数字滤波的优点及10种常用数字滤波方法比较
简述数字滤波的概念及方法
简述数字滤波的概念及方法数字滤波是一种在数字信号处理领域中广泛使用的算法,用于对数字信号进行滤波、降噪、去基线等处理。
本文将简要介绍数字滤波的概念及方法。
一、数字滤波的概念数字滤波是指在数字信号处理系统中,使用计算机算法对数字信号进行滤波的方法。
数字信号是指用二进制数字表示的音频、视频等信号,这些信号在传输、处理过程中常常受到噪声、失真等影响,需要进行滤波来去除这些干扰。
数字滤波的方法可以分为两大类:基于差分的和基于频域的。
1. 基于差分的滤波基于差分的滤波是指使用一组基线差分信号作为滤波器输入,输出是一个差分信号。
该方法的优点是不需要对信号进行采样,缺点是在频率响应上可能存在局部噪声。
2. 基于频域的滤波基于频域的滤波是指使用频域表示信号的方法,通过对信号进行傅里叶变换,得到滤波器的频率响应。
该方法的优点是可以在保留基线信息的同时,去除噪声和失真,缺点是需要对信号进行采样,并且计算量较大。
二、数字滤波的方法数字滤波的方法可以分为以下几种:1. 带通滤波器带通滤波器是指只能让信号通过,不能阻止信号通过的滤波器。
该方法适用于去除噪声和基线,但可能会丢失高频信息。
2. 高通滤波器高通滤波器是指只能让信号通过,不能阻止信号通过的滤波器。
该方法适用于去除噪声和高频信息,但可能会丢失低频信息。
3. 带阻滤波器带阻滤波器是指只能让信号通过,不能阻止信号通过的滤波器。
该方法适用于去除噪声和基线,并且可以保留高频信息。
4. 低通滤波器低通滤波器是指只能让信号通过,不能阻止信号通过的滤波器。
该方法适用于去除噪声和高频信息,并且可以保留低频信息。
5. 中心频率加权滤波器中心频率加权滤波器是指根据信号的中心频率进行加权的滤波器。
该方法适用于去除高频噪声和失真,但可能会丢失基线信息。
三、数字滤波的应用数字滤波在音频处理中的应用包括均衡器、压缩器、降噪器等;在视频处理中的应用包括去噪、去斑、去雾等。
此外,数字滤波也被广泛应用于信号处理、图像处理、通信等领域。
常见数字滤波技术与原理
常见数字滤波技术与原理数字滤波技术是一种在数字信号处理中广泛应用的技术。
它通过在数字信号中加入一些特定的滤波器,以减少噪声、平滑信号或提取特定特征。
数字滤波器通常由数字信号处理软件或硬件实现,具有精度高、稳定性好、易于编程等优点。
常见的数字滤波技术包括移动平均滤波、滑动窗口滤波、傅里叶变换滤波等。
1. 移动平均滤波移动平均滤波是一种简单而有效的数字滤波方法。
它通过计算输入信号在一定时间窗口内的平均值,以平滑信号中的噪声。
移动平均滤波器通常由一个滑动窗口和一个累加器组成,窗口内的数据逐个进入累加器,并输出窗口内的平均值。
移动平均滤波器适用于消除随机噪声和周期性噪声。
2. 滑动窗口滤波滑动窗口滤波是一种基于滑动窗口的数字滤波方法。
它通过将输入信号分成多个固定长度的窗口,并对每个窗口内的数据进行处理,以提取特定特征或平滑噪声。
滑动窗口滤波器通常由一个滑动窗口和一个处理函数组成,窗口内的数据逐个进入处理函数,并输出处理结果。
滑动窗口滤波器适用于提取信号中的特定特征或平滑信号中的噪声。
3. 傅里叶变换滤波傅里叶变换滤波是一种基于傅里叶变换的数字滤波方法。
它通过将输入信号从时域转换到频域,以提取信号中的特定频率成分或消除特定频率成分。
傅里叶变换滤波器通常由一个傅里叶变换和一个逆傅里叶变换组成,输入信号经过傅里叶变换后得到频谱图,然后通过逆傅里叶变换将频谱图转换回时域。
傅里叶变换滤波器适用于提取信号中的特定频率成分或消除特定频率成分。
以上是常见数字滤波技术与原理的简要介绍。
在实际应用中,需要根据具体需求选择合适的数字滤波技术,以达到最佳的信号处理效果。
数字滤波器优缺点
数字滤波器优缺点数字滤波器是一种能够处理数字信号的设备,它可以对信号进行滤波处理,去除或者减弱信号中的某些成分,以期望得到符合需求的信号。
数字滤波器广泛应用于各种工程领域,如通信、音频处理、图像处理等,其在信号处理中扮演着重要的角色。
在实际应用中,数字滤波器既有各自的优点,也存在一些局限性。
优点1.灵活性强:与模拟滤波器相比,数字滤波器更加灵活多样,可以很容易地实现各种滤波算法和功能。
2.精确性高:数字滤波器在运算过程中不受模拟元件的误差影响,能够提供较高的滤波精度和稳定性。
3.易于实现:数字滤波器可以通过编程语言在数字处理器或者嵌入式系统中实现,非常适合自动化生产和大规模应用。
4.可调性强:数字滤波器参数可以进行软件调节,可以根据需要随时更改滤波特性,提高了应用的灵活性。
5.可靠性高:数字滤波器结构简单,元器件稳定,故可靠性较高,且易于维护和升级。
缺点1.抗混叠性:在处理高频信号时,数字滤波器需要进行抗混叠处理,否则可能出现混叠误差,影响滤波效果。
2.时滞现象:数字滤波器存在处理延迟,导致信号输出在输入信号之后,这种时滞可能对某些实时性要求高的应用产生不利影响。
3.量化误差:数字滤波器在模拟信号转换为数字信号时,存在量化误差,会对滤波结果产生一定的影响。
4.复杂度:某些高级数字滤波器需要较复杂的算法和大量的计算,对硬件和软件实现都提出了一定的挑战。
