学生容易忽略;书写中符号“?”学生容易省略不写,教学和作业中发现问题教师应时常提醒学生及时纠正,避免重复错误;运算律中消去律和结合律不能乱用,要给学生讲清楚一定不能与实数的运算律混淆,这些地方应反复给学生强调。

最后,在有效落实教学目标的同时,如何让学生的“学”更轻松些,让教师的“教”更顺畅些,使“数量积”的概念形成更具一般性,更能揭示“数量积”的本质内含就显得尤为重要。

四、教法及教学反思教学过程中采用启发引导式与讲练相结合,并借助多媒体教学手段,使学生理解平面向量数量积的定义,理解定义之后引导学生推导数量积的性质,通过例题和练习加深学生对平面向量数量积定义的认识,初步掌握平面向量数量积定义的运用。

这一切主要是通过课堂教学来实现的,因此,要精于课堂教学设计,并在实践中进行反思和再设计,形成一系列适合学生认知、发展的教学方案。

空间向量的数量积-最完美版(1)

空间向量的数量积-最完美版(1)

对于三个均不为0的数 a, b, c,
c c 若 ab c, 则 a .(或b ) b a
若 能否 对于向量 a ,b , a b k
k k 写成 a (或b ) ? 也就是说 b a
向量有除法吗?
不能,向量没有除法.
(a b )c a (b c ) 成立吗?也就 是说,向量的数量积满足结 合律吗? 不成立, 左边是一个与向量 c 共 线的向量,右边是一个与向量 a 共 线的向量,而向量 c 与 a 连是否共线 都是一个未知数.
空间向量的数量积运算
回 顾

F
S
W= |F| |s| cos
根据功的计算,我们定义了平面两向量的 数量积运算.一旦定义出来,我们发现这种运 算非常有用,它能解决有关长度和角度问题.
一 复习引入
1 向量的夹角: 已知两个非零向量 a , b , 作 OA a , OB b 则 AOB (0 180 ) 叫做向量a 与 b 的夹角.
( )
( ) () ( )
3.设 a , b , c 是任意的非零空间向量,且相互不共线, 则: ①( a · b ) c ( c · a ) b =0





②| a |-| b |<| a b |
2




③( b · c ) a ( c · a ) b 不与 c 垂直 ④(3 a +2 b )·(3 a 2 b )=9| a | - 4 b 中,真命题是(
②a b ab 0;
2 ③ a a a 也就是说 a

空间向量的数量积运算 高中数学新教材人教A版

空间向量的数量积运算 高中数学新教材人教A版

若 ∙ =k,能不能写成 =

(或

解析:由 ∙ =k,不能写成 =
有除法运算

= )的形式?



(或 = )的形式,即向量没


知识点一 空间向量的投影
思考5
对于三个均不为0的数a,b,c,有(ab )c =a(bc).
对于向量,,,( − )=( − )成立吗?为什么?
(3)因为AA’ · AD=5×3×cos
2
15
60°= ,AD
2
· AB=3×4×cos 90°=0
所以 =(++’)
= 2 + 2 + ’ 2 +2(·+·’+’·)
15
2
=42 +32 +52 +2(0+10+ )=85,所以 = 85.
= + .
将上式两边分别与向量作数量积运算,得
⋅ = ⋅ + ⋅ ,
因为 ⋅ =0, ⋅ =0(为什么?),所以 ⋅ =0.所以 ⊥ .
这就证明了直线垂直于平面α内的任意一条直线,所以 ⊥平面α.




课堂检测
1.如图,在正三棱柱ABC-A1B1C1中,若AB= BB1,则AB1与
在平面β上的投影向量.这时,向量,A′B′的夹角就是向量α所在直线
与平面β所成的角.

β



(3)

空间向量的数量积满足如下的运算律:
()·=(·),∈R
·=·(交换律)
·(+)=·+·(分配律)
知识点一 空间向量的投影
思考3

空间向量的数量积运算 课件

空间向量的数量积运算 课件

即时训练 2-1:如图,在直三棱柱 ABC-A1B1C1 中,∠ABC=90°,AB=BC=1,AA1= 2 ,求 异面直线 BA1 与 AC 所成角的余弦值.
解:因为 BA1 = BA + AA1 = BA + BB1 , AC = BC - BA ,

