金属压力加工工艺技术详解
材料与金属工艺学第三篇:金属压力加工
材 料 与 金 属 工 艺
160
120 80 延 伸率 %
160 300 140 200
冲 击韧度 120 100 冷变形强化是一种不稳定现象,具有 40 0 60 80 % 40 0 20 自发回复到稳定状态的倾向。但在室 变形程度 温下不易实现。 回复温度可以消除部分加工硬化现象: T回=(0.25~0.3)T熔 再结晶温度可以完全消除加工硬化现象:T再=0.4T熔
材 料 与 金 属 工 艺
锻件若有数个简单几何体构成时,几何体间的交接处不应形成空 间曲线。
佛山科学技术学院机电系
自由锻件上不应设计出加强筋、 凸台、工字形截面或空间曲线表面。
材 料 与 金 属 工 艺
自由锻件的横截面若有急剧变化或形状复杂时,应设计成几个简单 件构成体。
佛山科学技术学院机电系
异号应力状态下,变形抗力↓
佛山科学技术学院机电系
第二章
第一节
一、自由锻
材 料 与 金 属 工 艺
锻造
锻造方法
自由锻是不用模具控制金属的塑性流动,让材料比较自由地变形 的锻造方法。有手工自由锻和机器自由锻两类。前者靠手锤和钳 子在铁砧上锻打工件,打击力来自锻工本身。后者靠锻锤(主要 是空气锤)、和钳子在砧座上锻打工件,打击力来自锻锤。 自由锻设备分为锻锤和液压机两大类。锻锤用来锻造中、小型锻 件;液压机能锻造质量达300t的锻件。
二、加工条件
1、变形温度的影响 温度过低金属的塑性不够,但温度过高,会产生过热、过烧、脱 碳和严重氧化等缺陷。
佛山科学技术学院机电系
温度/° C
38 A
固 相 线
液相 线
L L+A
金属压力加工工艺技术详解
第二节 金属的塑性变形
第二节 金属的塑性变形
• 金属的塑性变形,是压力加工的基础, 各种形状的锻件都是利用金属的塑性变 形来制造的。
• 因此,学习金属塑性变形的有关理论, 对改进锻造方法,提高锻件质量,降低 消耗都是十分必要的。
一、 金属塑性变形的实质
弹性变形
在外力作用下,材料内部产生应力,应力迫使原子 离开原来的平衡位置,改变了原子间的距离,使金 属发生变形。并引起原子位能的增高,但原子有返 回低位能的倾向。当外力停止作用后,应力消失, 变形也随之消失。如图3-1(b)所示。
• 金属在常温下经塑性变形后,内部组织将发生 变化:
⑴ 晶粒沿最大变形的方向伸长; ⑵ 晶格与晶粒发生扭曲,产生内应力; ⑶ 晶粒产生碎晶。
二、塑性变形对金属组织和性能影响
1.加工硬化
• 金属的力学性能 随内部组织变形 程度的增加,强 度和硬度上升, 而塑性、韧性下 降(如图3-4),这 种现象被称为加 工硬化(或冷作 硬化)
(二)加工条件
⒈变形温度的影响
温度↑→原子的运动能力↑→容易滑移→塑性↑,变 形抗力↓,可锻性改善。
若加热温度过高,晶粒急剧长大,金属力学性能降 低,这种现象称为“过热”。已过热工件可通过锻 造,控制冷却速度,热处理,使晶粒细化。
若加热温度更高接近熔点,晶界氧化破坏了晶粒间 的结合,使金属失去塑性,坯料报废,一击便碎, 无法挽回。这一现象称为“过烧”。
金属锻造加热时允许的最高温度称为始锻温度。
不能再锻,否则引起加工硬化甚至开裂,此时停止 锻造的温度称终锻温度。
锻造温度:
• 始锻温度:碳钢比AE线低200C°左右 • 终锻温度:800C°过低难于锻造 ,若强
行锻造,将导致锻件破裂报废。
金属工艺学(热)压力加工
4. 胎模锻 是在自由锻设备上使用 胎膜生产模锻件的工艺 方法。 胎膜种类:扣模、筒模 和合模
第二节 锻造工艺规程的制订
一、绘制锻件图 考虑内容: 1 敷料、余量和公差 为了简化零件的形状和结构,便于锻造而增加的一部分金属, 称为敷料。 在零件的加工表面上为切削加工而增加的尺寸,称为余量。 锻件公差是锻件名义 尺寸的允许变动量。
(4)应避免深孔或多孔结构。 (5)模锻件的整体结构应力求简单。
作业: 111页 (2)、(3)、(5)、(9)、(11)
第二节 锻造工艺规程的制订
2 分模面 上下锻模在模锻件上的分界面。 确定原则: (1)应保证模锻件能从模膛中取出来。 (2)应保证制成锻模后,上下两模沿分模面的模膛轮廓一致。 (3)应选在使模膛深度最浅的位置上。 (4)应使零件上所加敷料最少。 (5)最好是一个平面。
