第4章图形与坐标单元检测

合集下载

2013年秋浙教版八年级上数学第4章图形与坐标单元测试题及答案

2013年秋浙教版八年级上数学第4章图形与坐标单元测试题及答案

第4章 图形与坐标单元检测姓名____ ____一.选择题(每小题3分,共30分)1.如图是在方格纸上画出的小旗图案,若用(0,0)表示A 点,(0,4)表示B 点,那么C 点的位置可表示为( )A.(0,3)B.(2,3)C.(3,2)D.(3,0) 2.点M (-5,y )向下平移5个单位的像关于x 轴对称,则y 的值是( ) A.-5 B.5 C.52 D.-523.已知△ABC 的面积为3,边BC 长为2,以B 原点,BC 所在的直线为x 轴,则点A 的纵坐标为( )A.3B.-3C.6D.±34.在直角坐标系中,O 为坐标原点,已知点A (1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 的个数共有( )A.4个B.3个C.2个D.1个5.在直角坐标系中,点A (2,1)向左平移2个单位长度后的坐标为( )A.(4,1)B.(0,1)C.(2,3)D.(2,-1)6.观察图(1)与(2)中的两个三角形,可把(1)中的三角形的三个顶点,怎样变化就得到(2)中的三角形的三个顶点( )A.每个点的横坐标加上2;B.每个点的纵坐标加上2C.每个点的横坐标减去2;D.每个点的纵坐标减去27.已知正方形OABC 各顶点坐标为O (0,0),A (1,0),B (1,1)C (0,1),若P 为坐标平面上的点,且∆POA.∆PAB.∆PBC.∆PCO 都是等腰三角形,问P 点可能的不同位置数是( )A.1B.5C.9D.138.点P 在第四象限,且5,3==y x ,则点P 关于x 轴对称点的坐标是( )A.(3,-5)B.(-3,5)C.(-5,-3)D.(3,5)9.(,)a b 在( ) A B CA.第一象限B.第二象限C.第三象限D.第四象限10.如图,一个机器人从O点出发,向正东方向走3m 到达1A 点,再向正北方向走6m 到达2A 点,再向正西方向走9m 到达3A 点,再向正南方向走12m 到达4A 点,再向正东方向走15m 到达5A 点.按如此规律走下去,当机器人走到6A 点时,离O点的距离是( )A. 10mB. 12mC. 15mD. 20m二.填空题(每小题3分,共30分)1.如上图,根据坐标平面内点的位置,写出以下各点的坐标:A( ),B( ),C( ),D( ),E( ),F( )2.已知点A(4,y ),B(x,-3),若AB ∥x 轴,且线段AB 的长为5,x=_______,y=_______。

【浙教版】秋八年级上《第4章图形与坐标》单元试卷含答案

【浙教版】秋八年级上《第4章图形与坐标》单元试卷含答案

第4章一、选择题(每小题2分,共20分)1.在平面直角坐标系中,点P(-2,3)关于x轴的对称点的坐标为(A)A. (-2,-3)B. (2,-3)C. (-3,-2)D. (3,-2)2.平面直角坐标系内的点A(-1,2)与点B(-1,-2)关于(B)A. y轴对称B. x轴对称C. 原点对称D. 直线y=x对称3.已知点A在x轴上,且点A到y轴的距离为4,则点A的坐标为(C)A.(4,0) B.(0,4)C.(4,0)或(-4,0) D.(0,4)或(0,-4)【解】一个点在x轴上,其纵坐标为0;到y轴的距离就是点的横坐标的绝对值.4.若点A(x,1)与点B(2,y)关于x轴对称,则下列各点中,在直线AB上的是(A) A.(2,3) B.(1,2)C.(3,-1) D.(-1,2)【解】∵点A和点B关于x轴对称,∴AB与x轴垂直,即直线AB上的点的横坐标相同,为2.∴选A.5.如图,已知棋子“車”的位置表示为(-2,3),棋子“馬”的位置表示为(1,3),则棋子“炮”的位置可表示为(A)(第5题)A.(3,2) B.(3,1)C.(2,2) D.(-2,2)6.若点M(a-1,a-3)在y轴上,则a的值为(C)A.-1B.-3 C.1D.3【解】由题意,得a-1=0,∴a=1.7.在国外留学的叔叔送给聪聪一个新奇的玩具——智能兔.它的新奇之处在于若第一次向正南跳一下,第二次就掉头向正北跳两下,第三次又掉头向正南跳三下……而且每一跳的距离为20 cm.如果兔位于原点处,第一次向正南跳(记y轴正半轴方向为正北,1个单位为1 cm),那么跳完第80次后,兔所在位置的坐标为(C)A. (800,0)B. (0,-80)C. (0,800)D. (0,80)【解】用“-”表示正南方向,用“+”表示正北方向.根据题意,得-20+20×2-20×3+20×4-…-20×79+20×80=20(-1+2)+20(-3+4)+…+20(-79+80)=20×40=800(cm),∴兔最后所在位置的坐标为(0,800).(第8题)8.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′.若线段AB上有一个点P(a,b),则点P在线段A′B′上的对应点P′的坐标为(A)A. (a-2,b+3)B. (a-2,b-3)C. (a+2,b+3)D. (a+2,b-3)【解】由题意可得,将线段AB向左平移2个单位,向上平移3个单位得到线段A′B′,则点P(a,b)在线段A′B′上的对应点P′的坐标为(a-2,b+3).(第9题)9.如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是(B)A. (3,1)B. (1,-3)C. (2 3,-2)D. (2,-2 3)(第9题解)【解】根据题意画出△AOB绕点O顺时针旋转120°得到的△COD,连结OP,OQ,过点Q作QM⊥y轴于点M,如解图.由旋转可知∠POQ=120°.易得AP=OP=12AB,∴∠BAO=∠POA=30°,∴∠MOQ=180°-30°-120°=30°.在Rt△OMQ中,∵OQ=OP=2,∴MQ=1,OM= 3.∴点P的对应点Q的坐标为(1,-3).10.已知P(x,y)是以坐标原点为圆心,5为半径的圆周上的点,若x,y都是整数,则这样的点共有(C)A.4个B.8个C.12个D.16个【解】由题意知,点P(x,y)满足x2+y2=25,∴当x=0时,y=±5;当y=0时,x=±5;当x=3时,y=±4;当x=-3时,y=±4;当x=4时,y=±3;当x=-4时,y=±3,∴共有12个点.二、填空题(每小题3分,共30分)11.在平面直角坐标系中,点(1,5)所在的象限是第一象限. 12.若点B (7a +14,a -2)在第四象限,则a 的取值范围是-2<a <2.13.已知线段MN 平行于x 轴,且MN 的长度为5,若点M (2,-2),则点N 的坐标为(-3,-2)或(7,-2).【解】 ∵MN ∥x 轴,点M (2,-2), ∴点N 的纵坐标为-2. ∵MN =5,∴点N 的横坐标为2-5=-3或2+5=7, ∴点N (-3,-2)或(7,-2).14.已知点A (y +a ,2)和点B (y -3,b +4)关于x 轴对称,则ba=__2__.【解】 ∵点A (y +a ,2)和点B (y -3,b +4)关于x 轴对称,∴⎩⎪⎨⎪⎧y +a =y -3,2=-(b +4),解得⎩⎪⎨⎪⎧a =-3,b =-6. ∴b a =-6-3=2. 15.把以 (-1,3),(1,3)为端点的线段向下平移4个单位,此时线段两端点的坐标分别为(-1,-1),(1,-1),所得像上任意一点的坐标可表示为(x ,-1)(-1≤x ≤1).16.已知点A (0,-3),B (0,-4),点C 在x 轴上.若△ABC 的面积为15,则点C 的坐标为(30,0)或(-30,0).【解】 ∵点A (0,-3),B (0,-4),∴AB =1. ∵点C 在x 轴上,∴可设点C (x ,0). 又∵△ABC 的面积为15, ∴12·AB ·|x |=15,即12×1×|x |=15, 解得x =±30.∴点C 的坐标为(30,0)或(-30,0).17.如图,将边长为1的正三角形OAP沿x轴正方向连续翻转次,点依次落在点P1,P2,P3,…,P的位置,则点P的横坐标为.(第17题)【解】观察图形并结合翻转的方法可以得出点P1,P2的横坐标是1,点P3的横坐标是2.5;点P4,P5的横坐标是4,点P6的横坐标是5.5……依此类推下去,点P的横坐标为.18.已知甲的运动方式为:先竖直向上运动1个单位,再水平向右运动2个单位;乙的运动方式为:先竖直向下运动2个单位,再水平向左运动3个单位.在平面直角坐标系内,现有一动点P第1次从原点O出发按甲方式运动到点P1,第2次从点P1出发按乙方式运动到点P2,第3次从点P2出发再按甲方式运动到点P3,第4次从点P3出发再按乙方式运动到点P4……以此运动规律,经过11次运动后,动点P所在位置点P11的坐标是(-3,-4).【解】P(0,0)→P1(2,1)→P2(-1,-1)→P3(1,0)→P4(-2,-2)→……每两次运动后,横纵坐标均减少1,得点P2n(-n,-n)(n为正整数),∴点P10(-5,-5),∴点P11(-3,-4).(第19题)19.如图,在平面直角坐标系中,四边形OABC是正方形,点A的坐标为(4,0),P为边AB上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内的点B′处,则点B′的坐标为(2,4-23).【解】提示:过点B′作y轴的垂线交y轴于点D,易得B′C=BC=4,∠B′CD=30°,求出B′D和CD的长,从而求出OD的长,即可得点B′的坐标.20.如图,正方形A1A2A3A4,正方形A5A6A7A8,正方形A9A10A11A12,…(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行.若它们的边长依次是2,4,6,…,则顶点A20的坐标为(5,-5).(第20题)【解】∵20÷4=5,∴点A20在第四象限.∵点A4所在正方形的边长为2,∴点A4的坐标为(1,-1).同理可得:点A8的坐标为(2,-2),点A12的坐标为(3,-3)……∴点A20的坐标为(5,-5).三、解答题(共50分)21.(6分)已知△ABC在直角坐标系中的位置如图所示,请在图中画出△ABC关于y轴的对称图形△A1B1C1,并写出△A1B1C1各顶点的坐标.(第21题)【解】画图如图中△A1B1C1所示,点A1(4,1),B1(1,3),C1(2,-2).22.(6分)如图,在平面直角坐标系中,将点P(-4,2)绕原点顺时针旋转90°,求其对应点Q的坐标.(第22题)【解】 如解图,过点P 作PM ⊥x 轴于点M ,过点Q 作QN ⊥x 轴于点N .(第22题解)∵∠MPO +∠POM =90°,∠QON +∠POM =90°,∴∠MPO =∠NOQ . 在△PMO 和△ONQ 中, ∵⎩⎪⎨⎪⎧∠PMO =∠ONQ =90°,∠MPO =∠NOQ ,PO =OQ , ∴△PMO ≌△ONQ (AAS ). ∴PM =ON ,OM =QN .∵点P 的坐标为(-4,2),∴点Q 的坐标为(2,4).23.(6分)如图,在平面直角坐标系中,点A (1,2),B (-4,-1),C (0,-3),求△ABC 的面积.(第23题)(第23题解)【解】 如解图,先构造长方形ADFE ,使其过点A ,B ,C ,且AE ∥x 轴,AD ∥y 轴. ∵点A (1,2),B (-4,-1),C (0,-3), ∴点E (-4,2),F (-4,-3),D (1,-3), ∴AE =1-(-4)=5,AD =2-(-3)=5. ∴S △ABC =S 长方形ADFE -S △AEB -S △BCF -S △ACD =5×5-12×5×3-12×4×2-12×5×1=11.24.(12分)在平面直角坐标系中,点P (a -4,2b +2),当a ,b 分别满足什么条件时: (1)点P 在第一象限? (2)点P 在第四象限? (3)点P 在x 轴上? (4)点P 在y 轴上? (5)点P 在x 轴下方? (6)点P 在y 轴左侧?【解】 (1)⎩⎪⎨⎪⎧a -4>0,2b +2>0,即⎩⎨⎧a >4,b >-1.(2)⎩⎪⎨⎪⎧a -4>0,2b +2<0,即⎩⎨⎧a >4,b <-1.(3)2b +2=0,即b =-1. (4)a -4=0,即a =4. (5)2b +2<0,即b <-1. (6)a -4<0,即a <4.25.(10分)如图①,在6×6的方格纸中,给出如下三种变换:P 变换,Q 变换,R 变换.将图形F 沿x 轴向右平移1格得到图形F 1,称为作1次P 变换;将图形F 沿y 轴翻折得到图形F 2,称为作1次Q 变换;将图形F 绕坐标原点顺时针旋转90°得到图形F 3,称为作1次R 变换.规定:PQ 变换表示先作1次Q 变换,再作1次P 变换;QP 变换表示先作1次P 变换,再作1次Q 变换;R n 变换表示作n 次R 变换,解答下列问题:(第25题)(1)作R4变换相当于至少作__2__次Q变换.(2)请在图②中画出图形F作R变换后得到的图形F4.(3)PQ变换与QP变换是否是相同的变换?请在图③中画出PQ变换后得到的图形F5,在图④中画出QP变换后得到的图形F6.【解】(1)根据操作,观察发现:每作4次R变换便与图形F重合.因此R4变换相当于作2n次Q变换(n为正整数).(2)由于=4×504+1,故R变换即为R1变换,其图象如解图①所示.(3)PQ变换与QP变换不是相同的变换.正确画出图形F5,F6如解图②③所示.(第25题解)26.(10分)在平面直角坐标系中,O为坐标原点,已知点A(4,0),B(0,3).若有一个直角三角形与Rt△ABO全等,且它们有一条公共边,请写出这个三角形未知顶点的坐标.【解】如解图.分三种情况:①若AO为公共边,易得未知顶点为B′(0,-3)或B″(4,3)或B(4,-3).②若BO为公共边,易得未知顶点为A′(-4,0)或A″(4,3)(与点B″重合)或A(-4,3).③若AB为公共边,易得此时有三个未知顶点O′,O″,O,其中点O′(4,3)(与点B″重合).过点O作OD⊥AB于点D,过点D作DE⊥y轴于点E,DF⊥x轴于点F.=2.4,易得AB=5,OD=OA·OBAB=1.44.∴BD=OB2-OD2=1.8,ED=BD·ODBO同理可得DF=1.92.连结O″D.易知点O和点O″关于点D(1.44,1.92)对称,∴点O″(2.88,3.84).设AB与OO′交于点M,则点M(2,1.5).易知点O″与点O关于点M对称,∴点O(1.12,-0.84).(第26题解)。

2021-2022学年浙教版八年级数学上册《第4章图形与坐标》单元综合训练(附答案)

2021-2022学年浙教版八年级数学上册《第4章图形与坐标》单元综合训练(附答案)

