实验1 示波器函数信号发生器的原理及使用(实验报告之实验数据表)

合集下载

常用电子仪器的使用实验报告

常用电子仪器的使用实验报告

常用电子仪器的使用实验报告一、实验目的1、了解并熟悉常用电子仪器的基本原理和功能。

2、掌握常用电子仪器的正确使用方法和操作步骤。

3、通过实际操作,提高对电子电路的测量和分析能力。

二、实验仪器1、示波器:用于观察和测量电信号的波形、幅度、频率等参数。

2、函数信号发生器:产生各种不同类型的电信号,如正弦波、方波、三角波等。

3、数字万用表:测量电压、电流、电阻等电学量。

4、交流毫伏表:测量交流信号的电压有效值。

三、实验原理(一)示波器原理示波器是一种能够显示电信号波形的电子仪器。

它通过将输入的电信号在垂直方向上进行偏转,并在水平方向上进行扫描,从而在荧光屏上形成信号的波形图像。

示波器的主要参数包括垂直灵敏度、水平扫描速度、触发方式等。

(二)函数信号发生器原理函数信号发生器是一种能够产生各种周期性电信号的仪器。

它通常采用集成电路和数字技术,通过设置不同的参数,如频率、幅度、占空比等,来产生所需的信号波形。

(三)数字万用表原理数字万用表基于数字电路和模数转换技术,将测量的电学量转换为数字信号,并通过显示屏显示出测量结果。

它可以测量直流电压、交流电压、直流电流、交流电流、电阻、电容、二极管等多种电学参数。

(四)交流毫伏表原理交流毫伏表用于测量交流信号的电压有效值。

它采用放大和检波电路,将输入的交流信号进行放大和整流,然后通过表头显示出电压的有效值。

四、实验内容及步骤(一)示波器的使用1、开启示波器电源,预热一段时间。

2、调节“辉度”、“聚焦”等旋钮,使荧光屏上显示出清晰的扫描线。

3、选择合适的输入通道,并将探头连接到被测信号源。

4、调节“垂直灵敏度”和“水平扫描速度”旋钮,使信号波形在荧光屏上显示出合适的大小和周期。

5、选择合适的触发方式,以使波形稳定显示。

6、测量信号的幅度、周期、频率等参数,并记录测量结果。

(二)函数信号发生器的使用1、开启函数信号发生器电源,选择所需的信号类型,如正弦波、方波或三角波。

【精品】电路实验报告 函数信号发生器

【精品】电路实验报告 函数信号发生器

【精品】电路实验报告函数信号发生器一、实验目的1.理解函数信号发生器的基本原理;2.掌握函数信号发生器的使用方法;二、实验仪器函数信号发生器、万用表、示波器、电阻箱等。

三、实验原理函数信号发生器是一种可以产生各种不同波形的电子仪器,它由信号源、调制放大器、波形出口、控制电路等几个部件组成。

在使用中可以通过调节控制电路中的各个参数来控制信号波形的频率、幅度、相位等参数。

四、实验内容1.使用函数信号发生器产生各种不同波形的信号,并记录下所产生的波形、频率、幅度等参数。

2.利用万用表对所产生的波形进行测量,并记录下相关参数。

3.使用示波器观察所产生的波形,并记录下所观察到的波形形态,判断所产生的波形是否符合要求。

4.使用电阻箱对信号幅度进行调整,调整后再次进行相应的测量、观察和记录。

五、实验步骤1.将函数信号发生器插入电源插座,并开启电源开关。

5.对信号幅度进行调整,如需调整信号幅度,可以使用电阻箱对信号幅度进行调整。

六、实验数据及处理下表列出了实验中所产生的部分波形及其相关参数。

| 波形形态 | 频率 | 幅度 ||----------------|---------|-----------|| 正弦波 | 1KHz | 1Vpp || 正弦波 | 5KHz | 500mVpp|| 方波 | 2KHz | 2Vpp || 三角波 | 1KHz | 1Vpp |七、实验结果分析根据实验数据分析,可以得出以下结论:2.在产生不同波形的信号时,需调节控制电路中的各个参数,如频率、幅度、相位等,才能产生相应的波形。

3.在调试波形时应注意信号幅度,如波形幅度过大或过小,都会影响到实验的结果。

八、实验注意事项1.实验中要注意安全,避免触电、短路等事故的发生。

3.在实验中应认真记录实验数据,为进一步分析和处理提供有力的数据支持。

(2023)大学物理实验示波器实验报告示波器实验数据(一)

(2023)大学物理实验示波器实验报告示波器实验数据(一)

(2023)大学物理实验示波器实验报告示波器实验数据(一)实验报告:大学物理实验示波器实验数据实验目的•了解示波器的基本原理•掌握示波器的操作方法•学会使用示波器测量电路的波形实验器材•示波器•电源•信号发生器•电阻、电容、电感等元件实验原理示波器是一种用于观测信号波形的电子仪器。

其基本原理是将观测电路中的信号通过元件转换成一定的电压或电流,再将其显示在示波器的屏幕上。

在实验中,我们需要使用信号发生器产生不同频率、不同幅度的正弦波信号,通过示波器观测电路中信号的波形,进而分析电路的性质。

实验步骤与记录1.将电阻、电容、电感等元件按照电路图进行连接,并接入电源。

2.使用信号发生器产生5 Vp-p、1 kHz的正弦波信号,接入电路中。

3.调节示波器的控制开关,使屏幕正常显示波形。

4.调节示波器的扫描开关,使波形填满屏幕。

5.根据示波器屏幕上的刻度,测量电路中信号的峰峰值、有效值、频率等参数,并记录数据。

实验结果与分析经过测量,我们得到了以下数据: * 信号峰峰值:9.8 V * 信号有效值:3.3 V * 信号频率:1.01 kHz根据以上数据,可以计算出电路中的电阻、电容、电感等参数,进而分析电路的特性和工作原理。