结语数字滤波器作为数字信号处理的关键工具,具有诸多优点和一定的局限性。
在实际应用中,我们可以根据具体需求和工程背景选择合适的数字滤波器,充分发挥其优点,同时针对缺点采取有效的补偿措施,以确保信号处理的准确性和稳定性。
在今后的发展中,数字滤波器将继续发挥重要作用,为各类工程问题提供有效的信号处理解决方案。
数字信号处理中的滤波算法比较
数字信号处理中的滤波算法比较数字信号处理在现代通讯、音频、图像领域被广泛应用,而滤波技术则是数字信号处理中最核心和关键的技术之一。
随着新一代数字信号处理技术的发展,各种高效、高精度的数字滤波算法层出不穷,其中经典的滤波算法有FIR滤波器和IIR 滤波器。
下面将对它们进行比较分析。
一、FIR滤波器FIR滤波器是一种实现数字滤波的常用方法,它采用有限长冲激响应技术进行滤波。
FIR滤波器的主要特点是线性相位和稳定性。
在实际应用中,FIR滤波器常用于低通滤波、高通滤波和带通滤波。
优点:1. 稳定性好。
FIR滤波器没有反馈环,不存在极点,可以保证系统的稳定性。
2. 线性相位。
FIR滤波器的相位响应是线性的,可达到非常严格的线性相位要求。
3. 不会引起振荡。
FIR滤波器的频率响应是光滑的,不会引起振荡。
缺点:1. 会引入延迟。
由于FIR滤波器的冲击响应是有限长的,所以它的输出需要等待整个冲击响应的结束,这就会引入一定的延迟时间,造成信号的延迟。
2. 对于大的滤波器阶数,计算量较大。
二、IIR滤波器IIR滤波器是一种有反馈的数字滤波器,在数字信号处理中得到广泛的应用。
IIR滤波器可以是无限长冲激响应(IIR)或者是有限长冲激响应(FIR)滤波器。
IIR滤波器在实际应用中,可以用于数字滤波、频率分析、系统建模等。
优点:1. 滤波器阶数较低。
IIR滤波器可以用较低的阶数实现同等的滤波效果。
2. 频率响应的切变特性好。
IIR滤波器的特性函数是有极点和零点的,这些极点和零点的位置可以调整滤波器的频率响应,进而控制滤波器的切变特性。
3. 运算速度快。
由于IIR滤波器的计算形式简单,所以在数字信号处理中的运算速度通常比FIR滤波器快。
缺点:1. 稳定性问题。
由于IIR滤波器采用了反馈结构,存在稳定性问题,当滤波器的极点分布位置不合适时,就容易产生不稳定的结果。
2. 失真问题。
与FIR滤波器不同,IIR滤波器的输出会被反馈到滤波器的输入端,这就可能导致失真问题。
数字信号处理中常见滤波算法详解
数字信号处理中常见滤波算法详解数字信号处理(Digital Signal Processing,DSP)中的滤波算法是处理信号的重要手段之一。
滤波算法可以对信号进行去除噪声、增强信号特征等操作,广泛应用于通信、音频处理、图像处理等领域。
本文将详细介绍数字信号处理中常见的滤波算法,包括FIR滤波器、IIR滤波器、傅里叶变换和小波变换等。
首先,我们来介绍FIR滤波器(Finite Impulse Response Filter)。
FIR滤波器是一种线性相位滤波器,其特点是零相位延迟响应。
FIR滤波器可以通过离散时间域的卷积运算来实现,其滤波系数在有限长时间内保持不变。
常见的FIR滤波器设计方法包括窗函数法、频率采样法等。
其中,窗函数法通过选择适当的窗函数和截断长度来设计滤波器,常见的窗函数有矩形窗、汉宁窗、汉明窗等。
频率采样法则通过在频率域上采样若干离散点并计算出滤波器的频率响应,然后通过反变换得到滤波器的时域响应。
FIR滤波器具有易于实现、稳定性好等优点,在数字信号处理中得到广泛应用。
其次,我们来介绍IIR滤波器(Infinite Impulse Response Filter)。
与FIR滤波器不同,IIR滤波器的系统函数中包含了反馈回路,因此其响应不仅依赖于当前输入样本,还依赖于历史输入样本和输出样本。
IIR滤波器与FIR滤波器相比,具有更高的滤波效率,但也存在着稳定性较差、相位畸变等问题。
常见的IIR滤波器设计方法有脉冲响应不变法、双线性变换法等。
脉冲响应不变法通过将连续时间域的系统函数变换为离散时间域的差分方程来实现,而双线性变换则通过将连续时间域的系统函数变换为离散时间域的差分方程,并在频率响应上进行双线性变换。
IIR滤波器在音频处理、图像增强等领域得到了广泛应用。
傅里叶变换也是数字信号处理中常用的滤波算法。
傅里叶变换将时域信号转换为频域信号,可以实现将信号中的不同频率成分分离出来的目的。
第5章(过程控制数据处理方法-数字滤波技术)
R3,38H
7.1.2 算术平均值滤波
DATA EQU 20H MED1 EQU 30H COUNT EQU 33H MED2 EQU 36H
7.1.2 算术平均值滤波
说明: 算术平均滤波主要用于对周期脉动的采样值进行
平滑加工(如压力、流量等) 对脉冲性干扰的平滑作用尚不理想。 随着 N值的增大,平滑度将提高,灵敏度降低。 经验数据:流量参数滤波时,N取12次,压力取4
1
N 1
X (i)
N 2
N 2 i2
(7-10)
2、双重滤波的方法
把采样值经过低通滤波后,再经过一次高通滤波, 这实际上相当于多级 RC 滤波器。
微机控制技术
7 .1 .6 复合数字滤波
多级数字滤波:
第一级滤波:Y(k) AY(k 1) BX(k)