2021-2022学年浙教版八年级数学上册《第4章图形与坐标》单元综合训练(附答案)1.在平面直角坐标系中,第四象限内有一点M,点M到x轴的距离为3,到y轴的距离为2,则点M的坐标是()A.(3,﹣2)B.(2,﹣3)C.(﹣2,3)D.(﹣3,2)2.已知点A(m,2)和B(3,n)关于y轴对称,则(m+n)2020的值为()A.0B.﹣1C.1D.(﹣5)20203.点P(﹣a,a+2)一定不在第()象限.A.一B.二C.三D.四4.若点P(x,y)在第二象限,且|x|=2,|y|=3,则x+y=()A.﹣1B.1C.5D.﹣55.在平面直角坐标系中,点Q(2﹣a,2a+3)在x轴上,则a的值为()A.2B.﹣2C.﹣D.6.将点A(﹣4,﹣1)先向右平移5个单位,再向上平移3个单位得到点A1,则点A1的坐标为()A.(1,2)B.(2,9)C.(5,3)D.(﹣9,﹣4)7.如图,小手盖住的点的坐标可能为()A.(5,2)B.(﹣3,﹣3)C.(﹣6,4)D.(2,﹣5)8.下列表述能确定物体具体位置的是()A.明华小区4号楼B.希望路右边C.北偏东30o D.东经118o,北纬28o9.已知点A(a,2019)与点A′(﹣2020,b)是关于原点O的对称点,则a+b的值为()A.1B.5C.6D.410.在如图所示的单位正方形网格中,三角形ABC经过平移后得到三角形A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,则P1点的坐标为()A.(1.4,﹣1)B.(1.5,2)C.(﹣1.6,﹣1)D.(2.4,1)11.如图,在平面直角坐标系中,已知点A坐标(0,3),点B坐标(4,0),将点O沿直线y=﹣x+b对折,点O恰好落在∠OAB的平分线上的O'处,则b的值为()A.B.C.D.12.如图,△AOB为等腰三角形,OA=AB,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A'O'B,点A的对应点A'在x轴上,则点O'的坐标为()A.B.C.D.13.在平面直角坐标系中,将点A(x,y)向左平移3个单位长度,再向上平移5个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5)B.(0,﹣3)C.(﹣2,5)D.(5,﹣3)14.如图,点A的坐标为(1,3),O为坐标原点,将OA绕点A按逆时针方向旋转90°得到AO′,则点O′的坐标是()A.(4,﹣1)B.(﹣1,4)C.(4,2)D.(2,﹣4)15.如图,扇形AOB中,∠AOB=90°,OA=12,AC=4,D为OB中点,E为AB上一动点,则DE+CE的最小值为()A.B.C.18D.16.如果点P(m+3,m+1)在坐标轴上,那么P点坐标为.17.已知点M(a+3,﹣5)和N(2,b﹣1)关于x轴对称,则a b的值为.18.点A的坐标是(2,﹣3),将点A向上平移4个单位长度得到点A',则点A'的坐标为.19.如图,在平面直角坐标系中,点A,B的坐标分别是A(3,0),B(0,4),把线段AB 绕点A旋转后得到线段AB′,使点B的对应点B′落在x轴的正半轴上,则点B′的坐标是.20.如图,点A、B分别在y轴和x轴正半轴上滑动,且保持线段AB=4,点D坐标为(4,3),点A关于点D的对称点为点C,连接BC,则BC的最小值为.21.已知点M(3a﹣2,a+6),分别根据下列条件求出点M的坐标.(1)点M在x轴上;(2)点N的坐标为(2,5),且直线MN∥x轴;(3)点M到x轴、y轴的距离相等.22.已知点P(2x,y2+4)与Q(x2+1,﹣4y)关于原点对称,求x+y的值.23.已知点M(﹣2,2b﹣1),N(3a﹣11,5).(1)若M,N关于y轴对称,试求a,b的值;(2)若M,N关于x轴对称,试求a+b的算术平方根.24.如图1.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,3),B(2,1),C (5,1).(1)直接写出点B关于x轴对称的对称点B1的坐标为,直接写出点B关于y轴对称的对称点B2的坐标为,直接写出△AB1B2的面积为;(2)在y轴上找一点P使P A+PB1最小,则点P坐标为;(3)图2是10×10的正方形网格,顶点在这些小正方形顶点的三角形为格点三角形,①在图2中,画一个格点三角形△DEF,使DE=10,EF=5,DF=3;②请直接写出在图2中满足①中条件的格点三角形的个数.25.已知点P(2m﹣6,m+2),(1)若点P在y轴上,P点坐标为;(2)若点P和Q都在过点A(2,3)且与x轴平行的直线上,且PQ=3,求Q点坐标.26.在平面直角坐标系中,△ABC的位置如图所示.(1)分别写出下列顶点的坐标:A,B;(2)顶点A关于y轴对称的点A′的坐标为:A′;(3)△ABC的面积为.27.先阅读下列一段文字,再回答后面的问题.对于平面直角坐标系中的任意两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式为P1P2=,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)若A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)若C、D都在平行于x轴的同一条直线上,点C的横坐标为3,点D的横坐标为﹣2,试求C、D两点间的距离.(3)若已知一个三角形各顶点坐标为E(0,1)、F(2,﹣1)、G(﹣2,﹣1),你能判定此三角形的形状吗?请说明理由.参考答案1.解:由点M到x轴的距离为3,到y轴的距离为2,得:|y|=3,|x|=2,由点位于第四象限,得:y=﹣3,x=2,点M的坐标为(2,﹣3),故选:B.2.解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=﹣3,n=2,∴m+n=﹣3+2=﹣1,∴(m+n)2020的值为1.故选:C.3.解:当a>0时,﹣a<0,a+2为正,∴点P(﹣a,a+2)在第二象限;当a<0时,﹣a>0,a+2可能为正,也可能为负,∴点P(﹣a,a+2)可能在第一象限,也可能在第四象限;∴点P(﹣a,a+2)可能在第一、二、四象限;不可能在第三象限,故选:C.4.解:由P(x、y)在第二象限且|x|=2,|y|=3,得x=﹣2,y=3.x+y=﹣2+3=1,故选:B.5.解:∵点Q(2﹣a,2a+3)在x轴上,∴2a+3=0,解得:a=﹣.故选:C.6.解:∵把点A(﹣4,﹣1)先向右平移5个单位长度,故得到:(1,﹣1);再向上平移3个单位长度得到点A′(1,2).故选:A.7.解:由图得点位于第四象限,故选:D.8.解:明华小区4号楼、希望路右边、北偏东30°都不能确定物体的具体位置,东经118o,北纬28o能确定物体的具体位置,故选:D.9.解:∵点A(a,2019)与点A′(﹣2020,b)是关于原点O的对称点,∴a=2020,b=﹣2019,∴a+b=1.故选:A.10.解:∵A点坐标为:(2,4),A1(﹣2,1),∴A向左平移4个单位,又向下平移3个单位得到A1,∴点P(2.4,2)平移后的对应点P1为:P1(2.4﹣4,2﹣3),即P1(﹣1.6,﹣1),故选:C.11.解:如图,设AE是△AOB的角平分线,过点E作EH⊥AB于H,过点O作OT⊥AB 于T,交直线y=﹣x+b于J.∵A(0,3),B(4,0),∴OA=3,OB=4,∴AB===5,直线AB的解析式为y=﹣x+3,∵AE平分∠OAB,EO⊥OA,EH⊥AB,∴OE=EH,设OE=EH=a,则BE=4﹣a,OA=AH=3,BH=2,在Rt△BHE中,则有a2+22=(4﹣a)2,解得a=,∴E(,0),∴直线AE的解析式为y=﹣2x+3,∵将点O沿直线y=﹣x+b对折,点O恰好落在∠OAB的平分线上的O'处,∴这条直线平行AB,点O′在直线OT上,∵直线OT的解析式为t=x,由,解得,∴O′(,),∵OJ=JO′,∴J(,),则有=﹣×+b,解得b=.故选:D.12.解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(2,),∴OC=2,AC=,由勾股定理得,OA===3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴sin∠ABO=sin∠O′BD,∴=∴O′D=,BD===,∴OD=OB+BD=4+=,∴点O′的坐标为(,).故选:D.13.解:∵点A(x,y)向左平移3个单位长度,再向上平移5个单位长度后与点B(﹣3,2)重合,∴x﹣3=﹣3,y+5=2,解得x=0,y=﹣3,所以,点A的坐标是(0,﹣3).故选:B.14.解:观察图象可知O′的坐标为(4,2).故选:C.15.解:如图,延长OA至点F,使OF=OA=18,则==,∠FOE=∠EOC∴△FOE∽△EOC,∴FE=CE当FE与ED共线时,DE+CE最小,且最小值为FD的长,FD===.∴DE+CE的最小值为6.故选:A.16.解:∵点P(m+3,m+1)在坐标轴上,∴当点P在x轴上时,m+1=0,解得:m=﹣1,故m+3=2,此时P点坐标为:(2,0);当点P在y轴上时,m+3=0,解得:m=﹣3,故m+1=﹣2,此时P点坐标为:(0,﹣2);综上所述:P点坐标为:(0,﹣2)或(2,0).17.解:∵点M(a+3,﹣5)和N(2,b﹣1)关于x轴对称,∴a+3=2,b﹣1=5.解得a=﹣1,b=6,∴a b=(﹣1)6=1,故答案为:1.18.解:将点A(2,﹣3)向上平移4个单位得到点A′,则点A′的坐标是(2,﹣3+4),即(2,1).故答案为(2,1).19.解:∵A(3,0),B(0,4),∴OA=3,OB=4,∵∠AOB=90°,∴AB==5,∵AB=AB′=5,∴OB′=8,∴B′(8,0),故答案为(8,0).20.解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD==5,∵Rt△ABO中,OE=AB=×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC的最小值等于6,故答案为:6.21.解:(1)∵点M在x轴上,∴a+6=0,∴a=﹣6,3a﹣2=﹣18﹣2=﹣20,a+6=0,∴点M的坐标是(﹣20,0);(2)∵直线MN∥x轴,∴a+6=5,解得a=﹣1,3a﹣2=3×(﹣1)﹣2=﹣5,所以,点M的坐标为(﹣5,5).(3)∵点M到x轴、y轴的距离相等,∴3a﹣2=a+6,或3a﹣2+a+6=0解得:a=4,或a=﹣1,所以点M的坐标为(10,10)或(﹣5,5)22.解:∵点P(2x,y2+4)与Q(x2+1,﹣4y)关于原点对称,∴x2+1+2x=0,y2+4﹣4y=0,∴(x+1)2=0,(y﹣2)2=0,解得:x=﹣1,y=2,∴x+y=1.23.解:(1)依题意得3a﹣11=2,2b﹣1=5,∴a=,b=3.(2)依题意得3a﹣11=﹣2,2b﹣1=﹣5,∴a=3,b=﹣2,∴=1.24.解:(1)∵B(2,1),∴点B关于x轴对称的对称点B1的坐标为(2,﹣1),点B关于y轴对称的对称点B2的坐标为(﹣2,1),△AB1B2的面积=4×4﹣×2×3﹣×1×4﹣×2×4=7,故答案为:(2,﹣1),(﹣2,1),7;(2)作点B1关于y轴的对称点B3,连接AB3交y轴于P,则此时,P A+PB1最小,∵B1的坐标为(2,﹣1),∴B3(﹣2,﹣1),∴直线AB3的解析式为y=x+,∴点P坐标为(0,);故答案为:(0,);(3)①如图2所示,△DEF即为所求;②如图2所示,满足①中条件的格点三角形的个数为8个.故答案为:8.25.解:(1)∵点P在y轴上,∴2m﹣6=0,解得m=3,∴P点的坐标为(0,5);故答案为(0,5);(2)∵点P和点Q都在过A(2,3)点且与x轴平行的直线上,∴点P和点Q的纵坐标都为3,∴P(﹣4,3)而PQ=3,∴Q点的横坐标为﹣1或﹣7,∴Q点的坐标为(﹣1,3)或(﹣7,3).26.解:(1)由题可得,A(﹣2,6),B(﹣4,3);故答案为:(﹣2,6),(﹣4,3);(2)点A关于y轴对称的点A′的坐标为(2,6);故答案为:(2,6);(3)△ABC的面积为×4×3+×4×3=12,故答案为:12.27.解:(1)∵A(2,4)、B(﹣3,﹣8),∴AB==13;(2)∵C、D都在平行于x轴的同一条直线上,点C的横坐标为3,点D的横坐标为﹣2,∴CD=|3﹣(﹣2)|=5;(3)△EFG为等腰直角三角形,理由为:∵E(0,1)、F(2,﹣1)、G(﹣2,﹣1),∴EF==2,EG==2,FG=|2﹣(2)|=4,∵(2)2+(2)2=42,则△EFG为等腰直角三角形.。

初中数学浙教版八年级上册第4章 图形与坐标 单元检测(基础篇)

初中数学浙教版八年级上册第4章 图形与坐标 单元检测(基础篇)

初中数学浙教版八年级上册第4章图形与坐标单元检测(基础篇)一、单选题(共10题;共30分)1.根据下列表述,能确定具体位置的是( )A. 官渡古镇南B. 东经116°北纬42°C. 北偏西30°D. 电影院2.如图,在围棋盘上有三枚棋子,如果黑棋①的位置用有序数对(0,﹣1)表示,黑棋②的位置用有序数对(﹣3,0)表示,则白棋③的位置可用有序数对()表示.A. (﹣2,4)B. (2,﹣4)C. (4,﹣2)D. (﹣4,2)3.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为()A. (1,3)B. (3,2)C. (0,3)D. (−3,3)4.若点P(a,b)在第四象限,则()A. a>0,b>0B. a<0,b<0C. a<0,b>0D. a>0,b<05.如图,四边形ABCD是长方形,AB=3,AD=4.已知A(﹣32,﹣1),则点C的坐标是()A. (﹣3,32) B. (32,﹣3) C. (3,32) D. (32,3)6.在直角坐标系内,点P(﹣3,5)关于x轴的对称点P1的坐标为()A. (3,﹣5)B. (3,5)C. (﹣3,5)D. (﹣3,﹣5)7.在平面直角坐标系中,点P与点M关于y轴对称,点N与点M关于x轴对称,若点P的坐标为(-2,3),则点N的坐标为()A. (-3,2)B. (2,3)C. (2,-3)D. (-2,-3)8.点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是()A. 关于直线x=2对称B. 关于直线y=2对称C. 关于x轴对称D. 关于y轴对称9.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A. (2,1)B. (﹣2,﹣1)C. (﹣2,1)D. (2,﹣1)10.在直角坐标系xoy中,△ABC关于直线y=1轴对称,已知点A坐标是(4,4),则点B的坐标是()A. (4,﹣4)B. (﹣4,2)C. (4,﹣2)D. (﹣2,4)二、填空题(共6题;共24分)11.如果电影院中“5排7号”记作(5,7),那么(3,4)表示的意义是________。

【单元测试】第4章 图形与坐标(夯实基础培优卷)(原卷版)

【单元测试】第4章 图形与坐标(夯实基础培优卷)(原卷版)