第二节 锻造工艺规程的制订
第一节 锻造方法
1. 自由锻工序 分为基本工序、辅助工序和精整工序 (1)基本工序 使金属坯料实现主要的变形要求,达到或 基本达到锻件所需尺寸和形状的工序。 镦粗 使坯料高度减小、横截面积增大的工序 拔长 使坯料横截面积减小、长度增大的工序 冲孔 使坯料具有通孔或盲孔的工序 弯曲 使坯料轴线产生一定曲率的工序 扭转 使坯料的一部分相对于另一部分绕其轴线旋转一定 角度的工序 错移 使坯料的一部分相对于另一部分平移错开的工序 切割 是分割坯料或去除锻件余量的工序 (2)辅助工序 是指进行基本工序之前的预变形工序。 (3)精整工序 完成基本工序后,提高锻件尺寸及位置精 度的工序。
金属工艺学(热)
(完整版)金属工艺学(压力加工)
锻造齿轮毛坯,应对棒料镦粗加工,使其纤维呈放射状,有利于齿轮的受力。 曲轴毛坯的锻造,应采用拔长后弯曲工序,使纤维组织沿曲轴轮廓分布,这样曲轴 工作时不易断裂。
第三节 金属的可锻性
金属的可锻性是衡量材料在经受压力加工时获得优质制品难 易程度的工艺性能。
转体锻件。
第二节 锻造工艺规程的制订
一、绘制锻件图
锻件图是以零件图为基础,结 合锻造工艺特点绘制而成。
1.敷料、余量及公差
敷料:为了简化零件的形状和 结构、便于锻造而增加的 部分金属。
加工余量:在零件的加工表面 上,为切削加工而增加的 尺寸。
锻件公差:是锻件名义尺寸允 许的变动量。金工动画\锻 件图.exe
二、常用的压力加工方法:
a)轧制 b)挤压 c)拉拔 d)自由锻 e)板料冲压 f)模锻
金工动画\压力加工\视 频\挤压.avi
金工动画\压力加工\视频\镦粗.avi
三、压力加工的特点 (1)改善金属的组织、提高力学性能。 (2)材料的利用率高。 (3)较高的生产率。 (4)毛坯或零件的精度较高。 钢和非铁金属可以在冷态或热态下压力 加工。可用作承受冲击或交变应力的重要零 件,但不能加工脆性材料(如铸铁)。
可锻性常用塑性和变形抗力来衡量。金属的可锻性取决于金属 的本质和加工条件。
一、 金属的本质
1.化学成分的影响 纯金属的可锻性比合金好;碳钢的含碳量越低,可锻性
越好。 2.金属组织的影响
纯金属及单相固溶体比金属化合物的可锻性好;细小的 晶粒粗晶粒 好;面心立方晶格比体心立方晶格好 。
二、加工条件
1.变形温度的影响 热变形可锻性提高.但温度过高将发生过热、过烧、脱
第三篇金属压力加工
1.金属本质的影响
(1)化学成分 金属的化学成分不同锻造性能也 不同,一般情况下,纯金属比合金好。合金成 分越复杂,锻造性能越差。例如,纯铁、低碳 钢、高碳钢它们的锻造性能是依次下降的。 (2)金属的组织 合金呈单相固溶体组织时,具 有良好的锻造性能。而金属具有化合物组织时, 锻造性能差。 晶粒的粗细对锻造性能也有影响。铸态组织晶 粒粗大,塑性差,锻造钢锭时,应先轻打,待 晶粒细化后再重打,以免打裂。晶粒越细,塑 性越好,故锻造性能也越好。
第三篇金属 压力加工
概述
一. 什么是压力加工 靠外力使金属材料产生塑性变形而得到 预定形状与性能的制件(毛坯或零件)的加 工方法。 外力—— 冲击力:锤类 静压力:压力机 各类钢和大多数有色金属及其合金都具有一 定的塑性,因此,都能在热态或冷态下进行 压力加工。 应用广泛:运输工具96%; 汽车拖拉机95%; 航天、航空90%; 农用机械工业80%。
第一章 金属塑性变形 §1 金属塑性变形的实质
具有一定塑性的金属材料,在外力 作用下变形的过程是随着应力的增加由 弹性变形阶段进入弹性-塑性变形阶段 的。在弹性变形阶段,若应力消除,变 形也随之消失。进入弹性-塑性变形阶 段后,即使应力消除,变形也不能完全 消失,消失的只是弹性变形部分,而另 一部分被保留下来,这部分变形就是塑 性变形。
第二章 锻造
利用冲击力或压力使金属在抵铁间 或锻模中变形,从而获得所需形状和尺 寸的锻件,这类工艺方法称为锻造。锻 造是金属零件的重要成型方法之一,它 能保证金属零件具有较好的力学性能, 以满足使用要求。
第一节 锻造方法
一.自由锻 1.自由锻工艺