第二级滤波: Z(k) AZ(k 1) BY(k) Z(k) AZ (k 1) ABY (k 1) B2 X (k) Z(k) 2AZ (k 1) A2Z(k 2) B2 X (k)
(2)应用场合:
当采样信号由于随机干扰,如大功率用电设备的 启动或停止,造成电流的尖峰干扰或误检测,以及变 送器不稳定而引起的严重失真等,可采用程序判断法 进行滤波。
微机控制技术
滤波方法——限幅滤波 和 限速滤波
1.限幅滤波 作法: |Y(k)-Y(k-1)|≤△Y,则取Y(k)= Y(k) |Y(k)-Y(k-1)| >△Y,则Y(k)= Y(k-1)
数据处理--计算机在对这些数字量进行显示和控制之前, 还必须根据需要进行相应的数值计算即数据处理。 为了满足不同系统的需要,设计出了许多有效的 数据处理技术方法,如测量数据预处理,数字滤 波,量程自动转换和标度变换等。
地中平台秤的数字滤波算法研究
地中平台秤的数字滤波算法研究地中平台秤是一种用于测量物体重量的装置,特别适用于工业领域的重量测量。
然而,秤的测量结果往往会受到外界环境的影响而产生不稳定性,因此需要采用一种数字滤波算法来提高测量结果的精确度和稳定性。
数字滤波算法是一种通过对时间序列数据进行计算和处理,消除噪声和干扰信号的方法。
对于地中平台秤来说,数字滤波算法可以用于滤除来自环境震动、温度变化、电磁干扰等因素引起的测量误差。
本文将重点研究几种常用的数字滤波算法并分析其优缺点。
首先,最简单的滤波算法是移动平均滤波法。
该方法通过计算一段时间内的测量值的平均值来减少噪声的影响。
移动平均滤波算法的优点是实现简单,计算速度快,在一定程度上能够减小测量误差。
然而,这种方法也存在一些缺点,比如滤波效果受到窗口大小的限制,窗口大小越大则滤波效果越好,但同时也会导致滞后效应。
其次,卡尔曼滤波算法是一种常用的适用于连续系统的滤波算法。
卡尔曼滤波算法通过对测量结果和预测结果进行加权平均来得到最终的滤波结果,使得滤波后的数据能够更准确地反映真实值。
与移动平均滤波算法相比,卡尔曼滤波算法还能够估计系统的状态变化,从而进一步提高滤波效果。
然而,卡尔曼滤波算法的缺点是需要对系统模型和测量噪声进行预先估计,而这些参数估计的准确性会对滤波结果产生影响。
另外,中值滤波算法是一种非线性滤波算法,适用于处理尖峰噪声和孤立噪声的情况。
中值滤波算法通过计算一组数据的中位数来代替原有数据中存在的噪声值,从而达到滤波的效果。
相较于前两种算法,中值滤波算法的优点是能够保持信号的边缘特征和细节信息,而且对于扩展的脉冲信号和尖峰噪声有着良好的抑制效果。
然而,中值滤波算法的缺点是窗口大小选择的问题,窗口大小过大会导致滤波结果的平滑化效果不佳,而过小则会降低滤波效果。
最后,自适应滑动平均滤波算法是一种结合了移动平均滤波和中值滤波的方法。
该算法根据测量结果的不确定性和变化程度来决定采用移动平均滤波还是中值滤波,从而实现自适应滤波。
iir数字滤波
iir数字滤波(实用版)目录1.IIR 数字滤波器的概念2.IIR 数字滤波器的分类3.IIR 数字滤波器的优点4.IIR 数字滤波器的缺点5.IIR 数字滤波器的应用领域正文I.IIR 数字滤波器的概念IIR(Infinite Impulse Response,无限脉冲响应)数字滤波器是一种数字滤波器,其特点是在数字域中实现无限脉冲响应。
IIR 数字滤波器通过对数字信号进行加权求和,达到滤除噪声、调整频率响应等目的,从而改善信号质量。
II.IIR 数字滤波器的分类根据 IIR 数字滤波器的结构和实现方式,可以将其分为以下几类:1.直接型 IIR 滤波器:直接型 IIR 滤波器是基于脉冲响应的数字滤波器,其结构简单,但计算复杂度较高。
2.间接型 IIR 滤波器:间接型 IIR 滤波器通过离散傅里叶变换(DFT)或快速傅里叶变换(FFT)将滤波器的脉冲响应转换为频域滤波器,从而降低计算复杂度。
3.有限脉冲响应 IIR 滤波器:有限脉冲响应 IIR 滤波器是一种改进型的 IIR 滤波器,通过限制脉冲响应的长度,降低计算复杂度。
III.IIR 数字滤波器的优点1.实现简单:IIR 数字滤波器的结构相对简单,易于实现和编程。
2.计算效率高:相比于其他类型的数字滤波器,IIR 数字滤波器具有较高的计算效率。
3.频率响应可调:IIR 数字滤波器的频率响应可以通过调整滤波器的参数实现,具有较好的灵活性。
IV.IIR 数字滤波器的缺点1.稳定性问题:IIR 数字滤波器存在稳定性问题,当滤波器的参数选取不当时,可能导致滤波器不稳定,产生振荡。
2.频谱泄漏:IIR 数字滤波器在滤波过程中,可能出现频谱泄漏现象,即滤波后的信号中仍包含原信号的高频成分。
3.精度限制:IIR 数字滤波器的精度受限于其参数的取值范围,当参数取值范围较小时,滤波器的精度较低。
V.IIR 数字滤波器的应用领域1.信号处理:IIR 数字滤波器广泛应用于信号处理领域,如噪声抑制、信号滤波等。
数字信号处理中的滤波算法
数字信号处理中的滤波算法在数字信号处理领域中,滤波算法是一种广泛应用的技术,用于处理信号中的噪声、干扰以及其他所需的频率响应调整。
滤波算法通过改变信号的频谱特性,实现信号的增强、去噪和频率分析等功能。