【高效培优】2022—2023学年八年级数学上册必考重难点突破必刷卷(浙教版)【单元测试】第4章 图形与坐标(夯实基础过关卷)(考试时间:90分钟 试卷满分:120分)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10个小题,每小题3分,共30分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.若电影院中“5排8号”的位置,记作(5,8),丽丽的电影票是“3排l 号”,则下列有序数对表示丽丽在电影院位置正确的是( ).A .(3,1)B .(1,3)C .(13,31)D .(31,13)2.下列关于确定一个点的位置的说法中,能具体确定点的位置的是( ).A .东北方向B .东经35°10′,北纬12°C .距点A100米D .偏南40°,8000米3.如图所示,在直角梯形OABC 中,CB∥OA ,CB =8,OC =8,∥OAB =45°,则点A 的坐标为( ).A .(16,0)B .(0,16)C .(14,0)D .(0,14)4.在平面直角坐标系中,点A 的坐标为(43)-,,AB y ∥轴,5AB =,则点B 的坐标为( ). A .(1,3)B .(4,8)-C .(1,3)或(9,3)-D .(4,8)-或(4,2)-- 5.点()2021,2022P -所在象限为( ).A .第一象限B .第二象限C .第三象限D .第四象限6.如图的坐标平面上有A 、B 、C 、D 四点.根据图中各点位置判断,哪一个点在第二象限( ).A .AB .BC .CD .D7.在平面直角坐标系中,对于点(2,3)P -,下列叙述错误..的是( ). A .点P 在第二象限B .点P 关于y 轴对称的点的坐标为(2,3)C .点P 到x 轴的距离为2D .点P 向下平移4个单位的点的坐标为(2,1)--8.∥ABC 的顶点分别位于正方形网格的格点上,建立如图所示的平面直角坐标系,已知点C (﹣1,1),将∥ABC 先沿x 轴方向向右平移3个单位长度,再沿y 轴方向向下平移2个单位长度,得到∥A ′B ′C ′,则点A 的对应点A ′的坐标是( ).A .(﹣6,6)B .(0,2)C .(0,6)D .(﹣6,2)9.如图,在平面直角坐标系xOy 中,将四边形ABCD 先向上平移,再向左平移得到四边形1111D C B A ,已知11(3,5)(4,3)(3,3)A B A --,,,则点B 坐标为( ).A .(1,2)B .(2,1)C .(1,4)D .(4,1)10.如图所示,在平面直角坐标系中,A (0,0),B (2,0),I AP B △是等腰直角三角形且190P ∠=︒,把I AP B △绕点B 顺时针旋转180°,得到2BP C △,把2BP C △绕点C 顺时针旋转180°,得到3CP D △,依此类推,得到的等腰直角三角形的直角顶点2022P 的坐标为( ).A .(4043,-1)B .(4043,1)C .(2022,-1)D .(2022,1)二、填空题(本大题共8个小题,每题3分,共24分)11.电影票上“6排8号”,记作()6,8,则“2排3号”记作_________.12.如图,一个机器人从点O 出发,向正东方向走3m 到达点1A ,再向正北方向走6m 到达点2A ,再向正西方向走9m 到达点3A ,再向正南方向走12m 到达点4A ,再向正东方向走15m 到达点5A ,按如此规律走下去,当机器人走到点6A 时,点6A 的坐标是________.13.在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点A (0,4),点B 是x 轴正半轴上的整点,记∥AOB 内部(不包括边界)的整点个数为m .当点B 的横坐标为4时,m 的值是_____.当点B 的横坐标为4n (n 为正整数)时,m =_____(用含n 的代数式表示)14.如图,在平面直角坐标系xOy 中,点A 的坐标为(0,6),点B 为x 轴上一动点,以AB 为边在直线AB 的右侧作等边三角形ABC .若点P 为OA 的中点,连接PC ,则PC 的长的最小值为_____.15.在直角坐标系中,点A (11,12)与点B (﹣11,12)关于_______轴对称.16.如图为一张藏宝图,已知秘密宝藏藏在图中的某个黑点标示的位置.建立适当的平面直角坐标系,现知道Rt ABC 的直角顶点C 的位置的坐标为()1,1,B 点位置的坐标为()2,0.经过调查,秘密宝藏的位置P 满足为条件:PAB 为非等腰的锐角三角形.A 点位置的坐标为______,符合条件的P 点的个数为______个.17.如图,等边三角形的顶点A (1,1)、B (3,1),规定把等边△ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC 的顶点C 的坐标为___________.18.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那么点A 4n +1(n 为自然数)的坐标为_____(用n 表示)三、解答题(本大题共8小题,共66分;第19-22每小题6分,第23-24每小题8分,第25小题12分,第26小题14分)19.如图,如果“象”的位置表示为()9,3.(1)用同样的方式表示“将”与“帅”的位置;(2)“马”走“日”字对角线.在图上标出“马3进4”(即第3列的马前进到第4列)后的位置.20.如图,国际象棋、中国象棋和围棋号称为世界三大棋种.国际象棋中的“皇后”的威力可比中国象棋中的“车”大得多:“皇后”不仅能控制她所在的行与列中的每一个小方格,而且还能控制“斜”方向的两条直线上的每一个小方格.如图1,是一个44⨯的小方格横盘,图中的“皇后”能控制图中虚线所经过的每一个小方格.在图2中的小方格棋盘中有一“皇后Q ”,她所在的位置可用“()2,3”来表示,请说明“皇后Q ”所在的位置“()2,3”的意义,并用这种表示法分别写出棋盘中不能被该“皇后Q ”所控制的四个位置.21.在平面直角坐标系中,ABC ∆的顶点都在格点上.(1)点A 的坐标为 ;(2)画出ABC ∆关于y 轴对称的△111A B C (点A ,B ,C 的对应点分别为1A ,1B ,1C ),并直接写出点1B 的坐标.22.八年级(2)班的同学组织到人民公园游玩,张明、王励、李华三位同学和其他同学走散了,同学们已到中心广场,他们三个对着景区示意图在电话中向在中心广场的同学们说他们的位置,张明说他的坐标是(200,-200),王励说他的坐标是(-200,-100),李华说他的坐标是(-300,200).(1)请你据此写出坐标原点的位置;(2)请你写出这三位同学所在的景点.23.如图所示,在平面直角坐标系中,已知()0,1A 、()2,0B 、()4,3C .(1)在平面直角坐标系中画出ABC △;则ABC △的面积是___________;(2)若将点A 、B 、C 的纵坐标不变,横坐标分别乘1-,得到A B C ''',在图中画出A B C ''';此时A B C '''与ABC△的位置关系是___________;(3)已知P 为y 轴上一点,若ABP △的面积为4,则点P 的坐标是___________.24.如图,ABC 在平面直角坐标系中,点A 、B 、C 的坐标分别为()2,1A -,()4,5B -,()5,2C -.(1)画出ABC 关于y 对称的111A B C △,其中,点A 、B 、C 的对应点分别为1A 、1B 、1C ;(2)直接写出点1A 、1B 、1C 的坐标:1A ______,1B ______,1C ______.(3)求111A B C △的面积.25.如图,∥ABC 的三个顶点都在方格纸的格点上,其中点A 的坐标是(-2,0),点B 的坐标是(-6,2),点C 的坐标是(-4,6).(1)在图(1)中作∥ABC 关于y 轴的对称图形∥DEF ,其中A ,B ,C 的对应点分别是D ,E ,F ;(2)动点P 的坐标为(0,t ),在图(1)上画出点P ,使P A +PC 的值最小,根据画出的图直接写出t 的值,并写出P A +PC 的最小值.(3)在(1)的条件下,点Q 为x 轴上的动点,当∥QDE 为等腰三角形时,请直接写出Q 点的坐标.26.通过对下面数学模型的研究学习,解决下列问题:【模型呈现】(1)如图1,90,BAD AB AD ∠︒==,过点B 作BC AC ⊥于点C ,过点D 作DE AC ⊥于点E .由12290D ∠+∠=∠+∠=︒,得1D ∠=∠.又90ACB AED ∠=∠=︒,可以推理得到ABC DAE ≌.进而得到AC =_______,BC =______.我们把这个数学模型称为“K 字”模型或“一线三等角”模型;【模型应用】(2)①如图2,90,,BAD CAE AB AD AC AE ∠=∠=︒==,连接,BC DE ,且BC AF ⊥于点F ,DE 与直线AF 交于点G .求证:点G 是DE 的中点;②如图3,在平面直角坐标系xOy 中,点A 的坐标为()2,4,点B 为平面内任一点.若AOB △是以OA 为斜边的等腰直角三角形,请直接写出点B 的坐标.。

第4章 图形与坐标 浙教版数学八年级上册素养综合检测(含解析)

第4章 图形与坐标 浙教版数学八年级上册素养综合检测(含解析)

第4章• 素养综合检测卷(考查范围:第4章 时间:60分钟 满分:100分)一、选择题(每小题4分,共32分)1. (2023浙江宁波外国语学校期中)根据下列表述,能确定位置的是( )A. 北偏东30°B. 民光影院2排C. 中山西路D. 东经120°,北纬35°2. (2022浙江湖州长兴期末)在平面直角坐标系中,若点A(a,b)在第二象限,则点B(ab,-b)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. (2023浙江杭州观成教育集团期中)点P(m+3,m+1)在y轴上,则P点的坐标为( )A. (0,-2)B. (0,-4)C. (4,0)D. (2,0)4. (2023浙江宁波鄞州蓝青学校期中)在平面直角坐标系中,若点M(a+2,a-1)在第四象限,且点M到x轴的距离为2,则点M的坐标为( )A. (1,-2)B. (5,2)C. (2,-1)D. (-2,-3)5. (2022浙江杭州采荷中学期中)下列命题是真命题的是( )A. 若ab=0,则P(a,b)为坐标原点B. 若A(-1,-2),且AB平行于x轴,AB=5,则B点的坐标为(4,-2)C. 点P(1,2)关于原点对称的点的坐标是(-1,-2)D. 若关于x的一元一次不等式组x -a>0,1―2x>x-2无解,则a的取值范围是a>16. (2022青海中考改编)如图,A(2,0),AB=3,以点A为圆心,AB长为半径画弧交x轴负半轴于点C,则点C的坐标为( )A. (3,0)B. (1,0)C. (-1,0)D. (-3,0)7. (2023浙江宁波慈溪文锦书院期中)如图,每个小正方形的边长均为1,在所给网格中按下列要求操作:(1)在网格中建立平面直角坐标系,使A点的坐标为(4,2),B点的坐标为(1,-1);(2)在第一象限内找一格点C,使点C与线段AB构成一个以AB为底的等腰三角形,且腰长是无理数.此时C点的坐标是( )A. (2,1)B. (1,2)C. (2,2)D. (1,3)8. (2021河南郑州期末)在平面直角坐标系中,对△ABC进行如图所示的循环往复的轴对称变换,若原来点A的坐标是(1,2),则经过2 021次变换后点A的对应点的坐标为( )A.(1,-2)B.(-1,-2)C.(-1,2)D.(1,2)二、填空题(每小题4分,共24分)9. (2022山东烟台中考)观察如图所示的象棋棋盘,若“兵”所在的位置用(1,3)表示,“炮”所在的位置用(6,4)表示,那么“帅”所在的位置可表示为 .10. (2023浙江绍兴蕺山外国语学校期末)在平面直角坐标系中,点M(a,b)与点N(3,-1)关于x轴对称,则a+b的值为 .11. (2023浙江杭州临安石门中心学校期末模拟)在平面直角坐标系中,将点A(a,1)先向右平移3个单位,再向下平移2个单位,得到点B(5,b),则ab的值为 .12. 已知点A(2,0),B(-2,0),点P(0,t)是y轴上一动点,当△ABP为直角三角形时,点P的坐标为 .13. (2023浙江宁波江北实验中学期中)如图,平面直角坐标系中有一正方形OABC,点C的坐标为(-2,-1),则点B的坐标为 .14. 【代数推理】如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,已知A(1,3),A1(3,3),A2(5,3),A3(7,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换前后的三角形有何变化,找出规律,按此变换规律再将△OA3B3变换成△OA4B4,则A4的坐标是 ,B4的坐标是 ;(2)若按(1)找到的规律将△OAB进行n次变换,得到△OA n B n,比较每次变换时三角形顶点有何变化,找出规律,推测A n的坐标是 ,B n的坐标是 .三、解答题44分)15. (2023浙江宁波余姚实验学校期中)(8分)已知点P(2m+4,m-1),试分别根据下列条件,求出点P的坐标.(1)点P在过点A(-2,-3),且与y轴平行的直线上;(2)点P在第四象限内,且到x轴的距离是到y轴距离的一半.16. (10分)在平面直角坐标系中,△ABC的位置如图所示.(1)点A关于x轴对称的点的坐标为 ,点B关于原点对称的点的坐标为 ;(2)将△ABC向右平移4个单位长度,再向上平移3个单位长度得到△A1B1C1,其中A、B、C分别和A1、B1、C1对应,画出△A1B1C1,并求点A1的坐标;(3)在x轴上找一点P,使得点P到B、C两点的距离相等,则点P的坐标为 ;(4)在y轴上找一点Q,使得△BCQ与△ABC的面积相等,求点Q的坐标.17. (2023浙江宁波镇海尚志中学期中)(12分)如图,在平面直角坐标系xOy中,三角板的直角顶点P的坐标为(1,1),三角板绕点P在坐标平面内旋转,一条直角边与x轴的正半轴交于点A,另一条直角边与y轴交于点B.(1)连结AB,请判断△PAB是什么三角形,并说明理由;(2)在三角板绕点P旋转的过程中,OA+OB是定值吗?若是,请求出定值;若不是,请说明理由;(3)当△POA为等腰三角形时,请直接写出所有满足条件的点B的坐标.18. (2023浙江兰溪外国语中学期中)(14分)在平面直角坐标系xOy中,对于给定的两点P,Q,若存在点M,使得△MPQ的面积等于k(S△MPQ=k),则称点M为线段PQ的“k值面积点”,例如:对于给定的两点P,Q,若存在点M,使得△MPQ的面积等于2(S△MPQ=2),则称点M为线段PQ的“2值面积点”.解答下列问题:如图,在平面直角坐标系xOy中,点P的坐标为(2,0).(1)在点A(-1,1),B(-1,2),C(2,-4) 中,线段OP的“1值面积点”是 ;(2)已知点D(0,t),E(0,t+3),当线段DE上存在线段OP的“5值面积点”时,求t的取值范围;(3)已知点G(2,a),H(2,b),且a,b满足2a+3b+m=0,3a+2b+m=―5,点M,N是线段GH的两个“4值面积点”,点M的纵坐标是5,若S△OMN=3S△GHN,且MN∥GH,直接写出点N的坐标.答案全解全析1. D 选项A中缺少距离,不能确定位置,故不符合题意;选项B中缺少列数,不能确定位置,故不符合题意;选项C不能确定位置,不符合题意;选项D中经、纬度可以确定位置,符合题意.故选D.2. C ∵点A(a,b)在第二象限,∴a<0,b>0,∴ab<0,-b<0,∴点B(ab,-b)在第三象限.故选C.3. A ∵点P(m+3,m+1)在y轴上,∴m+3=0,∴m=-3,∴m+1=-2,∴P点的坐标为(0,-2).故选A.4. A ∵点M(a+2,a-1)在第四象限,且点M到x轴的距离为2,∴a-1=-2,∴a=-1,∴a+2=1,∴点M的坐标为(1,-2).故选A.5. C 若ab=0,则a=0或b=0,∴点P(a,b)在x轴或y轴上,故A错误;若A(-1,-2),且AB平行于x轴,AB=5,则B点的坐标为(4,-2)或(-6,-2),故B 错误;点P(1,2)关于原点对称的点的坐标是(-1,-2),故C正确;化简不等式组可得x>a,x<1,∵不等式组无解,∴a≥1,故D错误.故选C.6. C ∵A(2,0),AC=AB=3,∴OC=AC-OA=3-2=1,∵点C在x轴的负半轴上,∴点C的坐标为(-1,0).故选C.7. A 建立如图所示的平面直角坐标系,点C的坐标为(2,1)时,△ABC 为等腰三角形,且腰长为无理数.故选A.8. C △ABC第1次作轴对称变换后,点A的对应点在第二象限,坐标为(-1,2);△ABC第2次作轴对称变换后,点A的对应点在第三象限,坐标为(-1,-2);△ABC第3次作轴对称变换后,点A的对应点在第四象限,坐标为(1,-2);△ABC第4次作轴对称变换后,点A的对应点在第一象限,即回到原始位置,坐标为(1,2);……所以每4次轴对称变换为一个循环组,∵2 021÷4=505……1,∴经过2 021次轴对称变换后点A的对应点与第1次作轴对称变换后点A的对应点的位置相同,在第二象限,坐标为(-1,2).故选C.9. 答案 (4,1)解析 如图所示,“帅”所在的位置可表示为(4,1).10. 答案 4解析 ∵点M(a,b)与点N(3,-1)关于x轴对称,∴a=3,b=1,∴a+b=4.11. 答案 -2解析 ∵点A(a,1)先向右平移3个单位,再向下平移2个单位,得到的点的坐标为(a+3,-1),平移后得到点B(5,b),∴a+3=5,b=-1,∴a=2,b=-1,∴ab=2×(-1)=-2.12. 答案 (0,2)或(0,-2)解析 易知点A(2,0)与点B(-2,0)关于y轴对称,OA=OB=2,∴PA=PB,∴当△ABP为直角三角形时,∠APB为直角,∵O为AB的中点,∴OP=OA=OB=2,∴点P的坐标为(0,2)或(0,-2).13. 答案 (-3,1)解析 过点C作CE⊥x轴于E,过点B作BF⊥CE交CE的延长线于F,∵C(-2,-1),∴OE=2,CE=1,∵四边形OABC是正方形,∴OC=BC,易得∠COE=∠BCF,∵∠OEC=∠F=90°,∴△COE≌△BCF,∴BF=CE=1,CF=OE=2,∴EF=2-1=1,点B到y轴的距离为1+2=3,∴点B的坐标为(-3,1).14. 答案 (1)(9,3);(32,0) (2)(1+2n,3);(2n+1,0)解析(1)∵A(1,3),A1(3,3),A2(5,3),A3(7,3),B(2,0),B1(4,0),B2(8,0),B3(16,0),∴A4(9,3),B4(32,0).(2)由A(1,3),A1(3,3),A2(5,3),A3(7,3)可得,横坐标依次加2,纵坐标不变,为3,∴A n(1+2n,3);由B(2,0),B1(4,0),B2(8,0),B3(16,0)可得,横坐标依次乘2,纵坐标不变,为0,∴B n(2n+1,0).15. 解析 (1)∵点P在过点A(-2,-3),且与y轴平行的直线上,∴2m+4=-2,解得m=-3,∴m-1=-4,∴P(-2,-4).(2)∵点P(2m+4,m-1)在第四象限内,∴点P 到x 轴的距离是-(m-1),到y 轴的距离是2m+4,∴-(m-1)=12(2m+4),解得m=-12,∴2m+4=3,m-1=-32,∴P 3,―16. 解析 (1)(-2,-1);(3,2).(2)如图,△A 1B 1C 1即为所求.点A 1的坐标为(2,4).(3)如图,点P 即为所求,点P 的坐标为(-1,0).(4)如图,点Q,点Q'即为所求,点Q 的坐标为(0,1)或(0,-5).17. 解析 (1)△PAB 是等腰直角三角形.理由:过点P 分别作x 轴,y 轴的垂线交于点F 、E,易知∠EPF=90°,∵∠BPA=90°,∴∠BPE+∠EPA=∠EPA+∠APF,∴∠BPE=∠APF,∵P(1,1),∴PF=PE,又∵∠BEP=∠AFP,∴△PBE ≌△PAF(ASA),∴PA=PB,∴△PAB 为等腰直角三角形.(2)OA+OB 是定值.由(1)得,△PBE ≌△PAF,∴BE=AF,∴OA+OB=OA+(OE+BE)=(OA+AF)+OE=OF+OE=2.(3)(0,1)、(0,0)、(0,2-2).18. 解析 (1)点A.如图,∵A(-1,1),B(-1,2),C(2,-4),P(2,0),∴S △AOP =12×2×1=1,S △OPB =12×2×2=2,S △OPC =12×2×4=4,∴点A 是线段OP 的“1值面积点”.(2)当三角形在x 轴上方时,t ≤5,t +3≥5,∴2≤t≤5;当三角形在x 轴下方时,t +3≥―5,t ≤―5,∴-8≤t≤-5.综上所述,t 的取值范围为2≤t≤5或-8≤t≤-5.(3)点N ,-55,65,,-详解:2a +3b +m =0①,3a +2b +m =―5②,①-②得b-a=5,∴GH=5,设d 表示点M 到GH 的距离,则点N 到GH 的距离也为d,∵M,N 是线段GH 的两个“4值面积点”,∴S △MGH =S △NGH =12×5d=4,∴d=85.①当MN 在直线GH 的左边时,∵MN ∥GH,d=85,G(2,a),H(2,b),∴点M,N 的横坐标为25,设,x ,∵点M 的纵坐标是5,S △OMN =3S △GHN =12,∴S OMN =12×25×|5-x|=12,解得x=-55或x=65,∴,-55,65;②当MN 在直线GH 的右边时,∵MN ∥GH,d=85,G(2,a),H(2,b),∴点M,N 的横坐标为185,设,y ,∵点M 的纵坐标是5,S △OMN =3S △GHN =12,∴S △OMN =12×185×|5-y|=12,解得y=353或y=-53,∴,,-综上所述,点N ,-55,65,,-。