自由锻造是将加热好的金属坯料在锻造设备的上、 下砧铁之间,在冲击力或压力的作用下,发生塑性变形 而获得锻件的锻造方法。 自由锻根据使用设备和锻造力的性质不同,分为锤上自 由锻和压力机上自由锻。锻锤产生冲击力使金属变形, 压力机产生静压力使金属变形。锤上自由锻适于锻造 0.5~1吨以下的中小型锻件,压力机上自由锻适于锻造 大型锻件。自由锻使用简单的通用性设备,不需要造价 昂贵的专用模具,可以锻造从几十克到几百吨的锻件, 但是其锻件的尺寸精度低,加工余量大,材料消耗多, 而且生产率低,劳动条件差,劳动强度大。只有在单件 或小批量生产的条件下采用自由锻才是合理的。此外, 对于同一锻件自由锻需要的变形力比模锻小得多,因此 对于大型锻件自由锻几乎是唯一的锻造方法,它在重型 机械制造中具有重要的地位。
第三篇金属压力加工
近代物理学证明,实际晶体内部存在大最缺陷。其中,以 位错(图3-2a对金属塑性变形的影响最为明显。由于位 错的存在,部分原子处于不稳定状态。在比理论值低得 多的切应力作用下,处于高能位的原子很容易从一个相 对平衡的位置上移动到另一个位置上(图3-2b),形成 位错运动。位错运动的结果,就实现了整个晶体的塑性 变形(图3-2c)。
4、多晶体的塑性变形:金属都是由大量微小晶粒组成的 多晶体。其塑性变形可以看成是由组成多晶体的许多单个 晶粒产生变形(称为晶内变形)的综合效果。 由于构成晶体的晶粒位向不同,还有晶界的阻碍,在其滑 移,变形时,分先后次序逐批进行。同时晶间的滑动和转 动(称为晶间变形)。如图,每个晶粒内部都存在许多滑 移面,因此整块金属的变形量可以比较大。低温时,多晶 体的晶间变形不可过大,否则将引起金属的破坏。
(2)拉拔 金属坯料被拉过拉拔模的模孔而变形的加工方法。
(3) 挤压 金属坯料在挤压模内被挤出模也而变形的加工方法。
(4) 锻造 金属坯料在抵铁或锻模模膛内变形而获得产品的方法。
(5)板料冲压 金属板料在冲模间受外力作用而产生分离或变形 的加工方法。
• 一般常用的金属型材、板材、管材和线材等原材料,大都是通过 轧制、挤压、拉拔等方法制成的。机械制造业中的许多毛坯或零 件,特别是承受重载荷的机件,如机床的主轴、重要齿轮、连杆、 炮管和枪管等,通常采用锻件作毛坯。板料冲压广泛用于汽车、 电器、仪表零件及日用品工业等方面。
2、变形速度的影响 变形速度即单位时间的变形程度。 (1)随着变形速度的增大,回复和再结晶不能及时克服 冷变形强化现象,金属则表现出塑性下降、变形抗力增大 (图3-9中a点以左),可锻性变差。
第三篇金属压力加工
A.使高碳钢晶粒细化提高强度; B.使高碳钢获得优良的表 面质量;
C.打碎高碳钢内部的网状碳化物。
•
• 6-3 应用题 • 1.钨的熔点为3380℃,铅的熔点为327℃,试计算钨及铅的再结
晶温度。钨在900℃进行变形,铅在室温(20℃)进行变形,试判 断它们属于何种变形。 • T回=0.3T熔点(K) (3380+273) ×0.3 =3653 ×0.3 = 1096(823 ℃) • T再 =0.4T熔点(K) (3380+273) ×0.4 =3653 ×0.4 = 1461(1188 ℃) • T回(823 ℃)< 900℃< T再(1188 ℃)所以为温变形
件。在压力加工过程中,要力求创造最有利的加工条件,提高塑 性,降低变形抗力。
•
• 6-1 判断题
• 1.压力加工是利用金属产生塑性变形获得零件或毛坯的一种方法 。在塑性变形的过程中,理论上认为金属只产生形状的变化而其 体积是不变的。
• 2.把低碳钢加热到1200℃时进行锻造,冷却后锻件内部晶粒将沿 变形最大的方向被拉长并产生碎晶。如将该锻件进行再结晶退火 ,便可获得细晶组织。
• 6.塑性是金属可锻性中的一个指标。压力加工时,可以改变变形 条件;但不能改变金属的塑性。
•
• 7.冷变形不仅能改变金属的形状,而且还能强化金属,使其强度 、硬度升高。冷变形也可以使工件获得较高的精度和表面质量。
• 8.某一批锻件经检查,发现由于纤维组织分布不合理而不能应用 。若对这批锻件进行适当的热处理,可以使锻件重新得到应用。
•
第二章 常用金属的锻造性能
§2-1 金属的锻造性能及其影响因素
一、可锻性概念 • 金属的锻造性能,是指金属材料在压力加工时获得优质产品难易程度的
金属压力加工(1---2章)
第二节金属压力加工成型的方法:1减少质量的成型方法:由大质量的金属上面去除一部分质量而获得一定形状及尺寸的工件。