实验结论本次实验通过使用示波器测量电路中的信号波形,了解了示波器的基本原理和操作方法。

同时,我们也成功掌握了电路测量的方法和技巧,为今后的学习和实践打下了基础。

实验注意事项与改进意见1.在进行实验前,应仔细阅读实验指导书,了解实验原理和操作方法。

2.在连接电路时,应注意元件的极性和接线方式,以免损坏元件或影响实验结果。

3.在调节示波器时,应按照操作手册的要求进行,不要随意更改参数,以免影响实验结果。

4.在测量信号参数时,应使用恰当的测量仪器,并注意测量误差的控制。

5.在实验中如遇到问题,应及时向指导老师请教,并进行必要的实验改进。

实验心得体会本次实验是一次非常好的实践机会,通过亲身操作和实验记录,我们进一步了解了示波器的原理和电路测量的方法。

示波器的使用实验报告

示波器的使用实验报告

示波器的使用实验报告示波器的使用试验报告1在数字电路试验中,需要使用若干仪器、仪表观看试验现象和结果。

常用的电子测量仪器有万用表、规律笔、一般示波器、存储示波器、规律分析仪等。

万用表和规律笔使用方法比较简洁,而规律分析仪和存储示波器目前在数字电路教学试验中应用还不非常普遍。

示波器是一种使用特别广泛,且使用相对简单的仪器。

本章从使用的角度介绍一下示波器的原理和使用方法。

1 示波器工作原理示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。

它是观看数字电路试验现象、分析试验中的问题、测量试验结果必不行少的重要仪器。

示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。

1.1 示波管阴极射线管(CRT)简称示波管,是示波器的核心。

它将电信号转换为光信号。

正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。

1.荧光屏现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。

在荧光膜上常又增加一层蒸发铝膜。

高速电子穿过铝膜,撞击荧光粉而发光形成亮点。

铝膜具有内反射作用,有利于提高亮点的辉度。

铝膜还有散热等其他作用。

当电子停止轰击后,亮点不能马上消逝而要保留一段时间。

亮点辉度下降到原始值的10%所经过的时间叫做"余辉时间'。

余辉时间短于10s为极短余辉,10s1ms为短余辉,1ms0.1s为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。

一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。

由于所用磷光材料不同,荧光屏上能发出不同颜色的光。

一般示波器多采纳发绿光的示波管,以爱护人的眼睛。

2.电子枪及聚焦电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称其次栅极)、第一阳极(A1)和其次阳极(A2)组成。

它的作用是放射电子并形成很细的高速电子束。

示波器的原理与应用实验报告

示波器的原理与应用实验报告

示波器的原理与应用实验报告实验报告:示波器的原理与应用1. 实验目的:掌握示波器的使用方法,理解其原理,并通过实验探究示波器在电路实验中的应用。

2. 实验设备:示波器、信号发生器、万用表、电容、电阻、电感等基本电路元件。

3. 实验原理:示波器是一种用于测量电压波形、电流波形和时序等特性的电子测量仪器。

其主要原理为将待测电压信号加于示波器的输入端,通过示波管、偏转板和竖直驱动放大器等元件将电信号转化为可视的光信号,从而展现电压波形。

示波器测量的电压波形主要包括幅值、频率、相位等参数。

4. 实验步骤:(1)将信号发生器的方波信号连接至示波器的输入端,并设置合适的频率和幅值。

(2)观察示波器屏幕中显示的方波波形,并根据幅值、频率、相位等参数进行测量。

(3)将电容、电阻、电感等基本电路元件连接至信号发生器和示波器之间,我们可以通过示波器观察电路中产生的波形,以及分析其幅值、频率、相位等特性。

5. 实验结果:我们进行了多组实验,在不同的频率、幅值和相位条件下,观察并测量了信号发生器输入信号和示波器输出的波形参数,得出如下结论:(1)在使用示波器时,应根据被测电信号的特性选择适当的带宽范围和灵敏度。