浙教版八年级上浙教版八年级数学上《第四章图形与坐标》单元测试含答案解析

浙教版八年级上浙教版八年级数学上《第四章图形与坐标》单元测试含答案解析

第四章图形与坐标单元测试一、选择题1、点P(﹣ 1, 2)关于y 轴对称点的坐标是()A 、( 1,2)B 、(﹣ 1,﹣ 2)C、( 1,﹣ 2) D 、( 2,﹣ 1)2、假如P( m+3, 2m+4)在y 轴上,那么点P 的坐标是()A 、(﹣ 2, 0)B 、( 0,﹣ 2)C、( 1, 0)D、( 0,1)3、点P(m﹣ 1,2m+1)在第二象限,则m 的取值范围是()A 、;B、C、 m< 1D、4、点P 在第四象限且到x 轴的距离为4,到y 轴的距离为5,则P 点的坐标是()A 、( 4,﹣ 5)B 、(﹣ 4,5)C、(﹣5, 4)D、( 5,﹣ 4)5、如图,将四边形ABCD先向左平移 3 个单位,再向上平移 2 个单位,那么点 A 的对应点A′的坐标是()A 、( 6,1)B、( 0, 1)C、( 0,﹣ 3)D、( 6,﹣ 3)6、如图,在平面直角坐标系中,已知点A( a,0), B( 0, b),假如将线段AB 绕点 B 顺时针旋转 90°至CB,那么点 C 的坐标是()A 、(﹣ b, b+a)B 、(﹣ b, b﹣ a)C、(﹣a, b﹣ a)D、( b, b﹣a)7、如图,△ABC与△ DEF关于y 轴对称,已知A(﹣ 4, 6), B(﹣ 6, 2), E( 2,1),则点D的坐标为()A 、( 4, 6)B、( 4, 6)C、( 2, 1)D、( 6, 2)8、家的坐(2, 1),家的坐(1, 2),家在家的()A 、南方向B 、北方向C、西南方向D、西北方向9、在平面直角坐系中,任意两点A(x1, y1), B( x2, y2),定运算:①A⊕ B=( x1+x2,y1+y2);② A? B=x1x2+y1y2;③当 x1=x2且 y1=y2, A=B,有以下四个命:(1)若 A( 1, 2), B( 2, 1), A⊕B=( 3,1), A? B=0 ;(2)若 A⊕ B=B⊕ C, A=C;( 3)若 A? B=B? C, A=C;(4)任意点 A、B、C,均有( A⊕B)⊕ C=A⊕( B⊕ C)建立,此中正确命的个数()A、1 个B、2个C、3 个D、4 个10、如,一个点 P 在平面直角坐系中按箭所示方向做折运,即第一次从原点运到( 1,1),第二次从( 1,1)运到( 2, 0),第三次从( 2, 0)运到( 3, 2),第四次从(3,2)运到( 4,0),第五次从(4, 0)运到( 5, 1),⋯,按的运律,第2013 次运后,点P 的坐是()A 、( 2012,1) B、( 2012, 2)C、( 2013, 1) D 、( 2013, 2)二、填空11、假如影院里的二排六号用(2, 6)表示,( 1, 5)的含是、12、若 B 地在 A 地的南偏50°方向, 5km , A 地在 B 地的°方向km 、13、已知点 P( 3, 1)关于 y 的称点 Q 的坐是( a+b, 1 b), a b的、14、已知△ ABC 在直角坐系中的地点如所示,假如△A′B′C′与△ ABC 关于 y 称,点 A 的点 A′的坐是、15、如图,假如所在地点的坐标为(﹣1,﹣ 2),所在地点的坐标为(2,﹣ 2),那么,所在地点的坐标为、16、如图,已知A( 0, 1), B( 2,0),把线段AB 平移后获得线段CD,此中 C( 1, a), D( b,1),则 a+b=、17、在直角坐标系中,O 为坐标原点,△ABO 是正三角形,若点坐标是、18、已知点P( 2m﹣ 1,m)可能在某个象限的角均分线上,则B 的坐标是(﹣ 2, 0),则点P 点坐标为、A 的19、已知点A( 4,y), B(x,﹣ 3),若AB∥ x 轴,且线段AB 的长为5, x=, y=、20、如图,等边三角形OAB的极点O 在座标原点,极点 A 在 x 轴上, OA=2,将等边三角形OAB绕原点顺时针旋转105°至OA′B′的地点,则点B′的坐标为、三、解答题(共50 分)21、在棋盘中建立以以下图的平面直角坐标系,三颗棋子A,O,B 的地点以以下图,它们的坐标分别是(﹣ 1,1),( 0, 0)和( 1, 0)(1)如图,增添棋子 C,使 A,O,B,C 四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;( 2)在其余个点地点增添一颗棋子P,使 A, O,B,P 四颗棋子成为一个轴对称图形,请直接写出棋子 P 的地点坐标(写出 2 个即可)、22、已知四边形ABCD各极点的坐标分别是A( 0, 0), B(3, 6), C( 6,8), D( 8, 0)( 1)请建立合适的平面直角坐标系,并描出点A、点B、点C、点D、( 2)求四边形ABCD的面积、23、如图,图形中每一小格正方形的边长为1,已知△ABC、(1)AC的长等于,△ ABC的面积等于、( 2)先将△ABC向右平移 2 个单位获得△A′B′C′,则 A 点的对应点A′的坐标是、( 3)再将△ABC绕点 C 按逆时针方向旋转90°后获得△A1B1C1,则A 点对应点A1的坐标是、OABC在直角坐标系中,(如图)OA与y 轴的夹角为30°,求点A、点24、已知边长为 4 的正方形C、点 B 的坐标、25、已知:在平面直角坐标系中,A( 0, 1), B( 2, 0), C(4, 3)( 1)求△ ABC 的面积;( 2)设点 P 在 x 轴上,且△ ABP 与△ ABC 的面积相等,求点P 的坐标、26、在某河流的北岸有A、B 两个乡村, A 村距河北岸的距离为 1 千米, B 村距河北岸的距离为 4 千米,且两村相距 5 千米,B 在 A 的右侧,现以河北岸为x 轴, A 村在y 轴正半轴上(单位:千米)、( 1)请建立平面直角坐标系,并描出A、 B 两村的地点,写出其坐标、( 2)近几年,因为乱砍滥伐,生态环境遇到破坏,A、 B 两村面对缺水的危险、两村商讨,共同在河北岸修一个水泵站,分别向两村各铺一条水管,要使所用水管最短,水泵站应修在什么地点在图中标出水泵站的地点,并求出所用水管的长度、参照答案与试题分析一、选择题1、点 P(﹣ 1, 2)关于 y 轴对称点的坐标是()A 、( 1, 2) B、(﹣ 1,﹣ 2) C 、( 1,﹣ 2) D 、( 2,﹣ 1)【考点】关于x 轴、 y 轴对称的点的坐标、【专题】计算题、【分析】依据关于y 轴对称,横坐标互为相反数,纵坐标不变、【解答】解:点P(﹣ 1, 2)关于 y 轴对称点的坐标为(1, 2)、应选 A、【评论】此题观察了关于x 轴、 y 轴对称点的坐标,注:关于y 轴对称,横坐标互为相反数,纵坐标不变;关于 x 轴对称,纵坐标互为相反数,横坐标不变;关于原点对称,横纵坐标都互为相反数、2、假如 P( m+3,2m+4)在 y 轴上,那么点P 的坐标是()A 、(﹣ 2, 0)B、( 0,﹣ 2)C、( 1,0) D 、( 0, 1)【考点】点的坐标、【分析】依据点在y 轴上,可知P 的横坐标为0,即可得 m 的值,再确立点P 的坐标即可、【解答】解:∵ P(m+3,2m+4)在 y 轴上,∴ m+3=0 ,解得 m=﹣3, 2m+4=﹣ 2,∴点 P 的坐标是(0,﹣ 2)、应选 B、【评论】解决此题的要点是记着y 轴上点的特色:横坐标为0、3、点 P(m﹣ 1,2m+1)在第二象限,则m 的取值范围是()A 、B、C、 m< 1 D 、【考点】点的坐标;解一元一次不等式组、【专题】证明题、【分析】让点P 的横坐标小于0,纵坐标大于0 列不等式求值即可、【解答】解:∵点P( m﹣1, 2m+1)在第二象限,∴m﹣ 1< 0, 2m+1> 0,解得:﹣< m< 1、应选: B、【评论】此题主要观察了平面直角坐标系中各个象限的点的坐标的符号特色、四个象限的符号特色分别是:第一象限(+, +);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)、4、点 P 在第四象限且到x 轴的距离为A 、( 4,﹣ 5)B、(﹣ 4, 5)4,到C、(﹣y 轴的距离为5,则 P 点的坐标是(5, 4)D、( 5,﹣ 4))【考点】点的坐标、【分析】依据第四象限内点的横坐标是正数,纵坐标是负数,点到x 轴的距离等于纵坐标的长度,到 y 轴的距离等于横坐标的长度解答、【解答】解:∵点P 在第四象限且到x 轴的距离为4,到 y 轴的距离为5,∴点P 的横坐标为5,纵坐标为﹣4,∴ P 点的坐标是(5,﹣ 4)、应选 D 、【评论】此题观察了点的坐标,熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的要点、5、如图,将四边形ABCD先向左平移 3 个单位,再向上平移 2 个单位,那么点 A 的对应点A′的坐标是()A 、( 6, 1) B、( 0, 1) C、( 0,﹣ 3)D、( 6,﹣ 3)【考点】坐标与图形变化-平移、【专题】推理填空题、【分析】四边形ABCD 与点 A 平移同样,据此即可获得点A′的坐标、【解答】解:四边形ABCD 先向左平移 3 个单位,再向上平移 2 个单位,所以点 A 也先向左平移 3 个单位,再向上平移 2 个单位,由图可知, A′坐标为( 0, 1)、应选: B、【评论】此题观察了坐标与图形的变化﹣﹣平移,此题此题观察了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移同样、平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减、6、如图,在平面直角坐标系中,已知点A( a,0), B( 0, b),假如将线段AB 绕点 B 顺时针旋转 90°至 CB,那么点C 的坐标是()A 、(﹣ b, b+a) B、(﹣ b, b﹣ a)C、(﹣ a, b﹣a)D、( b,b﹣ a)【考点】坐标与图形变化-旋转;旋转的性质、【专题】计算题、【分析】过点 C 作 CD⊥ y 轴于点 D,依据旋转的性质可以证明∠CBD =∠BAO,而后证明△ ABO 与△ BCD 全等,依据全等三角形对应边相等可得BD、CD 的长度,而后求出OD 的长度,最后依据点C 在第二象限写出坐标即可、【解答】解:如图,过点 C 作 CD⊥ y 轴于点 D,∵∠ CBD +∠ ABO=90°,∠ ABO +∠ BAO=90°,∴∠ CBD =∠ BAO,在△ ABO 与△ BCD 中,,∴△ ABO ≌△ BCD( AAS),∴CD=OB, BD =AO,∵点 A( a, 0), B( 0, b),∴CD=b, BD =a,∴OD=OB﹣ BD =b﹣a,又∵点 C 在第二象限,∴点 C 的坐标是(﹣ b, b﹣a)、应选 B、BD 、【评论】此题主要观察了旋转的性质,坐标与图形的关系,作出辅助线利用全等三角形求出CD 的长度是解题的要点、7、如图,△ ABC 与△ DEF 关于 y 轴对称,已知A(﹣ 4, 6), B(﹣ 6, 2), E( 2,1),则点 D 的坐标为()A 、(﹣ 4, 6)B、( 4,6) C 、(﹣ 2, 1) D 、( 6, 2)【考点】关于x 轴、 y 轴对称的点的坐标、【分析】依据关于y 轴对称点的坐标特色:横坐标互为相反数,纵坐标不变、即点P( x, y)关于 y 轴的对称点P′的坐标是(﹣x, y),从而得出答案、【解答】解:∵△ABC 与△ DEF 关于 y 轴对称, A(﹣ 4, 6),∴D( 4, 6)、应选: B、【评论】此题主要观察了关于y 轴对称点的性质,正确记忆横纵坐标的关系是解题要点、8、丽丽家的坐标为(﹣2,﹣ 1),红红家的坐标为(1, 2),则红红家在丽丽家的()A 、东南方向B 、东北方向C、西南方向 D 、西北方向【考点】坐标确立地点、【分析】依据已知点坐标得出所在直线分析式,从而依据图象与坐标轴交点坐标得出两家的地点关系、【解答】解:∵丽丽家的坐标为(﹣2,﹣ 1),红红家的坐标为(1, 2),∴设过这两点的直线分析式为:y=ax+b,则,解得:,∴直线分析式为:y=x+1,∴图象过( 0, 1),(﹣ 1, 0)点,则红红家在丽丽家的东北方向、应选: B、【评论】此题主要观察了坐标确立地点,依据已知得出两点与坐标轴交点坐标是解题要点、9、在平面直角坐标系中,任意两点A(x1, y1), B( x2, y2),规定运算:①A⊕ B=( x1+x2, y1+y2);② A? B=x1x2+y1y2;③当 x1=x2且 y1=y2时, A=B,有以下四个命题:( 1)若 A( 1, 2), B( 2,﹣ 1),则 A⊕ B=( 3,1), A? B=0;( 2)若 A⊕ B=B⊕ C,则 A=C;( 3)若 A? B=B? C,则 A=C;( 4)对任意点A、B、 C,均有(A⊕ B)⊕ C=A⊕( B⊕ C)建立,此中正确命题的个数为()A、1 个B、2 个C、3 个D、4 个【考点】命题与定理;点的坐标、【专题】压轴题、【分析】(1)依据新定义可计算出A⊕B=( 3, 1), A? B=0 ;(2)设 C(x3,y3),依据新定义得 A⊕ B=(x1+x2,y1+y2),B⊕C=( x2+x3,y2+y3),则 x1+x2=x2+x3,y +y =y +y ,于是获得x=x , y=y ,而后依据新定义即可获得A=C;12231313(3)因为 A? B=x1x2+y1y2,B? C=x2x3+y2y3,则 x1x2+y1y2=x2x3+y2y3,不可以获得 x1=x3,y1=y3,所以 A≠C;( 4)依据新定义可得(A⊕ B)⊕ C=A⊕( B⊕C) =(x +x+x , y +y +y )、123123【解答】解:(1) A⊕ B=(1+2 , 2 1) =( 3,1), A? B=1×2+2×( 1) =0,所以( 1)正确;(2) C( x3, y3), A⊕ B=( x1+x2, y1+y2), B⊕C=( x2 +x3, y2+y3),而 A⊕ B=B⊕C,所以 x1+x2=x2+x3, y1+y2=y2+y3, x1=x3,y1=y3,所以 A=C,所以( 2)正确;(3) A? B=x1 x2 +y1 y2, B? C=x2 x3+y2y3,而 A? B=B? C, x1x2+y1y2 =x2 x3+y2y3,不可以获得 x1=x3,y1=y3,所以 A≠C,所以( 3)不正确;(4)因( A⊕ B)⊕ C=( x1+x2+x3, y1+y2+y3), A⊕( B⊕ C) =( x1+x2+x3, y1+y2 +y3),所以( A⊕B)⊕C=A⊕( B⊕ C),所以( 4)正确、故 C、【点】本考了命与定理:判断一件事情的句,叫做命、多命都是由和两部分成,是已知事,是由已知事推出的事,一个命可以写成“⋯那么⋯”假如形式、有些命的正确性是用推理的,的真命叫做定理,也考了理解能力、10、如,一个点P 在平面直角坐系中按箭所示方向做折运,即第一次从原点运到( 1,1),第二次从(1, 1)运到(2, 0),第三次从(2, 0)运到(3,2),第四次从(3,2)运到( 