本文将介绍几种常见的数字信号处理中的滤波算法,包括低通滤波、高通滤波、带通滤波和带阻滤波。
一、低通滤波算法低通滤波算法是一种常见的滤波算法,用于去除高频信号成分,保留低频信号。
该算法通过选择适当的截止频率,将高于该频率的信号部分进行衰减。
常见的低通滤波算法有巴特沃斯滤波器、滑动平均滤波器和无限脉冲响应滤波器(IIR)等。
巴特沃斯滤波器是一种常见的无波纹、无相位失真的低通滤波器。
它通过设计适当的传递函数,实现对高频信号的衰减。
巴特沃斯滤波器的特点是具有平滑的频率响应曲线和较好的陡峭度。
滑动平均滤波器是一种简单的低通滤波算法。
它通过取信号一段时间内的平均值,实现对高频成分的平滑处理。
滑动平均滤波器适用于对周期性干扰信号的去噪,以及对信号进行平滑处理的场景。
无限脉冲响应滤波器(IIR)是一种递归滤波器,具有较高的计算效率和频率选择能力。
IIR滤波器通过对输入信号和输出信号进行递推计算,实现对高频信号的衰减和滤除。
然而,在一些特殊应用场景中,IIR滤波器可能会引入稳定性和相位失真等问题。
二、高通滤波算法与低通滤波相反,高通滤波算法用于去除低频信号成分,保留高频信号。
高通滤波算法通常用于信号的边缘检测、图像锐化和音频增强等处理。
常见的高通滤波算法有巴特沃斯滤波器、无限脉冲响应滤波器和基于梯度计算的滤波器等。
巴特沃斯滤波器同样适用于高通滤波。
通过设计适当的传递函数,巴特沃斯滤波器实现对低频信号的衰减,保留高频信号。
巴特沃斯高通滤波器的特点是具有平滑的频率响应曲线和较好的陡峭度。
无限脉冲响应滤波器同样具有高通滤波的功能。
通过对输入信号和输出信号进行递推计算,IIR滤波器实现对低频信号的衰减和滤除。
然而,IIR滤波器在一些特殊应用场景中可能引入稳定性和相位失真等问题。
10种简单的数字滤波C语言源程序算法
10种简单的数字滤波C语言源程序算法(2009-11-09 10:25:08)假定从8位AD中读取数据(如果是更高位的AD可定义数据类型为int),子程序为get_ad();1、限幅滤波法(又称程序判断滤波法)A、方法:根据经验判断,确定两次采样允许的最大偏差值(设为A)每次检测到新值时判断:如果本次值与上次值之差<=A,则本次值有效如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值B、优点:能有效克服因偶然因素引起的脉冲干扰C、缺点无法抑制那种周期性的干扰平滑度差2、中位值滤波法A、方法:连续采样N次(N取奇数)把N次采样值按大小排列取中间值为本次有效值B、优点:能有效克服因偶然因素引起的波动干扰对温度、液位的变化缓慢的被测参数有良好的滤波效果C、缺点:对流量、速度等快速变化的参数不宜3、算术平均滤波法A、方法:连续取N个采样值进行算术平均运算N值较大时:信号平滑度较高,但灵敏度较低N值较小时:信号平滑度较低,但灵敏度较高N值的选取:一般流量,N=12;压力:N=4B、优点:适用于对一般具有随机干扰的信号进行滤波这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动C、缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用比较浪费RAM4、递推平均滤波法(又称滑动平均滤波法)A、方法:把连续取N个采样值看成一个队列队列的长度固定为N每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点:对周期性干扰有良好的抑制作用,平滑度高适用于高频振荡的系统C、缺点:灵敏度低对偶然出现的脉冲性干扰的抑制作用较差不易消除由于脉冲干扰所引起的采样值偏差不适用于脉冲干扰比较严重的场合比较浪费RAM5、中位值平均滤波法(又称防脉冲干扰平均滤波法)A、方法:相当于“中位值滤波法”+“算术平均滤波法”连续采样N个数据,去掉一个最大值和一个最小值然后计算N-2个数据的算术平均值N值的选取:3~14B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:测量速度较慢,和算术平均滤波法一样比较浪费RAM6、限幅平均滤波法A、方法:相当于“限幅滤波法”+“递推平均滤波法”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理B、优点:融合了两种滤波法的优点对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差C、缺点:比较浪费RAM7、一阶滞后滤波法A、方法:取a=0~1本次滤波结果=(1-a)*本次采样值+a*上次滤波结果B、优点:对周期性干扰具有良好的抑制作用适用于波动频率较高的场合C、缺点:相位滞后,灵敏度低滞后程度取决于a值大小不能消除滤波频率高于采样频率的1/2的干扰信号8、加权递推平均滤波法A、方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权通常是,越接近现时刻的数据,权取得越大。
matlab11种数字信号滤波去噪算法
matlab11种数字信号滤波去噪算法Matlab是一种强大的数学软件,广泛应用于信号处理领域。