属于这种方法的有:车,刨,末,钻等金属切缺加工;把金属局部去掉的才冲裁与剪切、气割与电切;把金属制品放在酸或碱的溶液中蚀刻成花纹等蚀刻加工。
2 增加质量的成型方法:由小质量的金属逐渐积累成大质量的产品。
属于这种方法的有铸造、电解沉积,焊接与铆接,烧结与胶结。
3 质量保持不变的成型方法:金属本身不分离出多余质量,也不积累增加质量的成型方法。
这种方法是利用金属的塑性,对金属施加一定的外力作用使金属产生塑性变形,改变其形状和性能而获得所要求的产品。
轧制、锻造、冲压、拉拔、挤压。
优点:(1)因为是无屑加工,故可节省金属。
除工艺原因所造成的废料以外,加工过程本身是不会造成废料的。
(2)金属塑性变形过程中使其内部组织以及之相关联的物理、机械等性能得到改善。
(3)产量高,能量消耗少,成本低,适于大量生产。
缺点:(1)对要求形状复杂,尺寸精确,表面十分光洁的加工产品尚不及金属切削加工方法。
但由于压力加工方法的产量高、性能好、成本低,故一些要求不特别高的工件有取而代之的趋势。
(2)该方法仅能适用于生产具有塑性的金属,在成本上和形状复杂程度方面远不如铸造方法。
大多数压力加工方法的设备庞大,加工薄而细和批量少的产品,成本也较高。
4 组合的成型方法:几种成型方法联合使用。
如无锭轧制称液态铸轧方法,是铸造与轧制方法的联合;辊锻加工是轧制和锻造方法的联合。
第三节金属压力加工:是对具有塑性的金属施加外力作用使其产生塑性变形,改变金属形状、尺寸和性能而获得所要求的产品的一种加工方法。
主要方法有轧制、锻造、冲压、拉拔和挤压等。
轧制(金属压力加工的最广泛的方法):指金属通过旋转的轧辊缝隙进行塑性变形过程。
轧制方式:纵轧、横轧和斜轧。
纵轧:金属在相互平行且旋转方向相反的轧辊缝隙间进行塑性变形,而金属的进行方向与轧辊轴线垂直。
金属工艺学 第3版 单元七 金属压力加工
(2)金属的冷变形强化。 随着金属冷变形程度的增加,金属的强度指标和硬度都有所提高,但塑性有所下降, 这种现象称为冷变形强化。
当加热温度较高时,塑性变形后的金属中被拉长了的晶粒重新生核、结晶,变为等轴晶粒的过程 称为再结晶.
开始产生再结晶现象的最低温度称为再结晶温度。
T再≈0.4T熔(K) 式中T熔──是纯金属的开氏温度熔点。 3.
三、金属压力加工基础知识 金属的可锻性是指金属在锻造过程中经受塑性变形而不开裂的能力。 可锻性与金属的塑性和变形抗力有关,塑性愈好,变形抗力愈小,则金属的可锻性愈好,反之,则
1
(1)金属塑性变形的实质。 金属单晶体的变形方式主要有滑移和孪晶两种,在大多数情况下滑移是金属塑性变形的主要方式。 金属在滑移变形过程中,一部分旧的位错消失,又大量产生新的位错,总的位错数量是增加的,大 量位错运动的宏观表现就是金属的塑性变形过程。 位错运动观点认为:晶体缺陷及位错相互纠缠会阻碍位错运动,导致金属的强化,即产生冷变形强 化现象。
(2)拔长。 ●拔长是指使毛坯横断面积减小,长度增加的锻造工序。 拔长常用于锻造截面小而长度大的杆类锻件,如轴、拉杆、连杆、曲轴等。 (3)冲孔。 ●冲孔是指在坯料上冲出透孔或不透孔的锻造工序。
(4)切割。 ●切割是指将坯料分成几部分或部分地割开或从坯料的外部割掉一部分或从内部割掉一部 分的锻造工序。 切割常用于下料、切除锻件的料头、钢锭的冒口等。 (5)弯曲。 ●弯曲是指采用一定的工模具将毛坯弯成所规定的外形的锻造工序。 弯曲常用于锻造角尺、弯板、吊钩、链环等轴线弯曲的锻件。 (6)锻接。 ●锻接是指坯料在炉内加热至高温后用锤快击使两者在固相状态结合的锻造工序。 锻接的方法有搭接、对接、咬接等。
从金属学的观点来讲,划分冷加工与热加工的界限是再结晶温度。在再结晶温度以上进行的塑性 变形属于热加工;而在再结晶温度以下进行的塑性变形称为冷加工。 4. 热锻后的金属组织具有一定的方向性,通常将这种组织称为锻造流线。
金属压力加工工艺基础知识
金属压力加工工艺基础知识金属压力加工是一种常见的金属加工方式,广泛应用于机械制造、汽车、航空航天、建筑等行业。
它通过机械设备对金属材料施加力量,使其在受力作用下发生形变,并得到所需要的形状和尺寸。
以下是金属压力加工的基础知识。
1. 金属压力加工的主要方法金属压力加工主要包括锻造、轧制、挤压和拉伸等方法。