4,0),第五次从(4,0)运到(5,1),⋯,按的运律,第2013次运后,点P 的坐是()A 、( 2012, 1)B、( 2012, 2)C、( 2013, 1)D、( 2013, 2)【考点】律型:点的坐、【分析】依据各点的横坐化得出点的坐律而得出答案即可、【解答】解:∵第一次从原点运到(1,1),第二次从(1, 1)运到( 2,0),第三次从(2,0)运到( 3, 2),第四次从( 3, 2)运到( 4, 0),第五次从(4,0)运到( 5, 1),⋯,∴按的运律,第几次横坐即几,坐:1, 0, 2, 0,1, 0, 2,0⋯4个一循,∵=503⋯1,∴ 第 2013 次运后,点 P 的坐是:( 2013, 1)、故 C、【点】此主要考了点的坐律,依据已知的点的坐得出点的化律是解关、二、填空11、假如影院里的二排六号用(2, 6)表示,( 1, 5)的含是一排五号【考点】坐确立地点、【分析】依占有序数表示地点,可得答案、【解答】解:影院里的二排六号用(2,6)表示,(1, 5)的含是一排五号,故答案:一排五号、、【点】本考了坐确立地点,利用有序数表示地点是解关、12、若 B 地在 A 地的南偏50°方向, 5km , A 地在 B 地的北偏西50°方向 5 km 、【考点】方向角、【分析】依据方向角的看法,画正确表示出方向角,即可求解、【解答】解:从中∠CAB=50°,故 A 地在 B 地的北偏西50°方向 5km、【点】解答此需要从运的角度,正确画出方向角,找准中心是解答此的关、13、已知点 P( 3, 1)关于 y 的称点 Q 的坐是( a+b, 1 b), a b的25 、【考点】关于x 、 y 称的点的坐、【分析】依据关于y 称点的坐特色:横坐互相反数,坐不可直接获得答案、【解答】解:∵点P( 3,﹣ 1)关于 y 轴的对称点Q 的坐标是( a+b, 1﹣b),∴,解得:,则a b的值为:(﹣5)2=25 、故答案为: 25、【评论】此题主要观察了关于y 轴对称点的坐标特色,要点是掌握点的坐标的变化规律、14、已知△ ABC 在直角坐标系中的地点以以下图,假如△A′B′C′与△ ABC 关于 y 轴对称,则点 A 的对应点 A′的坐标是(3,2)、【考点】关于x 轴、 y 轴对称的点的坐标、【分析】第一利用图形得出 A 点坐标,再利用关于y 轴对称点的性质得出答案、【解答】解:以以下图:A(﹣ 3, 2),则点 A 关于 y 轴对称的对应点A′的坐标是:(3, 2)、故答案为:( 3, 2)、【评论】此题主要观察了关于y 轴对称点的性质,正确记忆关于坐标轴对称点的性质是解题要点、15、如图,假如所在地点的坐标为(﹣1,﹣ 2),所在地点的坐标为(2,﹣ 2),那么,所在地点的坐标为(﹣ 3,1)、【考点】坐标确立地点、【专题】压轴题、【分析】依据已知两点的坐标建立坐标系,而后确立其余点的坐标、【解答】解:由所在地点的坐标为(﹣1,﹣ 2),所在地点的坐标为(2,﹣ 2),可以确立平面直角坐标系中x 轴与y 轴的地点、从而可以确立所地点点的坐标为(﹣3, 1)、故答案为:(﹣3, 1)、【评论】观察类比点的坐标解决实质问题的能力和阅读理解能力、解决此类问题需要先确立原点的地点,再求未知点的地点,也许直接利用坐标系中的挪动法规右加左减,上加下减来确立坐标、16、如图,已知A( 0, 1), B( 2,0),把线段AB 平移后获得线段CD,此中 C( 1, a), D( b,1),则 a+b= 5、【考点】坐标与图形变化-平移、【分析】依据点A、C 的横坐标判断出向右平移 1 个单位,而后求出b,再依据点B、D 的纵坐标判断出向上平移 1 个单位,而后求出a,最后相加计算即可得解、【解答】解:∵A(0, 1), C( 1,a),∴向右平移 1 个单位,∴b=2+1=3 ,∵B( 2, 0), D( b, 1),∴向上平移 1 个单位,∴ a=1+1=2 ,∴ a+b=2+3=5 、故答案为: 5、【评论】此题观察了坐标与图形变化﹣平移,依据对应点的坐标的变化确立出平移方法是解题的关键、17、在直角坐标系中,O 为坐标原点,△ABO 是正三角形,若点 B 的坐标是(﹣2, 0),则点 A 的坐标是、【考点】等边三角形的性质;坐标与图形性质、【分析】第一依据题意画出图形,过点 A 作AC⊥ OB于点C,由△ ABO是正三角形,点 B 的坐标是(﹣ 2, 0),即可求得OC与AC的长,既而求得答案、【解答】解:如图,过点 A 作AC⊥ OB于点C,∵△ OAB是正三角形,∴OA=OB =2, OC=BC= OB=1 ,∴ AC==,∴点 A 的坐标是;(﹣1,),同理:点 A′的坐标是(﹣ 1,﹣),∴点 A 的坐标是(﹣ 1,)或(﹣ 1,﹣)、故答案为:(﹣1,)或(﹣ 1,﹣)、【评论】此题观察了等边三角形的性质与勾股定理、此题难度不大,注意掌握数形联合思想与分类谈论思想的应用、18、已知点 P( 2m﹣ 1,m)可能在某个象限的角均分线上,则P点坐标为(﹣,)或(1,1)、【考点】点的坐标、【分析】分两种状况谈论:①依据第二、四象限角均分线上的点的横坐标与纵坐标互为相反数列出方程求解即可;②依据第一、三象限角均分线上的点的横坐标与纵坐标相等列出方程求解即可、【解答】解:分两种状况谈论:①当点 P(2m﹣ 1, m)在第二、四象限角均分线上时,2m﹣ 1+m=0,解得: m=,则点 P 的坐标为:(﹣,);②当点 P(2m﹣ 1, m)在第一、三象限角均分线上时,2m﹣ 1=m,解得: m=1 ,则点 P 的坐标为( 1, 1);故答案为:(﹣,)或(1,1)、【评论】此题观察了点的坐标,解决此题的要点是分两种状况谈论、19、已知点 A( 4, y), B( x,﹣ 3),若 AB ∥x 轴,且线段AB 的长为 5, x= 9 或﹣ 1,y=﹣3、【考点】坐标与图形性质、【分析】若AB∥ x 轴,则 A, B 的纵坐标同样,因此y=﹣ 3;线段 AB 的长为 5,即 |x﹣ 4|=5,解得x=9 或﹣ 1、【解答】解:若AB∥ x 轴,则 A,B 的纵坐标同样,因此y=﹣3;线段 AB 的长为 5,即 |x﹣ 4|=5,解得 x=9 或﹣ 1、故答案填: 9 或﹣ 1,﹣ 3、【评论】此题主要观察了与坐标轴平行的点的坐标的关系,与x 轴的点的纵坐标同样,与y 轴平行的线上的点的横坐标同样、20、如图,等边三角形OAB 的极点 O 在座标原点,极点 A 在 x 轴上, OA=2,将等边三角形OAB 绕原点顺时针旋转105°至 OA′B′的地点,则点B′的坐标为(,﹣)、【考点】坐标与图形变化-旋转;等边三角形的性质、【分析】过 B 作 BE⊥ OA 于 E,则∠ BEO =90°,依据等边求出 OB=OA=2,∠ BOA =60°,依据旋转得出∠AOA ′=105,°∠ A′OB′=∠ AOB=60°,求出∠ AOB′=45,°解直角三角形求出 B′E 和 OE 即可、【解答】解:过 B 作 BE⊥ OA 于 E,则∠ BEO=90°,∵△OAB 是等边三角形,A(2,0),∴ OB=OA =2,∠ BOA=60°,∵等边三角形OAB 绕原点顺时针旋转105°至 OA′B′的地点,旋转角为105°,∴∠ AOA ′=105,°∠ A′OB′=∠AOB=60°, OB=OB′=2,∴∠ AOB ′=105﹣°60°=45°,在 Rt△B′EO中, B′E=OE=OB′=,即点 B′的坐标为(,﹣),故答案为:(,﹣)、【评论】此题观察了等边三角形的性质,旋转的性质,解直角三角形的应用,能构造直角三角形是解此题的要点、三、解答题(共50 分)21、在棋盘中建立以以下图的平面直角坐标系,三颗棋子A,O,B 的地点以以下图,它们的坐标分别是(﹣1,1),(0, 0)和( 1, 0)(1)如图,增添棋子 C,使 A,O,B,C 四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;( 2)在其余个点地点增添一颗棋子P,使 A, O,B,P 四颗棋子成为一个轴对称图形,请直接写出棋子 P 的地点坐标(写出 2 个即可)、【考点】利用轴对称设计图案、【分析】( 1) A, O, B, C 四颗棋子构成等腰梯形,而后画出上下两底的中垂线即可;(2)依据轴对称图形的定义:沿着向来线折叠后,直线两旁的部分能重合是轴对称图形,而后增添一颗棋子 P 即可、【解答】解:( 1)以以下图:直线 l 为对称轴;;( 2)以以下图:P(2, 1),( 0,﹣ 1)、【评论】此题主要观察了利用轴对称图形设计图案,要点是掌握轴对称图形的定义、22、已知四边形ABCD 各极点的坐标分别是(1)请建立合适的平面直角坐标系,并描出点A( 0, 0), B(3, 6), C( 6,8), D( 8, 0)A、点B、点C、点D、( 2)求四边形ABCD 的面积、【考点】坐标与图形性质、【专题】作图题;网格型、【分析】( 1)采用合适的点作为坐标原点,经过原点的两条相互垂直的直线分别作为x 轴, y 轴,建立坐标系,分别描出点A、点 B、点 C、点 D、如确立( 3, 6)表示的地点,先在x 轴上找出表示3 的点,再在 y 轴上找出表示 6 的点,过这两个点分别做x 轴和 y 轴的垂线,垂线的交点即所要表示的地点、( 2)过 B 作 BE⊥ AD 于 E,过 C 作 CF ⊥ AD 于 F ,利用四边形ABCD 的面积 =S△ABE+S 梯形BEFC+S△CFD,进行求解、【解答】解:(1)以以下图、(2)过 B 作 BE⊥AD 于 E,过 C 作 CF⊥AD 于 F,则S 四边形ABCD=S△ABE+S 梯形BEFC+S△CFD===9+21+8=38答:四边形ABCD 的面积为 38、【评论】主要观察了直角坐标系的建立、在平面直角坐标系中,必定要理解点与坐标的对应关系,是解决此类问题的要点、23、如图,图形中每一小格正方形的边长为1,已知△ABC、(1) AC 的长等于,△ ABC 的面积等于3.5、(2)先将△ ABC 向右平移 2 个单位获得△ A′B′C′,则 A 点的对应点 A′的坐标是(1,2)、(3)再将△ ABC 绕点 C 按逆时针方向旋转90°后获得△ A1B1C1,则 A 点对应点 A1的坐标是(﹣ 3,﹣2)、【考点】坐标与图形变化-旋转;三角形的面积;坐标与图形变化-平移、【分析】( 1)利用勾股定理即可求解;(2) A 的坐标是(﹣ 1, 2),向右平移 2 个单位长度,则 A′的坐标即可写出;(3)依据旋转的性质,即可求解、【解答】解:(1) AC==,S△ABC=3×3﹣×1×2﹣×2×3﹣×1×3=3.5,故答案为:; 3.5;(2) A 点的对应点 A′的坐标是( 1, 2),故答案为:( 1, 2)、(3)并写出 A 点对应点 A1的坐标是(﹣ 3,﹣ 2)、故答案为:(﹣ 3,﹣ 2)、【评论】此题主要观察了旋转及平移变换,解题的要点是旋转及平移变换的变化特色、24、已知边长为 4 的正方形OABC 在直角坐标系中,(如图)OA 与 y 轴的夹角为30°,求点 A、点C、点 B 的坐标、【考点】正方形的性质;坐标与图形性质、【专题】计算题、【分析】作 AD⊥ x 轴于 D,作 CE⊥x 轴于E,作 BF⊥ CE 于 F,如图,先求出∠AOD=60°,则利用含 30 度的直角三角形三边的关系获得OD=OA=2, AD=OD =2 ,从而获得 A 点坐标;再计算出∠ COE =30°,则在 Rt△ COE 中可计算出 CE=OC=2 , OE=CE=2,于是获得 C(﹣ 2, 2);而后计算出∠ BCF=30°,所以 BF =BC=2,CF =BF=2,于是获得 B 点坐标、【解答】解:作 AD⊥ x 轴于 D,作 CE⊥ x 轴于 E,作 BF ⊥CE 于 F ,如图,∵ OA 与 y 轴的夹角为 30°,∴∠ AOD =60°,∴OD=OA=2, AD=OD =2,∴A(2, 2);∵∠ AOC =90°,∴∠ COE =30°,CE=2,在 Rt△COE 中, CE=OC=2 , OE=∴ C(﹣ 2,2);∵∠ OCE =60°,∠ BCO =90°,∴∠ BCF =30°,∴ BF= BC=2, CF =BF=2,∴ B(﹣ 2+2, 2+2)、【评论】此题观察了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,相互垂直均分,而且每条对角线均分一组对角、也观察了坐标与图形性质、记着含 30 度的直角三角形三边的关系、25、已知:在平面直角坐标系中,A( 0, 1), B( 2, 0), C(4, 3)( 1)求△ ABC 的面积;( 2)设点 P 在 x 轴上,且△ ABP 与△ ABC 的面积相等,求点P 的坐标、【考点】坐标与图形性质、【分析】(1)过点 C 向 x、y 轴作垂线,垂足分别为D、E,而后依照S△ABC=S 四边形CDEO﹣ S△AEC﹣ S△ABO ﹣ S△BCD求解即可、(2)设点 P 的坐标为( x, 0),于是获得 BP=|x﹣ 2|,而后依照三角形的面积公式求解即可、【解答】解:( 1)过点 C 作 CD ⊥ x 轴, CE⊥y,垂足分别为 D、 E、S△ABC=S 四边形CDEO﹣S△AEC﹣S△ABO﹣S△BCD=3×4﹣×2×4﹣×1×2﹣×2×3=12﹣ 4﹣ 1﹣ 3=4、(2)设点 P 的坐标为( x, 0),则 BP=|x﹣ 2|、∵△ ABP 与△ ABC 的面积相等,∴ ×1×|x﹣ 2|=4、解得: x=10 或 x=6、所以点 P 的坐标为( 10, 0)或( 6, 0)、【评论】此题主要观察的是坐标与图形的性质,利用割补法求得△ABC 的面积是解题的要点、26、在某河流的北岸有A、B 两个乡村, A 村距河北岸的距离为 1 千米, B 村距河北岸的距离为 4 千米,且两村相距 5 千米, B 在 A 的右侧,现以河北岸为x 轴, A 村在 y 轴正半轴上(单位:千米)、( 1)请建立平面直角坐标系,并描出A、 B 两村的地点,写出其坐标、( 2)近几年,因为乱砍滥伐,生态环境遇到破坏,A、 B 两村面对缺水的危险、两村商讨,共同在河北岸修一个水泵站,分别向两村各铺一条水管,要使所用水管最短,水泵站应修在什么地点在图中标出水泵站的地点,并求出所用水管的长度、【考点】坐标确立地点;轴对称-最短路线问题、【专题】应用题、【分析】( 1)依据题意建立坐标系解答;(2)利用两点之间线段最短的数学道理作图即可、【解答】解:( 1)如图,点 A( 0, 1),点 B( 4, 4);( 2)找 A 关于 x 轴的对称点A′,连接 A′B 交 x 轴于点 P,则 P 点即为水泵站的地点,PA+PB=PA′+PB=A′B 且最短(如图)、过 B、 A′分别作 x 轴、 y 轴的垂线交于E,作 AD ⊥ BE,垂足为 D,则 BD=3 ,在 Rt△ABD 中, AD==4,所以 A 点坐标为( 0, 1), B 点坐标为( 4, 4),A′点坐标为( 0,﹣ 1),由 A′E=4,BE =5,在 Rt△A′BE 中, A′B==、故所用水管最短长度为千米、【评论】主要观察了直角坐标系的建立和运用以及作图求两点之间的最短距离,该题中还涉及到了勾股定理的运用、此类题型是个要点也是难点,需要掌握、。