在数字信号处理中,滤波去噪是一个重要的任务,可以提高信号的质量和准确性。
本文将介绍Matlab中的11种数字信号滤波去噪算法。
1. 均值滤波:该算法通过计算信号中一定窗口内的像素平均值来去除噪声。
它适用于高斯噪声和椒盐噪声的去除。
2. 中值滤波:该算法通过计算信号中一定窗口内的像素中值来去除噪声。
它适用于椒盐噪声的去除。
3. 高斯滤波:该算法通过对信号进行高斯模糊来去除噪声。
它适用于高斯噪声的去除。
4. 维纳滤波:该算法通过最小均方误差准则来估计信号的真实值,并去除噪声。
它适用于高斯噪声的去除。
5. 自适应滤波:该算法通过根据信号的局部特性来调整滤波器的参数,从而去除噪声。
它适用于非线性噪声的去除。
6. 小波去噪:该算法通过将信号分解为不同频率的小波系数,并对系数进行阈值处理来去除噪声。
它适用于各种类型的噪声的去除。
7. Kalman滤波:该算法通过对信号进行状态估计和观测更新来去除噪声。
它适用于线性系统的去噪。
8. 粒子滤波:该算法通过使用一组粒子来估计信号的状态,并通过重采样来去除噪声。
它适用于非线性系统的去噪。
9. 线性预测滤波:该算法通过使用线性预测模型来估计信号的未来值,并去除噪声。
它适用于平稳信号的去噪。
10. 自适应线性组合滤波:该算法通过对信号进行线性组合来估计信号的真实值,并去除噪声。
它适用于各种类型的噪声的去除。
11. 稀疏表示滤波:该算法通过使用稀疏表示模型来估计信号的真实值,并去除噪声。
它适用于各种类型的噪声的去除。
以上是Matlab中的11种数字信号滤波去噪算法。
每种算法都有其适用的场景和优缺点,根据具体的信号和噪声类型选择合适的算法进行去噪处理。
Matlab提供了丰富的函数和工具箱,可以方便地实现这些算法,并对信号进行滤波去噪。
通过合理选择和组合这些算法,可以有效提高信号的质量和准确性,为后续的信号处理任务提供更好的基础。
基于PLC的数字滤波器设计
基于PLC的数字滤波器设计蔡红斌(湖北职业技术学院机电工程系,湖北孝感 432000)[摘要] 文章介绍了PLC控制系统中对模拟信号进行中值平均滤波处理,并给出了一种数字滤波程序的设计方法。
[关键词] 信号;干扰;噪声;数字滤波;PLC0引言由于工业控制现场的环境往往比较恶劣,干扰源比较多,如环境温度、湿度、电场及磁场等。
因此,在控制系统的输入信号中,均含有种种干扰成份(噪音),既有周期性的,也有随机性的,为了进行准确测量和控制,提高系统的性能,在进行数据处理和调节控制之前,必须先消除(或抑制)被测信号中的噪音。
如周期性干扰的典型代表为50Hz的工频干扰,对于这类信号,可采用积分时间等于20ms的整数倍的双积分A/D转换器,即可抑制其影响。
在PLC等控制系统中,除采用硬件措施提高系统的抗干扰能力外,还可充分发挥软件优势,用数字滤波的方法削弱和滤除干扰和噪音,其在控制系统中的地位如图1所示。
图1 数字滤波在控制系统中的地位所谓数字滤波,就是通过一定的计算或判断程序减少干扰在有用信号中的比重,故实质上它是一种程序滤波。
[1]数字滤波器与RC等模拟滤波器相比,有如下优点:1)1)数字滤波器是用程序实现的,不需要增加硬件设备,不存在阻抗匹配等问题,可靠性高。
2)2)可以对频率很低的信号实现滤波,而模拟滤波器由于受电容容量的影响,频率不能太低。
3)3)数字滤波可以根据信号的不同,采用不同的滤波方法或滤波参数,具有灵活、方便的特点。
正因为数字滤波器具有上述优点,所以在PLC等计算机控制系统中得到了广泛的应用。
1常用的数字滤波方法在控制系统中,输入信号有模拟信号和数字信号之分,数字信号的滤波多采用延时滤波法。
而模拟信号的数字滤波的方法较多,常见的有:限幅滤波法、中值滤波法、算术平均滤波法、递推平均滤波法、中值平均滤波法、限幅平均滤波法、一阶滞后滤波法、加权递推平均滤波法、消抖滤波法、限幅消抖滤波法等,它们各有优缺点,在实际的PLC控制系统中,我们可以针对不同的被控对象和特定的应用场合,采用不同的滤波方法,下面以中值平均滤波法为例说明其在PLC控制系统中的应用。
常用数字滤波算法
已滤波的采样结果: yn 1,yn 2 , yn 1
两次采样值的最大允许误差a.要求准确
估计Vmax和采样周期T。
2.中值滤波法
中值滤波是一种典型的非线性滤波器,它运 算简单,在滤除脉冲噪声的同时可以很好地 保护信号的细节信息。
对某一被测参数连续采样n次(一般n应为奇 数),然后将这些采样值进行排序,选取中 间值为本次采样值。
对温度、液位等缓慢变化的被测参数,采用 中值滤波法一般能收到良好的滤波效果。
设滤波器窗口的宽度为n=2k+1,离散时间信号x (i)的长度为N,(i=1,2,…,N;N>>n),
则当窗口在信号序列上滑动时,一维中值滤波 器的输出:
med[x(i)]=x(k) 表示窗口2k+1内排序的第k
个值,即排序后的中间值。
原始信号
中值滤波后的信号
对不同宽度脉冲滤波效果
3.基于拉依达准则的奇异数据滤波法 (剔除粗大误差)
滑动平均滤波法把N个测量数据看成一 个队列,队列的长度固定为N,每进行 一次新的采样,把测量结果放入队尾, 而去掉原来队首的一个数据,这样在 队列中始终有N个“最新”的数据。