BA
·
BC
=
BB1
·
BA
=
BB1
·
BC
=0,所以
因为 BA1 = BA + BB1 , AC = AB + BC ,
所以 BA1 · AC =( BA + BB1 )·( AB + BC )= BA · AB + BA · BC + BB1 · AB + BB1 · BC .
因为 AB⊥BC,BB1⊥AB,BB1⊥BC,
所以 BA · BC =0, BB1 · AB =0, BB1 · BC =0 且 BA · AB =-a2.所以 BA1 · AC =-a2.
2
2
=5.
所以|a+b+c|= 5 ,
| MN |= 1 |a+b+c|= 5 .
3
3
即 MN 的长为 5 . 3
即时训练3-1:已知空间四边形OABC中,∠AOB=∠BOC=∠AOC,且OA=OB=OC. M,N分别是OA,BC的中点,G是MN的中点.求证:OG⊥BC.
证明:连接 ON, 设∠AOB=∠BOC=∠AOC=θ, OA =a, OB =b, OC =c, 则|a|=|b|=|c|.
又 OG = 1 ( OM + ON )= 1 [ 1 OA + 1 ( OB + OC )]= 1 (a+b+c), BC =c-b,

空间向量的数量积运算 课件

空间向量的数量积运算     课件

[证明] 不妨设正方体的棱长为 1,
→ AB

a,A→D=
b,A→A1=
c,
则 |a|= |b|= |c|= 1, a·b= b·c= a·c= 0.
由图形得:P→A=P→D+D→A= -12A→A1 -A→D
=- b-12c,P→C= P→D+D→C
ቤተ መጻሕፍቲ ባይዱ
=-12A→A1+A→B = a-12c,
B→1O=B→1B+B→O=- c+12(- a+ b) =-12a+12b- c.
∴〈G→F,A→C 〉= 180°.
∴G→F·A→C=1a·a·cos180°=-1a2.
2
2
(4)|E→F |= 12a, |B→C |= a,又E→F ∥B→D,
∴〈E→F ,B→C 〉=〈B→D,B→C 〉 = 60°.
∴E→F·B→C=1a·a·cos60°=1a2.
2
4
[点评] 本题主要考查空间向量数量积的定义及其 运算,要求大家在熟练掌握的基础上能灵活运用.
4.两个向量数量积的运算律 空间向量的数量积满足如下的运算律: ①(结合律)(λa)·b=λ(a·b); ②(交换律)a·b=b·a; ③(分配律)a·(b+c)=a·b+a·c.
思考感悟 类比平面向量,你能说出 a·b 的几何意义吗? 提示:数量积 a·b 等于 a 的长度|a|与 b 在 a 的 方向上的投影|b|·cosθ 的乘积.
再用公式.
类型四 利用数量积证明垂直问题 [例4] 如图10,正方体ABCD-A1B1C1D1中,P为 DD1的中点,O是底面ABCD的中心.求证:B1O⊥平 面PAC.
图 10
[分析] 本题考查利用 a⊥b⇔a·b=0 求证线 面垂直,关键是在面 PAC 中找出两相交向量与向 量B→1O垂直.

向量的运算的所有公式

向量的运算的所有公式

向量的运算的所有公式数学公式是数学题目解题关键,那么向量的运算公式有哪些呢?快来和小编一起看看吧。

下面是由小编为大家整理的“向量的运算的所有公式”,仅供参考,欢迎大家阅读。

向量的运算的所有公式向量的加法满足平行四边形法则和三角形法则,向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0,0的反向量为0,OA-OB=BA.即“共同起点,指向被减”a=(x1,y1),b=(x2,y2) ,则a-b=(x1-x2,y1-y2)。

在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。

它可以形象化地表示为带箭头的线段。

箭头所指:代表向量的方向;线段长度:代表向量的大小。

向量的加法满足平行四边形法则和三角形法则,向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0,0的反向量为0,OA-OB=BA.即“共同起点,指向被减”a=(x1,y1),b=(x2,y2) ,则a-b=(x1-x2,y1-y2)。

数与向量的乘法满足下面的运算律:结合律:(λa)·b=λ(a·b)=(a·λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。

② 如果a≠0且λa=μa,那么λ=μ。

向量的数量积的运算律:a·b=b·a(交换律)(λa)·b=λ(a·b)(关于数乘法的结合律)(a+b)·c=a·c+b·c(分配律)向量的向量积运算律:a×b=-b×a(λa)×b=λ(a×b)=a×(λb)a×(b+c)=a×b+a×c.(a+b)×c=a×c+b×c.拓展阅读:向量的表达方式1.代数表示一般印刷用黑体的小写英文字母(a、b、c等)来表示,手写用在a、b、c等字母上加一箭头(→)表示,也可以用大写字母AB、CD上加一箭头(→)等表示。