(2)示波器作为一种常用的电子测量仪器,在电路实验中有着重要的应用价值。

6. 实验思考:通过本次实验,我们不仅掌握了示波器的使用方法和原理,还深刻认识到示波器在电路实验中的广泛应用价值。

同时,我们也发现了示波器的一些局限和缺陷,如不能直接测量电流等特性。

这为我们进一步学习和研究电子测量仪器、深入理解电路原理提供了参考和帮助。

示波器使用大学物理实验报告1

示波器使用大学物理实验报告1

示波器使用大学物理实验报告1一、实验目的1、了解示波器的基本结构和工作原理。

2、掌握示波器的基本操作方法,包括示波器的调节、信号的输入与显示等。

3、学会使用示波器测量正弦波、方波等信号的电压、频率和周期等参数。

二、实验仪器示波器、函数信号发生器、探头、连接线等。

三、实验原理示波器是一种用于显示电信号波形的电子仪器。

它通过将输入的电信号转换为光信号,并在荧光屏上显示出来,从而使我们能够观察到信号的变化情况。

示波器主要由电子枪、偏转系统和荧光屏三部分组成。

电子枪产生高速电子束,经过偏转系统的作用,使电子束在荧光屏上按照输入信号的变化规律进行偏转,从而形成信号的波形。

示波器的显示原理是基于电子束在电场和磁场中的偏转。

当在垂直偏转板和水平偏转板上分别加上适当的电压时,电子束就会在垂直和水平方向上发生偏转,从而在荧光屏上显示出相应的波形。

四、实验内容及步骤1、示波器的调节(1)打开示波器电源,预热一段时间。

(2)调节辉度和聚焦旋钮,使荧光屏上的亮点清晰可见。

(3)调节水平和垂直位移旋钮,将亮点移至屏幕的中心位置。

(4)选择适当的触发方式和触发电平,使示波器能够稳定地显示输入信号的波形。

2、正弦波信号的测量(1)将函数信号发生器的输出端与示波器的输入端连接,设置函数信号发生器输出正弦波信号,频率为 1kHz,峰峰值为 5V。

(2)调节示波器的垂直灵敏度和水平扫描速度,使正弦波的波形在屏幕上显示完整且清晰。

(3)测量正弦波的峰峰值、有效值、频率和周期。

峰峰值:通过示波器的垂直刻度读取正弦波的峰峰值。

有效值:根据公式 U 有效值= U 峰峰值/√2 计算正弦波的有效值。

频率:根据示波器水平刻度上一个周期所对应的时间,计算出正弦波的频率。

周期:直接从示波器上读取正弦波的周期。

3、方波信号的测量(1)设置函数信号发生器输出方波信号,频率为 500Hz,峰峰值为 3V。

(2)按照上述方法测量方波信号的峰峰值、频率和周期。

大学物理实验--示波器的原理与使用

大学物理实验--示波器的原理与使用

数据记录与处理 1. 测量校正信号的电压频率 将实验数据记录下表
校正 信号
标准值
频率 1 KHz 电压VP-P 2 VP-P
偏转
扫描
因数 格数(div) 速率
(V/格)
(T/div)
格数 (div)
实测值
—— ——
——
——
四、实验内容与步骤
3. 测量正弦电压波信号电压、频率 (1)正弦信号输入 ,调节【TIME/DIV】、【VOLTS/DIV】,使 波形显示适中.(数值方向占2/3,水平方向1~2个完整波形) (2)测量电压、频率,即垂直衰减分度*格数,即扫描速率分度* 格数
VOLTS/DIV: 偏转因数,指 示垂直方向每 格的偏转电压 值
ADD:显示两个通道信 号幅度的代数和或差
微调旋钮, 校正位置 CAL
CH1: 被测信号输入端口
选择触发信号耦合方 式:AC/DC GND
(4)触发区
触发旋钮,扫面信 号与被测信号同步
电平(LEVEL): 调节被测信号在某 一电平触发扫描, 稳定信号
G:控制栅二极、实验原理 A1:第一阳极 A2:第二阳极
(1)示波管(CRT)
K:阴极
Y:竖直偏转板
X:水平 U 偏转板
Y
F:灯丝 G:对应亮度旋钮
荧光屏
Y Uy
G A1 A2共同完成聚焦
二、实验原理
(2)放大和衰减系统 为了适应被测信号幅值的范围(从最小幅值到最大幅值),对小信 号进行放大,对大信号进行衰减,用于对不同大小的输入信号进行适当 的缩放,使其幅度适合于观测。
如果只在水平偏转板X上加上扫描电压, 而竖直偏转板Y上不加电压,电子束在水平 方向上来回运动而形成一条水平亮线,如果 只在竖直偏转板Y上加上交变电压,而X偏转 板上不加偏压,电子束在竖直方向上动而形 成一条亮线。

示波器与函数信号发生器的使用及实验报告

示波器与函数信号发生器的使用及实验报告

示波器与函数信号发生器的使用及实验报告实验: 示波器与函数信号发生器的使用实验目的:1、学习电子电路实验中常用的电子仪器——示波器、函数信号发生器等的主要技术指标、性能及正确使用方法。

2、学会使用测量电压波形、幅度、频率的基本方法。

3、学会正确调节函数信号发生器频率、幅度的方法,熟悉dB键。

实验内容:一、双踪示波器的使用熟悉示波器面板上各旋钮的名称及功能,掌握正确使用各旋钮应处的位置。

1、示波器的检查及校准1) 扫描基线调节首先,接通电源,检查示波器各旋钮是否正常,将示波器的显示方式开关置于“单踪”显示(CH1或CH2),输入耦合方式开关置“GND”,触发方式开关置于“自动”。

开启电源开关后,调节“辉度”、“聚焦”、“辅助聚焦”等旋钮,使荧光屏上显示一条细而且亮度适中的扫描基线。

然后调节“X轴位移”()和“Y轴位移”( )旋钮,使扫描线位于屏幕中央,并且能上下左右移动自如。

2)测试“校准信号”波形的幅度、频率将示波器的“校准信号”通过专用电缆线引入选定的CH1通道,将Y轴输入耦合方式开关置于“AC”或“DC”,触发源选择开关置“内”,内触发源选择开关置“CH1”。

调节X轴“扫描速率”开关(SEC/DIV)和Y轴“输入灵敏度”开关(VOLTS/DIV),使示波器显示屏上显示出一个或数个周期稳定的方波波形。

校准“校准信号”的幅度及频率的计算:根据被测波形在屏幕坐标刻度上垂直方向所占的格数与“Y轴灵敏度”开关指示值的乘积,即可算得信号幅值的实测值。

将“y轴灵敏度微调”旋钮置“校准”位置,“y轴灵敏度”开关置适当位置,读取校正信号幅度;将“扫速微调”旋钮置“校准”位置,“扫速”开根据被测信号波形一个周期在屏幕坐标刻度水平方向所占的格数与“扫速”1开关指示值的乘积,即可算得信号频率的实测值。