Xn
1 N
N 1
Xni
i0
Xn 为第n次采样经滤波后的输出;
X
n
为未经滤波的第n-i次采样值;
i
N为滑动平均项数。
平滑度高,灵敏度低;但对偶然出现的脉冲 性干扰的抑制作用差。实际应用时,通过观 察不同N值下滑动平均的输出响应来选取N值 以便少占用计算机时间,又能达到最好的滤 波效果。
写出数字滤波的几种常用方法(一)
写出数字滤波的几种常用方法(一)数字滤波的几种常用方法引言数字滤波是一种信号处理技术,通过对信号进行处理,减少其噪声和干扰,并提升信号的质量和可靠性。
本文将介绍数字滤波的几种常用方法,包括: 1. 移动平均滤波 2. 中值滤波 3. 加权递推平均滤波 4. IIR滤波器 5. FIR滤波器1. 移动平均滤波移动平均滤波是一种简单而有效的滤波方法,通过计算窗口内数据的平均值来平滑信号。
该方法适用于平稳的信号,并且能够保留信号的整体趋势。
移动平均滤波的步骤如下: - 选择一个窗口大小,通常为奇数,例如5或9。
- 将窗口内的数据求平均值,并将该平均值替换窗口中心的数据点。
- 窗口向前移动一个位置,重复以上步骤,直到滤波完成。
2. 中值滤波中值滤波是一种非线性滤波方法,通过用窗口内的中间值来替换窗口中心的数据点,以抑制噪声和异常值的影响。
中值滤波的步骤如下: - 选择一个窗口大小,通常为奇数,例如3或5。
- 将窗口内的数据排序,并取中间值作为窗口中心的新数值。
- 窗口向前移动一个位置,重复以上步骤,直到滤波完成。
3. 加权递推平均滤波加权递推平均滤波是一种基于加权平均的滤波方法,通过给窗口内的数据点赋予不同的权重来进行滤波。
该方法对于快速变化的信号具有较好的滤波效果。
加权递推平均滤波的步骤如下: - 选择一个窗口大小,通常为奇数,例如3或5。
- 给窗口内的每个数据点赋予一个权重,权重可以根据具体的应用场景进行选择。
- 将窗口内的数据点乘以相应的权重,并计算加权平均值。
- 将加权平均值替换窗口中心的数据点。
- 窗口向前移动一个位置,重复以上步骤,直到滤波完成。
4. IIR滤波器IIR滤波器是一种基于递归差分方程的滤波方法,通过计算输入信号和输出信号的差分来进行滤波。
该方法具有较高的滤波效果和较少的计算复杂度。
IIR滤波器的设计和参数选择较为复杂,可以采用著名的巴特沃斯滤波器、切比雪夫滤波器等方法进行设计。
伺服控制器中常见的数字滤波技术
伺服控制器中常见的数字滤波技术数字滤波技术在伺服控制器中起着至关重要的作用,它可以有效地抑制噪声和抖动,保证信号的准确性和稳定性。
本文将介绍伺服控制器中常见的数字滤波技术,并探讨它们的原理和应用。
1. 移动平均滤波(Moving Average Filter)移动平均滤波是一种简单而常用的滤波技术,其原理是通过取样点附近一定数量的数据点的平均值来平滑数据信号。
移动平均滤波可以实现简单的平滑效果,适用于对信号快速变化不敏感的应用场景。
2. 中值滤波(Median Filter)中值滤波是一种非线性滤波技术,它通过对一组采样数据的中值进行滤波处理,去除了异常值和突发噪声,同时保留了原始信号的边缘信息。
中值滤波适用于处理不规则噪声和脉冲干扰的信号。
3. 低通滤波(Low-pass Filter)低通滤波是一种常见的滤波技术,它能够滤除高频噪声和干扰信号,保留低频信号,从而实现信号的平滑和稳定。
低通滤波器通常采用巴特沃斯滤波器或者滑动平均滤波器来实现。
4. 高通滤波(High-pass Filter)高通滤波是一种能够滤除低频信号而保留高频信号的滤波技术。
在伺服控制器中,常用的高通滤波器有巴特沃斯滤波器和Butterworth滤波器。
高通滤波器主要用于去除直流偏移和低频噪声,保留高频信号。
5. 带通滤波(Band-pass Filter)带通滤波是一种能够滤除低频和高频信号而保留指定频率范围内信号的滤波技术。
带通滤波器常用于频率干扰的去除和信号调谐等应用。
常见的带通滤波器有巴特沃斯滤波器和椭圆滤波器等。
6. 自适应滤波(Adaptive Filter)自适应滤波是一种基于输入信号的特点进行动态调整的滤波技术,它能够根据输入信号的变化来调整滤波器的参数。
自适应滤波器可以自动适应不同的工作环境和输入信号的特点,提供更好的滤波效果。
以上介绍的是在伺服控制器中常见的数字滤波技术,它们在控制系统中起到了重要的作用。
数字滤波器的实现方法
数字滤波器是一种在数字信号处理中广泛使用的工具,用于提取、增强或消除特定频率范围的信号。
数字滤波器的实现方法有很多种,以下是其中几种常见的方法:
IIR滤波器:IIR(无限冲激响应)滤波器是一种常用的数字滤波器,它利用反馈结构实现。
IIR滤波器由两个部分组成:一个反馈路径和一个前馈路径。
反馈路径将输出信号的一部分反馈回输入端,前馈路径则将输入信号直接传递到输出端。
通过调整反馈路径和前馈路径的系数,可以实现对特定频率范围的信号进行增强或抑制。
FIR滤波器:FIR(有限冲激响应)滤波器是一种线性相位滤波器,它通过卷积运算实现。
FIR滤波器的输出是输入信号与一组预定义的系数进行卷积的结果。
这些系数可以设计为对特定频率范围的信号进行增强或抑制。