利用向量投影证明空间向量数量积分配律的方法

利用向量投影证明空间向量数量积分配律的方法

文章标题:利用向量投影证明空间向量数量积分配律的方法正文:一、引言在线性代数中,向量数量积是一个重要的概念,它不仅在数学上有着重要的意义,还在物理学等其他领域中有着广泛的应用。

在本文中,我们将探讨利用向量投影来证明空间向量数量积分配律的方法,并深入探讨这一方法背后的数学原理。

二、向量投影的概念在欧几里得空间中,向量的投影是一个重要的概念。

给定两个非零向量a和b,我们可以将b在a方向上的投影表示为proj_a(b) = (a · b) / |a| * a。

这个投影的长度正是b在a方向上的投影长度,方向与向量a相同。

利用向量投影,我们可以更好地理解空间向量的运算和关系。

三、空间向量数量积的定义空间中的向量数量积是向量的一种运算,它将两个向量映射为一个标量。

给定两个向量a和b,它们的数量积可以表示为a·b = |a| * |b| * cos(theta),其中theta为a和b之间的夹角。

四、空间向量数量积分配律的表述空间向量数量积具有分配律的性质,即对于任意三个向量a、b和c,都有(a+b)·c = a·c + b·c。

这个性质在向量运算中非常重要,并且在许多数学推导和物理问题中都有着广泛的应用。

五、利用向量投影证明空间向量数量积分配律的方法我们将利用向量投影来证明空间向量数量积分配律。

给定三个向量a、b和c,我们将b投影到a上得到proj_a(b),将c投影到a上得到proj_a(c)。

则有:(a+b)·c = (proj_a(b) + a)·c= proj_a(b)·c + a·c= (b·c) / |a| * a + a·c= (b·c) / |a| * a·c+ a·c= b·c + a·c= a·c + b·c六、总结通过以上的证明,我们证明了空间向量数量积具有分配律的性质。

条据书信 向量积的分配律证明

条据书信 向量积的分配律证明

向量积的分配律证明(1)实数与向量的运算法则:设、为实数,则有:1)结合律:(a)()a。

2)分配律:()a a,(a b)a b。

(2)向量的数量积运算法则:1)a b b a。

2)(a)b(a b)a b a(b)。

3)(a b)c a c b c。

(3)平面向量的基本定理。

e1,e2是同一平面内的两个不共线向量,则对于这一平面内的任何一向量a,有且仅有一对实数1,2,满足a1e12e2。

(4)a与b的数量积的计算公式及几何意义:a b|a||b|cos,数量积a b等于a的长度|a|与b在a的方向上的投影|b|cos的乘积。

(5)平面向量的运算法则。

1)设a=(x1,y1),b=(x2,y2),则a+b=(x1x2,y1y2)。

2)设a=(x1,y1),b=(x2,y2),则a-b=(x1x2,y1y2)。

3)设点A(x1,y1),B(x2,y2),则AB OB OA(x2x1,y2y1)。

4)设a=(x,y),R,则a=(x,y)。

5)设a=(x1,y1),b=(x2,y2),则a b=(x1x2y1y2)。

(6)两向量的夹角公式:cos(a=(x1,y1),b=(x2,y2))。

(7)平面两点间的距离公式:。

dA,B=|AB|(A(x1,y1),B(x2,y2))(8)向量的平行与垂直:设a=(x1,y1),b=(x2,y2),且b0,则有:1)a||b b=a x1y2x2y10。

2)a b(a0)a·b=0x1x2y1y20。

(9)线段的定比分公式:P(x,y)(x,y)P(x,y)PP设P,,是线段的分点,是实数,且PP PP2,则111222121x yx1x2OPOP211)。

(1t)OP OP1OP tOP12(t1y1y211(10)三角形的重心公式:△ABC三个顶点的坐标分别为A(x1,y1)、B(x2,y2)、C(x3,y3),则△ABC 的重心的坐标为G(x1x2x3y1y2y3,)。