关置适当位置,读取校正信号周期,记入表1,1。

表1,1标准值实测值误差幅度 Up-p(V)频率 f(KHz)注:不同型号示波器标准值有所不同,请按所使用示波器将标准值填入表格中。

常用电子仪器的使用实验报告

常用电子仪器的使用实验报告

常用电子仪器的使用实验报告一、实验目的本次实验的主要目的是让我们熟悉并掌握几种常用电子仪器的使用方法,包括示波器、函数信号发生器、数字万用表等。

通过实际操作和测量,深入理解这些仪器的工作原理和性能特点,提高我们在电子电路实验中的实践能力和问题解决能力。

二、实验仪器1、示波器:用于观测电信号的波形、幅度、频率等参数。

2、函数信号发生器:能够产生各种类型的信号,如正弦波、方波、三角波等。

3、数字万用表:用于测量电压、电流、电阻等电学量。

三、实验原理(一)示波器的工作原理示波器是一种用于显示电信号波形的仪器。

它通过将输入的电信号在垂直方向上进行偏转,并在水平方向上按照一定的时间基准进行扫描,从而在屏幕上形成信号的波形图像。

示波器的主要参数包括垂直灵敏度、水平扫描速度、触发方式等。

(二)函数信号发生器的工作原理函数信号发生器是一种能够产生多种波形的电子仪器。

它通常基于集成芯片或数字合成技术,通过控制电路来产生所需的信号波形,并可以调节信号的频率、幅度、占空比等参数。

(三)数字万用表的工作原理数字万用表采用数字化测量技术,将输入的电学量转换为数字信号,并通过内部的微处理器进行处理和显示。

它可以测量直流电压、交流电压、直流电流、交流电流、电阻、电容、二极管等多种电学参数。

四、实验内容与步骤(一)示波器的使用1、连接示波器:将示波器的探头分别连接到信号源和地。

2、调节垂直灵敏度:根据输入信号的幅度,选择合适的垂直灵敏度挡位,以使信号能够在屏幕上清晰显示。

3、调节水平扫描速度:根据信号的频率,选择合适的水平扫描速度挡位,以使信号的一个周期能够在屏幕上完整显示。

4、触发设置:选择合适的触发源和触发方式,以稳定显示信号波形。

5、观察并记录信号波形:观察输入信号的波形,记录其幅度、周期等参数。

(二)函数信号发生器的使用1、连接函数信号发生器:将函数信号发生器的输出端连接到示波器或其他测量仪器。

2、选择信号类型:通过面板上的按键选择所需的信号类型,如正弦波、方波、三角波等。

《示波器的的原理和使用》物理实验报告

《示波器的的原理和使用》物理实验报告

《示波器的的原理和使用》物理实验报告一、实验目的及要求:了解示波器的基本工作原理。

学习示波器、函数信号发生器的使用方法。

学习用示波器观察信号波形和利用示波器测量信号频率的方法。

二、实验原理:1) 示波器的基本组成部分:示波管、竖直放大器、水平放大器、扫描发生器、触发同步和直流电源等。

2) 示波管左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。

亮点在偏转板电压的作用下,位置也随之改变。

在一定范围内,亮点的位移与偏转板上所加电压成正比。

3) 示波器显示波形的原理:如果在X轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如果在Y轴偏转板上加正弦电压,而X轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。

我们看到的将是一条垂直的亮线,如果在Y轴偏转板上加正弦电压,又在X轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,两个方向的位移合成就描出了正弦图形。

如果正弦波与锯齿波的周期相同,这个正弦图形将稳定地停在荧光屏上。

但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。

要使显示的波形稳定,扫描必须是线性的,即必须加锯齿波;Y 轴偏转板电压频率与X轴偏转板电压频率的比值必须是整数。

示波器中的锯齿扫描电压的频率虽然可调,但光靠人工调节还是不够准确,所以在示波器内部加装了自动频率跟踪的装置,称为“同步”。

在人工调节接近满足式频率整数倍时条件下,再加入“同步”的作用,扫描电压的周期就能准确等于待测电压周期的整数倍,从而获得稳定的波形。

4) 李萨如图形的基本原理:如果同时从示波器的x轴和y轴输入频率相同或成简单整数比的两个正弦电压,则屏幕上将呈现出特殊形状的、稳定的光点轨迹,这种轨迹图称为李萨如图形。

实验1 示波器函数信号发生器的原理及使用(实验报告之实验数据表)

实验1 示波器函数信号发生器的原理及使用(实验报告之实验数据表)

实验1 示波器、函数信号发生器的原理及使用【实验目的】1. 了解示波器、函数信号发生器的工作原理。

2. 学习调节函数信号发生器产生波形及正确设置参数的方法。

3. 学习用示波器观察测量信号波形的电压参数和时间参数。

4. 通过李萨如图形学习用示波器观察两个信号之间的关系。

【实验仪器】1. 示波器DS5042型,1台。

2. 函数信号发生器DG1022型,1台。

3. 电缆线(BNC 型插头),2条。

【实验内容与步骤】1. 利用示波器观测信号的电压和频率(1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-1所示的正余弦波形,显示在示波屏上。

图1-1 函数信号发生器生成的正、余弦信号的波形学生姓名/学号指导教师上课时间 第 周 节(2)用示波器对图1-1中所示的正余弦波形进行测量并填写下表表1-1 正余弦信号的电压和时间参数的测量电压参数(V)时间参数峰峰值最大值最小值频率(Hz)周期(ms)正弦信号3sin(200πt)余弦信号3cos(200πt)2. 用示波器观测函数信号发生器产生的正余弦信号的李萨如图形(1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-2所示的正余弦波形的李萨如图形,调节并正确显示在示波屏上。

图1-2 正弦信号3sin(200πt)和余弦信号3cos(200πt)的李萨如图形3. 观测相同幅值、相同频率、不同相位差条件下的两正弦信号的李萨如图形(1)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+45º),观测并记录两正弦信号的李萨如图形于图1-3中。

(2)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+135º),观测并记录两正弦信号的李萨如图形于图1-3中。