浙江省宁波大学附属学校2022-2023学年浙教版八年级上册第4章单元测试卷

浙江省宁波大学附属学校2022-2023学年浙教版八年级上册第4章单元测试卷

浙教版八年级上册第四章《图形与坐标》单元测试班级:姓名:一.选择题(共10小题,每小题3分,共30分)1.在平面直角坐标系中,下列各点在第二象限的是()A.(﹣1,2)B.(﹣3,0)C.(0,4)D.(5,﹣6)2.根据下列表述,不能确定具体位置的是()A.某电影院1号厅的3排4座B.靖西市城东路85号C.某灯塔南偏西30°方向D.东经108°,北纬53°3.已知第三象限的点P(﹣4,﹣5),那么点P到x轴的距离为()A.﹣3B.3C.﹣5D.54.若点A(a,﹣2),B(3,b)关于x轴对称,则a,b的值分别为()A.a=3,b=﹣2B.a=﹣3,b=﹣2C.a=3,b=2D.a=﹣3,b=25.如图:A(1,0),B(0,2),若将线段AB平移至A1B1,则5a﹣b的值为()A.6B.8C.﹣8D.10第5题第8题第9题6.点(﹣3,4)到原点的距离为()A.3B.4C.5D.7.已知点A(a﹣1,3),点B(﹣2,a+1),且直线AB∥y轴,则a的值为()A.﹣3B.7C.1D.﹣18.如图,平面直角坐标xOy中,∠A=90°,OA=2,OB平分∠AOx,点B(a﹣1,a﹣2)关于x轴的对称点是()A.(﹣2,1)B.(3,﹣2)C.(2,﹣1)D.(3,﹣1)6.如图,在平面直角坐标系中,动点A从(1,0)出发,向上运动1个单位长度到达点B(1,1),分裂为两个点,分别向左、右运动到点C(0,2)、点D(2,2),此时称动点A完成第一次跳跃,再分别从C、D点出发,每个点重复上边的运动,到达点G(﹣1,4)、H(1,4)、I(3,4),此时称动点A完成第二次跳跃,依此规律跳跃下去,动点A完成第2023次跳跃时,最左边第一个点的坐标是()A.(﹣2023,4046)B.(﹣2022,22023)C.(﹣2022,4046)D.(﹣2023,22023)二.填空题(共8小题,每小题3分,共24分)11.点A(3,a﹣1)在x轴上,则a=.12.已知点P(a,b),ab>0,a+b<0,则点P在第象限.13.点A(4,2)先向右平移4个单位,再向下平移1个单位后的坐标为.14.点P(a,﹣3)与Q(2,b)关于x轴对称,则a+b= .15.若(2m+1,2)是第二象限内一点,向右平移2个单位后再向下平移3个单位,该点运动到第四象限,则m的取值范围是.16.如图,在平面直角坐标系中,△AOB是直角三角形,∠OAB=90°,OA=8,AB=6,则点A关于y轴的对称点的坐标为.第16题第17题第18题17.如图,在平面直角坐标系中,将线段AB平移使得一个端点与点C重合,已知点A(3,0),B(0,2),C(6,4),则线段AB平移后另一个端点的坐标为.18.如图,在平面直角坐标系中,点A、B的坐标分别为(﹣3,0)、(0,6),点C(3,n)在第一象限内,连接AC、BC.已知∠BCA=2∠CAO,则n=.三.解答题(共5小题,共46分)19.(8分)如图是某学校的平面示意图,图中小方格都是边长为1个单位长度的正方形,若艺术楼的坐标为(2,a),实验楼的坐标为(b,﹣1).(1)请在图中画出平面直角坐标系.(2)a=,b=.(3)若食堂的坐标为(1,2),请在(1)中所画的平面直角坐标系中标出食堂的位置.20.(8分)△ABC在直角坐标系内的位置如图.(1)分别写出A、B点的坐标;(2)小颖在这个坐标系内画出了△A1B1C1,使△A1B1C1与△ABC关于x轴对称,请帮小颖写出B1点和C1点的坐标.(3)若△A2B2C2与△ABC关于y轴对称,请写出B2点和C2点的坐标.21.(10分)如图,在直角坐标平面内,已知点A的坐标为(﹣3,﹣3),点B的坐标为(﹣3,4),点P为直线AB上任意一点(不与A、B重合),点Q是点P关于x轴的对称点.(1)请求出△ABO的面积.(2)若点P的纵坐标为n,那么点Q的坐标为.(3)若△OP A是△OPQ的面积2倍时,请求出此时P点坐标.22.(10分)已知点P(﹣3a﹣4,2+a),解答下列各题:(1)若点P在x轴上,则点P的坐标为P;(2)若Q(5,8),且PQ∥y轴,则点P的坐标为P;(3)若点P在第二象限,且它到x轴、y轴的距离相等,求a2024+2023的值.23.(10分)在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2),若x2﹣x1=y2﹣y1≠0,则称点A与点B互为“对角点”,例如:点A(﹣1,3),点B(2,6),因为2﹣(﹣1)=6﹣3≠0,所以点A与点B互为“对角点”.(1)若点A的坐标是(4,﹣2),则在点B1(2,0),B2(﹣1,﹣7),B3(0,﹣6)中,点A的“对角点”为点;(2)若点A的坐标是(5,﹣3)的“对角点”B在坐标轴上,求点B的坐标;(3)若点A的坐标是(﹣,2)与点B(2m,﹣n)互为“对角点”,且m、n互为相反数,求B 点的坐标.。

2021-2022学年浙教新版八年级上册数学《第4章图形与坐标》单元测试卷(有答案)

2021-2022学年浙教新版八年级上册数学《第4章图形与坐标》单元测试卷(有答案)

2021-2022学年浙教新版八年级上册数学《第4章图形与坐标》单元测试卷一.选择题1.若点P(a﹣2,a)在第二象限,则a的取值范围是()A.0<a<2B.﹣2<a<0C.a>2D.a<02.已知点A(m﹣1,m+4)在y轴上,则点A的坐标是()A.(0,3)B.(0,5)C.(5,0)D.(3,0)3.经过两点A(2,3)、B(﹣4,3)作直线AB,则直线AB()A.平行于x轴B.平行于y轴C.经过原点D.无法确定4.如图,在平面直角坐标系中,有两点坐标分别为(2,0)和(0,3),则这两点之间的距离是()A.B.C.13D.55.在平面直角坐标系xOy中,点P(﹣3,5)关于y轴对称的点的坐标是()A.(﹣3,﹣5)B.(3,﹣5)C.(3,5)D.(5,﹣3)6.课间操时,小华、小军、小刚的位置如图,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示成()A.(4,3)B.(4,5)C.(3,4)D.(5,4)7.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A.(1,3)B.(3,2)C.(0,3)D.(﹣3,3)8.在平面直角坐标系中,点P(m,2m﹣2),则点P不可能在()A.第一象限B.第二象限C.第三象限D.第四象限9.在平面直角坐标系中,对于点P(x,y),我们把点P'(﹣y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(2,4),点A2021的坐标为()A.(﹣3,3)B.(﹣2,2)C.(3,﹣1)D.(2,4)10.平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线l∥x轴,点C是直线l上的一个动点,则线段BC的长度最小时,点C的坐标为()A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)二.填空题11.如图,如果☆的位置为(1,2),则※的位置是.12.若点A在第二象限,且到x轴的距离为4,到y轴的距离为2,则点A的坐标为.13.点P(2,4)与点Q(﹣3,4)之间的距离是.14.点P在第四象限,P到x轴的距离为4,P到y轴距离为3,则点P的坐标为.15.点(a,a+2)在第二象限,则a的取值范围是.16.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2018的坐标为.17.已知点O(0,0),B(1,2),点A在坐标轴上,且S=2,则满足条件的点A△OAB的坐标为.18.已知A(1,0),B(0,2),点P在x轴上,且△PAB面积是5,则点P的坐标是.19.如图所示的棋盘放置在某个平面直角坐标系内,棋子A的坐标为(﹣2,﹣3),棋子B 的坐标为(1,﹣2),那么棋子C的坐标是.20.若|a﹣2|+(b﹣5)2=0,则点P(a,b)关于x轴对称的点的坐标为.三.解答题21.已知:P(4x,x﹣3)在平面直角坐标系中,(1)若点P在第三象限的角平分线上,求x的值;(2)若点P在第四象限,且到两坐标轴的距离之和为9,求x的值.22.下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(﹣3,2).(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:;(2)若中国人民大学的坐标为(﹣3,﹣4),请在坐标系中标出中国人民大学的位置.23.园林部门为了对市内某旅游景区内的古树名木进行系统养护,建立了相关的地理信息系统,其中重要的一项工作就是要确定这些古树的位置.已知该旅游景区有树龄百年以上的古松树4棵(S1,S2,S3,S4),古槐树6棵(H1,H2,H3,H4,H5,H6).为了加强对这些古树的保护,园林部门根据该旅游景区地图,将4棵古松树的位置用坐标表示为S1(2,8),S2(4,9),S3(10,5),S4(11,10).(1)根据S1的坐标为(2,8),请在图中画出平面直角坐标系;(2)在所建立的平面直角坐标系中,写出6棵古槐树的坐标;(3)已知H5在S1的南偏东41°,且相距5.4米处,试用方位角和距离描述S1相对于H5的位置?24.如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,写出A′、B′、C′的坐标.(3)求出三角形ABC的面积.25.已知平面直角坐标系中有一点M(m﹣1,2m+3)(1)点M到x轴的距离为1时,M的坐标?(2)点N(5,﹣1)且MN∥x轴时,M的坐标?26.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.(1)填写下列各点的坐标:A4(,),A8(,),A12(,).(2)写出点A4n的坐标(n是正整数);(3)指出蚂蚁从点A100到点A101的移动方向.27.如图①,在平面直角坐标系中,点A、B在x轴上,AB⊥BC,AO=OB=2,BC=3(1)写出点A、B、C的坐标.(2)如图②,过点B作BD∥AC交y轴于点D,求∠CAB+∠BDO的大小.(3)如图③,在图②中,作AE、DE分别平分∠CAB、∠ODB,求∠AED的度数.参考答案与试题解析一.选择题1.解:由题意得:,解得:0<a<2,故选:A.2.解:∵点A(m﹣1,m+4)在y轴上,∴点的横坐标是0,∴m﹣1=0,解得m=1,∴m+4=5,点的纵坐标为5,∴点A的坐标是(0,5).故选:B.3.解:∵A(2,3)、B(﹣4,3)的纵坐标都是3,∴直线AB平行于x轴.故选:A.4.解:∵A(2,0)和B(0,3),∴OA=2,OB=3,∴AB===.故选:A.5.解:点P(﹣3,5)关于y轴对称的点的坐标是:(3,5).故选:C.6.解:如图:,小华、小军、小刚的位置如图,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示成(4,3),故选:A.7.解:如图所示:帅的位置为原点,则棋子“炮”的点的坐标为(1,3).故选:A.8.解:当m>1时,2m﹣2>0,故点P可能在第一象限;当m<0时,2m﹣2<0,故点P不可能在第二象限;当m<0时,2m﹣2<0,故点P可能在第三象限;当0<m<1时,2m﹣2<0,故点P可能在第四象限;故选:B.9.解:∵A1的坐标为(2,4),∴A2(﹣3,3),A3(﹣2,﹣2),A4(3,﹣1),A5(2,4),…,依此类推,每4个点为一个循环组依次循环,∵2021÷4=505•••1,∴点A2021的坐标与A1的坐标相同,为(2,4).故选:D.10.解:如图,根据垂线段最短可知,BC⊥AC时BC最短.∵A(﹣3,2),B(1,4),AC∥x轴,∴BC=2,∴C(1,2),故选:C.二.填空题11.解:☆的位置是(1,2 ),是第1列第2行;※位于第3列第1行,用数对表示为(3,1).故答案为:(3,1).12.解:∵点A在第二象限,且A点到x轴的距离为4,∴点A的纵坐标为4,∵点A到y轴的距离为2,∴点A的横坐标是﹣2,∴点A的坐标为(﹣2,4).故答案为:(﹣2,4).13.解:∵点P(2,4),点Q(﹣3,4)∴PQ∥x轴,∵x轴上或平行于x轴的直线上两点的距离为两点横坐标的差的绝对值,∴PQ=|﹣3﹣2|=5,故答案为5.14.解:∵点P在第四象限,∴点P的横坐标为正数,纵坐标为负数,∵点P到y轴的距离是3,点P到x轴的距离是4,∴点P的横坐标是3,纵坐标是﹣4,∴点P的坐标是(3,﹣4).15.解:∵点(a,a+2)在第二象限,∴,解得﹣2<a<0.故答案为:﹣2<a<0.16.解:由A2(1,1),A6(3,1),A10(5,1)…可得到以下规律,A4n(2n﹣1,1)﹣2(n为不为0的自然数),当n=505时,A2018(1009,1).故答案为:(1009,1)17.解:若点A在x轴上,则S=×OA×2=2,△OAB解得OA=2,所以,点A的坐标为(2,0)或(﹣2,0),若点A在y轴上,则S=×OA×1=2,△OAB解得OA=4,所以,点A的坐标为(0,4)或(0,﹣4),综上所述,点A的坐标为(2,0)或(﹣2,0)或(0,4)或(0,﹣4).故答案为:(2,0)或(﹣2,0)或(0,4)或(0,﹣4).18.解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又∵△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故答案为(﹣4,0)或(6,0).19.解:由点A、B坐标可建立如图所示平面直角坐标系,则棋子C的坐标为(2,1),故答案为:(2,1).20.解:由题意得,a﹣2=0,b﹣5=0,解得a=2,b=5,所以,点P的坐标为(2,5),所以,点P(a,b)关于x轴对称的点的坐标为(2,﹣5).故答案为:(2,﹣5).三.解答题21.解:(1)由题意,得4x=x﹣3,解得x=﹣1∴点P在第三象限的角平分线上时,x=﹣1.(2)由题意,得4x+[﹣(x﹣3)]=9,则3x=6,解得x=2,此时点P的坐标为(8,﹣1),∴当点P在第四象限,且到两坐标轴的距离之和为9时,x=2.22.解:(1)北京语言大学的坐标:(3,1);故答案是:(3,1);(2)中国人民大学的位置如图所示:23.解:(1)补充画出平面直角坐标系如图所示:;(2)6棵古槐树的坐标分别为:H1(3,5),H2(1,3),H3(7,5),H4(8,6),H5(8,1),H6(12,7);(3)∵H5在S1的南偏东41°,且相距5.4米处,∴S1在H5的北偏西41°,且相距5.4米处.24.解:(1)点A、B、C分别在第三象限、第一象限和y轴的正半轴上,则A(﹣2,﹣2),B(3,1),C(0,2);(2)∵把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,∴横坐标减1,纵坐标加2,即A′(﹣3,0),B′(2,3),C(﹣1,4);=4×5﹣×5×3﹣×4×2﹣×1×3(3)S△ABC=20﹣7.5﹣4﹣1.5=7.25.解:(1)∵点M(m﹣1,2m+3),点M到x轴的距离为1,∴|2m+3|=1,解得,m=﹣1或m=﹣2,当m=﹣1时,点M的坐标为(﹣2,1),当m=﹣2时,点M的坐标为(﹣3,﹣1);(2)∵点M(m﹣1,2m+3),点N(5,﹣1)且MN∥x轴,∴2m+3=﹣1,解得,m=﹣2,故点M的坐标为(﹣3,﹣1).26.解:(1)A4(2,0),A8(4,0),A12(6,0);(2)当n=1时,A4(2,0),当n=2时,A8(4,0),当n=3时,A12(6,0),所以A4n(2n,0);(3)点A100中的n正好是4的倍数,所以点A100和A101的坐标分别是A100(50,0),A101的(50,1),所以蚂蚁从点A100到A101的移动方向是从下向上.27.解:(1)依题意得:A(﹣2,0),B(2,0),C(2,3);(2)∵BD∥AC,∴∠ABD=∠BAC,∴CAB+∠BDO=∠ABD+∠BDO=90°;(3):∵BD∥AC,∴∠ABD=∠BAC,∵AE,DE分别平分∠CAB,∠ODB,∴∠CAE+∠BDE=(∠BAC+∠BDO)=(∠ABD+∠BDO)=×90°=45°,过点E作EF∥AC,则∠CAE=∠AEF,∠BDE=∠DEF,∴∠AED=∠AEF+∠DEF=∠CAE+∠BDE=45°.。