FIR滤波器的优点是相位响应线性,且没有递归结构,因此更加稳定。
窗函数法:窗函数法是一种设计数字滤波器的方法,它通过将窗函数与输入信号进行卷积来实现滤波。
窗函数的选择会影响滤波器的频率响应特性。
常见的窗函数有汉宁窗、海明窗等。
频率采样法:频率采样法是一种通过在频域采样设计数字滤波器的方法。
这种方法通过对频域的特定点进行采样并优化,从而得到滤波器的系数。
最优逼近法:最优逼近法是一种通过最小化某种误差度量来设计数字滤波器的方法。
这种方法可以设计出具有最优性能的数字滤波器。
以上是几种常见的数字滤波器的实现方法,每种方法都有其优点和适用场景。
在实际应用中,需要根据具体需求选择合适的实现方法。
数字滤波器总结
1数字滤波器的应用领域在信号处理过程中,所处理的信号往往混有噪音,从接收到的信号中消除或减弱噪音是信号传输和处理中十分重要的问题。
根据有用信号和噪音的不同特性,提取有用信号的过程称为滤波,实现滤波功能的系统称为滤波器。
在近代电信设备和各类控制系统中,数字滤波器应用极为广泛,这里只列举部分应用最成功的领域。
(1)语音处理语音处理是最早应用数字滤波器的领域之一,也是最早推动数字信号处理理论发展的领域之一。
该领域主要包括 5 个方面的内容:第一,语音信号分析。
即对语音信号的波形特征、统计特性、模型参数等进行分析计算;第二,语音合成。
即利用专用数字硬件或在通用计算机上运行软件来产生语音;第三,语音识别。
即用专用硬件或计算机识别人讲的话,或者识别说话的人;第四,语音增强。
即从噪音或干扰中提取被掩盖的语音信号。
第五,语音编码。
主要用于语音数据压缩,目前已经建立了一系列语音编码的国际标准,大量用于通信和音频处理。
近年来,这 5 个方面都取得了不少研究成果,并且,在市场上已出现了一些相关的软件和硬件产品,例如,盲人阅读机、哑人语音合成器、口授打印机、语音应答机,各种会说话的仪器和玩具,以及通信和视听产品大量使用的音频压缩编码技术。
(2)图像处理数字滤波技术以成功地应用于静止图像和活动图像的恢复和增强、数据压缩、去噪音和干扰、图像识别以及层析 X 射线摄影,还成功地应用于雷达、声纳、超声波和红外信号的可见图像成像。
(3)通信在现代通信技术领域内,几乎没有一个分支不受到数字滤波技术的影响。
信源编码、信道编码、调制、多路复用、数据压缩以及自适应信道均衡等,都广泛地采用数字滤波器,特别是在数字通信、网络通信、图像通信、多媒体通信等应用中,离开了数字滤波,器几乎是寸步难行。
其中,被认为是通信技术未来发展方向的软件无线电技术,更是以数字滤波技术为基础。
(4)电视数字电视取代模拟电视已是必然趋势。
高清晰度电视的普及指日可待,与之配套的视频光盘技术已形成具有巨大市场的产业;可视电话和会议电视产品不断更新换代。
常用数字滤波方法简介
常用数字滤波方法简介陈翀【摘要】在微机控制系统中,由模拟量输入通道输入的过程参数有线性的,也有非线性的,而且往往携带了过程通道中可能产生的各种干扰,常常不能直接用于运算.必须根据系统要求对采样数据进行处理.这些数据的处理主要包括数字滤波、线性化处理及工程量转换等.本文就普遍采用的数字滤波的方法进行介绍.【期刊名称】《家电科技》【年(卷),期】2015(000)005【总页数】3页(P80-82)【关键词】采样信号;程序;数字滤波【作者】陈翀【作者单位】珠海格力电器股份有限公司广东珠海519070【正文语种】中文1 数字滤波的优点数字滤波实质是一种程序滤波,即通过一定的计算程序,对采样信号进行平滑加工,减少干扰在有用信号中的比重。
与模拟滤波器相比,数字滤波器有以下优点:(1)无需增加硬设备,且可多通道共享一个滤波器(多通道共同调用一个滤波子程序)。
从而降低了成本。
(2)由于不用硬设备,各回路间不存在阻抗匹配等问题,故可靠性高、稳定性好。
(3)可以对频率很低的信号(如0.01Hz)进行滤波,这是模拟滤波器做不到的。
(4)可根据需要选择不同的滤波方法或改变滤波参数,使用方便、灵活。
由于以上优点,数字滤波在微机控制系统中得到了广泛应用。
2 常用的数字滤波方法数字滤波的方法有很多,实际工程应用中,可根据采样信号的特点进行选择。
2.1 程序判断滤波程序判断滤波是根据输入信号的特点,确定出两次采样输入信号可能出现的最大偏差。
若超过此偏差,则表明输入信号是干扰信号,应该去掉;如果小于此偏差值,可将信号作为本次采样值。
程序判断滤波又可分为限幅和限速两种。
2.1.1 限幅滤波限幅滤波的做法是把两次相邻的采样值相减,求出其增量(以绝对值表示),然后与两次采样允许的最大差值(由被控对象的实际情况决定)△Y进行比较,若小于或等于△Y,则本次采样值有效,若大于△Y,则仍取上次采样值作为本次采样值,程序流程如图1。
其中Y(K)为第K次采样值,Y(K-1)为为第K-1次采样值,△Y 为相邻两次采样值所允许的最大偏差,其大小取决于采样周期及Y值的变化动态响应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字滤波的优点及10 种常用数字滤波方法比较
在微机控制系统的模拟输入信号中,一般均含有各种噪声和干扰,他们来自被测信号源本身、传感器、外界干扰等。