实验一:示波器的使用

实验一:示波器的使用

示波器的使用一、实验原理双踪示波器包括两部分:示波管和控制示波管工作的电路。

(1)示波管。

示波管是呈喇叭形的玻璃泡,抽成高真空,内部装有电子枪和两对相互垂直的偏转板,喇叭口的球面壁上涂有荧光物质,构成荧光屏。

高速电子撞击在荧光屏上会使荧光物质发光,在荧光屏上就能看到一个亮点。

Y偏转板是水平放置的两块电极。

X偏转板是垂直放置的两块电极。

在Y偏转板和X偏转板主分别加电压,可以在荧光屏上得到相应的图形。

(2)双踪示波器的原理。

双踪示波器控制电路主要包括:电子开关、垂直放大电路、水平放大电路、扫描发生器、同步电路、电源等。

其中,电子开关使两个待测电压信号YchI和Ych2周期性地轮流作用在Y偏转板,这样在荧光屏上忽而显示Ych1信号波形,忽而显示Ych2信号波形。

由于荧光屏荧光物质的余晖及人眼视觉滞留效应,荧光屏上看到的是两个波形。

如果正弦波与锯齿波电压的周期稍不同,屏上出现的是一移动的不稳定图形:这是因为扫描信号的周期与被测信号的周期不一致或不呈整数倍以致每次扫描开始时波形曲线上的起点均不一样所造成的。

为了获得一定数量的完整周期期波形,示波器上设有“time/div”调节旋钮,用来调节锅齿波电压的周期,使之与被测信号的周期呈合适的关系,从而显示出完整周期的正弦波形。

当扫描信号的周期与被测信号的周期一致或是整数信,屏上一般会显示出完整周期的正弦波形,但由于环境或其他因索的影响,波形会移动,为此示波器内装有扫描同步电路.同步电路从垂直放大电路中取出部分待测信号,输人到扫描发生器.迫使锯齿波与待测信号同步,此称为“内同步”。

如果同步电路信号从仪器外部输人,则称为“外同步”。

操作时,使用“电平(LEVEL)”旋钮,改变触发电平高度,当待测电压达到触发电平时,扫描发生器开始扫描,直到一个扫描周期结束。

但如果触发电位高度超出所显示波形最高点或最低点的范围,则扫描电压消失,扫描停止。

(3)示波器显示波形原理。

如果在示波器的Ych1或Ych2端口加上正弦波,在示波器的X偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期与正弦电压的变化周期相等时,则在荧光屏上将显示出完整周期的正弦波形。

示波器的使用实验原始数据记录表(1)

示波器的使用实验原始数据记录表(1)

示波器的使用实验原始数据记录表(1)
示波器是电子实验中常用的一种仪器,其作用主要是用于测量电信号的波形和特征参数。

在实验过程中,我们需要对示波器进行正确的使用和操作。

为此,我们对使用示波器的实验过程进行了记录,以下是这一过程的原始数据记录表。

实验名称:示波器的使用实验
实验目的:学习和掌握示波器的基本操作和使用方法,通过观察和分析波形,了解波形特征参数的含义。

实验仪器:示波器、信号发生器、万用表等。

实验步骤:
1. 将示波器连接到信号发生器输出端,用万用表测量输出信号的频率和幅值,并记录于表格中。

2. 调整示波器的水平和垂直控制旋钮,使波形对称并处于中心位置,同时调整垂直放大系数和扫描速度,以显示出完整的波形。

3. 通过观察和分析波形特征参数,记录波形的频率、幅值、周期、脉宽等信息,并进行数据分析和处理。

实验结果:
实验数据表格:
信号频率:1000Hz
信号幅值:3V
垂直放大系数:1V/DIV
水平扫描速度:0.2us/DIV
波形特征参数:
频率:1000Hz
幅值:3V
周期:1ms
脉宽:500us
实验结论:
通过本次实验,我们学习和掌握了示波器的基本操作和使用方法,并了解了波形特征参数的含义。

同时,我们还通过数据的分析和处理,对信号性质有了更加深刻的理解。

本次实验对我们加深对电子学的理解和认识具有重要意义。

函数信号发生器与示波器的使用实验报告书

函数信号发生器与示波器的使用实验报告书

函数信号发生器与示波器的使用实验报告书专业:班级:学号:姓名:实验时间:实验目的1、学会数字合成函数信号发生器常用功能的设置、使用;2、会从函数信号发生器胡频率计上读出信号频率;3、在了解数字双踪示波器显示波形的工作原理基础上,观察并测量以下信号:(见下表)学会数字示波器的基本操作与读书;实验仪器F40函数信号发生器、UTD2102CE数字示波器、探头。

实验原理1、函数信号发生器的原理该仪器采用直接数字合成技术,可以输出函数信号、调频、调幅、FSK、PSK、猝发、频率扫描等信号,还具有测频、计数、任意波形发生器功能。

2、示波器显示波形原理如果在示波器CH1或CH2端口加上正弦波,在示波器的X 偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期与正弦波电压相等时,则显示完整的周期的正弦波形,若在示波器CH1和YCH2同时加上正弦波,在示波器的X偏转板上加上示波器的锯齿波,则在荧光屏上将的到两个正弦波。

实验内容1、做好准备工作,连接实验仪器电路,设置好函数信号发生器、示波器;(1)、把函数信号发生器的“函数输出”输出端与示波器的X CH1信号输入端连接,两台仪器的接通220V交流电源。

(2)、启动函数信号发生器,开机后仪器不需要设置,短暂时间后,即输出10K Hz的正弦波形。

(3)、需要信号源的其他信号,到时在进行相关的数据设定(如正弦波2的波形、频率、点频输出、信号幅度)等。

2、用示波器观察上表中序号1的信号波形(10KHz);过程如下:(1)、打开示波器的电源开关,将数字存储示波器探头连接到CH1输入端,按下“AUTO”按键,示波器将自动设置垂直偏转系数、扫描时基以及触发方式;按下CH1按键。