空间向量的数量积运算

空间向量的数量积运算

逆命题成立吗 ? 三垂线定理的逆定理:
在平面内的一条直线 ,如果和这个平面的一 条斜线垂直, 那么它也和这条斜线在平面内的射 影垂直.
例 2 .已知:如图, PO 、 PA 分别是平面 的垂 线、斜线, AO 是 PA 在平面 内的射影, l , 且 l OA ,求证: l PA P
回顾平面向量数量积的定义
已知两个非零向量 a, b , 则 a b cos 叫做 a, b 的数量积,记作 a b , 即 a b a b cos
向量的夹角:
知空间两个非零向量 a, b , 则 a b cos a, b 叫做 a, b 的数量积,记作 a b , 即 a b a b cos a , b 0 a, b
2)证明垂直问题; (a, b是非零向量)
a b ab 0;
3)向量的夹角(两异面直线所成的角); ab cos a , b a b
练习:
已知点O是正△ABC平面外一点,若 OA=OB=OC=AB=1,E、F分别是AB、 OC的中点,用向量法解决下列问题: (1)计算 AO OB, OE BF ; O (2)求OE与BF所成角的余弦值; (3)证明 AB OC ; (4)求EF的距离.
一、空间向量数量积的定义


a


b
注意: ①两个向量的数量积是数量,而不是向量. ②规定:零向量与任意向量的数量积等于零.
平面向量数量积的运算律: 二、空间向量数量积的运算律:
(1)( a) b (a b) (2)a b b a (交换律) (3)a (b c) a b a c (分配律)

3.1.3 空间向量的数量积运算

3.1.3 空间向量的数量积运算

=13
������������
+
1 3
������������
+
1 3
������������ .
∴������������·(������������ + ������������ + ������������)=
1 3
������������
+
1 3
������������
+
1 3
������������
思路分析求出每个向量的模及其夹角,然后按照数量积的定义求 解,必要时,对向量进行分解.
探究一
探究二
探究三
探究四
当堂检测
解(1)������������ ·������������=|������������||������������|cos <������������, ������������>
例 2 如图,在正方体 ABCD-A1B1C1D1 中,求向量������������1与������������的夹角 的大小.
思路分析求两个向量的夹角,可以把其中一个向量平移到与另一
个向量的起点重合,从而转化为求平面角的大小;也可以用两个向
量的数量积定义a·b=|a||b|cos
<a,b>,求出cos
因 所为 以△向D量1A������C������1为与等���������边���的三夹角角形为,所π3.以∠D1AC=π3,即<������������1, ������������>=π3. (方法 2)设正方体的棱长为 1,
则������������1 ·������������=(������������ + ������������1)·(������������ + ������������)

利用向量投影证明空间向量数量积分配律的方法

利用向量投影证明空间向量数量积分配律的方法

利用向量投影证明空间向量数量积分配律的方法证明空间向量数量积的分配律可以使用向量投影的方法。

设有三个向量$\mathbf{a}$,$\mathbf{b}$和$\mathbf{c}$,数量积定义为:$\mathbf{a}\cdot(\mathbf{b}+\mathbf{c}) = \mathbf{a}\cdot\mathbf{b} +\mathbf{a}\cdot\mathbf{c}$我们可以利用向量投影的性质来证明上述等式。

首先,将向量$\mathbf{b}$和$\mathbf{c}$分解为它们在向量$\mathbf{a}$上的投影向量和投影长度。

可以表示为:$\mathbf{b} = \text{proj}_{\mathbf{a}}(\mathbf{b}) + \mathbf{b}_{\perp\mathbf{a}}$$\mathbf{c} = \text{proj}_{\mathbf{a}}(\mathbf{c}) + \mathbf{c}_{\perp\mathbf{a}}$其中,$\text{proj}_{\mathbf{a}}(\mathbf{b})$表示向量$\mathbf{b}$在$\mathbf{a}$上的投影向量,$\mathbf{b}_{\perp\mathbf{a}}$表示向量$\mathbf{b}$与$\mathbf{a}$垂直的向量。

同理,$\text{proj}_{\mathbf{a}}(\mathbf{c})$表示向量$\mathbf{c}$在$\mathbf{a}$上的投影向量,$\mathbf{c}_{\perp\mathbf{a}}$表示向量$\mathbf{c}$与$\mathbf{a}$垂直的向量。