锻造是利用锤敲或机械压力对金属进行加工,使其在高温或室温下发生形变;轧制是通过辊轧机将金属材料压制为所需的形状;挤压是将金属放置在模具内,施加压力使其通过模具孔径形成所需形状;拉伸是将金属材料拉伸成细丝或薄板。
2. 金属材料的选择金属压力加工时,要选择适合的金属材料,常见的金属材料有钢、铁、铝、铜、镁等。
选择材料应考虑其机械性能、成本、可加工性等因素。
3. 加工工艺参数金属压力加工的工艺参数包括温度、压力、形变速度等。
不同工艺需要不同的参数,它们直接影响到成品的质量和性能。
4. 加工设备金属压力加工需要相应的设备,如锻压机、辊轧机、挤压机、拉伸机等。
这些设备具有不同的结构和功能,适用于不同的加工方式和材料。
5. 金属压力加工的优点金属压力加工具有高效、高精度、高稳定性等优点。
它能够生产各种复杂形状的金属制品,能够提高材料的机械性能和物理性能。
6. 金属压力加工的应用领域金属压力加工广泛应用于各个行业。
例如,锻造常用于制造航空发动机零件、汽车零件等;轧制常用于制造金属板材、管材等;挤压常用于制造铝合金门窗、铝合金型材等;拉伸常用于制造线材、薄板等。
总之,金属压力加工是一种重要的金属加工方式,掌握其基础知识对于从事相关行业的人员来说是很重要的。
只有了解金属压力加工的方法、材料选择、工艺参数、设备和应用领域等方面的知识,才能更好地进行金属加工,满足各种工业领域对金属制品的需求。
金属压力加工是一项复杂而重要的工艺,对于金属制品的制造起着至关重要的作用。
在金属压力加工领域,有许多基础知识需要了解和掌握,下面将进一步介绍金属压力加工的相关内容。
金属压力加工工艺基础知识.pptx
(二)冷塑性变形对金属组织、性能的影响 1.产生加工硬化 加工硬化:金属经冷塑性变形后,强度、硬度提 高,塑性、韧性下降的现象 决定作用:位错密度增加,变形量增大,金属的塑 性变形抗力增大,加工硬化现象明显
未变形纯铁
变形20%纯铁中的位错
图3.15
冷变形强化原因:在塑性变形过程中,滑移面上产生许多晶格方向混乱 的微小碎晶,滑移面附近的晶格也产生畸变,增加继续滑移阻力,继 续变形困难。
2.消除和改善铸态金属的组织缺陷 使金属铸锭中的气泡缩孔焊合、缩松压实、密度
增加 温度压力作用下,原子扩散速度加快,消除部分
偏析,使成分均匀 将粗大的柱状晶粒与枝晶变为细小的均匀的等轴
晶粒 改善夹杂物、碳化物的形态、大小与分布,金属
致密度提高
三、金属的锻压性能 (一)锻压工艺 锻压:借助于外力作用,使金属坯料产生塑性变 形,从而获得所要求形状、尺寸和力学性能的毛坯 或零件的一种压力加工方法。 锻造和冲压的总称
形变织构
铝板的“制耳”
3.产生残余应力
残余应力:金属塑性变形中,由于内部变形不均
匀,变形后内部仍残有的应力
弹性应力,金属中处于自相平衡状态
• 宏观内应力 原因:金属表层和心部变形不均匀, 或两部分间变形不均匀
• 微观残余内应力 多晶体中各晶粒位向不同,使各 晶粒间变形不均匀,产生金属晶粒间相互平衡的 残余应力
缺点: ➢锻件的结构工艺性要求较高,内腔复杂零件难以锻 造; ➢锻造毛坯的尺寸精度不高,一般需切削加工; ➢需重型机器设备和较复杂模具,设备费用与周期长; ➢生产现场劳动条件较差。
第一节 锻压工艺基础
一、金属的塑性变形 金属在外力作用下产生变形,若外力消除后,
变形随之消失,这类变形称为弹性变形。当外力 (达到或超过材料的屈服点)消除后,金属保持了 变形后的成型效果,这类变形称为塑性变形。
金属压力加工方法
金属压力加工方法
金属压力加工是指在规定的条件下,利用压力(一般为机械力)对金属材料进行形变加工的一种工艺方法。
以下是一些常见的金属压力加工方法:
1. 深拉成型
深拉成型是利用压力在金属板材上形成凹形或凸形的一种成型加工方法。
其加工时先在板材表面打上凹凸型的成型坑位,然后通过机械设备和力量的作用使材料沿成型坑下降,逐渐成形,是一种经济实用的大批量加工方法。
2. 冷轧成型
冷轧是指利用较小的压力通过一定的工艺流程,将板材或带钢和型材进行冷加工的一种方法。
其过程中不需添加热能,因此具有节能、环保等优点。
冷轧成型广泛应用于轻钢结构、容器、钢构件等的生产中。
3. 挤压成形