(2)、按F1通道设置为“交流合”;按F2将带宽限制设置为“关”。

(3)、设置探头衰减系数:按F4使菜单显示10✗将探头上的衰减倍率开关设定为10✗。

(4)、把探头的探针和接地夹连接到探针补偿信号的相应连接端上,检查Y CHI探头补偿是否正常,如果不正常则对探头进行调整,到基本正常为止。

《示波器的的原理和使用》物理实验报告

《示波器的的原理和使用》物理实验报告

《示波器的的原理和使用》物理实验报告一、实验目的及要求:〔1〕了解示波器的根本工作原理。

〔2〕学习示波器、函数信号发生器的使用方法。

〔3〕学习用示波器观察信号波形和利用示波器测量信号频率的方法。

二、实验原理:1)示波器的根本组成局部:示波管、竖直放大器、水平放大器、扫描发生器、触发同步和直流电源等。

2)示波管左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。

亮点在偏转板电压的作用下,位置也随之改变。

在一定范围内,亮点的位移与偏转板上所加电压成正比。

3)示波器显示波形的原理:如果在某轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如果在Y轴偏转板上加正弦电压,而某轴偏转板不加任何电压,那么电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。

我们看到的将是一条垂直的亮线,如果在Y轴偏转板上加正弦电压,又在某轴偏转板上加锯齿形电压,那么荧光屏上的亮点将同时进行方向互相垂直的两种位移,两个方向的位移合成就描出了正弦图形。

如果正弦波与锯齿波的周期〔频率〕相同,这个正弦图形将稳定地停在荧光屏上。

但如果正弦波与锯齿波的周期稍有不同,那么第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。

要使显示的波形稳定,扫描必须是线性的,即必须加锯齿波;Y轴偏转板电压频率与某轴偏转板电压频率的比值必须是整数。

示波器中的锯齿扫描电压的频率虽然可调,但光靠人工调节还是不够准确,所以在示波器内部加装了自动频率跟踪的装置,称为“同步〞。

在人工调节接近满足式频率整数倍时条件下,再参加“同步〞的作用,扫描电压的周期就能准确等于待测电压周期的整数倍,从而获得稳定的波形。

4)李萨如图形的根本原理:如果同时从示波器的某轴和y轴输入频率相同或成简单整数比的两个正弦电压,那么屏幕上将呈现出特殊形状的、稳定的光点轨迹,这种轨迹图称为李萨如图形。

实验1示波器函数信号发生器的原理及使用(实验指导书)

实验1示波器函数信号发生器的原理及使用(实验指导书)

实验1示波器函数信号发生器的原理及使用(实验指导书)实验1 示波器、函数信号发生器的原理及使用示波器是用于显示信号波形的仪器,除了可以直接观测电压随时间变化的波形外,还可测量频率和相位差等参数,也可定性观察信号的动态过程。

它能够测量电学量,也可通过不同的传感器将各种非电量,如速度、压力、应力、振动、浓度等物理量,变换成电学量来间接地进行观察和测量。

函数信号发生器能够用来产生正弦波、三角波、方波等各种电信号,并且能够设置和调整信号的频率、周期、幅值等重要参数。

【实验目的】1. 了解示波器、函数信号发生器的工作原理。

2. 学习调节函数信号发生器产生波形及正确设置参数的方法。

3. 学习用示波器观察测量信号波形的电压参数和时间参数。

4. 通过李萨如图形学习用示波器观察两个信号之间的关系。

【实验仪器】1. 示波器DS5042型,1台。

2. 函数信号发生器DG1022型,1台。

3. 电缆线(BNC型插头),2条。

【实验原理】1. 函数信号发生器产生的波形参数(1)正弦电压波形参数正弦波的数学描述为u(t)=U0+Umsin(2πft+ ),其中:U0:正弦电压的直流分量,单位V。

Um:正弦电压的幅值,又称正弦波交流分量的最大峰值,相应的-Um为交流分量的最小峰值,用Vpp=2 Um来表示正弦电压信号的峰峰值,Um/2为交流分量的有效值或均方根值,单位V。

f:为正弦电压的频率,单位Hz,相应的记ω=2πf为正弦信号的角频率,单位rad/s,正弦电压信号的周期T=1/f。

:正弦电压信号的相位角。

(2)余弦电压波形参数利用正弦函数和余弦函数之间的关系可知,当相位角=90时,sin(2πft+90)=cos(2πft)。

(3)操作函数信号发生器产生正余弦信号从“确定信号所在通道的CH1/CH2按键”入手确定正/余弦波形应在函数信号发生器的哪一个通道设置并输出,通过“产生正弦波(可对正余弦信号的相应参数进行设置,在设置的菜单内,还可以在菜单内按下相应的“同相的功能键,建立函数信号发生器CH1、CH2两通道产生的正弦波形之间的相位同步关系。

示波器的原理与使用_实验报告

示波器的原理与使用_实验报告

大连理工大学大学物理实验报告姓名童凌炜学号200767025 实验台号实验时间2008 年11 月18 日,第13周,星期二第5-6 节实验名称示波器的原理与使用教师评语实验目的与要求:(1)了解示波器的工作原理(2)学习使用示波器观察各种信号波形(3)用示波器测量信号的电压、频率和相位差主要仪器设备:YB4320G 双踪示波器,EE1641B型函数信号发生器实验原理和内容:1.示波器基本结构示波器主要由示波管、放大和衰减系统、触发扫描系统和电源四部分组成,其中示波管是核心部分。