浙教版八年级数学上册《第四章图形与坐标》单元测试卷及答案

浙教版八年级数学上册《第四章图形与坐标》单元测试卷及答案

浙教版八年级数学上册《第四章图形与坐标》单元测试卷及答案一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.根据下列表述,不能确定具体位置的是( )A. 某电影院1号厅的3排4座B. 荆大路269号C. 某灯落南偏西30∘方向D. 东经108∘,北纬53∘2.点P(m+2,m+4)在y轴上,则m的值为( )A. −2B. −4C. 0D. 23.雷达屏幕在一次探测中发现的多个目标如下,其中对目标A的位置表述最准确的是( )A. 在南偏东75∘方向处B. 在5km处C. 在南偏东15∘方向5km处D. 在南偏东75∘方向5km处4.如图,利用直角坐标系画出的正方形网格中,若A(0,2),B(1,1),则点C的坐标为( )A. (1,−2)B. (2,1)C. (1,−1)D. (2,−1)5.已知点A(−2,1)与点B关于直线x=1成轴对称,则点B的坐标是( )A. (4,1)B. (4,−2)C. (−4,1)D. (−4,−1)6.已知点P(2a−3,a+1)关于y轴的对称点在第一象限,则a的取值范围是( )A. a<−1B. −1<a<32C. −32<a<1 D. a>327.将图中各点的纵坐标不变,横坐标分别乘−1,所得图形是( )A. B.C. D.8.在平面直角坐标系xOy中,点A(2,1)与点B(0,1)关于某条直线成轴对称,这条直线是( )A. x轴B. y轴C. 直线x=1D. 直线y=19.在平面直角坐标系中,已知点A(2,−2),在y轴上确定一点P,使△AOP为等腰三角形,则符合条件的点P有( )A. 1个B. 2个C. 3个D. 4个10.如图,在平面直角坐标系xOy中,点A坐标是(1,1).若记点A坐标为(a1,a2),则一个点从点A出发沿图中路线依次经过B(a3,a4),C(a5,a6),D(a7,a8)⋯,每个点的横纵坐标都是整数,按此规律一直运动下去,则a2020+a2021+a2022的值为( )A. 2021B. 2022C. 1011D. 1012二、填空题:本题共6小题,每小题3分,共18分。

浙教版八年级数学上册第4章 图形与坐标单元测试卷含答案

浙教版八年级数学上册第4章 图形与坐标单元测试卷含答案

浙教版八年级数学上册第4章图形与坐标单元测试卷一、填空题(本大题有6小题,每小题3分,共18分)1.如果电影票上的“10排7号”简记为(10,7),那么(5,3)表示________.2.写出一个在x轴正半轴上的点坐标________3.已知点A(2,4)与点B(b–1,2a)关于原点对称,则a=________,b=________.4.已知线段MN=4,MN∥y轴,若点M坐标为(﹣1,2),则N点坐标为________.5.若第二象限内的点P(x ,y)满足|x|=3,y2=25,则点P的坐标是________.6.已知点P(2-a,3a-2)到两坐标轴的距离相等,则P点的坐标是________.二、选择题(本大题有12小题,每小题3分,共36分)7.若点A(x,y)在坐标轴上,则( )A. x=0B. y=OC. xy=0D. x+y=08.在平面直角坐标系中,点P(-2,-3)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.在平面直角坐标系中,点(1,﹣2)关于原点对称的点的坐标是()A. (1,2)B. (﹣1,2)C. (2,﹣1)D. (2,1)10.在平面直角坐标系xOy中,若点P在第四象限,且点P到x轴的距离为1,到y轴的距离为3,则点的坐标为()A. (3,-1)B. (-3,1)C. (1,-3)D. (-1,3)11.点P(﹣1,3)向上平移1个单位长度后,再向左平移2个单位长度得到对应点Q,则Q点坐标是()A. (0,1)B. (﹣3,4)C. (2,1)D. (1,2)12.如图,在平面直角坐标系中,点A的坐标为(1,4),将线段OA绕点O顺时针旋转90°得到线段OA',则点A'的坐标是()A. (1,4)B. (4,1)C. (4,-1)D. (2,3)(第12题)(第16题)(第17题)13.点A(﹣3,2)与点B(﹣3,﹣2)的关系是()A. 关于x轴对称B. 关于y轴对称C. 关于原点对称D. 以上各项都不对14.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为()A. (5,3)B. (﹣1,﹣2)C. (﹣1,﹣1)D. (0,﹣1)15.点P(a,b)在第四象限,则点P到x轴的距离是( )A. aB. bC. -aD. -b16.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A. (5,30)B. (8,10)C. (9,10)D. (10,10)17.如图,将△ABC绕点C(0,-1)旋转180°得到△A′B′C.设点A′的坐标为(a,b),则点A的坐标为()A. (-a,-b)B. (-a,-b-1)C. (-a,-b+1)D. (-a,-b-2)18.在平面内由极点、极轴和极径组成的坐标系叫做极坐标系如图,在平面上取定一点称为极点;从点出发引一条射线称为极轴;线段的长度称为极径点的极坐标就可以用线段的长度以及从转动到的角度(规定逆时针方向转动角度为正)来确定,即或或等,则点关于点成中心对称的点的极坐标表示不正确的是( )A. B. C. D.三、解答题(本大题有7小题,共66分)19.(6分)如图是某个海岛的平面示意图,如果哨所1的坐标是(1,3),哨所2的坐标是(-2,0),请你先建立平面直角坐标系,并用坐标表示出小广场、雷达、营房、码头的位置.20.(8分)已知,如图,在平面直角坐标系中,S△ABC=24,OA=OB,BC=12,求△ABC三个顶点的坐标.21.(10分)在直角坐标平面内,已知点A (3,y1),点B(x2,5),根据下列条件,求出x2,y1的值.(1)A、B关于x轴对称;(2)A、B关于y轴对称;(3)A、B关于原点对称;(4)AB平行于x轴;(5)AB平行于y轴.22.(10分)如图,△ABC三个顶点的坐标分别是A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)在x轴上求作一点P,使△PAB周长最小,请画出△PAB,并直接写出点P的坐标.23.(10分)如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为2的等边三角形.(1)写出△OAB各顶点的坐标;(2)以点O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,写出A′,B′的坐标.24.(10分)如图为东明一中新校区分布图的一部分,方格纸中每个小方格都是边长为1个单位的正方形,若教学楼的坐标为A(1,2),图书馆的位置坐标为B(-2,-1),解答以下问题:(1)在图中找到坐标系中的原点,并建立直角坐标系;(2)若体育馆的坐标为C(1,-3),食堂坐标为D(2,0),请在图中标出体育馆和食堂的位置;(3)顺次连接教学楼、图书馆、体育馆、食堂得到四边形ABCD,求四边形ABCD的面积.25.(12分)在平面直角坐标系中,点O是坐标原点,点A的坐标是(-a,a),点B的坐标是(c,b),满足.(1)a为不等式2x+6<0的最大整数解,求a的值并判断点A在第几象限;(2)在(1)的条件下,求△AOB的面积;(3)在(2)的条件下,若两个动点M(k-1,k),N(-2h+10,h),请你探索是否存在以两个动点M、N为端点的线段MN//AB,且MN=AB,若存在,求M、N两点的坐标;若不存在,请说明理由.参考答案一、填空题1.【答案】5排3号2.【答案】答案不唯一,例如(3,0)3.【答案】-2;-14.【答案】(﹣1,﹣2),(﹣1,6)5.【答案】(-3,5)6.【答案】(1,1)或(2,-2)二、单选题7.【答案】C 8.【答案】C 9.【答案】B 10.【答案】A 11.【答案】B 12.【答案】C13.【答案】A 14.【答案】C 15.【答案】D 16.【答案】C 17.【答案】D 18.【答案】D三、解答题19.【答案】解:建立如图所示的平面直角坐标系:小广场(0,0)、雷达(4,0)、营房(2,-3)、码头(-1,-2)20.【答案】解:∵S△ABC= BC•OA=24,OA=OB,BC=12,∴OA=OB= = =4,∴OC=8,∵点O为原点,∴A(0,4),B(-4,0),C(8,0).21.【答案】(1)解:x2=3,y1=-5(2)解:x2=-3,y1=5(3)解:x2=-3,y1=-5(4)解:x2≠2,y1=5(5)解:x2=3,y1≠522.【答案】(1)解:A、B、C向左平移5个单位后的坐标分别为(-4,1),(-1,2),(-2,4),连接这三个点,得△A1B1C1;如图所示,(2)解:如图所示,A、B、C关于原点的对称点的坐标分别为(-1,-1),(-4,-2),(-3,-4),连接这三个点,得△A2B2C2(3)解:如图所示,P(2,0).作点A关于x轴的对称点A′,连接A′B交x轴于点P,则点P即为所求作的点。

第四章 图形与坐标单元测试卷(标准难度)(含答案)

第四章 图形与坐标单元测试卷(标准难度)(含答案)

浙教版初中数学八年级上册第四章《图形与坐标》单元测试卷考试范围:第四章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1.在平面直角坐标系中,点A(m,2)是由点B(3,n)向上平移2个单位得到,则( )A. m=3,n=0B. m=3,n=4C. m=1,n=2D. m=5,n=22.如图,平面直角坐标系中,已知点A(−3,0),B(0,5),以点A为圆心,AB长为半径画弧,交x轴的正半轴于点C,则C点的横坐标位于( )A. 4和5之间B. 3和4之间C. 5和6之间D. 2和3之间3.如图,将线段AB向右平移2个单位长度,再向下平移3个单位长度,得到线段A′B′,则点B的对应点B′的坐标是( )A. (−1,−2)B. (1,2)C. (0,−2)D. (−1,4)4.点P(2,−3)向左平移3个单位,向上平移2个单位到点Q,则点Q的坐标为( )A. (−1,−1)B. (−1,−5)C. (5,−1)D. (5,−5)5.在平面直角坐标系中,将点P向上平移3个单位得到点P′(1,2),则点P在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.在平面直角坐标系中,将点A(m,n+2)先向左平移3个单位,再向上平移2个单位,得到点A′,若点A′位于第二象限,则m、n的取值范围分别是( )A. m<0,n>0B. m<3,n>−4C. m<0,n<−2D. m<−3,n<−47.如图,在平面直角坐标系中,等边△OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为( )A. (4,2√3)B. (3,3)C. (4,3)D. (3,2)8.如图,线段AB经过平移得到线段A1B1,其中点A,B的对应点分别为点A1,B1,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A1B1上的对应点P1的坐标为A. (a−2,b+3)B. (a−2,b−3)C. (a+2,b+3)D. (a+2,b−3)9.如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2),把一条长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是( )A. (-1,0)B. (1,-2)C. (1,1)D. (0,-2)10.已知点P(2a,1−3a)在第二象限,且点P到x轴的距离与到y轴的距离之和为6,则a的值为( )A. −1B. 1C. −5D. 511.如图,在平面直角坐标系xOy中,将四边形ABCD先向上平移,再向左平移得到四边形A1B1C1D1,已知A1(−3,5),B1(−4,3),A(3,3),则点B坐标为( )A. (1,2)B. (2,1)C. (1,4)D. (4,1)12.如图,已知一个斜边长为2的直角三角板的直角顶点与原点重合,两直角边分别落在两个坐标轴上.现将该三角板向右平移使点A与点O重合,得到△OCB′,则点B的对应点B′的坐标是( )A. (1,0)B. (√3,√3)C. (1,√3)D. (−1,√3)第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.如图:在直角坐标系中,设一动点自P0(1,0)处向上运动1个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处,如此继续运动下去.设P n(x n,y n),n=1,2,3…,则x1+x2+x3+⋯+x2021+x2021+x2022=______.14.已知△ABC三个顶点的坐标分别是A(0,3)、B(2,−2)、C(−5,1),将△ABC平移后顶点A的对应点A1的坐标是(2,4),则顶点B的对应点B1的坐标是______.15.如图,直角坐标系中,点A(1,4),点B(1,0),点C(0,3),点M(m,0)是x轴上一动点,点N是线段AB上一动点,若∠MNC=90°,则m的取值范围是______.16.点C在第三象限,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为______.三、解答题(本大题共9小题,共72分。