挤压成形是通过将金属材料压进模具中,在压力作用下,使金属材料沿模孔中的形状发生塑性变形,得到各种棒材、型材、板材等形状的加工方法。
挤压成形技术被广泛应用于航空、汽车、建筑等领域。
4. 压铸成型
压铸是指将金属材料融化后注入熔模中,在高压力下铸造成型的一种加工方法。
压铸成形具有准确、高效、节约材料等特点,广泛应用于汽车、电子器件、机械
设备等领域。
5. 滚压成形
滚压成形是利用较大的压力和较小的位移,将金属材料在两个或两个以上的滚轮之间滚压成型的一种方法。
滚压成形具有高效、准确、占地面积小等特点,是一种有效的金属成型方法。
第3篇 金属压力加工
第三篇金属压力加工概述一、什么是压力加工?在外力作用下使金属产生塑性变形,从而获得具有一定形状、尺寸和力学性能的毛坯或零件的加工方法。
外力——冲击力:锤类静压力:压力机各类钢和大多数有色金属及其合金都具有一定的塑性,因此,都能在热态或冷态下进行压力加工。
应用广泛:运输工具96%;汽车拖拉机95%航天、航空90%;农用机械工业80%。
二、分类1、轧制:金属坯料在两个回转轧辊的缝隙中受压变形以获得各种产品的加工方法。
靠摩擦力,坯料连续通过轧辊间隙而受压变形。
主要产品:型材、圆钢、方钢、角钢、铁轨等。
2、挤压:金属坯料在挤压模内受压被挤出模孔而变形的加工方法。
正挤:金属流动方向与凹模运动方向相同。
反挤:金属流动方向与凹模运动方向相反。
3、拉拔:将金属坯料拉过拉拔模的模孔而变形的加工方法。
a产品尺寸精度、表面光洁度较高,所以,常用于轧制件的再加工,提高产品质量。
坯料:低碳钢、有色金属及合金。
外力:拉力。
4、自由锻:金属坯料在上、下抵铁间受冲击力或压力而变形。
外力:压力。
5、模锻:金属坯料在具有一定形状的模膛内受冲击力或压力而变形的加工方法。
6、冲压:金属板料在冲模之间受压产生分离或成形。
1-5 立体变形(三维);6 平面变形(二维);三、特点:(与铸造比)1 优点:(1)结构致密,组织改善,性能提高,强、硬、韧↑(2)少无切削加工,材料利用率高。
(3)可以获得合理的流线分布(金属塑变是固体体积转移过程)。
(4)生产效率高。
(如:曲轴、螺钉)2 缺点:(1)一般工艺表面质量差(氧化)。
(2)不能成型形状复杂件(相对)(3)设备庞大、价格昂贵。
(4)劳动条件差(强度↑、噪音↑)第一章金属塑性变形§1 金属塑性变形的实质塑性:金属在外力作用下,产生永久变形而不破坏的能力。
金属变形过程:a)金属材料在外力作用下发生弹性变形b)当外力超过一定值后产生塑性变形c)外力继续加大,发生断裂金属塑性变形的实质:a)晶粒内部滑移和孪生b)晶间滑移和晶粒转动一、晶体:1 晶体:物质中的原子按一定规律在三维空间周期重复排列。
03第二章金属材料及其加工技术讲稿压力加工学习资料
成 拉深
形 胀形
工 序 翻边
法兰区坯料在切向压应力、 径向拉应力作用下向直壁流 动,制成筒形或带法兰的筒 形零件
平板毛坯或者管坯在双向拉 应力作用下产生双向伸长变 形。用于成形凸包、凸筋或 鼓凸空心零件
在预先冲孔的板料或未经冲 孔的板料之上,在双向拉应 力作用下产生切向伸长变形, 冲制带有直边的空心零件
先简要介绍前三种方法,后两种方法后面系统讲授。
1.轧制
利用两个旋转轧辊的压力使金属坯料通过一个特定空 间产生塑性变形,以获得所要求的截面形状并同时改变其 组织性能。通过轧制可将钢坯加工成不同截面形状的原材 料,如圆钢、方钢、角钢、T字钢、工字钢、槽钢、钢轨 等。
2.挤压
将金属放入挤压筒内,用强大的压力使坯料从模孔中挤 出,从而获得符合模孔截面形状的坯料或零件的加工方 法。适合于挤压的金属材料主要有低碳钢、有色金属及 其合金。
2、弯曲成型设备:板料折弯压力机、 卷板机、拉型机
3、压制设备
五、折弯工艺
折弯工艺是将管材或板料按设计要求弯成一定的 角度和一定的曲率,形成所需形状零件的冲压工序 。多用于工业产品的箱、柜、盒和一些结构产品, 同工业设计产品关系密切。
弯曲件的形状
一般要求弯曲件形状对称,弯ห้องสมุดไป่ตู้半径左右一致, 则弯曲时坯料受力平衡而无滑动。
一、压力加工的概念
利用金属在外力下所产生的塑性变形,来获得具有 一定形状、尺寸和机械性能的原材料、毛坯或零件的 生产方法。压力加工又称为塑性加工。