示波管的基本结构如下图所示,主要由电子枪、偏转系统和荧光屏三个部分组成,由外部玻璃外壳密封在真空环境中。

电子枪的作用是释放并加速电子束。

其中第一阳极称为聚焦阳极,第二阳极称为加速阳极。

通过调节两者的共同作用,可以使电子束打到荧光屏上产生明亮清晰的圆点。

偏转系统由X、Y两对偏转板组成,通过在板上加电压来使电子束偏转,从而对应地改变屏上亮点的位置。

荧光屏上涂有荧光粉,电子打上去时能够发光形成光斑。

不同荧光粉的发光颜色与余辉时间都不同。

放大和衰减系统用于对不同大小的输入信号进行适当的缩放,使其幅度适合于观测。

扫描系统的作用是产生锯齿波扫描电压(如左上图所示),使电子束在其作用下匀速地在荧光屏周期性地自左向右运动,这一过程称为扫描。

扫描开始的时间由触发系统控制。

2.示波器的显示波形的原理如果只在竖直偏转板加上交变电压而X偏转板上五点也是,电子束在竖直方向上来回运动而形成一条亮线,如左图所示:如果在Y 偏转板和X 偏转板上同时分别加载正弦电压和锯齿波电压, 电子受水平竖直两个方向的合理作用下, 进行正弦震荡和水平扫描的合成运动, 在两电压周期相等时, 荧光屏上能够显示出完整周期的正弦电压波形, 显像原理如右图所示:3. 扫描同步为了完整地显示外界输入信号的周期波形, 需要调节扫描周期使其与外界信号周期相同或成合适的关系。

当某些因素改变致使周期发生变化时,使用扫描同步功能, 能够使扫描起点自动跟踪外界信号变化, 从而稳定地显示波形。

大学物理实验信号发生器和示波器的使用

大学物理实验信号发生器和示波器的使用

4.2信号发生器与示波器的使用1.实验目的(1)了解通用示波器和信号发生器的结构和功能(2)掌握示波器和信号发生器各功能键和旋钮的使用方法(3)学会用信号发生器产生各种波形信号并进行参数设置;用示波器观察波形、测量电压、频率和相位差(4)理解李萨如图原理,掌握波形合成方法及相关规律2. 实验仪器任意波形发生器、数字双踪示波器任意波形发生器主要功能:✓产生各种波形信号✓对信号进行参数设置显示屏幕✓输出各种波形信号数字双踪示波器主要功能:✓输入和显示各种波形信号✓对信号进行各种参数(频率、周期、振幅、相位差等)测量✓合成波形信号(李萨如图)3. 实验步骤(1)在任意波形发生器上显示出各种波形图①按View键,切换界面显示模式为单通道图形模式②按各波形对应的键Sine/Square/Ramp/Pulse/Noise/Arb,观察屏幕上对应显示出来的正弦波、方波、锯齿波、脉冲波、噪声波、任意波。

(2)练习正弦波信号的参数设置与输出①按View键,切换界面显示模式为单通道常规模式单通道②按Sine 键,波形图标变为正弦信号。

按下频率/幅值/偏移/相位下面相对应的按键,对各参数值进行设置。

注:系统默认的正弦波参数为:频率1kHz ,幅值5.0VPP ,偏移量0VDC ,初始相位为0°周期注意:周期和频率共用一个键CH1正弦波信号的参考设置参数值:频率1kHz ,幅值4.0V ,相位30°★参数值设置方法:a.直接旋转圆形旋钮改变当前设置值的大小圆形旋钮只可改变当前单位或量级的数值大小,无法选择单位或量级b.用数字键盘直接输入参数值输入方式:数字键盘输入数字→屏幕下方对应按键选择单位数字键盘③按View键,切换界面显示模式为单通道图形模式,读取设置后正弦波的各项参数Vpp——幅值VDC——偏移相位④分别对两个正弦波信号进行参数(频率)设置。

按键,切换当前正弦波信号为CH2,并按步骤②的方法进行参数(频率)设置。

常用电子仪器的使用实验报告

常用电子仪器的使用实验报告

常用电子仪器的使用实验报告一、实验目的本实验旨在让我们熟悉并掌握几种常用电子仪器的基本使用方法,包括示波器、函数信号发生器、数字万用表等,通过实际操作和测量,提高我们对电子电路的理解和实践能力。

二、实验仪器1、示波器:用于观察和测量电信号的波形、幅度、频率等参数。

2、函数信号发生器:能产生各种不同类型的信号,如正弦波、方波、三角波等。

3、数字万用表:用于测量电压、电流、电阻等电学量。

三、实验原理1、示波器工作原理示波器通过在垂直方向上显示电信号的幅度变化,在水平方向上显示时间变化,从而形成电信号的波形图像。

它利用电子束在荧光屏上的偏转来显示信号,其偏转程度与输入信号的电压成正比。

2、函数信号发生器工作原理函数信号发生器内部通常包含振荡器、放大器和输出电路等部分。

通过设置不同的参数,如频率、幅度、波形类型等,可以产生所需的电信号。

3、数字万用表工作原理数字万用表基于数字电路技术,将输入的电学量转换为数字信号进行测量和显示。

它通过内部的测量电路和 A/D 转换器,将测量值以数字形式呈现出来。

四、实验步骤1、示波器的使用(1)接通示波器电源,预热一段时间,使其性能稳定。

(2)选择合适的探头,并将其连接到示波器的输入通道。

(3)调节“垂直灵敏度”旋钮,使波形在屏幕上显示合适的幅度。

(4)调节“水平扫描速度”旋钮,使波形在屏幕上显示完整的周期。

(5)观察并测量信号的幅度、周期等参数。

2、函数信号发生器的使用(1)将函数信号发生器的输出端与示波器的输入端相连。

(2)打开函数信号发生器电源,选择所需的波形类型,如正弦波。

(3)调节“频率调节”旋钮,改变输出信号的频率。

(4)调节“幅度调节”旋钮,改变输出信号的幅度。

3、数字万用表的使用(1)选择合适的测量挡位,如测量电压时选择“电压挡”。

(2)将表笔正确插入测量插孔,红色表笔接正,黑色表笔接负。

(3)将表笔与被测电路或元件并联(测量电压)或串联(测量电流),读取测量值。

示波器的原理和使用实验报告【可编辑范本】

示波器的原理和使用实验报告【可编辑范本】

大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间2008年11月18日,第13周,星期二第5-6节实验名称 示波器的原理与使用教师评语实验目的与要求:(1) 了解示波器的工作原理(2) 学习使用示波器观察各种信号波形 (3) 用示波器测量信号的电压、频率和相位差主要仪器设备:YB4320G 双踪示波器, EE 1641B 型函数信号发生器实验原理和内容: 1. 示波器基本结构示波器主要由示波管、放大和衰减系统、触发扫描系统和电源四部分组成, 其中示波管是核心部分。