接下来,我们对$\mathbf{a}\cdot(\mathbf{b}+\mathbf{c})$进行展开计算:$\mathbf{a}\cdot(\mathbf{b}+\mathbf{c}) = \mathbf{a}\cdot(\text{proj}_{\mathbf{a}}(\mathbf{b}) + \mathbf{b}_{\perp\mathbf{a}} + \text{proj}_{\mathbf{a}}(\mathbf{c}) +\mathbf{c}_{\perp\mathbf{a}})$根据数量积的性质可以将展开项拆开:$\mathbf{a}\cdot(\text{proj}_{\mathbf{a}}(\mathbf{b}) + \mathbf{b}_{\perp\mathbf{a}} +\text{proj}_{\mathbf{a}}(\mathbf{c}) + \mathbf{c}_{\perp\mathbf{a}}) =\mathbf{a}\cdot\text{proj}_{\mathbf{a}}(\mathbf{b}) +\mathbf{a}\cdot\mathbf{b}_{\perp\mathbf{a}} +\mathbf{a}\cdot\text{proj}_{\mathbf{a}}(\mathbf{c}) +\mathbf{a}\cdot\mathbf{c}_{\perp\mathbf{a}}$因为投影向量$\text{proj}_{\mathbf{a}}(\mathbf{b})$和$\text{proj}_{\mathbf{a}}(\mathbf{c})$在$\mathbf{a}$上,所以$\mathbf{a}\cdot\text{proj}_{\mathbf{a}}(\mathbf{b}) =\|\mathbf{a}\|\|\text{proj}_{\mathbf{a}}(\mathbf{b})\|$和$\mathbf{a}\cdot\text{proj}_{\mathbf{a}}(\mathbf{c}) =\|\mathbf{a}\|\|\text{proj}_{\mathbf{a}}(\mathbf{c})\|$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间角的计算
1.线线角
l2 e2 l1
设e1 ,e2分别为直线l1 ,l2的方 向向量,直线 l1 , l2 所成的 角为θ,则 cosθ =
e1
e1 ⋅ e2 e1 e2
• 空间向量数量积运算律(分配律)的说明 空间向量数量积运算律(分配律)
• a· (b+c)=a·b+a·c,对于平面向量 因为 |b+c|cosθ=|b|cosθ1+|c|cosθ2
B E θ2
c
C
|a||b+c|cosθ =|a||b|cosθ1+|a||c|cosθ2 所以: a· (b+c)=a·b+a·c
立体几何中的向量方法
直线的方向向量与平面的法向量
如何用向量来刻画直线、平面的“方向”? • 直线的方向向量不惟一,这些方向向量是共线向 量;两条平行直线的方向向量是共线向量.可以 用直线的方向向量研究空间线线、线面的平行与 垂直关系. • 平面的法向量不惟一,这些法向量是共线向量; 两个平行平面的法向量是共线向量.可以用平面 的法向量研究空间线面、面面的平行与垂直关 系.
a×b b
a
用向量语言(符号语言)描述空间线面关系: 空间线面关系的判定
平行 l1与l2 l1与α1 e1∥e2 e1⊥n1 n1∥n2 垂直 e1⊥e2 e1∥n1 n1⊥n2
α1与α2
其中e1 ,e2 分别为直线l1 ,l2 的方向向量,n1 ,n2 分 别为平面α1,α2的法向量。
空间线面关系的判定: 三垂线定理,线面平行的判定定理, 线面垂直的判定定理,面面平行的判 定定理,面面垂直的判定定理。
b
θ1 O
θ D
a
A
• a· (b+c)=a·b+a·c,对于空间向量
因为 |b+c|cosθ=|b|cosθ1+|c|cosθ2 |a|·|b+c|cosθ
B
c
C
=|a|·|b|cosθ1+|a|·|c|cosθ2
E
b
θ2
O;a·c
a
D
A
• 代数证明(运算的坐标表示): • 设a=x1i+y1j+z1k, b=x2i+y2j+z2k, c=x3i+y3j+z3k • 则b+c=(x2+x3)i+(y2+y3)j+(z2+z3)k, • a· (b+c)=x1(x2+x3)+y1(y2+y3)+z1(z2+z3) =x1x2+x1x3+y1y2+y1y3+z1z2+z1z3 • 又因为:a·b=x1x2+y1y2+z1z2, • a·c=x1x3+y1y3+z1z3 • a·b+a·c=x1x2+x1x3+y1y2+y1y3+z1z2+z1z3 • 所以: a· (b+c)=a·b+a·c
• 平面的法向量的计算: • (1)待定系数法 • 例如:在棱长为a的正方体 ABCD—A1B1C1D1 中,E,F 分别是AB与BC的中点,求 A1 平面B1EF的法向量。
D1
C1
B1
D F A E B
C
z
D1 A1 B1
C1
D A x
C a F( ,a,0) 2 y
a E(a, ,0) 2
B
相关文档
最新文档