各类钢和大多数有色合金一般都具有一定的塑性, 因此它们可以在热态或冷态下进行压力加工。
二、压力加工的方法
压力加工的方法有:轧制、挤压、拉拔、锻造和冲 压等。前三种方法主要生产各种型材,后两种方法主 要生产毛坯和零件。
金属压力加工工艺基础知识
金属压力加工材料性能
04
金属材料在外力作用下发生永久变形而不破坏其完整性的能力。
塑性定义
塑性指标
影响因素
包括延伸率、断面收缩率和弯曲试验等,用于评估金属材料的塑性性能。
金属材料的化学成分、组织结构、温度和应变速度等都会影响其塑性。
03
02
01
金属材料在外力作用下发生弹性变形,当外力去除后能够恢复原状的能力。
分类
根据加工方式的不同,锻造工艺可分为自由锻和模锻两种类型。自由锻是利用锤击或压力机等设备使金属自由变形,而模锻则是将金属放入模具中,通过施加压力使其按照模具的形状变形。
应用
锻造工艺广泛应用于航空、汽车、船舶、电力、石油化工等领域,用于制造各种重要构件和零部件。
01
02
03
04
总结词:冲压是一种利用冲压模具对金属板材施加压力,使其变形或分离的加工工艺。
尺寸偏差是金属压力加工过程中出现的一种常见缺陷,它会影响产品的精度和性能。
总结词
尺寸偏差是由于加工过程中的误差累积或工艺参数控制不当而引起的。尺寸偏差的存在可能会导致产品的尺寸不符合要求,影响其装配和使用性能。为了减小尺寸偏差,需要加强工艺参数的控制和精度测量,同时采用高精度的加工设备和工艺方法。
家用电器的元件制造
家用电器的元件如电热器、电风扇的叶轮等部件通过锻造和轧制工艺制造。
高强度钢的应用
随着高强度钢的研发和应用,金属压力加工工艺需要适应新的材料特性,如更高的强度和更好的韧性。
复合材料的应用
复合材料的广泛应用对金属压力加工工艺提出了新的挑战和机遇,如碳纤维增强塑料等材料的加工和连接技术。
温度控制对产品质量的影响
在金属压力加工中,温度的控制至关重要。通过合理的温度控制,可以改善材料的加工性能,提高产品的质量和合格率。
金属材料成型 压力加工详解共80页文档
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根
金属材ห้องสมุดไป่ตู้成型 压力加工详解
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要内容:
一、金属塑性成形的概念 二、压力加工的基本生产方式 三、压力加工的特点
第一节 概述
一、金属塑性成形(压力加工)的概念
压力加工——金属材料在外力作用下产生塑性变
形,获得具有一定形状、尺寸和力学性能的毛坯或 零件的生产方法。
• 利用外力使金属发生塑性变形,这是区别于其它工艺 方法的不同之处。
使金属坯料在回转轧辊的间隙中,靠摩擦力的作用, 得以连续进行轧辊而变形的加工方法,称为轧制。
轧制所用的坯料主要是钢锭。
在轧制过程中,金属坯料截面变小,长度增加,从 而获得各种形状的原材料。
• 在旋转的轧辊间改变钢锭,钢坯形状的 压力加工过程叫轧钢。
• 轧钢的目的与其他压力加工一样,一方 面是为了得到需要的形状,例如:钢板, 带钢,线材以及各种型钢等;另一方面 是为了改善钢的内部质量,我们常见的 汽车板、桥梁钢、锅炉钢、管线钢、螺 纹钢、钢筋、电工硅钢、镀锌板、镀锡 板,包括火车轮都是通过轧钢工艺加工 出来的。
• 因此,用于压力加工的金属材料必须具有良好的塑性。 • 大多数钢和有色金属及其合金都具有一定的塑性,可
以在不同温度下进行压力加工。 • 生铁和脆性有色金属不能进行压力加工。
二、压力加工的基本生产方式
1.轧制
2.挤压
4.自由锻造 5.模型锻造
1.轧制
3.拉拔 6.板料冲压 轧辊和金属坯料
间产生的摩擦力
位错:沿滑移面旧原子对破坏,新原子对形成,如 图3-2所示。
• 多晶体的塑性变形(晶内和晶间变形) • 晶内变形:外力作用下,某一晶粒的塑性变形。 • 晶间变形:晶粒之间的相互位移或转动。在外力作用
1.轧制
轧辊 坯料
轧制示意图
2.挤压
1—凸模 2—挤压筒 3—金属坯料 4—挤压模
3.拉拔
拉拔模
坯料
4.自由锻
上砥铁
坯料 下砥铁
5.模锻
6.板料冲压
• 压力加工的六种基本生产方式:轧制、挤压、 拉拔、自由锻、模锻和板料冲压。