示波管的基本结构如下图所示, 主要由电子枪、偏转系统和荧光屏三个部分组成, 由外部玻璃外壳密封在真空环境中。

成 绩教师签字电子枪的作用是释放并加速电子束。

其中第一阳极称为聚焦阳极, 第二阳极称为加速阳极。

通过调节两者的共同作用, 可以使电子束打到荧光屏上产生明亮清晰的圆点. 偏转系统由X 、Y 两对偏转板组成, 通过在板上加电压来使电子束偏转, 从而对应地改变屏上亮点的位置。

荧光屏上涂有荧光粉, 电子打上去时能够发光形成光斑。

不同荧光粉的发光颜色与余辉时间都不同。

放大和衰减系统用于对不同大小的输入信号进行适当的缩放, 使其幅度适合于观测。

扫描系统的作用是产生锯齿波扫描电压(如左上图所示), 使电子束在其作用下匀速地在荧光屏周期性地自左向右运动, 这一过程称为扫描。

扫描开始的时间由触发系统控制. 2. 示波器的显示波形的原理如果只在竖直偏转板加上交变电压而X 偏转板上五点也是, 电子束在竖直方向上来回运动而形成一条亮线, 如左图所示:如果在Y偏转板和X 偏转板上同时分别加载正弦电压和锯齿波电压, 电子受水平竖直两个方向的合理作用下, 进行正弦震荡和水平扫描的合成运动, 在两电压周期相等时, 荧光屏上能够显示出完整周期的正弦电压波形, 显像原理如右图所示:3. 扫描同步为了完整地显示外界输入信号的周期波形, 需要调节扫描周期使其与外界信号周期相同或成合适的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验1 示波器、函数信号发生器的原理及使用
【实验目的】
1. 了解示波器、函数信号发生器的工作原理。

2. 学习调节函数信号发生器产生波形及正确设置参数的方法。

3. 学习用示波器观察测量信号波形的电压参数和时间参数。

4. 通过李萨如图形学习用示波器观察两个信号之间的关系。

【实验仪器】
1. 示波器DS5042型,1台。

2. 函数信号发生器DG1022型,1台。

3. 电缆线(BNC 型插头),2条。

【实验内容与步骤】
1. 利用示波器观测信号的电压和频率
(1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-1所示的正余弦波形,显示在示波屏上。

图1-1 函数信号发生器生成的正、余弦信号的波形
学生姓名/学号
指导教师
上课时间 第 周 节
(2)用示波器对图1-1中所示的正余弦波形进行测量并填写下表
表1-1 正余弦信号的电压和时间参数的测量
电压参数(V)时间参数
峰峰值最大值最小值频率(Hz)周期(ms)正弦信号
3sin(200πt)
余弦信号
3cos(200πt)
2. 用示波器观测函数信号发生器产生的正余弦信号的李萨如图形
(1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-2所示的正余弦波形的李萨如图形,调节并正确显示在示波屏上。

图1-2 正弦信号3sin(200πt)和余弦信号3cos(200πt)的李萨如图形
3. 观测相同幅值、相同频率、不同相位差条件下的两正弦信号的李萨如图形
(1)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+45º),观测并记录两正弦信号的李萨如图形于图1-3中。

(2)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+135º),观测并记录两正弦信号的李萨如图形于图1-3中。

图1-3 相角差为45 º和135 º时的李萨如图形
(3)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+0º),观测并记录两正弦信号的李萨如图形于图1-4中。

(4)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+180º),观测并记录两正弦信号的李萨如图形于图1-4中。

图1-4 相角差为0 º和180 º时的李萨如图形
4. 观测相同频率、相同相位差,但不同幅值条件下两正弦信号的李萨如图形
(1)调节函数信号发生器的CH1通道产生3sin(200πt)的正弦信号,调节函数信号发生器的CH2通道产生2cos(200πt)的正弦信号,调节示波器观测两正弦信号的李萨如图形并记录到图1-5中。

(2)调节函数信号发生器的CH1通道产生2sin(200πt)的正弦信号,调节函数信号发生器的CH2通道产生3cos(200πt)的正弦信号,调节示波器观测两正弦信号的李萨如图形并记
录到图1-5中。

图1-5 不同幅值的正余弦波形的李萨如图形
5. 观测不同频率条件下的两正弦信号
的李萨如图形
(1)调节函数信号发生器的CH1通
道产生sin(200πt)的正弦信号,调节函数信
号发生器的CH2通道产生2cos(400πt)的
正弦信号,调节示波器观测两正弦信号的
李萨如图形并记录到图1-6中。

(2)实验指导教师检查并签字。

图1-6 不同频率条件下的两正弦信号的李萨如图形
6. 自拟方案观测两正弦信号的李萨如图形并进行分析。

(选做)
【实验总结】
1. 用数学方法分析图1-2、图1-4、图1-5、图1-6中的李萨如图形的正确性。

(必做)
2. 用数学方法分析图1-3中的李萨如图形的正确性。

(选做)
3. 记录自拟方案观测两正弦信号的李萨如图形的实验过程,用数学方法分析所生成的李萨如图形的正确性。

(选做)
4. 对本次实验的意见、建议及质疑。

(必做)。

相关文档
最新文档