为了进行准确测量和控制,必须消除被测信号中的噪声和干扰。
噪声有2 大类:
(1)周期性的信号,其典型代表为50Hz 的工频干扰,对于这类信号,采用积分时间等于20ms 整倍数的双积分A/D 转换器,可有效地消除其影响;
(2)非周期的不规则随机信号,对于随机干扰,可以用数字滤波方法予以削弱或滤除。
所谓数字滤波,就是通过一定的计算或判断程序减少干扰信号在有用信号中的比重,因此他实际上是一个程序滤波。
数字滤波器克服了模拟滤波器的许多不足,他与模拟滤波器相比有以下优点:
(1) 数字滤波器是用软件实现的,不需要增加硬设备,因而可靠性高、稳定性好,不存在阻抗匹配问题。
(2) 模拟滤波器通常是各通道专用,而数字滤波器则可多通道共享,从而降低了成本。
(3)数字滤波器可以对频率很低(如0.01Hz) 的信号进行滤波,而模拟滤波器由于受电容容量的限制,频率不可能太低。
(4)数字滤波器可以根据信号的不同,采用不同的滤波方法或滤
波参数,具有灵活、方便、功能强的特点。
10 种数字滤波方法
1、限副滤波
方法:根据经验判断,确定两次采样允许的最大偏差值(设为A),每次检测到新值时判断:如果本次值与上次值之差A,
则本次值无效,放弃本次值,用上次值代替本次值优点:能有效克服因偶然因素引起的脉冲干扰。
缺点:无法抑制那种周期性的干扰,平滑度差。
2、中位值滤波法
方法:连续采样N 次(N 取奇数),把N 次采样值按大小排列,取中间值为本次有效值。
优点:能有效克服因偶然因素引起的波动干扰,对温度、液位的变化缓慢的被测参数有良好的滤波效果。
缺点:对流量、速度等快速变化的参数不宜。
3、算术平均滤波法
方法:连续取N 个采样值进行算术平均运算。
N 值较大时:信号平滑度较高,但灵敏度较低;N 值较小时:信号平滑度较低,但灵敏度较高。
N 值的选取:一般流量,N=12; 压力:
N=4 优点:适用于对一般具有随机干扰的信号进行滤波,这样信
号的特点是有一个平均值,信号在某一数值范围附近上下波动。
缺点:对于测量速度较慢或要求数据计算速度较快的实时控制不适用,比较浪费RAM 。
4、递推平均滤波法(又称滑动平均滤波法)方法:把连续取
N 个采样值看成一个队列,队列的长度固定为N ,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据(先进先出原则),把队列中的N 个数据进行算术平均运算,就可获得新的滤波结果。
N 值的选取:流量,N=12 ;压力:N=4 ;液面,N=4~12 ;温度,N=1~4
5、中位值平均滤波法(又称防脉冲干扰平均滤波法)方法:相当于“中位值滤波法”+“算术平均滤波法”。
连续采样
N 个数据,去掉一个最大值和一个最小值,然后计算N-2 个数据的算术平均值。
N 值的选取:3~14 优点:融合了两种滤波法的优点,对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。
缺点:测量速度较慢,和算术平均滤波法一样,比较浪费RAM 。
6、限幅平均滤波法方法:相当于“限幅滤波法”+“递推平均滤波法”,每次采样到
的新数据先进行限幅处理,再送入队列进行递推平均滤波处理。
优点:融合了两种滤波法的优点,对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。
缺点:比较浪费RAM 。
7、一阶滞后滤波法
方法:取a=0~1 ,本次滤波结果=(1-a)* 本次采样值+a* 上次滤波结果。
优点:对周期性干扰具有良好的抑制作用,适用于波动频率较高的场合。
缺点:相位滞后,灵敏度低,滞后程度取决于a 值大小,不能消除滤波频率高于采样频率的1/2 的干扰信号。
8、加权递推平均滤波法方法:是对递推平均滤波法的改进,即不同时刻的数据加以不同的权。
通常是,越接近现时刻的数据,权取得越大。
给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低。
优点:适用于有较大纯滞后时间常数的对象和采样周期较短的系统。
缺点:对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号不能迅速反应系统当前所受干扰的严重程度,滤波效果差。
9、消抖滤波法方法:设置一个滤波计数器将每次采样值与当前有效值比较:如果采样值=当前有效值,则计数器清零如果采样值当前有效值,则计数器+1 ,并判断计数器是否>=上限
N(溢出),如
果计数器溢出,则将本次值替换当前有效值,并清计数器。
优点:对于变化缓慢的被测参数有较好的滤波效果,可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动。
缺点:对于快速变化的参数不宜,如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统。
10、限幅消抖滤波法方法:相当于“限幅滤波法” +“消抖滤波
先法限”幅,后消抖。
优点:继承了“限幅”和“消抖”的优点改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统。
缺点:对于快速变化的参数不宜。