• 其中轧制、挤压、拉拔主要用于生产金属型材、 板材、管材、线材等原材料。
三、压力加工的特点
(1)改善金属的组织、提高力学性能
金属材料经压力加工后,其组织、性能都得到改善和提 高,塑性加工能消除金属铸锭内部的气孔、缩孔和树 枝状晶等缺陷,并由于金属的塑性变形和再结晶,可 使粗大晶粒细化,得到致密的金属组织,从而提高金 属的力学性能。在零件设计时,若正确选用零件的受 力方向与纤维组织方向,可以提高零件的抗冲击性能。
(2)材料的利用率高
金属塑性成形主要是靠金属的体积重新分配,而不需要 切除金属,因而材料利用率高。
(3)较高的生产率
塑性成形加工一般是利用压力机和模具进行成形 加工的,生产效率高。例如,利用多工位冷镦 工艺加工内六角螺钉,比用棒料切削加工工效 提高约400倍以上。
(4)毛坯或零件的精度较高
应用先进的技术和设备,可实现少切削或无切削 加工。例如,精密锻造的伞齿轮齿形部分可不 经切削加工直接使用,复杂曲面形状的叶片精 密锻造后只需磨削便可达到所需精度。
• 自由锻和模锻用来制造机器零件或毛坯。
• 凡承受重载荷的机器零件,通常需采用锻件做 毛坯,再经过切削加工而成,如:机器的主轴、 连杆、重要齿轮、炮筒和枪管等。
• 板料冲压则广泛用于汽车制造、电器、仪表零 件及日用品工业等方面。
• 压力加工与铸造都是获得毛坯件的方法
• 但是压力加工与铸造方法相比,也有不 足之处,如:不能获得形状较为复杂的 零件。
轧辊
坯料
轧制示意图 槽钢和角钢
3
4
6
9
各种型钢示意图
1—圆钢;2—方钢;3— 扁钢;4—角钢;5—丁字 钢;6—工字钢;7—槽钢; 8—钢轨;9—Z字钢
二、压力加工的基本生产方式
2.挤压
• 将金属坯料放在模具内,用强大的压力,从一端的模 孔中挤出而变形的加工方法,称为挤压。
• 在挤压过程中,金属坯料的截面依照模孔的形状减小, 长度增加,从而获得各种形状复杂的等截面型材或零 件。适合于加工低碳钢、有色金属及其合金。
4.自由锻
将金属坯料放在抵铁间受冲击力或压力而变形的加 工方法,称为自由锻。
上抵铁
坯料
下抵铁
自由锻示意图
5.模锻
将金属坯料放在具有一定形状的锻模膛内,受冲击 力或压力而变形的加工方法,称为模锻。
下模 坯料
上模
模锻示意图
6.板料冲压
将板材放在冲模之间,使其受压产生切离或变形的 加工方法,称为板料冲压。
塑性变形
内应力超过金属的屈服点后,外力停止作用后,金 属的变形并不完全消失。如图3-1(c)(d)所示。
滑移面
在切向应力作用下,晶体的一部分相对于另一部分, 沿着一定的晶面产生相对滑移,该面称为滑移面。
位错运动引起塑性变形
近代物理学证明,晶体不是在滑移面上,原子并不 是整体的刚性运动而是以位错引起金属塑性变形。
第二节 金属的塑性变形
第二节 金属的塑性变形
• 金属的塑性变形,是压力加工的基础, 各种形状的锻件都是利用金属的塑性变 形来制造的。
• 因此,学习金属塑性变形的有关理论, 对改进锻造方法,提高锻件质量,降低 消耗都是十分必要的。
一、 金属塑性变形的实质
弹性变形
在外力作用下,材料内部产生应力,应力迫使原子 离开原来的平衡位置,改变了原子间的距离,使金 属发生变形。并引起原子位能的增高,但原子有返 回低位能的倾向。当外力停止作用后,应力消失, 变形也随之消失。如图3-1(b)所示。
1—凸模
2—挤压筒
3—金属坯料
4—挤压模
a正挤压b反挤压Fra bibliotek3.拉拔
将金属坯料通过模孔拉出而变形的加工方法, 称为拉拔。
拉拔主要用于制造各种细线材、薄壁管和各 种特殊几何形状的型材。
拉拔模
坯料
拉拔示意图
拉拔产品截面形状图
• 拉拔所获得的产品具有较高的精度与表 面光洁度,故亦常用于对轧制件(棒料、 管材)的再加工,以提高产品质量。低 碳钢和大多数有色金属及其合金都可以 经拉拔成形。
• 用途:承受冲击或交变应力的重要零件(如机 床主轴、齿轮、曲轴、连杆等),都应采用锻 件毛坯加工。所以压力加工在机械制造、军工、 航空、轻工、家用电器等行业得到广泛应用。 例如,飞机上的塑性成形零件的质量分数占 85%;汽车,拖拉机上的锻件质量分数约占 60%~80%。
• 缺点:不能加工脆性材料(如铸铁)和形状特 别复杂(特别是内腔形状复杂)或体积特别大 的零件或毛坯。