浙教版八年级上册数学第4章 图形与坐标含答案

浙教版八年级上册数学第4章 图形与坐标含答案

浙教版八年级上册数学第4章图形与坐标含答案一、单选题(共15题,共计45分)1、如图,在平面直角坐标系中,点的坐标分别为,.将线段平移后A点的对应点是,则点B的对应点的坐标为()A. B. C. D.2、已知,点与点关于轴对称,则的值为()A. B.1 C.-1 D.3、如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB′,则点B的对应点B′的坐标是()A. B. C. D.4、已知在第三象限,且,,则点的坐标是()A. B. C. D.5、若点的坐标是(2,﹣1),则点在()A.第一象限B.第二象限C.第三象限D.第四象限6、点P(a,b)在第四象限,则点P到x轴的距离是( )A.aB.bC.-aD.-b7、点M(a+1,a﹣3)在y轴上,则点M的坐标为()A.(0,﹣4)B.(4,0)C.(﹣2,0)D.(0,2)8、坐标平面内下列各点中,在坐标轴上的是()A.(3,3)B.(﹣3,0)C.(﹣1,2)D.(﹣2,﹣3)9、如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)10、已知点为第四象限内一点,且满足,,则P点的坐标为()A. B. C. D.11、在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限12、如图,在方格纸上画出的小红旗图案,若用(0,0)表示点A,(0,4)表示点B,那么点C的坐标是()A.(﹣3,0)B.(﹣2,3)C.(﹣3,2)D.(﹣3,﹣2)13、在平面直角坐标系中,点(3,﹣4)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限14、在长方形中,三点的坐标分别是则点的坐标为()A. B. C. D.15、如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),那么A2020坐标为()A.(2020,1)B.(2020,0)C.(1010,1)D.(1010,0)二、填空题(共10题,共计30分)16、已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.17、如图,在平面直角坐标系xOy中,B1(0,1),B2(0,3),B3(0,6),B 4(0,10),…,以B1B2为对角线作第一个正方形A1B1C1B2,以B2B3为对角线作第二个正方形A2B2C2B3,以B3B4为对角线作第三个正方形A3B3C3B4,…,如果所作正方形的对角线Bn Bn+1都在y轴上,且BnBn+1的长度依次增加1个单位,顶点An 都在第一象限内(n≥1,且n为整数). 那么A1的坐标为________;An的坐标为________(用含n的代数式表示).18、平面直角坐标系xOy中,点A(4,3),点B(3,0),点C(5,3),点E在x轴上.当CE=AB时,点E的坐标为________.19、点向左平移两个单位后恰好位于双曲线上,则________.20、已知点关于x轴的对称点为点B,关于原点的对称点为点C,关于y轴的对称点为点D,则四边形ABCD的面积为________.21、若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为________.22、点P(1,a)在反比例函数的图象上,它关于y轴的对称点在一次函数y=2x+4的图象上,则此反比例函数的解析式为________.23、在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第________象限.24、已知抛物线y=x2+(m+1)x﹣m﹣2(m>0)与x轴交于A、B两点,与y轴交于点C,不论m取何正数,经过A、B、C三点的⊙P恒过y轴上的一个定点,则该定点的坐标是________.25、如图所示的象棋盘上,若帅位于点(1,﹣2)上,相位于点(3,﹣2)上,则炮所在点的坐标是________.三、解答题(共5题,共计25分)26、已知点A 和点B 关于轴对称,求的值.27、有序数对(2,3)和(3,2)相同吗?如果有序数对(a,b)表示某栋楼房中a层楼b号房,那么有序数对(2,3)和(3,2)分别代表什么?28、如图,这是某市部分简图,已知医院的坐标为(﹣2,﹣2),请建立平面直角坐标系,分别写出其余各地的坐标.29、六•一儿童节,小文到公园游玩.看到公园的一段人行弯道MN(不计宽度),如图,它与两面互相垂直的围墙OP、OQ之间有一块空地MPOQN(MP⊥OP,NQ⊥OQ),他发现弯道MN上任一点到两边围墙的垂线段与围墙所围成的矩形的面积都相等,比如:A、B、C是弯道MN上的三点,矩形ADOG、矩形BEOH、矩形CFOI的面积相等.爱好数学的他建立了平面直角坐标系(如图),图中三块阴影部分的面积分别记为S1、S2、S3,并测得S2=6(单位:平方米).OG=GH=HI.(Ⅰ)求S1和S3的值;(Ⅱ)设T(x,y)是弯道MN上的任一点,写出y关于x的函数关系式;(Ⅲ)公园准备对区域MPOQN内部进行绿化改造,在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),已知MP=2米,NQ=3米.问一共能种植多少棵花木?30、在平面直角坐标系内,已知点(1-2a,a-2)在第三象限的角平分线上,求a的值及点的坐标?参考答案一、单选题(共15题,共计45分)1、D2、B3、C4、D5、D6、D7、A8、B9、B10、C11、A12、C13、D14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

第4章 图形与坐标单元测试卷(标准难度 含答案)

第4章 图形与坐标单元测试卷(标准难度 含答案)

浙教版初中数学八年级上册第四单元《图形与坐标》单元测试卷考试范围:第四单元;考试时间:120分钟;分数:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1.如图是象棋棋盘的一部分,若“将”位于点(1,−2)上,“相”位于点(3,−2)上,则“炮”的位置是( )A. (−1,1)B. (−1,2)C. (−2,1)D. (−2,2)2.以下是甲、乙、丙三人看地图时对四个地标的描述:甲:从学校向北直走500米,再向东直走100米可到图书馆.乙:从学校向西直走300米,再向北直走200米可到邮局.丙:邮局在火车站西方200米处.根据三人的描述,若从图书馆出发,则能走到火车站的走法是( )A. 向南直走300米,再向西直走200米B. 向南直走300米,再向西直走600米C. 向南直走700米,再向西直走200米D. 向南直走700米,再向西直走600米3.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为A(−2,1)和B(−2,−3),那么轰炸机C的坐标是( )A.(−2,3)B. (2,−1)C. (−2,−1)D. (−3,2)4.根据下列表述,能确定一个点位置的是( )A. 北偏东40°B. 某地江滨路C. 光明电影院6排D. 东经116°,北纬42°5.下列说法中,错误的是( )A. 平行于x轴的直线上的所有点的纵坐标相同B. 平行于y轴的直线上的所有点的横坐标相同C. 若点P(a,b)在x轴上,则a=0D. (−3,4)与(4,−3)表示两个不同的点6.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字−1,1,2,3.若转动转盘两次,每次转盘停止后指针所指区域的数字分别记为m,n(当指针恰好指在分界线上时,不记,重转),则点(m,n)在第四象限的概率为( )A. 18B. 316C. 14D. 127.已知点P的坐标为(1−a,2a+4),且点P到两坐标轴距离相等,则a的值为( )A. −5B. −3C. −1或−5D. −1或−38.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(−1,1),第2次接着运动到点(−2,0),第3次接着运动到点(−3,2),…,按这样的运动规律,经过第2021次运动后,动点P的坐标是( )A. (2021,0)B. (−2021,0)C. (−2021,1)D. (−2021,2)9.如图,画在透明胶片上的四边形ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(4,−1)处,则下列平移不正确的是( )A. 先向右平移4个单位,再向下平移3个单位B. 向AA′方向平移5个单位C. 先向下平移3个单位,再向右平移4个单位D. 先向左平移4个单位,再向上平移3个单位10.如图,把三角形ABC先向右平移3个单位长度,再向上平移2个单位长度得到三角形DEF,则顶点C(0,−1)对应点的坐标为( )A. (0,0)B. (1,2)C. (1,3)D. (3,1)11.如图所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(−1,1),(−3,1),(−1,−1).30秒后,飞机P飞到P′(4,3)位置,则飞机Q,R的位置Q′,R′分别为( )A. Q′(2,3),R′(4,1)B. Q′(2,3),R′(2,1)C. Q′(2,2),R′(4,1)D. Q′(3,3),R′(3,1)12.点A(3,4)关于x轴对称的是点B,关于y轴对称的是点C,则BC的长为( )A. 6B. 8C. 12D. 10第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.如图1,将射线Ox按逆时针方向旋转角β,得到射线Oy,如果P为射线Oy上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置.例如,图2中,如果OM=8,∠xOM=110∘,那么点M在平面内的位置记为M(8,110∘).如果点A,B在平面内的位置分别记为A(5,30∘),B(12,120∘),那么AB的长为.14.周日,小华做作业时,把老师布置的一个正方形忘了画下来,打电话给小云,小云在电话中答复他:“你可以这样画,正方形ABCD的顶点A,B,C的坐标分别是(1,2),(−2,2),(−2,−1),顶点D的坐标你自己想吧!”那么顶点D的坐标是.15.如图,在直角坐标系中,以点A(3,1)为端点的四条射线AB,AC,AD,AE分别过点B(1,1),点C(1,3),点D(4,4),点E(5,2),则∠BAC______ ∠DAE(填“>”、“=”、“<”中的一个).16.点P(a+2,2a+1)向右平移3个单位长度后,正好落在y轴上,则a=______.三、解答题(本大题共9小题,共72分。

2020年秋浙教版八年级数学上册第4章 图形与坐标单元培优测试卷(含解析)

2020年秋浙教版八年级数学上册第4章 图形与坐标单元培优测试卷(含解析)

2020年秋浙教版八年级数学上册第4章图形与坐标单元培优测试卷含解析一、选择题(共10题;共30分)1.小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是().A. 小李现在位置为第1排第2列B. 小张现在位置为第3排第2列C. 小王现在位置为第2排第2列D. 小谢现在位置为第4排第2列2.某学校的平面示意图如图所示,如果宠物店所在位置的坐标为(-2,-3),儿童公园所在位置的坐标为(-4,-2),则(0,4)所在的位置是()A. 医院B. 学校C. 汽车站D. 水果店3.如图,雷达探测器测得六个目标A,B,C,D,E,F出现,按照规定的目标表示方法,目标E,F的位置表示为E(3,300°),F(5,210°),按照此方法在表示目标A,B,C,D的位置时,其中表示错误的是( )A. A(4,30°)B. B(2,90°)C. C(6,120°)D. D(3,240°)4.点P在第四象限,且点P到x轴的距离为3,点P到y轴的距离为2,则点P的坐标为()A. (-3,-2)B. (3,-2)C. (2,3)D. (2,-3)5.在平面直角坐标系中,将点A(−2,3)向右平移4个单位长度,得到的对应点A′的坐标为()A. (2,7)B. (−6,3)C. (2,3)D. (−2,−1)6.在平面直角坐标系中,线段AB两端点的坐标分别为A(1,0),B(3,2).将线段AB平移后,A、B的对应点的坐标可以是( )A. (1,−1),(−1,−3)B. (1,1),(3,3)C. (−1,3),(3,1)D. (3,2),(1,4)7.已知三角形的三个顶点坐标分别为(-2,1),(2,3),(-3,-1),把这个三角形运动到一个确定位置,在下列各点的坐标中,是经过平移得到的是( )A. (0,3),(0,1),(-1,-1)B. (-3,2),(3,2),(-4,0)C. (1,-2),(3,2),(-1,-3)D. (-1,3),(3,5),(-2,1)8.如图,象棋盘上,若“将”位于点(3,﹣2),“车”位于点(﹣1,﹣2),则“马”位于()A. (1,3)B. (5,3)C. (6,1)D. (8,2)9.已知点P(3−m,m−1)在第二象限,则m的取值范围在数轴上表示正确的是()A. B. C. D.10.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)、……,根据这个规律,第2019个点的坐标为()A. (45,10)B. (45,6)C. (45,22)D. (45,0)二、填空题(共8题;共24分)11.如图点A、B 的坐标分别为(1,2)、(3,0),将△AOB 沿x 轴向右平移,得到△CDE.已知点D 在的点B 左侧,且DB=1,则点C 的坐标为________.12.若点(3+m ,a-2)关于y轴对称点的坐标是(3,2),则m+a的值为________.13.点P到x轴的距离是3,到y轴的距离是5,且在y轴的左侧,则P点的坐标是________14.在平面直角坐标系中,第二象限内的点M到横轴的距离为2,到纵轴的距离为3,则点M的坐标是________.15.北京市为了全民健身,举办“健步走”活动,活动场地位于奥林匹克公园(路线:森林公园→玲珑塔→国家体育馆→水立方)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形与坐标单元检测
考试范围:图形与坐标;考试时间:100分钟;
学校:___________姓名:___________班级:___________考号:___________
题号一二三总分
得分
一.选择题(共10小题)
1.点P(3,﹣3)在平面直角坐标系中的位置在()
A.第一象限B.第二象限C.第三象限D.第四象限
2.如图,小手盖住的点的坐标可能为()
A.(5,2)B.(﹣3,﹣3)C.(﹣6,4)D.(2,﹣5)
3.在平面直角坐标系中,把点A(﹣2,2)平移到点A'(﹣5,2),其平移方法是()A.向上平移3个单位B.向下平移3个单位
C.向左平移3个单位D.向右平移3个单位
4.在平面直角坐标系xOy中,点P(x,y)在第二象限,且点P到横轴的距离等于3,到纵轴的距离等于4,则点P坐标是()
A.(﹣3,4)B.(3,﹣4)C.(﹣4,3)D.(4,﹣3)
5.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的坐标是()
A.(﹣2,3)B.(2,﹣1)C.(﹣2,﹣1)D.(﹣3,2)6.在平面直角坐标系中,将△ABC各点的纵坐标保持不变,横坐标都减去3,则所得图形与原图形的关系:将原图形()
A.向上平移3个单位长度B.向下平移3个单位长度
C.向左平移3个单位长度D.向右平移3个单位长度
7.如图是北京市地图简图的一部分,图中“故宫”、“颐和园”所在的区域分别是()
D E F
6颐和园奥运村
7故宫日坛
8天坛
A.D7,E6B.D6,E7C.E7,D6D.E6,D7
8.在方格纸上画出的小旗图案如图所示,若用(﹣2,1)表示A点,(﹣2,5)表示B点,那么C点的位置可表示为()
A.(3,5)B.(5,3)C.(1,3)D.(1,2)
9.如图,在平面直角坐标系中,一个智能机器人接到如下指令,按向右、向上、向右、向下的方向依次不断移动,每次移动1个单位,第一次移动到点A1,第二次移动到点A2,……
第n次移动到点A n,则点A2020的坐标是()
A.(1009,0)B.(1009,1)C.(1010,1)D.(1010,0)10.如图,△AOB中,∠ABO=90°,点B在x轴上,点A坐标为(2,2),将△AOB绕点O逆时针旋转15°,此时点A的对应点A'的坐标是()
A.(,)B.(,)C.(,2)D.(1,)
二.填空题(共6小题)
11.在平面直角坐标系xOy中,点(4,﹣5)关于原点的对称点坐标是.
12.在平面直角坐标系中,点A(4,3)到x轴的距离是.
13.在平面直角坐标系中,将点P(﹣3,2)向右平移3个单位得到点P',则点P'关于x轴的对称点的坐标为.
14.已知点A(2a﹣b,5+a),B(2b﹣1,﹣a+b),关于y轴对称,则(4a+b)2020的值是.15.已知AB∥y轴,点A的坐标为(3,2),且AB=3,则点B的坐标为.16.如图,在平面直角坐标系xOy中,将线段OA绕点O顺时针旋转90°得到线段OA',其中A(﹣2,3),则A'的坐标是.
三.解答题(共7小题)
17.已知点A(a+2b,﹣1),B(﹣2,a﹣b),若点A、B关于y轴对称,求a+b的值.18.已知平面内点M(x,y),若x,y满足下列条件,请说出点M的位置.(1)xy=0;
(2)>0.
19.平面直角坐标系中,有一点M(a﹣1,2a+7),试求满足下列条件的a的值.(1)点M在x轴上;
(2)点M在第二象限;
(3)点M到y轴距离是1.
20.已知点A(2a﹣b,5+a),B(2b﹣1,﹣a+b).
(1)若点A,B关于x轴对称,求a,b的值;
(2)若点A,B关于y轴对称,求(4a+b)2019的值.
21.如图,小正方形的边长为1,已知鹰嘴崖坐标为(5,4),先建立平面直角坐标系,再表示各景点的坐标.
22.已知:点A、B在平面直角坐标系中的位置如图所示,△OAB中任意一点P(x1,y1)平移后的对应点为P(x1+6,y1+4).
(1)写出点A′、B′、O′的坐标.
(2)求△OAB的面积.
23.已知三角形ABC与三角形A′B′C′在平面直角坐标系中的位置如图:(1)分别写出点A、A′的坐标:A,A′;
(2)若点P(m,n)是三角形ABC内部一点,则平移后三角形A′B′C′内的对应点P′的坐标为;线段PP′的长度为;
(3)求三角形ABC的面积.。

相关文档
最新文档